Properties

Label 6975.2.a.y.1.2
Level $6975$
Weight $2$
Character 6975.1
Self dual yes
Analytic conductor $55.696$
Analytic rank $1$
Dimension $2$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [6975,2,Mod(1,6975)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(6975, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0, 0]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("6975.1");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 6975 = 3^{2} \cdot 5^{2} \cdot 31 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 6975.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(55.6956554098\)
Analytic rank: \(1\)
Dimension: \(2\)
Coefficient field: \(\Q(\zeta_{10})^+\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{2} - x - 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 31)
Fricke sign: \(+1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.2
Root \(1.61803\) of defining polynomial
Character \(\chi\) \(=\) 6975.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+1.61803 q^{2} +0.618034 q^{4} -0.236068 q^{7} -2.23607 q^{8} -2.00000 q^{11} +3.23607 q^{13} -0.381966 q^{14} -4.85410 q^{16} +0.763932 q^{17} -2.23607 q^{19} -3.23607 q^{22} +5.70820 q^{23} +5.23607 q^{26} -0.145898 q^{28} -2.76393 q^{29} +1.00000 q^{31} -3.38197 q^{32} +1.23607 q^{34} +2.00000 q^{37} -3.61803 q^{38} -7.00000 q^{41} -1.23607 q^{43} -1.23607 q^{44} +9.23607 q^{46} +2.47214 q^{47} -6.94427 q^{49} +2.00000 q^{52} -10.4721 q^{53} +0.527864 q^{56} -4.47214 q^{58} -2.23607 q^{59} +8.18034 q^{61} +1.61803 q^{62} +4.23607 q^{64} -8.00000 q^{67} +0.472136 q^{68} +9.18034 q^{71} -8.47214 q^{73} +3.23607 q^{74} -1.38197 q^{76} +0.472136 q^{77} -11.7082 q^{79} -11.3262 q^{82} -14.9443 q^{83} -2.00000 q^{86} +4.47214 q^{88} -11.7082 q^{89} -0.763932 q^{91} +3.52786 q^{92} +4.00000 q^{94} +15.9443 q^{97} -11.2361 q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 2 q + q^{2} - q^{4} + 4 q^{7} - 4 q^{11} + 2 q^{13} - 3 q^{14} - 3 q^{16} + 6 q^{17} - 2 q^{22} - 2 q^{23} + 6 q^{26} - 7 q^{28} - 10 q^{29} + 2 q^{31} - 9 q^{32} - 2 q^{34} + 4 q^{37} - 5 q^{38} - 14 q^{41}+ \cdots - 18 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 1.61803 1.14412 0.572061 0.820211i \(-0.306144\pi\)
0.572061 + 0.820211i \(0.306144\pi\)
\(3\) 0 0
\(4\) 0.618034 0.309017
\(5\) 0 0
\(6\) 0 0
\(7\) −0.236068 −0.0892253 −0.0446127 0.999004i \(-0.514205\pi\)
−0.0446127 + 0.999004i \(0.514205\pi\)
\(8\) −2.23607 −0.790569
\(9\) 0 0
\(10\) 0 0
\(11\) −2.00000 −0.603023 −0.301511 0.953463i \(-0.597491\pi\)
−0.301511 + 0.953463i \(0.597491\pi\)
\(12\) 0 0
\(13\) 3.23607 0.897524 0.448762 0.893651i \(-0.351865\pi\)
0.448762 + 0.893651i \(0.351865\pi\)
\(14\) −0.381966 −0.102085
\(15\) 0 0
\(16\) −4.85410 −1.21353
\(17\) 0.763932 0.185281 0.0926404 0.995700i \(-0.470469\pi\)
0.0926404 + 0.995700i \(0.470469\pi\)
\(18\) 0 0
\(19\) −2.23607 −0.512989 −0.256495 0.966546i \(-0.582568\pi\)
−0.256495 + 0.966546i \(0.582568\pi\)
\(20\) 0 0
\(21\) 0 0
\(22\) −3.23607 −0.689932
\(23\) 5.70820 1.19024 0.595121 0.803636i \(-0.297104\pi\)
0.595121 + 0.803636i \(0.297104\pi\)
\(24\) 0 0
\(25\) 0 0
\(26\) 5.23607 1.02688
\(27\) 0 0
\(28\) −0.145898 −0.0275721
\(29\) −2.76393 −0.513249 −0.256625 0.966511i \(-0.582610\pi\)
−0.256625 + 0.966511i \(0.582610\pi\)
\(30\) 0 0
\(31\) 1.00000 0.179605
\(32\) −3.38197 −0.597853
\(33\) 0 0
\(34\) 1.23607 0.211984
\(35\) 0 0
\(36\) 0 0
\(37\) 2.00000 0.328798 0.164399 0.986394i \(-0.447432\pi\)
0.164399 + 0.986394i \(0.447432\pi\)
\(38\) −3.61803 −0.586923
\(39\) 0 0
\(40\) 0 0
\(41\) −7.00000 −1.09322 −0.546608 0.837389i \(-0.684081\pi\)
−0.546608 + 0.837389i \(0.684081\pi\)
\(42\) 0 0
\(43\) −1.23607 −0.188499 −0.0942493 0.995549i \(-0.530045\pi\)
−0.0942493 + 0.995549i \(0.530045\pi\)
\(44\) −1.23607 −0.186344
\(45\) 0 0
\(46\) 9.23607 1.36178
\(47\) 2.47214 0.360598 0.180299 0.983612i \(-0.442293\pi\)
0.180299 + 0.983612i \(0.442293\pi\)
\(48\) 0 0
\(49\) −6.94427 −0.992039
\(50\) 0 0
\(51\) 0 0
\(52\) 2.00000 0.277350
\(53\) −10.4721 −1.43846 −0.719229 0.694773i \(-0.755505\pi\)
−0.719229 + 0.694773i \(0.755505\pi\)
\(54\) 0 0
\(55\) 0 0
\(56\) 0.527864 0.0705388
\(57\) 0 0
\(58\) −4.47214 −0.587220
\(59\) −2.23607 −0.291111 −0.145556 0.989350i \(-0.546497\pi\)
−0.145556 + 0.989350i \(0.546497\pi\)
\(60\) 0 0
\(61\) 8.18034 1.04739 0.523693 0.851907i \(-0.324554\pi\)
0.523693 + 0.851907i \(0.324554\pi\)
\(62\) 1.61803 0.205491
\(63\) 0 0
\(64\) 4.23607 0.529508
\(65\) 0 0
\(66\) 0 0
\(67\) −8.00000 −0.977356 −0.488678 0.872464i \(-0.662521\pi\)
−0.488678 + 0.872464i \(0.662521\pi\)
\(68\) 0.472136 0.0572549
\(69\) 0 0
\(70\) 0 0
\(71\) 9.18034 1.08951 0.544753 0.838597i \(-0.316623\pi\)
0.544753 + 0.838597i \(0.316623\pi\)
\(72\) 0 0
\(73\) −8.47214 −0.991589 −0.495794 0.868440i \(-0.665123\pi\)
−0.495794 + 0.868440i \(0.665123\pi\)
\(74\) 3.23607 0.376185
\(75\) 0 0
\(76\) −1.38197 −0.158522
\(77\) 0.472136 0.0538049
\(78\) 0 0
\(79\) −11.7082 −1.31728 −0.658638 0.752460i \(-0.728867\pi\)
−0.658638 + 0.752460i \(0.728867\pi\)
\(80\) 0 0
\(81\) 0 0
\(82\) −11.3262 −1.25077
\(83\) −14.9443 −1.64035 −0.820173 0.572115i \(-0.806123\pi\)
−0.820173 + 0.572115i \(0.806123\pi\)
\(84\) 0 0
\(85\) 0 0
\(86\) −2.00000 −0.215666
\(87\) 0 0
\(88\) 4.47214 0.476731
\(89\) −11.7082 −1.24107 −0.620534 0.784180i \(-0.713084\pi\)
−0.620534 + 0.784180i \(0.713084\pi\)
\(90\) 0 0
\(91\) −0.763932 −0.0800818
\(92\) 3.52786 0.367805
\(93\) 0 0
\(94\) 4.00000 0.412568
\(95\) 0 0
\(96\) 0 0
\(97\) 15.9443 1.61890 0.809448 0.587192i \(-0.199767\pi\)
0.809448 + 0.587192i \(0.199767\pi\)
\(98\) −11.2361 −1.13501
\(99\) 0 0
\(100\) 0 0
\(101\) 3.00000 0.298511 0.149256 0.988799i \(-0.452312\pi\)
0.149256 + 0.988799i \(0.452312\pi\)
\(102\) 0 0
\(103\) −6.23607 −0.614458 −0.307229 0.951636i \(-0.599402\pi\)
−0.307229 + 0.951636i \(0.599402\pi\)
\(104\) −7.23607 −0.709555
\(105\) 0 0
\(106\) −16.9443 −1.64577
\(107\) 5.76393 0.557220 0.278610 0.960404i \(-0.410126\pi\)
0.278610 + 0.960404i \(0.410126\pi\)
\(108\) 0 0
\(109\) −13.9443 −1.33562 −0.667810 0.744332i \(-0.732768\pi\)
−0.667810 + 0.744332i \(0.732768\pi\)
\(110\) 0 0
\(111\) 0 0
\(112\) 1.14590 0.108277
\(113\) 3.47214 0.326631 0.163316 0.986574i \(-0.447781\pi\)
0.163316 + 0.986574i \(0.447781\pi\)
\(114\) 0 0
\(115\) 0 0
\(116\) −1.70820 −0.158603
\(117\) 0 0
\(118\) −3.61803 −0.333067
\(119\) −0.180340 −0.0165317
\(120\) 0 0
\(121\) −7.00000 −0.636364
\(122\) 13.2361 1.19834
\(123\) 0 0
\(124\) 0.618034 0.0555011
\(125\) 0 0
\(126\) 0 0
\(127\) −12.4721 −1.10672 −0.553362 0.832941i \(-0.686655\pi\)
−0.553362 + 0.832941i \(0.686655\pi\)
\(128\) 13.6180 1.20368
\(129\) 0 0
\(130\) 0 0
\(131\) −12.0000 −1.04844 −0.524222 0.851581i \(-0.675644\pi\)
−0.524222 + 0.851581i \(0.675644\pi\)
\(132\) 0 0
\(133\) 0.527864 0.0457716
\(134\) −12.9443 −1.11821
\(135\) 0 0
\(136\) −1.70820 −0.146477
\(137\) 6.29180 0.537544 0.268772 0.963204i \(-0.413382\pi\)
0.268772 + 0.963204i \(0.413382\pi\)
\(138\) 0 0
\(139\) 13.4164 1.13796 0.568982 0.822350i \(-0.307337\pi\)
0.568982 + 0.822350i \(0.307337\pi\)
\(140\) 0 0
\(141\) 0 0
\(142\) 14.8541 1.24653
\(143\) −6.47214 −0.541227
\(144\) 0 0
\(145\) 0 0
\(146\) −13.7082 −1.13450
\(147\) 0 0
\(148\) 1.23607 0.101604
\(149\) −10.0000 −0.819232 −0.409616 0.912258i \(-0.634337\pi\)
−0.409616 + 0.912258i \(0.634337\pi\)
\(150\) 0 0
\(151\) −14.1803 −1.15398 −0.576990 0.816751i \(-0.695773\pi\)
−0.576990 + 0.816751i \(0.695773\pi\)
\(152\) 5.00000 0.405554
\(153\) 0 0
\(154\) 0.763932 0.0615594
\(155\) 0 0
\(156\) 0 0
\(157\) −20.8885 −1.66709 −0.833544 0.552454i \(-0.813692\pi\)
−0.833544 + 0.552454i \(0.813692\pi\)
\(158\) −18.9443 −1.50713
\(159\) 0 0
\(160\) 0 0
\(161\) −1.34752 −0.106200
\(162\) 0 0
\(163\) −10.7082 −0.838731 −0.419366 0.907817i \(-0.637747\pi\)
−0.419366 + 0.907817i \(0.637747\pi\)
\(164\) −4.32624 −0.337822
\(165\) 0 0
\(166\) −24.1803 −1.87676
\(167\) −6.47214 −0.500829 −0.250414 0.968139i \(-0.580567\pi\)
−0.250414 + 0.968139i \(0.580567\pi\)
\(168\) 0 0
\(169\) −2.52786 −0.194451
\(170\) 0 0
\(171\) 0 0
\(172\) −0.763932 −0.0582493
\(173\) 2.94427 0.223849 0.111924 0.993717i \(-0.464299\pi\)
0.111924 + 0.993717i \(0.464299\pi\)
\(174\) 0 0
\(175\) 0 0
\(176\) 9.70820 0.731783
\(177\) 0 0
\(178\) −18.9443 −1.41993
\(179\) −1.70820 −0.127677 −0.0638386 0.997960i \(-0.520334\pi\)
−0.0638386 + 0.997960i \(0.520334\pi\)
\(180\) 0 0
\(181\) −4.18034 −0.310722 −0.155361 0.987858i \(-0.549654\pi\)
−0.155361 + 0.987858i \(0.549654\pi\)
\(182\) −1.23607 −0.0916235
\(183\) 0 0
\(184\) −12.7639 −0.940970
\(185\) 0 0
\(186\) 0 0
\(187\) −1.52786 −0.111728
\(188\) 1.52786 0.111431
\(189\) 0 0
\(190\) 0 0
\(191\) 19.1803 1.38784 0.693920 0.720052i \(-0.255882\pi\)
0.693920 + 0.720052i \(0.255882\pi\)
\(192\) 0 0
\(193\) −3.47214 −0.249930 −0.124965 0.992161i \(-0.539882\pi\)
−0.124965 + 0.992161i \(0.539882\pi\)
\(194\) 25.7984 1.85222
\(195\) 0 0
\(196\) −4.29180 −0.306557
\(197\) 11.4164 0.813385 0.406693 0.913565i \(-0.366682\pi\)
0.406693 + 0.913565i \(0.366682\pi\)
\(198\) 0 0
\(199\) −18.9443 −1.34292 −0.671462 0.741039i \(-0.734333\pi\)
−0.671462 + 0.741039i \(0.734333\pi\)
\(200\) 0 0
\(201\) 0 0
\(202\) 4.85410 0.341533
\(203\) 0.652476 0.0457948
\(204\) 0 0
\(205\) 0 0
\(206\) −10.0902 −0.703015
\(207\) 0 0
\(208\) −15.7082 −1.08917
\(209\) 4.47214 0.309344
\(210\) 0 0
\(211\) 23.1803 1.59580 0.797900 0.602790i \(-0.205944\pi\)
0.797900 + 0.602790i \(0.205944\pi\)
\(212\) −6.47214 −0.444508
\(213\) 0 0
\(214\) 9.32624 0.637528
\(215\) 0 0
\(216\) 0 0
\(217\) −0.236068 −0.0160253
\(218\) −22.5623 −1.52811
\(219\) 0 0
\(220\) 0 0
\(221\) 2.47214 0.166294
\(222\) 0 0
\(223\) −4.00000 −0.267860 −0.133930 0.990991i \(-0.542760\pi\)
−0.133930 + 0.990991i \(0.542760\pi\)
\(224\) 0.798374 0.0533436
\(225\) 0 0
\(226\) 5.61803 0.373706
\(227\) −6.47214 −0.429571 −0.214785 0.976661i \(-0.568905\pi\)
−0.214785 + 0.976661i \(0.568905\pi\)
\(228\) 0 0
\(229\) −13.4164 −0.886581 −0.443291 0.896378i \(-0.646189\pi\)
−0.443291 + 0.896378i \(0.646189\pi\)
\(230\) 0 0
\(231\) 0 0
\(232\) 6.18034 0.405759
\(233\) 17.9443 1.17557 0.587784 0.809018i \(-0.300000\pi\)
0.587784 + 0.809018i \(0.300000\pi\)
\(234\) 0 0
\(235\) 0 0
\(236\) −1.38197 −0.0899583
\(237\) 0 0
\(238\) −0.291796 −0.0189143
\(239\) 11.7082 0.757341 0.378670 0.925532i \(-0.376381\pi\)
0.378670 + 0.925532i \(0.376381\pi\)
\(240\) 0 0
\(241\) 14.3607 0.925053 0.462526 0.886606i \(-0.346943\pi\)
0.462526 + 0.886606i \(0.346943\pi\)
\(242\) −11.3262 −0.728078
\(243\) 0 0
\(244\) 5.05573 0.323660
\(245\) 0 0
\(246\) 0 0
\(247\) −7.23607 −0.460420
\(248\) −2.23607 −0.141990
\(249\) 0 0
\(250\) 0 0
\(251\) 1.81966 0.114856 0.0574280 0.998350i \(-0.481710\pi\)
0.0574280 + 0.998350i \(0.481710\pi\)
\(252\) 0 0
\(253\) −11.4164 −0.717743
\(254\) −20.1803 −1.26623
\(255\) 0 0
\(256\) 13.5623 0.847644
\(257\) 1.94427 0.121280 0.0606402 0.998160i \(-0.480686\pi\)
0.0606402 + 0.998160i \(0.480686\pi\)
\(258\) 0 0
\(259\) −0.472136 −0.0293371
\(260\) 0 0
\(261\) 0 0
\(262\) −19.4164 −1.19955
\(263\) −23.2361 −1.43280 −0.716399 0.697691i \(-0.754211\pi\)
−0.716399 + 0.697691i \(0.754211\pi\)
\(264\) 0 0
\(265\) 0 0
\(266\) 0.854102 0.0523684
\(267\) 0 0
\(268\) −4.94427 −0.302019
\(269\) 11.0557 0.674080 0.337040 0.941490i \(-0.390574\pi\)
0.337040 + 0.941490i \(0.390574\pi\)
\(270\) 0 0
\(271\) −14.1803 −0.861394 −0.430697 0.902497i \(-0.641732\pi\)
−0.430697 + 0.902497i \(0.641732\pi\)
\(272\) −3.70820 −0.224843
\(273\) 0 0
\(274\) 10.1803 0.615017
\(275\) 0 0
\(276\) 0 0
\(277\) 12.6525 0.760214 0.380107 0.924943i \(-0.375887\pi\)
0.380107 + 0.924943i \(0.375887\pi\)
\(278\) 21.7082 1.30197
\(279\) 0 0
\(280\) 0 0
\(281\) −17.0000 −1.01413 −0.507067 0.861906i \(-0.669271\pi\)
−0.507067 + 0.861906i \(0.669271\pi\)
\(282\) 0 0
\(283\) 13.8885 0.825588 0.412794 0.910824i \(-0.364553\pi\)
0.412794 + 0.910824i \(0.364553\pi\)
\(284\) 5.67376 0.336676
\(285\) 0 0
\(286\) −10.4721 −0.619230
\(287\) 1.65248 0.0975426
\(288\) 0 0
\(289\) −16.4164 −0.965671
\(290\) 0 0
\(291\) 0 0
\(292\) −5.23607 −0.306418
\(293\) −0.472136 −0.0275825 −0.0137912 0.999905i \(-0.504390\pi\)
−0.0137912 + 0.999905i \(0.504390\pi\)
\(294\) 0 0
\(295\) 0 0
\(296\) −4.47214 −0.259938
\(297\) 0 0
\(298\) −16.1803 −0.937302
\(299\) 18.4721 1.06827
\(300\) 0 0
\(301\) 0.291796 0.0168188
\(302\) −22.9443 −1.32029
\(303\) 0 0
\(304\) 10.8541 0.622525
\(305\) 0 0
\(306\) 0 0
\(307\) 28.7082 1.63846 0.819232 0.573462i \(-0.194400\pi\)
0.819232 + 0.573462i \(0.194400\pi\)
\(308\) 0.291796 0.0166266
\(309\) 0 0
\(310\) 0 0
\(311\) 29.1803 1.65467 0.827333 0.561712i \(-0.189857\pi\)
0.827333 + 0.561712i \(0.189857\pi\)
\(312\) 0 0
\(313\) −16.7639 −0.947553 −0.473777 0.880645i \(-0.657110\pi\)
−0.473777 + 0.880645i \(0.657110\pi\)
\(314\) −33.7984 −1.90735
\(315\) 0 0
\(316\) −7.23607 −0.407061
\(317\) 4.05573 0.227792 0.113896 0.993493i \(-0.463667\pi\)
0.113896 + 0.993493i \(0.463667\pi\)
\(318\) 0 0
\(319\) 5.52786 0.309501
\(320\) 0 0
\(321\) 0 0
\(322\) −2.18034 −0.121506
\(323\) −1.70820 −0.0950470
\(324\) 0 0
\(325\) 0 0
\(326\) −17.3262 −0.959612
\(327\) 0 0
\(328\) 15.6525 0.864263
\(329\) −0.583592 −0.0321745
\(330\) 0 0
\(331\) 2.00000 0.109930 0.0549650 0.998488i \(-0.482495\pi\)
0.0549650 + 0.998488i \(0.482495\pi\)
\(332\) −9.23607 −0.506895
\(333\) 0 0
\(334\) −10.4721 −0.573010
\(335\) 0 0
\(336\) 0 0
\(337\) 14.7639 0.804243 0.402121 0.915586i \(-0.368273\pi\)
0.402121 + 0.915586i \(0.368273\pi\)
\(338\) −4.09017 −0.222476
\(339\) 0 0
\(340\) 0 0
\(341\) −2.00000 −0.108306
\(342\) 0 0
\(343\) 3.29180 0.177740
\(344\) 2.76393 0.149021
\(345\) 0 0
\(346\) 4.76393 0.256111
\(347\) 24.1803 1.29807 0.649034 0.760759i \(-0.275173\pi\)
0.649034 + 0.760759i \(0.275173\pi\)
\(348\) 0 0
\(349\) −7.88854 −0.422264 −0.211132 0.977458i \(-0.567715\pi\)
−0.211132 + 0.977458i \(0.567715\pi\)
\(350\) 0 0
\(351\) 0 0
\(352\) 6.76393 0.360519
\(353\) 7.41641 0.394736 0.197368 0.980330i \(-0.436761\pi\)
0.197368 + 0.980330i \(0.436761\pi\)
\(354\) 0 0
\(355\) 0 0
\(356\) −7.23607 −0.383511
\(357\) 0 0
\(358\) −2.76393 −0.146078
\(359\) −22.2361 −1.17357 −0.586787 0.809741i \(-0.699608\pi\)
−0.586787 + 0.809741i \(0.699608\pi\)
\(360\) 0 0
\(361\) −14.0000 −0.736842
\(362\) −6.76393 −0.355504
\(363\) 0 0
\(364\) −0.472136 −0.0247466
\(365\) 0 0
\(366\) 0 0
\(367\) −18.0000 −0.939592 −0.469796 0.882775i \(-0.655673\pi\)
−0.469796 + 0.882775i \(0.655673\pi\)
\(368\) −27.7082 −1.44439
\(369\) 0 0
\(370\) 0 0
\(371\) 2.47214 0.128347
\(372\) 0 0
\(373\) −19.0000 −0.983783 −0.491891 0.870657i \(-0.663694\pi\)
−0.491891 + 0.870657i \(0.663694\pi\)
\(374\) −2.47214 −0.127831
\(375\) 0 0
\(376\) −5.52786 −0.285078
\(377\) −8.94427 −0.460653
\(378\) 0 0
\(379\) −2.11146 −0.108458 −0.0542291 0.998529i \(-0.517270\pi\)
−0.0542291 + 0.998529i \(0.517270\pi\)
\(380\) 0 0
\(381\) 0 0
\(382\) 31.0344 1.58786
\(383\) −23.8885 −1.22065 −0.610324 0.792152i \(-0.708961\pi\)
−0.610324 + 0.792152i \(0.708961\pi\)
\(384\) 0 0
\(385\) 0 0
\(386\) −5.61803 −0.285950
\(387\) 0 0
\(388\) 9.85410 0.500266
\(389\) 17.8885 0.906985 0.453493 0.891260i \(-0.350178\pi\)
0.453493 + 0.891260i \(0.350178\pi\)
\(390\) 0 0
\(391\) 4.36068 0.220529
\(392\) 15.5279 0.784276
\(393\) 0 0
\(394\) 18.4721 0.930613
\(395\) 0 0
\(396\) 0 0
\(397\) 7.00000 0.351320 0.175660 0.984451i \(-0.443794\pi\)
0.175660 + 0.984451i \(0.443794\pi\)
\(398\) −30.6525 −1.53647
\(399\) 0 0
\(400\) 0 0
\(401\) −38.1803 −1.90664 −0.953318 0.301969i \(-0.902356\pi\)
−0.953318 + 0.301969i \(0.902356\pi\)
\(402\) 0 0
\(403\) 3.23607 0.161200
\(404\) 1.85410 0.0922450
\(405\) 0 0
\(406\) 1.05573 0.0523949
\(407\) −4.00000 −0.198273
\(408\) 0 0
\(409\) −3.81966 −0.188870 −0.0944350 0.995531i \(-0.530104\pi\)
−0.0944350 + 0.995531i \(0.530104\pi\)
\(410\) 0 0
\(411\) 0 0
\(412\) −3.85410 −0.189878
\(413\) 0.527864 0.0259745
\(414\) 0 0
\(415\) 0 0
\(416\) −10.9443 −0.536587
\(417\) 0 0
\(418\) 7.23607 0.353928
\(419\) 10.1246 0.494620 0.247310 0.968936i \(-0.420453\pi\)
0.247310 + 0.968936i \(0.420453\pi\)
\(420\) 0 0
\(421\) 29.3607 1.43095 0.715476 0.698637i \(-0.246210\pi\)
0.715476 + 0.698637i \(0.246210\pi\)
\(422\) 37.5066 1.82579
\(423\) 0 0
\(424\) 23.4164 1.13720
\(425\) 0 0
\(426\) 0 0
\(427\) −1.93112 −0.0934533
\(428\) 3.56231 0.172191
\(429\) 0 0
\(430\) 0 0
\(431\) −12.0000 −0.578020 −0.289010 0.957326i \(-0.593326\pi\)
−0.289010 + 0.957326i \(0.593326\pi\)
\(432\) 0 0
\(433\) −10.1803 −0.489236 −0.244618 0.969620i \(-0.578663\pi\)
−0.244618 + 0.969620i \(0.578663\pi\)
\(434\) −0.381966 −0.0183350
\(435\) 0 0
\(436\) −8.61803 −0.412729
\(437\) −12.7639 −0.610582
\(438\) 0 0
\(439\) −1.18034 −0.0563345 −0.0281673 0.999603i \(-0.508967\pi\)
−0.0281673 + 0.999603i \(0.508967\pi\)
\(440\) 0 0
\(441\) 0 0
\(442\) 4.00000 0.190261
\(443\) 30.7082 1.45899 0.729495 0.683986i \(-0.239755\pi\)
0.729495 + 0.683986i \(0.239755\pi\)
\(444\) 0 0
\(445\) 0 0
\(446\) −6.47214 −0.306465
\(447\) 0 0
\(448\) −1.00000 −0.0472456
\(449\) 31.3050 1.47737 0.738686 0.674050i \(-0.235447\pi\)
0.738686 + 0.674050i \(0.235447\pi\)
\(450\) 0 0
\(451\) 14.0000 0.659234
\(452\) 2.14590 0.100935
\(453\) 0 0
\(454\) −10.4721 −0.491482
\(455\) 0 0
\(456\) 0 0
\(457\) 3.05573 0.142941 0.0714705 0.997443i \(-0.477231\pi\)
0.0714705 + 0.997443i \(0.477231\pi\)
\(458\) −21.7082 −1.01436
\(459\) 0 0
\(460\) 0 0
\(461\) −34.3607 −1.60034 −0.800168 0.599776i \(-0.795256\pi\)
−0.800168 + 0.599776i \(0.795256\pi\)
\(462\) 0 0
\(463\) 2.58359 0.120070 0.0600349 0.998196i \(-0.480879\pi\)
0.0600349 + 0.998196i \(0.480879\pi\)
\(464\) 13.4164 0.622841
\(465\) 0 0
\(466\) 29.0344 1.34499
\(467\) 4.70820 0.217870 0.108935 0.994049i \(-0.465256\pi\)
0.108935 + 0.994049i \(0.465256\pi\)
\(468\) 0 0
\(469\) 1.88854 0.0872049
\(470\) 0 0
\(471\) 0 0
\(472\) 5.00000 0.230144
\(473\) 2.47214 0.113669
\(474\) 0 0
\(475\) 0 0
\(476\) −0.111456 −0.00510859
\(477\) 0 0
\(478\) 18.9443 0.866491
\(479\) −23.2918 −1.06423 −0.532115 0.846672i \(-0.678602\pi\)
−0.532115 + 0.846672i \(0.678602\pi\)
\(480\) 0 0
\(481\) 6.47214 0.295104
\(482\) 23.2361 1.05837
\(483\) 0 0
\(484\) −4.32624 −0.196647
\(485\) 0 0
\(486\) 0 0
\(487\) 19.2361 0.871669 0.435835 0.900027i \(-0.356453\pi\)
0.435835 + 0.900027i \(0.356453\pi\)
\(488\) −18.2918 −0.828031
\(489\) 0 0
\(490\) 0 0
\(491\) −4.36068 −0.196795 −0.0983974 0.995147i \(-0.531372\pi\)
−0.0983974 + 0.995147i \(0.531372\pi\)
\(492\) 0 0
\(493\) −2.11146 −0.0950952
\(494\) −11.7082 −0.526777
\(495\) 0 0
\(496\) −4.85410 −0.217956
\(497\) −2.16718 −0.0972115
\(498\) 0 0
\(499\) −6.58359 −0.294722 −0.147361 0.989083i \(-0.547078\pi\)
−0.147361 + 0.989083i \(0.547078\pi\)
\(500\) 0 0
\(501\) 0 0
\(502\) 2.94427 0.131409
\(503\) 29.6525 1.32214 0.661069 0.750325i \(-0.270103\pi\)
0.661069 + 0.750325i \(0.270103\pi\)
\(504\) 0 0
\(505\) 0 0
\(506\) −18.4721 −0.821187
\(507\) 0 0
\(508\) −7.70820 −0.341996
\(509\) −29.5967 −1.31185 −0.655926 0.754825i \(-0.727722\pi\)
−0.655926 + 0.754825i \(0.727722\pi\)
\(510\) 0 0
\(511\) 2.00000 0.0884748
\(512\) −5.29180 −0.233867
\(513\) 0 0
\(514\) 3.14590 0.138760
\(515\) 0 0
\(516\) 0 0
\(517\) −4.94427 −0.217449
\(518\) −0.763932 −0.0335652
\(519\) 0 0
\(520\) 0 0
\(521\) −2.00000 −0.0876216 −0.0438108 0.999040i \(-0.513950\pi\)
−0.0438108 + 0.999040i \(0.513950\pi\)
\(522\) 0 0
\(523\) 17.7082 0.774326 0.387163 0.922011i \(-0.373455\pi\)
0.387163 + 0.922011i \(0.373455\pi\)
\(524\) −7.41641 −0.323987
\(525\) 0 0
\(526\) −37.5967 −1.63930
\(527\) 0.763932 0.0332774
\(528\) 0 0
\(529\) 9.58359 0.416678
\(530\) 0 0
\(531\) 0 0
\(532\) 0.326238 0.0141442
\(533\) −22.6525 −0.981188
\(534\) 0 0
\(535\) 0 0
\(536\) 17.8885 0.772667
\(537\) 0 0
\(538\) 17.8885 0.771230
\(539\) 13.8885 0.598222
\(540\) 0 0
\(541\) −25.3607 −1.09034 −0.545170 0.838325i \(-0.683535\pi\)
−0.545170 + 0.838325i \(0.683535\pi\)
\(542\) −22.9443 −0.985541
\(543\) 0 0
\(544\) −2.58359 −0.110771
\(545\) 0 0
\(546\) 0 0
\(547\) 12.1246 0.518411 0.259205 0.965822i \(-0.416539\pi\)
0.259205 + 0.965822i \(0.416539\pi\)
\(548\) 3.88854 0.166110
\(549\) 0 0
\(550\) 0 0
\(551\) 6.18034 0.263291
\(552\) 0 0
\(553\) 2.76393 0.117534
\(554\) 20.4721 0.869778
\(555\) 0 0
\(556\) 8.29180 0.351650
\(557\) −12.0000 −0.508456 −0.254228 0.967144i \(-0.581821\pi\)
−0.254228 + 0.967144i \(0.581821\pi\)
\(558\) 0 0
\(559\) −4.00000 −0.169182
\(560\) 0 0
\(561\) 0 0
\(562\) −27.5066 −1.16029
\(563\) 27.5410 1.16072 0.580358 0.814362i \(-0.302913\pi\)
0.580358 + 0.814362i \(0.302913\pi\)
\(564\) 0 0
\(565\) 0 0
\(566\) 22.4721 0.944574
\(567\) 0 0
\(568\) −20.5279 −0.861330
\(569\) −5.52786 −0.231740 −0.115870 0.993264i \(-0.536966\pi\)
−0.115870 + 0.993264i \(0.536966\pi\)
\(570\) 0 0
\(571\) 28.1803 1.17931 0.589655 0.807655i \(-0.299264\pi\)
0.589655 + 0.807655i \(0.299264\pi\)
\(572\) −4.00000 −0.167248
\(573\) 0 0
\(574\) 2.67376 0.111601
\(575\) 0 0
\(576\) 0 0
\(577\) 28.8328 1.20033 0.600163 0.799878i \(-0.295102\pi\)
0.600163 + 0.799878i \(0.295102\pi\)
\(578\) −26.5623 −1.10485
\(579\) 0 0
\(580\) 0 0
\(581\) 3.52786 0.146360
\(582\) 0 0
\(583\) 20.9443 0.867423
\(584\) 18.9443 0.783920
\(585\) 0 0
\(586\) −0.763932 −0.0315577
\(587\) −6.47214 −0.267134 −0.133567 0.991040i \(-0.542643\pi\)
−0.133567 + 0.991040i \(0.542643\pi\)
\(588\) 0 0
\(589\) −2.23607 −0.0921356
\(590\) 0 0
\(591\) 0 0
\(592\) −9.70820 −0.399005
\(593\) −6.52786 −0.268067 −0.134034 0.990977i \(-0.542793\pi\)
−0.134034 + 0.990977i \(0.542793\pi\)
\(594\) 0 0
\(595\) 0 0
\(596\) −6.18034 −0.253157
\(597\) 0 0
\(598\) 29.8885 1.22223
\(599\) 14.5967 0.596407 0.298203 0.954502i \(-0.403613\pi\)
0.298203 + 0.954502i \(0.403613\pi\)
\(600\) 0 0
\(601\) 30.5410 1.24579 0.622897 0.782304i \(-0.285956\pi\)
0.622897 + 0.782304i \(0.285956\pi\)
\(602\) 0.472136 0.0192428
\(603\) 0 0
\(604\) −8.76393 −0.356599
\(605\) 0 0
\(606\) 0 0
\(607\) −22.4721 −0.912116 −0.456058 0.889950i \(-0.650739\pi\)
−0.456058 + 0.889950i \(0.650739\pi\)
\(608\) 7.56231 0.306692
\(609\) 0 0
\(610\) 0 0
\(611\) 8.00000 0.323645
\(612\) 0 0
\(613\) 43.8885 1.77264 0.886321 0.463072i \(-0.153253\pi\)
0.886321 + 0.463072i \(0.153253\pi\)
\(614\) 46.4508 1.87460
\(615\) 0 0
\(616\) −1.05573 −0.0425365
\(617\) 32.4721 1.30728 0.653639 0.756806i \(-0.273241\pi\)
0.653639 + 0.756806i \(0.273241\pi\)
\(618\) 0 0
\(619\) 6.18034 0.248409 0.124204 0.992257i \(-0.460362\pi\)
0.124204 + 0.992257i \(0.460362\pi\)
\(620\) 0 0
\(621\) 0 0
\(622\) 47.2148 1.89314
\(623\) 2.76393 0.110735
\(624\) 0 0
\(625\) 0 0
\(626\) −27.1246 −1.08412
\(627\) 0 0
\(628\) −12.9098 −0.515158
\(629\) 1.52786 0.0609199
\(630\) 0 0
\(631\) 34.3607 1.36788 0.683939 0.729540i \(-0.260266\pi\)
0.683939 + 0.729540i \(0.260266\pi\)
\(632\) 26.1803 1.04140
\(633\) 0 0
\(634\) 6.56231 0.260622
\(635\) 0 0
\(636\) 0 0
\(637\) −22.4721 −0.890378
\(638\) 8.94427 0.354107
\(639\) 0 0
\(640\) 0 0
\(641\) −12.0000 −0.473972 −0.236986 0.971513i \(-0.576159\pi\)
−0.236986 + 0.971513i \(0.576159\pi\)
\(642\) 0 0
\(643\) −19.5279 −0.770104 −0.385052 0.922895i \(-0.625816\pi\)
−0.385052 + 0.922895i \(0.625816\pi\)
\(644\) −0.832816 −0.0328175
\(645\) 0 0
\(646\) −2.76393 −0.108745
\(647\) −0.944272 −0.0371232 −0.0185616 0.999828i \(-0.505909\pi\)
−0.0185616 + 0.999828i \(0.505909\pi\)
\(648\) 0 0
\(649\) 4.47214 0.175547
\(650\) 0 0
\(651\) 0 0
\(652\) −6.61803 −0.259182
\(653\) −47.3050 −1.85119 −0.925593 0.378521i \(-0.876433\pi\)
−0.925593 + 0.378521i \(0.876433\pi\)
\(654\) 0 0
\(655\) 0 0
\(656\) 33.9787 1.32665
\(657\) 0 0
\(658\) −0.944272 −0.0368116
\(659\) −25.6525 −0.999279 −0.499639 0.866234i \(-0.666534\pi\)
−0.499639 + 0.866234i \(0.666534\pi\)
\(660\) 0 0
\(661\) −0.639320 −0.0248667 −0.0124333 0.999923i \(-0.503958\pi\)
−0.0124333 + 0.999923i \(0.503958\pi\)
\(662\) 3.23607 0.125773
\(663\) 0 0
\(664\) 33.4164 1.29681
\(665\) 0 0
\(666\) 0 0
\(667\) −15.7771 −0.610891
\(668\) −4.00000 −0.154765
\(669\) 0 0
\(670\) 0 0
\(671\) −16.3607 −0.631597
\(672\) 0 0
\(673\) 29.0132 1.11837 0.559187 0.829041i \(-0.311113\pi\)
0.559187 + 0.829041i \(0.311113\pi\)
\(674\) 23.8885 0.920152
\(675\) 0 0
\(676\) −1.56231 −0.0600887
\(677\) −46.7214 −1.79565 −0.897824 0.440355i \(-0.854853\pi\)
−0.897824 + 0.440355i \(0.854853\pi\)
\(678\) 0 0
\(679\) −3.76393 −0.144446
\(680\) 0 0
\(681\) 0 0
\(682\) −3.23607 −0.123915
\(683\) 5.18034 0.198220 0.0991101 0.995076i \(-0.468400\pi\)
0.0991101 + 0.995076i \(0.468400\pi\)
\(684\) 0 0
\(685\) 0 0
\(686\) 5.32624 0.203357
\(687\) 0 0
\(688\) 6.00000 0.228748
\(689\) −33.8885 −1.29105
\(690\) 0 0
\(691\) 3.18034 0.120986 0.0604929 0.998169i \(-0.480733\pi\)
0.0604929 + 0.998169i \(0.480733\pi\)
\(692\) 1.81966 0.0691731
\(693\) 0 0
\(694\) 39.1246 1.48515
\(695\) 0 0
\(696\) 0 0
\(697\) −5.34752 −0.202552
\(698\) −12.7639 −0.483122
\(699\) 0 0
\(700\) 0 0
\(701\) −7.00000 −0.264386 −0.132193 0.991224i \(-0.542202\pi\)
−0.132193 + 0.991224i \(0.542202\pi\)
\(702\) 0 0
\(703\) −4.47214 −0.168670
\(704\) −8.47214 −0.319306
\(705\) 0 0
\(706\) 12.0000 0.451626
\(707\) −0.708204 −0.0266348
\(708\) 0 0
\(709\) 25.5279 0.958719 0.479360 0.877619i \(-0.340869\pi\)
0.479360 + 0.877619i \(0.340869\pi\)
\(710\) 0 0
\(711\) 0 0
\(712\) 26.1803 0.981150
\(713\) 5.70820 0.213774
\(714\) 0 0
\(715\) 0 0
\(716\) −1.05573 −0.0394544
\(717\) 0 0
\(718\) −35.9787 −1.34271
\(719\) 13.8197 0.515386 0.257693 0.966227i \(-0.417038\pi\)
0.257693 + 0.966227i \(0.417038\pi\)
\(720\) 0 0
\(721\) 1.47214 0.0548252
\(722\) −22.6525 −0.843038
\(723\) 0 0
\(724\) −2.58359 −0.0960184
\(725\) 0 0
\(726\) 0 0
\(727\) 44.2361 1.64062 0.820312 0.571916i \(-0.193800\pi\)
0.820312 + 0.571916i \(0.193800\pi\)
\(728\) 1.70820 0.0633102
\(729\) 0 0
\(730\) 0 0
\(731\) −0.944272 −0.0349252
\(732\) 0 0
\(733\) −3.47214 −0.128246 −0.0641231 0.997942i \(-0.520425\pi\)
−0.0641231 + 0.997942i \(0.520425\pi\)
\(734\) −29.1246 −1.07501
\(735\) 0 0
\(736\) −19.3050 −0.711590
\(737\) 16.0000 0.589368
\(738\) 0 0
\(739\) 6.18034 0.227347 0.113674 0.993518i \(-0.463738\pi\)
0.113674 + 0.993518i \(0.463738\pi\)
\(740\) 0 0
\(741\) 0 0
\(742\) 4.00000 0.146845
\(743\) 50.1803 1.84094 0.920469 0.390815i \(-0.127807\pi\)
0.920469 + 0.390815i \(0.127807\pi\)
\(744\) 0 0
\(745\) 0 0
\(746\) −30.7426 −1.12557
\(747\) 0 0
\(748\) −0.944272 −0.0345260
\(749\) −1.36068 −0.0497182
\(750\) 0 0
\(751\) −21.5410 −0.786043 −0.393021 0.919529i \(-0.628570\pi\)
−0.393021 + 0.919529i \(0.628570\pi\)
\(752\) −12.0000 −0.437595
\(753\) 0 0
\(754\) −14.4721 −0.527044
\(755\) 0 0
\(756\) 0 0
\(757\) −8.65248 −0.314480 −0.157240 0.987560i \(-0.550260\pi\)
−0.157240 + 0.987560i \(0.550260\pi\)
\(758\) −3.41641 −0.124090
\(759\) 0 0
\(760\) 0 0
\(761\) −2.00000 −0.0724999 −0.0362500 0.999343i \(-0.511541\pi\)
−0.0362500 + 0.999343i \(0.511541\pi\)
\(762\) 0 0
\(763\) 3.29180 0.119171
\(764\) 11.8541 0.428866
\(765\) 0 0
\(766\) −38.6525 −1.39657
\(767\) −7.23607 −0.261279
\(768\) 0 0
\(769\) −47.3607 −1.70787 −0.853935 0.520380i \(-0.825790\pi\)
−0.853935 + 0.520380i \(0.825790\pi\)
\(770\) 0 0
\(771\) 0 0
\(772\) −2.14590 −0.0772326
\(773\) −11.1246 −0.400124 −0.200062 0.979783i \(-0.564114\pi\)
−0.200062 + 0.979783i \(0.564114\pi\)
\(774\) 0 0
\(775\) 0 0
\(776\) −35.6525 −1.27985
\(777\) 0 0
\(778\) 28.9443 1.03770
\(779\) 15.6525 0.560808
\(780\) 0 0
\(781\) −18.3607 −0.656997
\(782\) 7.05573 0.252312
\(783\) 0 0
\(784\) 33.7082 1.20386
\(785\) 0 0
\(786\) 0 0
\(787\) −7.34752 −0.261911 −0.130955 0.991388i \(-0.541804\pi\)
−0.130955 + 0.991388i \(0.541804\pi\)
\(788\) 7.05573 0.251350
\(789\) 0 0
\(790\) 0 0
\(791\) −0.819660 −0.0291438
\(792\) 0 0
\(793\) 26.4721 0.940053
\(794\) 11.3262 0.401953
\(795\) 0 0
\(796\) −11.7082 −0.414986
\(797\) −55.4164 −1.96295 −0.981475 0.191591i \(-0.938635\pi\)
−0.981475 + 0.191591i \(0.938635\pi\)
\(798\) 0 0
\(799\) 1.88854 0.0668119
\(800\) 0 0
\(801\) 0 0
\(802\) −61.7771 −2.18142
\(803\) 16.9443 0.597950
\(804\) 0 0
\(805\) 0 0
\(806\) 5.23607 0.184433
\(807\) 0 0
\(808\) −6.70820 −0.235994
\(809\) −23.4164 −0.823277 −0.411639 0.911347i \(-0.635043\pi\)
−0.411639 + 0.911347i \(0.635043\pi\)
\(810\) 0 0
\(811\) −28.0000 −0.983213 −0.491606 0.870817i \(-0.663590\pi\)
−0.491606 + 0.870817i \(0.663590\pi\)
\(812\) 0.403252 0.0141514
\(813\) 0 0
\(814\) −6.47214 −0.226848
\(815\) 0 0
\(816\) 0 0
\(817\) 2.76393 0.0966977
\(818\) −6.18034 −0.216091
\(819\) 0 0
\(820\) 0 0
\(821\) −30.5410 −1.06589 −0.532944 0.846150i \(-0.678915\pi\)
−0.532944 + 0.846150i \(0.678915\pi\)
\(822\) 0 0
\(823\) 14.2918 0.498181 0.249090 0.968480i \(-0.419868\pi\)
0.249090 + 0.968480i \(0.419868\pi\)
\(824\) 13.9443 0.485772
\(825\) 0 0
\(826\) 0.854102 0.0297180
\(827\) 17.3475 0.603233 0.301616 0.953429i \(-0.402474\pi\)
0.301616 + 0.953429i \(0.402474\pi\)
\(828\) 0 0
\(829\) 16.8328 0.584628 0.292314 0.956322i \(-0.405575\pi\)
0.292314 + 0.956322i \(0.405575\pi\)
\(830\) 0 0
\(831\) 0 0
\(832\) 13.7082 0.475246
\(833\) −5.30495 −0.183806
\(834\) 0 0
\(835\) 0 0
\(836\) 2.76393 0.0955926
\(837\) 0 0
\(838\) 16.3820 0.565906
\(839\) −28.9443 −0.999267 −0.499634 0.866237i \(-0.666532\pi\)
−0.499634 + 0.866237i \(0.666532\pi\)
\(840\) 0 0
\(841\) −21.3607 −0.736575
\(842\) 47.5066 1.63718
\(843\) 0 0
\(844\) 14.3262 0.493129
\(845\) 0 0
\(846\) 0 0
\(847\) 1.65248 0.0567797
\(848\) 50.8328 1.74561
\(849\) 0 0
\(850\) 0 0
\(851\) 11.4164 0.391349
\(852\) 0 0
\(853\) −10.5836 −0.362375 −0.181188 0.983449i \(-0.557994\pi\)
−0.181188 + 0.983449i \(0.557994\pi\)
\(854\) −3.12461 −0.106922
\(855\) 0 0
\(856\) −12.8885 −0.440521
\(857\) −55.6656 −1.90150 −0.950751 0.309956i \(-0.899686\pi\)
−0.950751 + 0.309956i \(0.899686\pi\)
\(858\) 0 0
\(859\) 2.11146 0.0720420 0.0360210 0.999351i \(-0.488532\pi\)
0.0360210 + 0.999351i \(0.488532\pi\)
\(860\) 0 0
\(861\) 0 0
\(862\) −19.4164 −0.661325
\(863\) −9.81966 −0.334265 −0.167133 0.985934i \(-0.553451\pi\)
−0.167133 + 0.985934i \(0.553451\pi\)
\(864\) 0 0
\(865\) 0 0
\(866\) −16.4721 −0.559746
\(867\) 0 0
\(868\) −0.145898 −0.00495210
\(869\) 23.4164 0.794347
\(870\) 0 0
\(871\) −25.8885 −0.877200
\(872\) 31.1803 1.05590
\(873\) 0 0
\(874\) −20.6525 −0.698580
\(875\) 0 0
\(876\) 0 0
\(877\) 18.0557 0.609699 0.304849 0.952401i \(-0.401394\pi\)
0.304849 + 0.952401i \(0.401394\pi\)
\(878\) −1.90983 −0.0644536
\(879\) 0 0
\(880\) 0 0
\(881\) 20.3607 0.685969 0.342984 0.939341i \(-0.388562\pi\)
0.342984 + 0.939341i \(0.388562\pi\)
\(882\) 0 0
\(883\) 31.7771 1.06938 0.534692 0.845047i \(-0.320428\pi\)
0.534692 + 0.845047i \(0.320428\pi\)
\(884\) 1.52786 0.0513876
\(885\) 0 0
\(886\) 49.6869 1.66926
\(887\) 27.0689 0.908884 0.454442 0.890776i \(-0.349839\pi\)
0.454442 + 0.890776i \(0.349839\pi\)
\(888\) 0 0
\(889\) 2.94427 0.0987477
\(890\) 0 0
\(891\) 0 0
\(892\) −2.47214 −0.0827732
\(893\) −5.52786 −0.184983
\(894\) 0 0
\(895\) 0 0
\(896\) −3.21478 −0.107398
\(897\) 0 0
\(898\) 50.6525 1.69030
\(899\) −2.76393 −0.0921823
\(900\) 0 0
\(901\) −8.00000 −0.266519
\(902\) 22.6525 0.754245
\(903\) 0 0
\(904\) −7.76393 −0.258225
\(905\) 0 0
\(906\) 0 0
\(907\) 24.2361 0.804745 0.402373 0.915476i \(-0.368186\pi\)
0.402373 + 0.915476i \(0.368186\pi\)
\(908\) −4.00000 −0.132745
\(909\) 0 0
\(910\) 0 0
\(911\) −18.1803 −0.602342 −0.301171 0.953570i \(-0.597377\pi\)
−0.301171 + 0.953570i \(0.597377\pi\)
\(912\) 0 0
\(913\) 29.8885 0.989166
\(914\) 4.94427 0.163542
\(915\) 0 0
\(916\) −8.29180 −0.273969
\(917\) 2.83282 0.0935478
\(918\) 0 0
\(919\) −14.4721 −0.477392 −0.238696 0.971094i \(-0.576720\pi\)
−0.238696 + 0.971094i \(0.576720\pi\)
\(920\) 0 0
\(921\) 0 0
\(922\) −55.5967 −1.83098
\(923\) 29.7082 0.977857
\(924\) 0 0
\(925\) 0 0
\(926\) 4.18034 0.137374
\(927\) 0 0
\(928\) 9.34752 0.306848
\(929\) 20.0000 0.656179 0.328089 0.944647i \(-0.393595\pi\)
0.328089 + 0.944647i \(0.393595\pi\)
\(930\) 0 0
\(931\) 15.5279 0.508905
\(932\) 11.0902 0.363271
\(933\) 0 0
\(934\) 7.61803 0.249270
\(935\) 0 0
\(936\) 0 0
\(937\) −9.05573 −0.295838 −0.147919 0.988999i \(-0.547257\pi\)
−0.147919 + 0.988999i \(0.547257\pi\)
\(938\) 3.05573 0.0997731
\(939\) 0 0
\(940\) 0 0
\(941\) 38.0000 1.23876 0.619382 0.785090i \(-0.287383\pi\)
0.619382 + 0.785090i \(0.287383\pi\)
\(942\) 0 0
\(943\) −39.9574 −1.30119
\(944\) 10.8541 0.353271
\(945\) 0 0
\(946\) 4.00000 0.130051
\(947\) −13.0557 −0.424254 −0.212127 0.977242i \(-0.568039\pi\)
−0.212127 + 0.977242i \(0.568039\pi\)
\(948\) 0 0
\(949\) −27.4164 −0.889974
\(950\) 0 0
\(951\) 0 0
\(952\) 0.403252 0.0130695
\(953\) 45.7082 1.48063 0.740317 0.672258i \(-0.234675\pi\)
0.740317 + 0.672258i \(0.234675\pi\)
\(954\) 0 0
\(955\) 0 0
\(956\) 7.23607 0.234031
\(957\) 0 0
\(958\) −37.6869 −1.21761
\(959\) −1.48529 −0.0479626
\(960\) 0 0
\(961\) 1.00000 0.0322581
\(962\) 10.4721 0.337635
\(963\) 0 0
\(964\) 8.87539 0.285857
\(965\) 0 0
\(966\) 0 0
\(967\) −60.3607 −1.94107 −0.970534 0.240963i \(-0.922537\pi\)
−0.970534 + 0.240963i \(0.922537\pi\)
\(968\) 15.6525 0.503090
\(969\) 0 0
\(970\) 0 0
\(971\) 28.0000 0.898563 0.449281 0.893390i \(-0.351680\pi\)
0.449281 + 0.893390i \(0.351680\pi\)
\(972\) 0 0
\(973\) −3.16718 −0.101535
\(974\) 31.1246 0.997297
\(975\) 0 0
\(976\) −39.7082 −1.27103
\(977\) −47.2492 −1.51164 −0.755818 0.654781i \(-0.772761\pi\)
−0.755818 + 0.654781i \(0.772761\pi\)
\(978\) 0 0
\(979\) 23.4164 0.748392
\(980\) 0 0
\(981\) 0 0
\(982\) −7.05573 −0.225157
\(983\) 39.5279 1.26074 0.630372 0.776294i \(-0.282903\pi\)
0.630372 + 0.776294i \(0.282903\pi\)
\(984\) 0 0
\(985\) 0 0
\(986\) −3.41641 −0.108801
\(987\) 0 0
\(988\) −4.47214 −0.142278
\(989\) −7.05573 −0.224359
\(990\) 0 0
\(991\) −16.5410 −0.525443 −0.262721 0.964872i \(-0.584620\pi\)
−0.262721 + 0.964872i \(0.584620\pi\)
\(992\) −3.38197 −0.107378
\(993\) 0 0
\(994\) −3.50658 −0.111222
\(995\) 0 0
\(996\) 0 0
\(997\) 29.3607 0.929862 0.464931 0.885347i \(-0.346079\pi\)
0.464931 + 0.885347i \(0.346079\pi\)
\(998\) −10.6525 −0.337198
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 6975.2.a.y.1.2 2
3.2 odd 2 775.2.a.d.1.1 2
5.4 even 2 279.2.a.a.1.1 2
15.2 even 4 775.2.b.d.249.1 4
15.8 even 4 775.2.b.d.249.4 4
15.14 odd 2 31.2.a.a.1.2 2
20.19 odd 2 4464.2.a.bf.1.1 2
60.59 even 2 496.2.a.i.1.2 2
105.104 even 2 1519.2.a.a.1.2 2
120.29 odd 2 1984.2.a.r.1.2 2
120.59 even 2 1984.2.a.n.1.1 2
155.154 odd 2 8649.2.a.c.1.1 2
165.164 even 2 3751.2.a.b.1.1 2
195.194 odd 2 5239.2.a.f.1.1 2
255.254 odd 2 8959.2.a.b.1.2 2
465.14 odd 30 961.2.g.a.816.1 8
465.29 even 10 961.2.d.g.531.1 4
465.44 even 30 961.2.g.e.448.1 8
465.59 odd 30 961.2.g.h.846.1 8
465.74 even 30 961.2.g.e.547.1 8
465.89 even 10 961.2.d.a.388.1 4
465.104 even 30 961.2.g.d.338.1 8
465.119 even 6 961.2.c.c.521.2 4
465.134 odd 30 961.2.g.h.844.1 8
465.149 odd 6 961.2.c.e.439.2 4
465.164 odd 30 961.2.g.a.732.1 8
465.179 even 30 961.2.g.d.235.1 8
465.194 odd 10 961.2.d.c.374.1 4
465.209 even 10 961.2.d.a.374.1 4
465.224 odd 30 961.2.g.a.235.1 8
465.239 even 30 961.2.g.d.732.1 8
465.254 even 6 961.2.c.c.439.2 4
465.269 even 30 961.2.g.e.844.1 8
465.284 odd 6 961.2.c.e.521.2 4
465.299 odd 30 961.2.g.a.338.1 8
465.314 odd 10 961.2.d.c.388.1 4
465.329 odd 30 961.2.g.h.547.1 8
465.344 even 30 961.2.g.e.846.1 8
465.359 odd 30 961.2.g.h.448.1 8
465.374 odd 10 961.2.d.d.531.1 4
465.389 even 30 961.2.g.d.816.1 8
465.419 odd 10 961.2.d.d.628.1 4
465.449 even 10 961.2.d.g.628.1 4
465.464 even 2 961.2.a.f.1.2 2
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
31.2.a.a.1.2 2 15.14 odd 2
279.2.a.a.1.1 2 5.4 even 2
496.2.a.i.1.2 2 60.59 even 2
775.2.a.d.1.1 2 3.2 odd 2
775.2.b.d.249.1 4 15.2 even 4
775.2.b.d.249.4 4 15.8 even 4
961.2.a.f.1.2 2 465.464 even 2
961.2.c.c.439.2 4 465.254 even 6
961.2.c.c.521.2 4 465.119 even 6
961.2.c.e.439.2 4 465.149 odd 6
961.2.c.e.521.2 4 465.284 odd 6
961.2.d.a.374.1 4 465.209 even 10
961.2.d.a.388.1 4 465.89 even 10
961.2.d.c.374.1 4 465.194 odd 10
961.2.d.c.388.1 4 465.314 odd 10
961.2.d.d.531.1 4 465.374 odd 10
961.2.d.d.628.1 4 465.419 odd 10
961.2.d.g.531.1 4 465.29 even 10
961.2.d.g.628.1 4 465.449 even 10
961.2.g.a.235.1 8 465.224 odd 30
961.2.g.a.338.1 8 465.299 odd 30
961.2.g.a.732.1 8 465.164 odd 30
961.2.g.a.816.1 8 465.14 odd 30
961.2.g.d.235.1 8 465.179 even 30
961.2.g.d.338.1 8 465.104 even 30
961.2.g.d.732.1 8 465.239 even 30
961.2.g.d.816.1 8 465.389 even 30
961.2.g.e.448.1 8 465.44 even 30
961.2.g.e.547.1 8 465.74 even 30
961.2.g.e.844.1 8 465.269 even 30
961.2.g.e.846.1 8 465.344 even 30
961.2.g.h.448.1 8 465.359 odd 30
961.2.g.h.547.1 8 465.329 odd 30
961.2.g.h.844.1 8 465.134 odd 30
961.2.g.h.846.1 8 465.59 odd 30
1519.2.a.a.1.2 2 105.104 even 2
1984.2.a.n.1.1 2 120.59 even 2
1984.2.a.r.1.2 2 120.29 odd 2
3751.2.a.b.1.1 2 165.164 even 2
4464.2.a.bf.1.1 2 20.19 odd 2
5239.2.a.f.1.1 2 195.194 odd 2
6975.2.a.y.1.2 2 1.1 even 1 trivial
8649.2.a.c.1.1 2 155.154 odd 2
8959.2.a.b.1.2 2 255.254 odd 2