Properties

Label 6900.2.f.s.6349.8
Level $6900$
Weight $2$
Character 6900.6349
Analytic conductor $55.097$
Analytic rank $0$
Dimension $8$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [6900,2,Mod(6349,6900)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(6900, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0, 1, 0]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("6900.6349");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 6900 = 2^{2} \cdot 3 \cdot 5^{2} \cdot 23 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 6900.f (of order \(2\), degree \(1\), not minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(55.0967773947\)
Analytic rank: \(0\)
Dimension: \(8\)
Coefficient field: \(\mathbb{Q}[x]/(x^{8} + \cdots)\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{8} + 20x^{6} + 80x^{4} + 41x^{2} + 4 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{11}]\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

Embedding invariants

Embedding label 6349.8
Root \(-0.672035i\) of defining polynomial
Character \(\chi\) \(=\) 6900.6349
Dual form 6900.2.f.s.6349.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+1.00000i q^{3} +4.30400i q^{7} -1.00000 q^{9} -0.672035 q^{11} +3.64807i q^{13} +7.56447i q^{17} -5.22040 q^{19} -4.30400 q^{21} -1.00000i q^{23} -1.00000i q^{27} +1.58844 q^{29} +10.5004 q^{31} -0.672035i q^{33} -1.56447i q^{37} -3.64807 q^{39} -4.63196 q^{41} +8.29614i q^{43} +8.22040i q^{47} -11.5244 q^{49} -7.56447 q^{51} +5.52440i q^{53} -5.22040i q^{57} +2.26048 q^{59} +1.89244 q^{61} -4.30400i q^{63} +10.2800i q^{67} +1.00000 q^{69} -6.91641 q^{71} -5.32010i q^{73} -2.89244i q^{77} +10.4168 q^{79} +1.00000 q^{81} -15.1050i q^{83} +1.58844i q^{87} -5.53226 q^{89} -15.7013 q^{91} +10.5004i q^{93} +8.71556i q^{97} +0.672035 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 8 q - 8 q^{9} - 4 q^{11} - 4 q^{19} - 6 q^{21} + 2 q^{29} - 12 q^{31} + 2 q^{39} - 10 q^{41} - 26 q^{49} - 20 q^{51} + 6 q^{59} - 24 q^{61} + 8 q^{69} - 46 q^{71} - 22 q^{79} + 8 q^{81} - 12 q^{89} - 38 q^{91}+ \cdots + 4 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/6900\mathbb{Z}\right)^\times\).

\(n\) \(277\) \(1201\) \(3451\) \(4601\)
\(\chi(n)\) \(-1\) \(1\) \(1\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 1.00000i 0.577350i
\(4\) 0 0
\(5\) 0 0
\(6\) 0 0
\(7\) 4.30400i 1.62676i 0.581734 + 0.813379i \(0.302375\pi\)
−0.581734 + 0.813379i \(0.697625\pi\)
\(8\) 0 0
\(9\) −1.00000 −0.333333
\(10\) 0 0
\(11\) −0.672035 −0.202626 −0.101313 0.994855i \(-0.532304\pi\)
−0.101313 + 0.994855i \(0.532304\pi\)
\(12\) 0 0
\(13\) 3.64807i 1.01179i 0.862594 + 0.505896i \(0.168838\pi\)
−0.862594 + 0.505896i \(0.831162\pi\)
\(14\) 0 0
\(15\) 0 0
\(16\) 0 0
\(17\) 7.56447i 1.83465i 0.398134 + 0.917327i \(0.369658\pi\)
−0.398134 + 0.917327i \(0.630342\pi\)
\(18\) 0 0
\(19\) −5.22040 −1.19764 −0.598821 0.800883i \(-0.704364\pi\)
−0.598821 + 0.800883i \(0.704364\pi\)
\(20\) 0 0
\(21\) −4.30400 −0.939209
\(22\) 0 0
\(23\) − 1.00000i − 0.208514i
\(24\) 0 0
\(25\) 0 0
\(26\) 0 0
\(27\) − 1.00000i − 0.192450i
\(28\) 0 0
\(29\) 1.58844 0.294966 0.147483 0.989065i \(-0.452883\pi\)
0.147483 + 0.989065i \(0.452883\pi\)
\(30\) 0 0
\(31\) 10.5004 1.88593 0.942967 0.332886i \(-0.108023\pi\)
0.942967 + 0.332886i \(0.108023\pi\)
\(32\) 0 0
\(33\) − 0.672035i − 0.116986i
\(34\) 0 0
\(35\) 0 0
\(36\) 0 0
\(37\) − 1.56447i − 0.257198i −0.991697 0.128599i \(-0.958952\pi\)
0.991697 0.128599i \(-0.0410480\pi\)
\(38\) 0 0
\(39\) −3.64807 −0.584159
\(40\) 0 0
\(41\) −4.63196 −0.723391 −0.361696 0.932296i \(-0.617802\pi\)
−0.361696 + 0.932296i \(0.617802\pi\)
\(42\) 0 0
\(43\) 8.29614i 1.26515i 0.774499 + 0.632575i \(0.218002\pi\)
−0.774499 + 0.632575i \(0.781998\pi\)
\(44\) 0 0
\(45\) 0 0
\(46\) 0 0
\(47\) 8.22040i 1.19907i 0.800349 + 0.599535i \(0.204648\pi\)
−0.800349 + 0.599535i \(0.795352\pi\)
\(48\) 0 0
\(49\) −11.5244 −1.64634
\(50\) 0 0
\(51\) −7.56447 −1.05924
\(52\) 0 0
\(53\) 5.52440i 0.758835i 0.925226 + 0.379418i \(0.123876\pi\)
−0.925226 + 0.379418i \(0.876124\pi\)
\(54\) 0 0
\(55\) 0 0
\(56\) 0 0
\(57\) − 5.22040i − 0.691459i
\(58\) 0 0
\(59\) 2.26048 0.294289 0.147144 0.989115i \(-0.452992\pi\)
0.147144 + 0.989115i \(0.452992\pi\)
\(60\) 0 0
\(61\) 1.89244 0.242302 0.121151 0.992634i \(-0.461341\pi\)
0.121151 + 0.992634i \(0.461341\pi\)
\(62\) 0 0
\(63\) − 4.30400i − 0.542253i
\(64\) 0 0
\(65\) 0 0
\(66\) 0 0
\(67\) 10.2800i 1.25591i 0.778251 + 0.627953i \(0.216107\pi\)
−0.778251 + 0.627953i \(0.783893\pi\)
\(68\) 0 0
\(69\) 1.00000 0.120386
\(70\) 0 0
\(71\) −6.91641 −0.820826 −0.410413 0.911900i \(-0.634616\pi\)
−0.410413 + 0.911900i \(0.634616\pi\)
\(72\) 0 0
\(73\) − 5.32010i − 0.622671i −0.950300 0.311336i \(-0.899224\pi\)
0.950300 0.311336i \(-0.100776\pi\)
\(74\) 0 0
\(75\) 0 0
\(76\) 0 0
\(77\) − 2.89244i − 0.329624i
\(78\) 0 0
\(79\) 10.4168 1.17199 0.585993 0.810316i \(-0.300705\pi\)
0.585993 + 0.810316i \(0.300705\pi\)
\(80\) 0 0
\(81\) 1.00000 0.111111
\(82\) 0 0
\(83\) − 15.1050i − 1.65799i −0.559258 0.828994i \(-0.688914\pi\)
0.559258 0.828994i \(-0.311086\pi\)
\(84\) 0 0
\(85\) 0 0
\(86\) 0 0
\(87\) 1.58844i 0.170299i
\(88\) 0 0
\(89\) −5.53226 −0.586419 −0.293209 0.956048i \(-0.594723\pi\)
−0.293209 + 0.956048i \(0.594723\pi\)
\(90\) 0 0
\(91\) −15.7013 −1.64594
\(92\) 0 0
\(93\) 10.5004i 1.08884i
\(94\) 0 0
\(95\) 0 0
\(96\) 0 0
\(97\) 8.71556i 0.884931i 0.896786 + 0.442465i \(0.145896\pi\)
−0.896786 + 0.442465i \(0.854104\pi\)
\(98\) 0 0
\(99\) 0.672035 0.0675421
\(100\) 0 0
\(101\) 1.13681 0.113117 0.0565584 0.998399i \(-0.481987\pi\)
0.0565584 + 0.998399i \(0.481987\pi\)
\(102\) 0 0
\(103\) − 10.8524i − 1.06932i −0.845069 0.534658i \(-0.820441\pi\)
0.845069 0.534658i \(-0.179559\pi\)
\(104\) 0 0
\(105\) 0 0
\(106\) 0 0
\(107\) − 8.22040i − 0.794696i −0.917668 0.397348i \(-0.869931\pi\)
0.917668 0.397348i \(-0.130069\pi\)
\(108\) 0 0
\(109\) 11.8044 1.13066 0.565330 0.824865i \(-0.308749\pi\)
0.565330 + 0.824865i \(0.308749\pi\)
\(110\) 0 0
\(111\) 1.56447 0.148493
\(112\) 0 0
\(113\) − 9.99214i − 0.939981i −0.882671 0.469991i \(-0.844257\pi\)
0.882671 0.469991i \(-0.155743\pi\)
\(114\) 0 0
\(115\) 0 0
\(116\) 0 0
\(117\) − 3.64807i − 0.337264i
\(118\) 0 0
\(119\) −32.5575 −2.98454
\(120\) 0 0
\(121\) −10.5484 −0.958943
\(122\) 0 0
\(123\) − 4.63196i − 0.417650i
\(124\) 0 0
\(125\) 0 0
\(126\) 0 0
\(127\) − 3.95207i − 0.350689i −0.984507 0.175345i \(-0.943896\pi\)
0.984507 0.175345i \(-0.0561040\pi\)
\(128\) 0 0
\(129\) −8.29614 −0.730434
\(130\) 0 0
\(131\) −14.2204 −1.24244 −0.621221 0.783635i \(-0.713363\pi\)
−0.621221 + 0.783635i \(0.713363\pi\)
\(132\) 0 0
\(133\) − 22.4686i − 1.94828i
\(134\) 0 0
\(135\) 0 0
\(136\) 0 0
\(137\) − 17.0810i − 1.45933i −0.683805 0.729665i \(-0.739676\pi\)
0.683805 0.729665i \(-0.260324\pi\)
\(138\) 0 0
\(139\) 0.180331 0.0152955 0.00764776 0.999971i \(-0.497566\pi\)
0.00764776 + 0.999971i \(0.497566\pi\)
\(140\) 0 0
\(141\) −8.22040 −0.692283
\(142\) 0 0
\(143\) − 2.45163i − 0.205016i
\(144\) 0 0
\(145\) 0 0
\(146\) 0 0
\(147\) − 11.5244i − 0.950517i
\(148\) 0 0
\(149\) 20.7805 1.70240 0.851201 0.524840i \(-0.175875\pi\)
0.851201 + 0.524840i \(0.175875\pi\)
\(150\) 0 0
\(151\) 14.4926 1.17939 0.589695 0.807626i \(-0.299248\pi\)
0.589695 + 0.807626i \(0.299248\pi\)
\(152\) 0 0
\(153\) − 7.56447i − 0.611552i
\(154\) 0 0
\(155\) 0 0
\(156\) 0 0
\(157\) 20.7609i 1.65690i 0.560062 + 0.828451i \(0.310777\pi\)
−0.560062 + 0.828451i \(0.689223\pi\)
\(158\) 0 0
\(159\) −5.52440 −0.438114
\(160\) 0 0
\(161\) 4.30400 0.339203
\(162\) 0 0
\(163\) 9.02925i 0.707225i 0.935392 + 0.353613i \(0.115047\pi\)
−0.935392 + 0.353613i \(0.884953\pi\)
\(164\) 0 0
\(165\) 0 0
\(166\) 0 0
\(167\) 1.82495i 0.141219i 0.997504 + 0.0706095i \(0.0224944\pi\)
−0.997504 + 0.0706095i \(0.977506\pi\)
\(168\) 0 0
\(169\) −0.308409 −0.0237237
\(170\) 0 0
\(171\) 5.22040 0.399214
\(172\) 0 0
\(173\) − 4.47263i − 0.340048i −0.985440 0.170024i \(-0.945615\pi\)
0.985440 0.170024i \(-0.0543845\pi\)
\(174\) 0 0
\(175\) 0 0
\(176\) 0 0
\(177\) 2.26048i 0.169908i
\(178\) 0 0
\(179\) 7.52440 0.562400 0.281200 0.959649i \(-0.409268\pi\)
0.281200 + 0.959649i \(0.409268\pi\)
\(180\) 0 0
\(181\) 9.41684 0.699948 0.349974 0.936759i \(-0.386190\pi\)
0.349974 + 0.936759i \(0.386190\pi\)
\(182\) 0 0
\(183\) 1.89244i 0.139893i
\(184\) 0 0
\(185\) 0 0
\(186\) 0 0
\(187\) − 5.08359i − 0.371749i
\(188\) 0 0
\(189\) 4.30400 0.313070
\(190\) 0 0
\(191\) −13.9760 −1.01127 −0.505635 0.862747i \(-0.668742\pi\)
−0.505635 + 0.862747i \(0.668742\pi\)
\(192\) 0 0
\(193\) − 11.1964i − 0.805937i −0.915214 0.402969i \(-0.867978\pi\)
0.915214 0.402969i \(-0.132022\pi\)
\(194\) 0 0
\(195\) 0 0
\(196\) 0 0
\(197\) 20.0292i 1.42702i 0.700643 + 0.713512i \(0.252897\pi\)
−0.700643 + 0.713512i \(0.747103\pi\)
\(198\) 0 0
\(199\) −6.64462 −0.471025 −0.235512 0.971871i \(-0.575677\pi\)
−0.235512 + 0.971871i \(0.575677\pi\)
\(200\) 0 0
\(201\) −10.2800 −0.725098
\(202\) 0 0
\(203\) 6.83665i 0.479839i
\(204\) 0 0
\(205\) 0 0
\(206\) 0 0
\(207\) 1.00000i 0.0695048i
\(208\) 0 0
\(209\) 3.50830 0.242674
\(210\) 0 0
\(211\) −2.35232 −0.161940 −0.0809701 0.996717i \(-0.525802\pi\)
−0.0809701 + 0.996717i \(0.525802\pi\)
\(212\) 0 0
\(213\) − 6.91641i − 0.473904i
\(214\) 0 0
\(215\) 0 0
\(216\) 0 0
\(217\) 45.1939i 3.06796i
\(218\) 0 0
\(219\) 5.32010 0.359499
\(220\) 0 0
\(221\) −27.5957 −1.85629
\(222\) 0 0
\(223\) 12.0971i 0.810083i 0.914298 + 0.405042i \(0.132743\pi\)
−0.914298 + 0.405042i \(0.867257\pi\)
\(224\) 0 0
\(225\) 0 0
\(226\) 0 0
\(227\) − 25.9573i − 1.72285i −0.507885 0.861425i \(-0.669573\pi\)
0.507885 0.861425i \(-0.330427\pi\)
\(228\) 0 0
\(229\) −3.29230 −0.217561 −0.108781 0.994066i \(-0.534695\pi\)
−0.108781 + 0.994066i \(0.534695\pi\)
\(230\) 0 0
\(231\) 2.89244 0.190309
\(232\) 0 0
\(233\) 22.1616i 1.45186i 0.687770 + 0.725929i \(0.258590\pi\)
−0.687770 + 0.725929i \(0.741410\pi\)
\(234\) 0 0
\(235\) 0 0
\(236\) 0 0
\(237\) 10.4168i 0.676647i
\(238\) 0 0
\(239\) −3.39200 −0.219410 −0.109705 0.993964i \(-0.534991\pi\)
−0.109705 + 0.993964i \(0.534991\pi\)
\(240\) 0 0
\(241\) −3.59189 −0.231374 −0.115687 0.993286i \(-0.536907\pi\)
−0.115687 + 0.993286i \(0.536907\pi\)
\(242\) 0 0
\(243\) 1.00000i 0.0641500i
\(244\) 0 0
\(245\) 0 0
\(246\) 0 0
\(247\) − 19.0444i − 1.21177i
\(248\) 0 0
\(249\) 15.1050 0.957239
\(250\) 0 0
\(251\) 31.0462 1.95962 0.979810 0.199930i \(-0.0640714\pi\)
0.979810 + 0.199930i \(0.0640714\pi\)
\(252\) 0 0
\(253\) 0.672035i 0.0422505i
\(254\) 0 0
\(255\) 0 0
\(256\) 0 0
\(257\) 4.81526i 0.300368i 0.988658 + 0.150184i \(0.0479865\pi\)
−0.988658 + 0.150184i \(0.952013\pi\)
\(258\) 0 0
\(259\) 6.73350 0.418399
\(260\) 0 0
\(261\) −1.58844 −0.0983220
\(262\) 0 0
\(263\) − 31.1602i − 1.92142i −0.277554 0.960710i \(-0.589524\pi\)
0.277554 0.960710i \(-0.410476\pi\)
\(264\) 0 0
\(265\) 0 0
\(266\) 0 0
\(267\) − 5.53226i − 0.338569i
\(268\) 0 0
\(269\) 5.18675 0.316241 0.158121 0.987420i \(-0.449456\pi\)
0.158121 + 0.987420i \(0.449456\pi\)
\(270\) 0 0
\(271\) −5.65152 −0.343305 −0.171653 0.985158i \(-0.554911\pi\)
−0.171653 + 0.985158i \(0.554911\pi\)
\(272\) 0 0
\(273\) − 15.7013i − 0.950285i
\(274\) 0 0
\(275\) 0 0
\(276\) 0 0
\(277\) 28.6437i 1.72103i 0.509425 + 0.860515i \(0.329858\pi\)
−0.509425 + 0.860515i \(0.670142\pi\)
\(278\) 0 0
\(279\) −10.5004 −0.628645
\(280\) 0 0
\(281\) −14.0854 −0.840266 −0.420133 0.907463i \(-0.638017\pi\)
−0.420133 + 0.907463i \(0.638017\pi\)
\(282\) 0 0
\(283\) − 23.6695i − 1.40700i −0.710694 0.703502i \(-0.751619\pi\)
0.710694 0.703502i \(-0.248381\pi\)
\(284\) 0 0
\(285\) 0 0
\(286\) 0 0
\(287\) − 19.9360i − 1.17678i
\(288\) 0 0
\(289\) −40.2213 −2.36596
\(290\) 0 0
\(291\) −8.71556 −0.510915
\(292\) 0 0
\(293\) − 18.7962i − 1.09809i −0.835794 0.549043i \(-0.814992\pi\)
0.835794 0.549043i \(-0.185008\pi\)
\(294\) 0 0
\(295\) 0 0
\(296\) 0 0
\(297\) 0.672035i 0.0389954i
\(298\) 0 0
\(299\) 3.64807 0.210973
\(300\) 0 0
\(301\) −35.7066 −2.05809
\(302\) 0 0
\(303\) 1.13681i 0.0653080i
\(304\) 0 0
\(305\) 0 0
\(306\) 0 0
\(307\) − 8.23306i − 0.469886i −0.972009 0.234943i \(-0.924510\pi\)
0.972009 0.234943i \(-0.0754903\pi\)
\(308\) 0 0
\(309\) 10.8524 0.617370
\(310\) 0 0
\(311\) −23.9251 −1.35667 −0.678335 0.734753i \(-0.737298\pi\)
−0.678335 + 0.734753i \(0.737298\pi\)
\(312\) 0 0
\(313\) 8.54051i 0.482738i 0.970433 + 0.241369i \(0.0775964\pi\)
−0.970433 + 0.241369i \(0.922404\pi\)
\(314\) 0 0
\(315\) 0 0
\(316\) 0 0
\(317\) − 15.8079i − 0.887859i −0.896062 0.443930i \(-0.853584\pi\)
0.896062 0.443930i \(-0.146416\pi\)
\(318\) 0 0
\(319\) −1.06749 −0.0597679
\(320\) 0 0
\(321\) 8.22040 0.458818
\(322\) 0 0
\(323\) − 39.4896i − 2.19726i
\(324\) 0 0
\(325\) 0 0
\(326\) 0 0
\(327\) 11.8044i 0.652787i
\(328\) 0 0
\(329\) −35.3806 −1.95060
\(330\) 0 0
\(331\) −10.4652 −0.575217 −0.287609 0.957748i \(-0.592860\pi\)
−0.287609 + 0.957748i \(0.592860\pi\)
\(332\) 0 0
\(333\) 1.56447i 0.0857327i
\(334\) 0 0
\(335\) 0 0
\(336\) 0 0
\(337\) 10.1867i 0.554907i 0.960739 + 0.277454i \(0.0894905\pi\)
−0.960739 + 0.277454i \(0.910509\pi\)
\(338\) 0 0
\(339\) 9.99214 0.542699
\(340\) 0 0
\(341\) −7.05666 −0.382140
\(342\) 0 0
\(343\) − 19.4730i − 1.05144i
\(344\) 0 0
\(345\) 0 0
\(346\) 0 0
\(347\) 4.52785i 0.243068i 0.992587 + 0.121534i \(0.0387813\pi\)
−0.992587 + 0.121534i \(0.961219\pi\)
\(348\) 0 0
\(349\) −16.7512 −0.896672 −0.448336 0.893865i \(-0.647983\pi\)
−0.448336 + 0.893865i \(0.647983\pi\)
\(350\) 0 0
\(351\) 3.64807 0.194720
\(352\) 0 0
\(353\) 14.6084i 0.777526i 0.921338 + 0.388763i \(0.127097\pi\)
−0.921338 + 0.388763i \(0.872903\pi\)
\(354\) 0 0
\(355\) 0 0
\(356\) 0 0
\(357\) − 32.5575i − 1.72312i
\(358\) 0 0
\(359\) −10.4326 −0.550610 −0.275305 0.961357i \(-0.588779\pi\)
−0.275305 + 0.961357i \(0.588779\pi\)
\(360\) 0 0
\(361\) 8.25262 0.434348
\(362\) 0 0
\(363\) − 10.5484i − 0.553646i
\(364\) 0 0
\(365\) 0 0
\(366\) 0 0
\(367\) − 17.4251i − 0.909582i −0.890598 0.454791i \(-0.849714\pi\)
0.890598 0.454791i \(-0.150286\pi\)
\(368\) 0 0
\(369\) 4.63196 0.241130
\(370\) 0 0
\(371\) −23.7770 −1.23444
\(372\) 0 0
\(373\) − 13.5308i − 0.700599i −0.936638 0.350300i \(-0.886080\pi\)
0.936638 0.350300i \(-0.113920\pi\)
\(374\) 0 0
\(375\) 0 0
\(376\) 0 0
\(377\) 5.79474i 0.298444i
\(378\) 0 0
\(379\) −18.1372 −0.931645 −0.465823 0.884878i \(-0.654242\pi\)
−0.465823 + 0.884878i \(0.654242\pi\)
\(380\) 0 0
\(381\) 3.95207 0.202471
\(382\) 0 0
\(383\) − 27.9202i − 1.42666i −0.700829 0.713329i \(-0.747187\pi\)
0.700829 0.713329i \(-0.252813\pi\)
\(384\) 0 0
\(385\) 0 0
\(386\) 0 0
\(387\) − 8.29614i − 0.421716i
\(388\) 0 0
\(389\) 33.3093 1.68885 0.844424 0.535676i \(-0.179943\pi\)
0.844424 + 0.535676i \(0.179943\pi\)
\(390\) 0 0
\(391\) 7.56447 0.382552
\(392\) 0 0
\(393\) − 14.2204i − 0.717324i
\(394\) 0 0
\(395\) 0 0
\(396\) 0 0
\(397\) 24.6739i 1.23835i 0.785255 + 0.619173i \(0.212532\pi\)
−0.785255 + 0.619173i \(0.787468\pi\)
\(398\) 0 0
\(399\) 22.4686 1.12484
\(400\) 0 0
\(401\) −4.04535 −0.202015 −0.101008 0.994886i \(-0.532207\pi\)
−0.101008 + 0.994886i \(0.532207\pi\)
\(402\) 0 0
\(403\) 38.3063i 1.90817i
\(404\) 0 0
\(405\) 0 0
\(406\) 0 0
\(407\) 1.05138i 0.0521151i
\(408\) 0 0
\(409\) −0.914573 −0.0452227 −0.0226114 0.999744i \(-0.507198\pi\)
−0.0226114 + 0.999744i \(0.507198\pi\)
\(410\) 0 0
\(411\) 17.0810 0.842544
\(412\) 0 0
\(413\) 9.72909i 0.478737i
\(414\) 0 0
\(415\) 0 0
\(416\) 0 0
\(417\) 0.180331i 0.00883087i
\(418\) 0 0
\(419\) 15.0117 0.733369 0.366685 0.930345i \(-0.380493\pi\)
0.366685 + 0.930345i \(0.380493\pi\)
\(420\) 0 0
\(421\) 16.9696 0.827049 0.413524 0.910493i \(-0.364298\pi\)
0.413524 + 0.910493i \(0.364298\pi\)
\(422\) 0 0
\(423\) − 8.22040i − 0.399690i
\(424\) 0 0
\(425\) 0 0
\(426\) 0 0
\(427\) 8.14506i 0.394167i
\(428\) 0 0
\(429\) 2.45163 0.118366
\(430\) 0 0
\(431\) 27.1733 1.30889 0.654447 0.756108i \(-0.272902\pi\)
0.654447 + 0.756108i \(0.272902\pi\)
\(432\) 0 0
\(433\) − 23.1094i − 1.11057i −0.831661 0.555283i \(-0.812610\pi\)
0.831661 0.555283i \(-0.187390\pi\)
\(434\) 0 0
\(435\) 0 0
\(436\) 0 0
\(437\) 5.22040i 0.249726i
\(438\) 0 0
\(439\) −31.1485 −1.48664 −0.743319 0.668938i \(-0.766749\pi\)
−0.743319 + 0.668938i \(0.766749\pi\)
\(440\) 0 0
\(441\) 11.5244 0.548781
\(442\) 0 0
\(443\) 13.1681i 0.625633i 0.949814 + 0.312817i \(0.101273\pi\)
−0.949814 + 0.312817i \(0.898727\pi\)
\(444\) 0 0
\(445\) 0 0
\(446\) 0 0
\(447\) 20.7805i 0.982882i
\(448\) 0 0
\(449\) −29.6759 −1.40049 −0.700245 0.713902i \(-0.746926\pi\)
−0.700245 + 0.713902i \(0.746926\pi\)
\(450\) 0 0
\(451\) 3.11284 0.146578
\(452\) 0 0
\(453\) 14.4926i 0.680921i
\(454\) 0 0
\(455\) 0 0
\(456\) 0 0
\(457\) 31.7047i 1.48308i 0.670906 + 0.741542i \(0.265905\pi\)
−0.670906 + 0.741542i \(0.734095\pi\)
\(458\) 0 0
\(459\) 7.56447 0.353079
\(460\) 0 0
\(461\) 33.8723 1.57759 0.788795 0.614656i \(-0.210705\pi\)
0.788795 + 0.614656i \(0.210705\pi\)
\(462\) 0 0
\(463\) − 0.781429i − 0.0363161i −0.999835 0.0181580i \(-0.994220\pi\)
0.999835 0.0181580i \(-0.00578020\pi\)
\(464\) 0 0
\(465\) 0 0
\(466\) 0 0
\(467\) − 19.3802i − 0.896810i −0.893831 0.448405i \(-0.851992\pi\)
0.893831 0.448405i \(-0.148008\pi\)
\(468\) 0 0
\(469\) −44.2452 −2.04306
\(470\) 0 0
\(471\) −20.7609 −0.956612
\(472\) 0 0
\(473\) − 5.57530i − 0.256352i
\(474\) 0 0
\(475\) 0 0
\(476\) 0 0
\(477\) − 5.52440i − 0.252945i
\(478\) 0 0
\(479\) 2.07718 0.0949088 0.0474544 0.998873i \(-0.484889\pi\)
0.0474544 + 0.998873i \(0.484889\pi\)
\(480\) 0 0
\(481\) 5.70731 0.260231
\(482\) 0 0
\(483\) 4.30400i 0.195839i
\(484\) 0 0
\(485\) 0 0
\(486\) 0 0
\(487\) − 19.5518i − 0.885977i −0.896527 0.442989i \(-0.853918\pi\)
0.896527 0.442989i \(-0.146082\pi\)
\(488\) 0 0
\(489\) −9.02925 −0.408317
\(490\) 0 0
\(491\) −3.54012 −0.159763 −0.0798817 0.996804i \(-0.525454\pi\)
−0.0798817 + 0.996804i \(0.525454\pi\)
\(492\) 0 0
\(493\) 12.0157i 0.541161i
\(494\) 0 0
\(495\) 0 0
\(496\) 0 0
\(497\) − 29.7682i − 1.33529i
\(498\) 0 0
\(499\) −26.0196 −1.16480 −0.582398 0.812904i \(-0.697885\pi\)
−0.582398 + 0.812904i \(0.697885\pi\)
\(500\) 0 0
\(501\) −1.82495 −0.0815328
\(502\) 0 0
\(503\) 14.4560i 0.644559i 0.946645 + 0.322280i \(0.104449\pi\)
−0.946645 + 0.322280i \(0.895551\pi\)
\(504\) 0 0
\(505\) 0 0
\(506\) 0 0
\(507\) − 0.308409i − 0.0136969i
\(508\) 0 0
\(509\) 20.7814 0.921121 0.460560 0.887628i \(-0.347649\pi\)
0.460560 + 0.887628i \(0.347649\pi\)
\(510\) 0 0
\(511\) 22.8977 1.01294
\(512\) 0 0
\(513\) 5.22040i 0.230486i
\(514\) 0 0
\(515\) 0 0
\(516\) 0 0
\(517\) − 5.52440i − 0.242963i
\(518\) 0 0
\(519\) 4.47263 0.196327
\(520\) 0 0
\(521\) 36.8885 1.61612 0.808058 0.589103i \(-0.200519\pi\)
0.808058 + 0.589103i \(0.200519\pi\)
\(522\) 0 0
\(523\) − 20.4827i − 0.895646i −0.894122 0.447823i \(-0.852199\pi\)
0.894122 0.447823i \(-0.147801\pi\)
\(524\) 0 0
\(525\) 0 0
\(526\) 0 0
\(527\) 79.4303i 3.46004i
\(528\) 0 0
\(529\) −1.00000 −0.0434783
\(530\) 0 0
\(531\) −2.26048 −0.0980963
\(532\) 0 0
\(533\) − 16.8977i − 0.731922i
\(534\) 0 0
\(535\) 0 0
\(536\) 0 0
\(537\) 7.52440i 0.324702i
\(538\) 0 0
\(539\) 7.74481 0.333592
\(540\) 0 0
\(541\) −17.1245 −0.736241 −0.368121 0.929778i \(-0.619999\pi\)
−0.368121 + 0.929778i \(0.619999\pi\)
\(542\) 0 0
\(543\) 9.41684i 0.404115i
\(544\) 0 0
\(545\) 0 0
\(546\) 0 0
\(547\) − 33.5557i − 1.43474i −0.696694 0.717368i \(-0.745347\pi\)
0.696694 0.717368i \(-0.254653\pi\)
\(548\) 0 0
\(549\) −1.89244 −0.0807673
\(550\) 0 0
\(551\) −8.29230 −0.353264
\(552\) 0 0
\(553\) 44.8341i 1.90654i
\(554\) 0 0
\(555\) 0 0
\(556\) 0 0
\(557\) 20.4086i 0.864740i 0.901696 + 0.432370i \(0.142323\pi\)
−0.901696 + 0.432370i \(0.857677\pi\)
\(558\) 0 0
\(559\) −30.2649 −1.28007
\(560\) 0 0
\(561\) 5.08359 0.214630
\(562\) 0 0
\(563\) − 5.17889i − 0.218264i −0.994027 0.109132i \(-0.965193\pi\)
0.994027 0.109132i \(-0.0348071\pi\)
\(564\) 0 0
\(565\) 0 0
\(566\) 0 0
\(567\) 4.30400i 0.180751i
\(568\) 0 0
\(569\) 6.05321 0.253764 0.126882 0.991918i \(-0.459503\pi\)
0.126882 + 0.991918i \(0.459503\pi\)
\(570\) 0 0
\(571\) 45.3263 1.89684 0.948422 0.317009i \(-0.102679\pi\)
0.948422 + 0.317009i \(0.102679\pi\)
\(572\) 0 0
\(573\) − 13.9760i − 0.583857i
\(574\) 0 0
\(575\) 0 0
\(576\) 0 0
\(577\) 4.55133i 0.189474i 0.995502 + 0.0947372i \(0.0302011\pi\)
−0.995502 + 0.0947372i \(0.969799\pi\)
\(578\) 0 0
\(579\) 11.1964 0.465308
\(580\) 0 0
\(581\) 65.0118 2.69714
\(582\) 0 0
\(583\) − 3.71259i − 0.153760i
\(584\) 0 0
\(585\) 0 0
\(586\) 0 0
\(587\) 46.5148i 1.91987i 0.280218 + 0.959936i \(0.409593\pi\)
−0.280218 + 0.959936i \(0.590407\pi\)
\(588\) 0 0
\(589\) −54.8165 −2.25868
\(590\) 0 0
\(591\) −20.0292 −0.823893
\(592\) 0 0
\(593\) 7.81574i 0.320954i 0.987040 + 0.160477i \(0.0513033\pi\)
−0.987040 + 0.160477i \(0.948697\pi\)
\(594\) 0 0
\(595\) 0 0
\(596\) 0 0
\(597\) − 6.64462i − 0.271946i
\(598\) 0 0
\(599\) −44.4461 −1.81602 −0.908009 0.418951i \(-0.862398\pi\)
−0.908009 + 0.418951i \(0.862398\pi\)
\(600\) 0 0
\(601\) −19.3367 −0.788760 −0.394380 0.918947i \(-0.629041\pi\)
−0.394380 + 0.918947i \(0.629041\pi\)
\(602\) 0 0
\(603\) − 10.2800i − 0.418635i
\(604\) 0 0
\(605\) 0 0
\(606\) 0 0
\(607\) − 18.4172i − 0.747532i −0.927523 0.373766i \(-0.878066\pi\)
0.927523 0.373766i \(-0.121934\pi\)
\(608\) 0 0
\(609\) −6.83665 −0.277035
\(610\) 0 0
\(611\) −29.9886 −1.21321
\(612\) 0 0
\(613\) − 46.8170i − 1.89092i −0.325737 0.945460i \(-0.605612\pi\)
0.325737 0.945460i \(-0.394388\pi\)
\(614\) 0 0
\(615\) 0 0
\(616\) 0 0
\(617\) 35.9338i 1.44664i 0.690513 + 0.723320i \(0.257385\pi\)
−0.690513 + 0.723320i \(0.742615\pi\)
\(618\) 0 0
\(619\) 17.3880 0.698882 0.349441 0.936958i \(-0.386372\pi\)
0.349441 + 0.936958i \(0.386372\pi\)
\(620\) 0 0
\(621\) −1.00000 −0.0401286
\(622\) 0 0
\(623\) − 23.8108i − 0.953961i
\(624\) 0 0
\(625\) 0 0
\(626\) 0 0
\(627\) 3.50830i 0.140108i
\(628\) 0 0
\(629\) 11.8344 0.471870
\(630\) 0 0
\(631\) −8.19002 −0.326040 −0.163020 0.986623i \(-0.552123\pi\)
−0.163020 + 0.986623i \(0.552123\pi\)
\(632\) 0 0
\(633\) − 2.35232i − 0.0934962i
\(634\) 0 0
\(635\) 0 0
\(636\) 0 0
\(637\) − 42.0418i − 1.66576i
\(638\) 0 0
\(639\) 6.91641 0.273609
\(640\) 0 0
\(641\) −4.98773 −0.197003 −0.0985017 0.995137i \(-0.531405\pi\)
−0.0985017 + 0.995137i \(0.531405\pi\)
\(642\) 0 0
\(643\) 19.3514i 0.763143i 0.924339 + 0.381572i \(0.124617\pi\)
−0.924339 + 0.381572i \(0.875383\pi\)
\(644\) 0 0
\(645\) 0 0
\(646\) 0 0
\(647\) − 40.4964i − 1.59208i −0.605245 0.796039i \(-0.706925\pi\)
0.605245 0.796039i \(-0.293075\pi\)
\(648\) 0 0
\(649\) −1.51912 −0.0596307
\(650\) 0 0
\(651\) −45.1939 −1.77129
\(652\) 0 0
\(653\) − 26.5683i − 1.03970i −0.854258 0.519849i \(-0.825988\pi\)
0.854258 0.519849i \(-0.174012\pi\)
\(654\) 0 0
\(655\) 0 0
\(656\) 0 0
\(657\) 5.32010i 0.207557i
\(658\) 0 0
\(659\) −6.82879 −0.266012 −0.133006 0.991115i \(-0.542463\pi\)
−0.133006 + 0.991115i \(0.542463\pi\)
\(660\) 0 0
\(661\) −6.43457 −0.250276 −0.125138 0.992139i \(-0.539937\pi\)
−0.125138 + 0.992139i \(0.539937\pi\)
\(662\) 0 0
\(663\) − 27.5957i − 1.07173i
\(664\) 0 0
\(665\) 0 0
\(666\) 0 0
\(667\) − 1.58844i − 0.0615047i
\(668\) 0 0
\(669\) −12.0971 −0.467702
\(670\) 0 0
\(671\) −1.27179 −0.0490968
\(672\) 0 0
\(673\) 30.6058i 1.17977i 0.807488 + 0.589884i \(0.200826\pi\)
−0.807488 + 0.589884i \(0.799174\pi\)
\(674\) 0 0
\(675\) 0 0
\(676\) 0 0
\(677\) 37.1280i 1.42694i 0.700683 + 0.713472i \(0.252879\pi\)
−0.700683 + 0.713472i \(0.747121\pi\)
\(678\) 0 0
\(679\) −37.5117 −1.43957
\(680\) 0 0
\(681\) 25.9573 0.994688
\(682\) 0 0
\(683\) 4.58699i 0.175516i 0.996142 + 0.0877582i \(0.0279703\pi\)
−0.996142 + 0.0877582i \(0.972030\pi\)
\(684\) 0 0
\(685\) 0 0
\(686\) 0 0
\(687\) − 3.29230i − 0.125609i
\(688\) 0 0
\(689\) −20.1534 −0.767783
\(690\) 0 0
\(691\) 7.89885 0.300487 0.150243 0.988649i \(-0.451994\pi\)
0.150243 + 0.988649i \(0.451994\pi\)
\(692\) 0 0
\(693\) 2.89244i 0.109875i
\(694\) 0 0
\(695\) 0 0
\(696\) 0 0
\(697\) − 35.0384i − 1.32717i
\(698\) 0 0
\(699\) −22.1616 −0.838230
\(700\) 0 0
\(701\) −27.9416 −1.05534 −0.527670 0.849449i \(-0.676934\pi\)
−0.527670 + 0.849449i \(0.676934\pi\)
\(702\) 0 0
\(703\) 8.16719i 0.308031i
\(704\) 0 0
\(705\) 0 0
\(706\) 0 0
\(707\) 4.89283i 0.184014i
\(708\) 0 0
\(709\) −1.07190 −0.0402560 −0.0201280 0.999797i \(-0.506407\pi\)
−0.0201280 + 0.999797i \(0.506407\pi\)
\(710\) 0 0
\(711\) −10.4168 −0.390662
\(712\) 0 0
\(713\) − 10.5004i − 0.393244i
\(714\) 0 0
\(715\) 0 0
\(716\) 0 0
\(717\) − 3.39200i − 0.126677i
\(718\) 0 0
\(719\) 32.8284 1.22429 0.612146 0.790744i \(-0.290306\pi\)
0.612146 + 0.790744i \(0.290306\pi\)
\(720\) 0 0
\(721\) 46.7086 1.73952
\(722\) 0 0
\(723\) − 3.59189i − 0.133584i
\(724\) 0 0
\(725\) 0 0
\(726\) 0 0
\(727\) − 7.51961i − 0.278887i −0.990230 0.139443i \(-0.955469\pi\)
0.990230 0.139443i \(-0.0445313\pi\)
\(728\) 0 0
\(729\) −1.00000 −0.0370370
\(730\) 0 0
\(731\) −62.7559 −2.32111
\(732\) 0 0
\(733\) 11.0366i 0.407647i 0.979008 + 0.203823i \(0.0653369\pi\)
−0.979008 + 0.203823i \(0.934663\pi\)
\(734\) 0 0
\(735\) 0 0
\(736\) 0 0
\(737\) − 6.90855i − 0.254480i
\(738\) 0 0
\(739\) −3.73952 −0.137561 −0.0687803 0.997632i \(-0.521911\pi\)
−0.0687803 + 0.997632i \(0.521911\pi\)
\(740\) 0 0
\(741\) 19.0444 0.699613
\(742\) 0 0
\(743\) 9.88641i 0.362697i 0.983419 + 0.181349i \(0.0580462\pi\)
−0.983419 + 0.181349i \(0.941954\pi\)
\(744\) 0 0
\(745\) 0 0
\(746\) 0 0
\(747\) 15.1050i 0.552662i
\(748\) 0 0
\(749\) 35.3806 1.29278
\(750\) 0 0
\(751\) −52.2974 −1.90836 −0.954180 0.299235i \(-0.903269\pi\)
−0.954180 + 0.299235i \(0.903269\pi\)
\(752\) 0 0
\(753\) 31.0462i 1.13139i
\(754\) 0 0
\(755\) 0 0
\(756\) 0 0
\(757\) 40.6939i 1.47905i 0.673132 + 0.739523i \(0.264949\pi\)
−0.673132 + 0.739523i \(0.735051\pi\)
\(758\) 0 0
\(759\) −0.672035 −0.0243933
\(760\) 0 0
\(761\) 12.3524 0.447775 0.223887 0.974615i \(-0.428125\pi\)
0.223887 + 0.974615i \(0.428125\pi\)
\(762\) 0 0
\(763\) 50.8063i 1.83931i
\(764\) 0 0
\(765\) 0 0
\(766\) 0 0
\(767\) 8.24637i 0.297759i
\(768\) 0 0
\(769\) 8.28003 0.298586 0.149293 0.988793i \(-0.452300\pi\)
0.149293 + 0.988793i \(0.452300\pi\)
\(770\) 0 0
\(771\) −4.81526 −0.173417
\(772\) 0 0
\(773\) − 11.8171i − 0.425031i −0.977158 0.212516i \(-0.931834\pi\)
0.977158 0.212516i \(-0.0681656\pi\)
\(774\) 0 0
\(775\) 0 0
\(776\) 0 0
\(777\) 6.73350i 0.241563i
\(778\) 0 0
\(779\) 24.1807 0.866364
\(780\) 0 0
\(781\) 4.64807 0.166321
\(782\) 0 0
\(783\) − 1.58844i − 0.0567662i
\(784\) 0 0
\(785\) 0 0
\(786\) 0 0
\(787\) 24.5609i 0.875503i 0.899096 + 0.437751i \(0.144225\pi\)
−0.899096 + 0.437751i \(0.855775\pi\)
\(788\) 0 0
\(789\) 31.1602 1.10933
\(790\) 0 0
\(791\) 43.0062 1.52912
\(792\) 0 0
\(793\) 6.90375i 0.245159i
\(794\) 0 0
\(795\) 0 0
\(796\) 0 0
\(797\) 14.7970i 0.524135i 0.965050 + 0.262068i \(0.0844043\pi\)
−0.965050 + 0.262068i \(0.915596\pi\)
\(798\) 0 0
\(799\) −62.1830 −2.19988
\(800\) 0 0
\(801\) 5.53226 0.195473
\(802\) 0 0
\(803\) 3.57530i 0.126170i
\(804\) 0 0
\(805\) 0 0
\(806\) 0 0
\(807\) 5.18675i 0.182582i
\(808\) 0 0
\(809\) 27.9438 0.982452 0.491226 0.871032i \(-0.336549\pi\)
0.491226 + 0.871032i \(0.336549\pi\)
\(810\) 0 0
\(811\) −37.2940 −1.30957 −0.654786 0.755815i \(-0.727241\pi\)
−0.654786 + 0.755815i \(0.727241\pi\)
\(812\) 0 0
\(813\) − 5.65152i − 0.198207i
\(814\) 0 0
\(815\) 0 0
\(816\) 0 0
\(817\) − 43.3092i − 1.51520i
\(818\) 0 0
\(819\) 15.7013 0.548647
\(820\) 0 0
\(821\) −3.38376 −0.118094 −0.0590470 0.998255i \(-0.518806\pi\)
−0.0590470 + 0.998255i \(0.518806\pi\)
\(822\) 0 0
\(823\) 54.5344i 1.90095i 0.310802 + 0.950475i \(0.399402\pi\)
−0.310802 + 0.950475i \(0.600598\pi\)
\(824\) 0 0
\(825\) 0 0
\(826\) 0 0
\(827\) − 39.3201i − 1.36729i −0.729813 0.683647i \(-0.760393\pi\)
0.729813 0.683647i \(-0.239607\pi\)
\(828\) 0 0
\(829\) 49.4943 1.71901 0.859504 0.511128i \(-0.170772\pi\)
0.859504 + 0.511128i \(0.170772\pi\)
\(830\) 0 0
\(831\) −28.6437 −0.993638
\(832\) 0 0
\(833\) − 87.1760i − 3.02047i
\(834\) 0 0
\(835\) 0 0
\(836\) 0 0
\(837\) − 10.5004i − 0.362948i
\(838\) 0 0
\(839\) 36.0371 1.24414 0.622070 0.782962i \(-0.286292\pi\)
0.622070 + 0.782962i \(0.286292\pi\)
\(840\) 0 0
\(841\) −26.4769 −0.912995
\(842\) 0 0
\(843\) − 14.0854i − 0.485128i
\(844\) 0 0
\(845\) 0 0
\(846\) 0 0
\(847\) − 45.4002i − 1.55997i
\(848\) 0 0
\(849\) 23.6695 0.812334
\(850\) 0 0
\(851\) −1.56447 −0.0536295
\(852\) 0 0
\(853\) − 4.36507i − 0.149457i −0.997204 0.0747286i \(-0.976191\pi\)
0.997204 0.0747286i \(-0.0238091\pi\)
\(854\) 0 0
\(855\) 0 0
\(856\) 0 0
\(857\) − 51.6385i − 1.76394i −0.471308 0.881969i \(-0.656218\pi\)
0.471308 0.881969i \(-0.343782\pi\)
\(858\) 0 0
\(859\) 24.8064 0.846385 0.423192 0.906040i \(-0.360909\pi\)
0.423192 + 0.906040i \(0.360909\pi\)
\(860\) 0 0
\(861\) 19.9360 0.679416
\(862\) 0 0
\(863\) 32.9477i 1.12155i 0.827968 + 0.560776i \(0.189497\pi\)
−0.827968 + 0.560776i \(0.810503\pi\)
\(864\) 0 0
\(865\) 0 0
\(866\) 0 0
\(867\) − 40.2213i − 1.36599i
\(868\) 0 0
\(869\) −7.00049 −0.237475
\(870\) 0 0
\(871\) −37.5023 −1.27072
\(872\) 0 0
\(873\) − 8.71556i − 0.294977i
\(874\) 0 0
\(875\) 0 0
\(876\) 0 0
\(877\) − 23.4691i − 0.792495i −0.918144 0.396248i \(-0.870312\pi\)
0.918144 0.396248i \(-0.129688\pi\)
\(878\) 0 0
\(879\) 18.7962 0.633980
\(880\) 0 0
\(881\) 20.9824 0.706917 0.353458 0.935450i \(-0.385006\pi\)
0.353458 + 0.935450i \(0.385006\pi\)
\(882\) 0 0
\(883\) 55.7940i 1.87762i 0.344439 + 0.938809i \(0.388069\pi\)
−0.344439 + 0.938809i \(0.611931\pi\)
\(884\) 0 0
\(885\) 0 0
\(886\) 0 0
\(887\) − 55.7607i − 1.87226i −0.351655 0.936130i \(-0.614381\pi\)
0.351655 0.936130i \(-0.385619\pi\)
\(888\) 0 0
\(889\) 17.0097 0.570487
\(890\) 0 0
\(891\) −0.672035 −0.0225140
\(892\) 0 0
\(893\) − 42.9138i − 1.43606i
\(894\) 0 0
\(895\) 0 0
\(896\) 0 0
\(897\) 3.64807i 0.121805i
\(898\) 0 0
\(899\) 16.6793 0.556287
\(900\) 0 0
\(901\) −41.7892 −1.39220
\(902\) 0 0
\(903\) − 35.7066i − 1.18824i
\(904\) 0 0
\(905\) 0 0
\(906\) 0 0
\(907\) 46.1719i 1.53311i 0.642177 + 0.766556i \(0.278031\pi\)
−0.642177 + 0.766556i \(0.721969\pi\)
\(908\) 0 0
\(909\) −1.13681 −0.0377056
\(910\) 0 0
\(911\) −56.1216 −1.85939 −0.929695 0.368329i \(-0.879930\pi\)
−0.929695 + 0.368329i \(0.879930\pi\)
\(912\) 0 0
\(913\) 10.1511i 0.335952i
\(914\) 0 0
\(915\) 0 0
\(916\) 0 0
\(917\) − 61.2046i − 2.02115i
\(918\) 0 0
\(919\) 33.1860 1.09471 0.547353 0.836902i \(-0.315636\pi\)
0.547353 + 0.836902i \(0.315636\pi\)
\(920\) 0 0
\(921\) 8.23306 0.271289
\(922\) 0 0
\(923\) − 25.2315i − 0.830506i
\(924\) 0 0
\(925\) 0 0
\(926\) 0 0
\(927\) 10.8524i 0.356438i
\(928\) 0 0
\(929\) 16.4090 0.538361 0.269181 0.963090i \(-0.413247\pi\)
0.269181 + 0.963090i \(0.413247\pi\)
\(930\) 0 0
\(931\) 60.1620 1.97173
\(932\) 0 0
\(933\) − 23.9251i − 0.783274i
\(934\) 0 0
\(935\) 0 0
\(936\) 0 0
\(937\) 4.27140i 0.139541i 0.997563 + 0.0697703i \(0.0222266\pi\)
−0.997563 + 0.0697703i \(0.977773\pi\)
\(938\) 0 0
\(939\) −8.54051 −0.278709
\(940\) 0 0
\(941\) 19.8963 0.648600 0.324300 0.945954i \(-0.394871\pi\)
0.324300 + 0.945954i \(0.394871\pi\)
\(942\) 0 0
\(943\) 4.63196i 0.150837i
\(944\) 0 0
\(945\) 0 0
\(946\) 0 0
\(947\) − 41.9032i − 1.36167i −0.732437 0.680835i \(-0.761617\pi\)
0.732437 0.680835i \(-0.238383\pi\)
\(948\) 0 0
\(949\) 19.4081 0.630014
\(950\) 0 0
\(951\) 15.8079 0.512606
\(952\) 0 0
\(953\) 53.3885i 1.72942i 0.502270 + 0.864711i \(0.332498\pi\)
−0.502270 + 0.864711i \(0.667502\pi\)
\(954\) 0 0
\(955\) 0 0
\(956\) 0 0
\(957\) − 1.06749i − 0.0345070i
\(958\) 0 0
\(959\) 73.5167 2.37398
\(960\) 0 0
\(961\) 79.2592 2.55675
\(962\) 0 0
\(963\) 8.22040i 0.264899i
\(964\) 0 0
\(965\) 0 0
\(966\) 0 0
\(967\) 58.2152i 1.87208i 0.351899 + 0.936038i \(0.385536\pi\)
−0.351899 + 0.936038i \(0.614464\pi\)
\(968\) 0 0
\(969\) 39.4896 1.26859
\(970\) 0 0
\(971\) −42.3742 −1.35985 −0.679926 0.733280i \(-0.737988\pi\)
−0.679926 + 0.733280i \(0.737988\pi\)
\(972\) 0 0
\(973\) 0.776146i 0.0248821i
\(974\) 0 0
\(975\) 0 0
\(976\) 0 0
\(977\) 37.7866i 1.20890i 0.796643 + 0.604451i \(0.206607\pi\)
−0.796643 + 0.604451i \(0.793393\pi\)
\(978\) 0 0
\(979\) 3.71788 0.118824
\(980\) 0 0
\(981\) −11.8044 −0.376887
\(982\) 0 0
\(983\) 38.8498i 1.23912i 0.784951 + 0.619558i \(0.212688\pi\)
−0.784951 + 0.619558i \(0.787312\pi\)
\(984\) 0 0
\(985\) 0 0
\(986\) 0 0
\(987\) − 35.3806i − 1.12618i
\(988\) 0 0
\(989\) 8.29614 0.263802
\(990\) 0 0
\(991\) 31.7227 1.00770 0.503852 0.863790i \(-0.331916\pi\)
0.503852 + 0.863790i \(0.331916\pi\)
\(992\) 0 0
\(993\) − 10.4652i − 0.332102i
\(994\) 0 0
\(995\) 0 0
\(996\) 0 0
\(997\) 52.9046i 1.67551i 0.546049 + 0.837753i \(0.316131\pi\)
−0.546049 + 0.837753i \(0.683869\pi\)
\(998\) 0 0
\(999\) −1.56447 −0.0494978
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 6900.2.f.s.6349.8 8
5.2 odd 4 6900.2.a.bb.1.1 yes 4
5.3 odd 4 6900.2.a.ba.1.4 4
5.4 even 2 inner 6900.2.f.s.6349.1 8
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
6900.2.a.ba.1.4 4 5.3 odd 4
6900.2.a.bb.1.1 yes 4 5.2 odd 4
6900.2.f.s.6349.1 8 5.4 even 2 inner
6900.2.f.s.6349.8 8 1.1 even 1 trivial