Properties

Label 961.2.d.g.531.1
Level $961$
Weight $2$
Character 961.531
Analytic conductor $7.674$
Analytic rank $0$
Dimension $4$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [961,2,Mod(374,961)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(961, base_ring=CyclotomicField(10))
 
chi = DirichletCharacter(H, H._module([8]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("961.374");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 961 = 31^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 961.d (of order \(5\), degree \(4\), not minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(7.67362363425\)
Analytic rank: \(0\)
Dimension: \(4\)
Coefficient field: \(\Q(\zeta_{10})\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{4} - x^{3} + x^{2} - x + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 31)
Sato-Tate group: $\mathrm{SU}(2)[C_{5}]$

Embedding invariants

Embedding label 531.1
Root \(-0.309017 - 0.951057i\) of defining polynomial
Character \(\chi\) \(=\) 961.531
Dual form 961.2.d.g.628.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(0.500000 + 1.53884i) q^{2} +(1.00000 - 3.07768i) q^{3} +(-0.500000 + 0.363271i) q^{4} +1.00000 q^{5} +5.23607 q^{6} +(-0.190983 + 0.138757i) q^{7} +(1.80902 + 1.31433i) q^{8} +(-6.04508 - 4.39201i) q^{9} +(0.500000 + 1.53884i) q^{10} +(1.61803 - 1.17557i) q^{11} +(0.618034 + 1.90211i) q^{12} +(1.00000 - 3.07768i) q^{13} +(-0.309017 - 0.224514i) q^{14} +(1.00000 - 3.07768i) q^{15} +(-1.50000 + 4.61653i) q^{16} +(0.618034 + 0.449028i) q^{17} +(3.73607 - 11.4984i) q^{18} +(-0.690983 - 2.12663i) q^{19} +(-0.500000 + 0.363271i) q^{20} +(0.236068 + 0.726543i) q^{21} +(2.61803 + 1.90211i) q^{22} +(4.61803 + 3.35520i) q^{23} +(5.85410 - 4.25325i) q^{24} -4.00000 q^{25} +5.23607 q^{26} +(-11.7082 + 8.50651i) q^{27} +(0.0450850 - 0.138757i) q^{28} +(-0.854102 - 2.62866i) q^{29} +5.23607 q^{30} -3.38197 q^{32} +(-2.00000 - 6.15537i) q^{33} +(-0.381966 + 1.17557i) q^{34} +(-0.190983 + 0.138757i) q^{35} +4.61803 q^{36} +2.00000 q^{37} +(2.92705 - 2.12663i) q^{38} +(-8.47214 - 6.15537i) q^{39} +(1.80902 + 1.31433i) q^{40} +(2.16312 + 6.65740i) q^{41} +(-1.00000 + 0.726543i) q^{42} +(-0.381966 - 1.17557i) q^{43} +(-0.381966 + 1.17557i) q^{44} +(-6.04508 - 4.39201i) q^{45} +(-2.85410 + 8.78402i) q^{46} +(0.763932 - 2.35114i) q^{47} +(12.7082 + 9.23305i) q^{48} +(-2.14590 + 6.60440i) q^{49} +(-2.00000 - 6.15537i) q^{50} +(2.00000 - 1.45309i) q^{51} +(0.618034 + 1.90211i) q^{52} +(-8.47214 - 6.15537i) q^{53} +(-18.9443 - 13.7638i) q^{54} +(1.61803 - 1.17557i) q^{55} -0.527864 q^{56} -7.23607 q^{57} +(3.61803 - 2.62866i) q^{58} +(0.690983 - 2.12663i) q^{59} +(0.618034 + 1.90211i) q^{60} -8.18034 q^{61} +1.76393 q^{63} +(1.30902 + 4.02874i) q^{64} +(1.00000 - 3.07768i) q^{65} +(8.47214 - 6.15537i) q^{66} +8.00000 q^{67} -0.472136 q^{68} +(14.9443 - 10.8576i) q^{69} +(-0.309017 - 0.224514i) q^{70} +(7.42705 + 5.39607i) q^{71} +(-5.16312 - 15.8904i) q^{72} +(6.85410 - 4.97980i) q^{73} +(1.00000 + 3.07768i) q^{74} +(-4.00000 + 12.3107i) q^{75} +(1.11803 + 0.812299i) q^{76} +(-0.145898 + 0.449028i) q^{77} +(5.23607 - 16.1150i) q^{78} +(-9.47214 - 6.88191i) q^{79} +(-1.50000 + 4.61653i) q^{80} +(7.54508 + 23.2214i) q^{81} +(-9.16312 + 6.65740i) q^{82} +(4.61803 + 14.2128i) q^{83} +(-0.381966 - 0.277515i) q^{84} +(0.618034 + 0.449028i) q^{85} +(1.61803 - 1.17557i) q^{86} -8.94427 q^{87} +4.47214 q^{88} +(9.47214 - 6.88191i) q^{89} +(3.73607 - 11.4984i) q^{90} +(0.236068 + 0.726543i) q^{91} -3.52786 q^{92} +4.00000 q^{94} +(-0.690983 - 2.12663i) q^{95} +(-3.38197 + 10.4086i) q^{96} +(12.8992 - 9.37181i) q^{97} -11.2361 q^{98} -14.9443 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 4 q + 2 q^{2} + 4 q^{3} - 2 q^{4} + 4 q^{5} + 12 q^{6} - 3 q^{7} + 5 q^{8} - 13 q^{9} + 2 q^{10} + 2 q^{11} - 2 q^{12} + 4 q^{13} + q^{14} + 4 q^{15} - 6 q^{16} - 2 q^{17} + 6 q^{18} - 5 q^{19} - 2 q^{20}+ \cdots - 24 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/961\mathbb{Z}\right)^\times\).

\(n\) \(3\)
\(\chi(n)\) \(e\left(\frac{3}{5}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0.500000 + 1.53884i 0.353553 + 1.08813i 0.956844 + 0.290604i \(0.0938561\pi\)
−0.603290 + 0.797522i \(0.706144\pi\)
\(3\) 1.00000 3.07768i 0.577350 1.77690i −0.0506828 0.998715i \(-0.516140\pi\)
0.628033 0.778187i \(-0.283860\pi\)
\(4\) −0.500000 + 0.363271i −0.250000 + 0.181636i
\(5\) 1.00000 0.447214 0.223607 0.974679i \(-0.428217\pi\)
0.223607 + 0.974679i \(0.428217\pi\)
\(6\) 5.23607 2.13762
\(7\) −0.190983 + 0.138757i −0.0721848 + 0.0524453i −0.623292 0.781989i \(-0.714205\pi\)
0.551108 + 0.834434i \(0.314205\pi\)
\(8\) 1.80902 + 1.31433i 0.639584 + 0.464685i
\(9\) −6.04508 4.39201i −2.01503 1.46400i
\(10\) 0.500000 + 1.53884i 0.158114 + 0.486624i
\(11\) 1.61803 1.17557i 0.487856 0.354448i −0.316503 0.948591i \(-0.602509\pi\)
0.804359 + 0.594144i \(0.202509\pi\)
\(12\) 0.618034 + 1.90211i 0.178411 + 0.549093i
\(13\) 1.00000 3.07768i 0.277350 0.853596i −0.711238 0.702951i \(-0.751865\pi\)
0.988588 0.150644i \(-0.0481349\pi\)
\(14\) −0.309017 0.224514i −0.0825883 0.0600039i
\(15\) 1.00000 3.07768i 0.258199 0.794654i
\(16\) −1.50000 + 4.61653i −0.375000 + 1.15413i
\(17\) 0.618034 + 0.449028i 0.149895 + 0.108905i 0.660205 0.751085i \(-0.270469\pi\)
−0.510310 + 0.859991i \(0.670469\pi\)
\(18\) 3.73607 11.4984i 0.880600 2.71021i
\(19\) −0.690983 2.12663i −0.158522 0.487882i 0.839978 0.542620i \(-0.182568\pi\)
−0.998501 + 0.0547382i \(0.982568\pi\)
\(20\) −0.500000 + 0.363271i −0.111803 + 0.0812299i
\(21\) 0.236068 + 0.726543i 0.0515143 + 0.158545i
\(22\) 2.61803 + 1.90211i 0.558167 + 0.405532i
\(23\) 4.61803 + 3.35520i 0.962927 + 0.699607i 0.953829 0.300351i \(-0.0971040\pi\)
0.00909805 + 0.999959i \(0.497104\pi\)
\(24\) 5.85410 4.25325i 1.19496 0.868192i
\(25\) −4.00000 −0.800000
\(26\) 5.23607 1.02688
\(27\) −11.7082 + 8.50651i −2.25324 + 1.63708i
\(28\) 0.0450850 0.138757i 0.00852026 0.0262227i
\(29\) −0.854102 2.62866i −0.158603 0.488129i 0.839905 0.542733i \(-0.182610\pi\)
−0.998508 + 0.0546038i \(0.982610\pi\)
\(30\) 5.23607 0.955971
\(31\) 0 0
\(32\) −3.38197 −0.597853
\(33\) −2.00000 6.15537i −0.348155 1.07151i
\(34\) −0.381966 + 1.17557i −0.0655066 + 0.201609i
\(35\) −0.190983 + 0.138757i −0.0322820 + 0.0234543i
\(36\) 4.61803 0.769672
\(37\) 2.00000 0.328798 0.164399 0.986394i \(-0.447432\pi\)
0.164399 + 0.986394i \(0.447432\pi\)
\(38\) 2.92705 2.12663i 0.474830 0.344984i
\(39\) −8.47214 6.15537i −1.35663 0.985648i
\(40\) 1.80902 + 1.31433i 0.286031 + 0.207813i
\(41\) 2.16312 + 6.65740i 0.337822 + 1.03971i 0.965315 + 0.261088i \(0.0840813\pi\)
−0.627493 + 0.778623i \(0.715919\pi\)
\(42\) −1.00000 + 0.726543i −0.154303 + 0.112108i
\(43\) −0.381966 1.17557i −0.0582493 0.179273i 0.917698 0.397278i \(-0.130045\pi\)
−0.975948 + 0.218005i \(0.930045\pi\)
\(44\) −0.381966 + 1.17557i −0.0575835 + 0.177224i
\(45\) −6.04508 4.39201i −0.901148 0.654722i
\(46\) −2.85410 + 8.78402i −0.420814 + 1.29513i
\(47\) 0.763932 2.35114i 0.111431 0.342949i −0.879755 0.475427i \(-0.842293\pi\)
0.991186 + 0.132478i \(0.0422935\pi\)
\(48\) 12.7082 + 9.23305i 1.83427 + 1.33268i
\(49\) −2.14590 + 6.60440i −0.306557 + 0.943485i
\(50\) −2.00000 6.15537i −0.282843 0.870500i
\(51\) 2.00000 1.45309i 0.280056 0.203473i
\(52\) 0.618034 + 1.90211i 0.0857059 + 0.263776i
\(53\) −8.47214 6.15537i −1.16374 0.845505i −0.173491 0.984835i \(-0.555505\pi\)
−0.990246 + 0.139331i \(0.955505\pi\)
\(54\) −18.9443 13.7638i −2.57799 1.87302i
\(55\) 1.61803 1.17557i 0.218176 0.158514i
\(56\) −0.527864 −0.0705388
\(57\) −7.23607 −0.958441
\(58\) 3.61803 2.62866i 0.475071 0.345159i
\(59\) 0.690983 2.12663i 0.0899583 0.276863i −0.895949 0.444158i \(-0.853503\pi\)
0.985907 + 0.167294i \(0.0535030\pi\)
\(60\) 0.618034 + 1.90211i 0.0797878 + 0.245562i
\(61\) −8.18034 −1.04739 −0.523693 0.851907i \(-0.675446\pi\)
−0.523693 + 0.851907i \(0.675446\pi\)
\(62\) 0 0
\(63\) 1.76393 0.222235
\(64\) 1.30902 + 4.02874i 0.163627 + 0.503593i
\(65\) 1.00000 3.07768i 0.124035 0.381740i
\(66\) 8.47214 6.15537i 1.04285 0.757673i
\(67\) 8.00000 0.977356 0.488678 0.872464i \(-0.337479\pi\)
0.488678 + 0.872464i \(0.337479\pi\)
\(68\) −0.472136 −0.0572549
\(69\) 14.9443 10.8576i 1.79908 1.30711i
\(70\) −0.309017 0.224514i −0.0369346 0.0268346i
\(71\) 7.42705 + 5.39607i 0.881429 + 0.640395i 0.933629 0.358241i \(-0.116623\pi\)
−0.0522003 + 0.998637i \(0.516623\pi\)
\(72\) −5.16312 15.8904i −0.608479 1.87271i
\(73\) 6.85410 4.97980i 0.802212 0.582841i −0.109350 0.994003i \(-0.534877\pi\)
0.911562 + 0.411162i \(0.134877\pi\)
\(74\) 1.00000 + 3.07768i 0.116248 + 0.357773i
\(75\) −4.00000 + 12.3107i −0.461880 + 1.42152i
\(76\) 1.11803 + 0.812299i 0.128247 + 0.0931771i
\(77\) −0.145898 + 0.449028i −0.0166266 + 0.0511715i
\(78\) 5.23607 16.1150i 0.592868 1.82466i
\(79\) −9.47214 6.88191i −1.06570 0.774275i −0.0905644 0.995891i \(-0.528867\pi\)
−0.975134 + 0.221615i \(0.928867\pi\)
\(80\) −1.50000 + 4.61653i −0.167705 + 0.516143i
\(81\) 7.54508 + 23.2214i 0.838343 + 2.58015i
\(82\) −9.16312 + 6.65740i −1.01190 + 0.735186i
\(83\) 4.61803 + 14.2128i 0.506895 + 1.56006i 0.797561 + 0.603238i \(0.206123\pi\)
−0.290666 + 0.956825i \(0.593877\pi\)
\(84\) −0.381966 0.277515i −0.0416759 0.0302793i
\(85\) 0.618034 + 0.449028i 0.0670352 + 0.0487039i
\(86\) 1.61803 1.17557i 0.174477 0.126765i
\(87\) −8.94427 −0.958927
\(88\) 4.47214 0.476731
\(89\) 9.47214 6.88191i 1.00404 0.729481i 0.0410928 0.999155i \(-0.486916\pi\)
0.962952 + 0.269674i \(0.0869161\pi\)
\(90\) 3.73607 11.4984i 0.393816 1.21204i
\(91\) 0.236068 + 0.726543i 0.0247466 + 0.0761624i
\(92\) −3.52786 −0.367805
\(93\) 0 0
\(94\) 4.00000 0.412568
\(95\) −0.690983 2.12663i −0.0708934 0.218187i
\(96\) −3.38197 + 10.4086i −0.345170 + 1.06233i
\(97\) 12.8992 9.37181i 1.30971 0.951563i 0.309714 0.950830i \(-0.399767\pi\)
1.00000 0.000733244i \(-0.000233399\pi\)
\(98\) −11.2361 −1.13501
\(99\) −14.9443 −1.50196
\(100\) 2.00000 1.45309i 0.200000 0.145309i
\(101\) 2.42705 + 1.76336i 0.241501 + 0.175460i 0.701952 0.712225i \(-0.252312\pi\)
−0.460451 + 0.887685i \(0.652312\pi\)
\(102\) 3.23607 + 2.35114i 0.320418 + 0.232798i
\(103\) 1.92705 + 5.93085i 0.189878 + 0.584384i 0.999998 0.00187942i \(-0.000598237\pi\)
−0.810120 + 0.586264i \(0.800598\pi\)
\(104\) 5.85410 4.25325i 0.574042 0.417066i
\(105\) 0.236068 + 0.726543i 0.0230379 + 0.0709033i
\(106\) 5.23607 16.1150i 0.508572 1.56522i
\(107\) −4.66312 3.38795i −0.450801 0.327526i 0.339111 0.940746i \(-0.389874\pi\)
−0.789912 + 0.613220i \(0.789874\pi\)
\(108\) 2.76393 8.50651i 0.265959 0.818539i
\(109\) −4.30902 + 13.2618i −0.412729 + 1.27025i 0.501538 + 0.865136i \(0.332768\pi\)
−0.914266 + 0.405113i \(0.867232\pi\)
\(110\) 2.61803 + 1.90211i 0.249620 + 0.181359i
\(111\) 2.00000 6.15537i 0.189832 0.584242i
\(112\) −0.354102 1.08981i −0.0334595 0.102978i
\(113\) −2.80902 + 2.04087i −0.264250 + 0.191989i −0.712019 0.702161i \(-0.752219\pi\)
0.447769 + 0.894150i \(0.352219\pi\)
\(114\) −3.61803 11.1352i −0.338860 1.04290i
\(115\) 4.61803 + 3.35520i 0.430634 + 0.312874i
\(116\) 1.38197 + 1.00406i 0.128312 + 0.0932244i
\(117\) −19.5623 + 14.2128i −1.80854 + 1.31398i
\(118\) 3.61803 0.333067
\(119\) −0.180340 −0.0165317
\(120\) 5.85410 4.25325i 0.534404 0.388267i
\(121\) −2.16312 + 6.65740i −0.196647 + 0.605218i
\(122\) −4.09017 12.5882i −0.370307 1.13969i
\(123\) 22.6525 2.04250
\(124\) 0 0
\(125\) −9.00000 −0.804984
\(126\) 0.881966 + 2.71441i 0.0785718 + 0.241819i
\(127\) −3.85410 + 11.8617i −0.341996 + 1.05256i 0.621176 + 0.783671i \(0.286655\pi\)
−0.963172 + 0.268885i \(0.913345\pi\)
\(128\) −11.0172 + 8.00448i −0.973794 + 0.707503i
\(129\) −4.00000 −0.352180
\(130\) 5.23607 0.459234
\(131\) −9.70820 + 7.05342i −0.848210 + 0.616260i −0.924652 0.380814i \(-0.875644\pi\)
0.0764421 + 0.997074i \(0.475644\pi\)
\(132\) 3.23607 + 2.35114i 0.281664 + 0.204641i
\(133\) 0.427051 + 0.310271i 0.0370300 + 0.0269039i
\(134\) 4.00000 + 12.3107i 0.345547 + 1.06349i
\(135\) −11.7082 + 8.50651i −1.00768 + 0.732124i
\(136\) 0.527864 + 1.62460i 0.0452640 + 0.139308i
\(137\) −1.94427 + 5.98385i −0.166110 + 0.511235i −0.999116 0.0420288i \(-0.986618\pi\)
0.833006 + 0.553264i \(0.186618\pi\)
\(138\) 24.1803 + 17.5680i 2.05837 + 1.49549i
\(139\) −4.14590 + 12.7598i −0.351650 + 1.08227i 0.606276 + 0.795254i \(0.292663\pi\)
−0.957926 + 0.287014i \(0.907337\pi\)
\(140\) 0.0450850 0.138757i 0.00381038 0.0117271i
\(141\) −6.47214 4.70228i −0.545052 0.396004i
\(142\) −4.59017 + 14.1271i −0.385199 + 1.18552i
\(143\) −2.00000 6.15537i −0.167248 0.514738i
\(144\) 29.3435 21.3193i 2.44529 1.77661i
\(145\) −0.854102 2.62866i −0.0709293 0.218298i
\(146\) 11.0902 + 8.05748i 0.917829 + 0.666842i
\(147\) 18.1803 + 13.2088i 1.49949 + 1.08944i
\(148\) −1.00000 + 0.726543i −0.0821995 + 0.0597214i
\(149\) 10.0000 0.819232 0.409616 0.912258i \(-0.365663\pi\)
0.409616 + 0.912258i \(0.365663\pi\)
\(150\) −20.9443 −1.71009
\(151\) −11.4721 + 8.33499i −0.933589 + 0.678292i −0.946869 0.321620i \(-0.895773\pi\)
0.0132798 + 0.999912i \(0.495773\pi\)
\(152\) 1.54508 4.75528i 0.125323 0.385704i
\(153\) −1.76393 5.42882i −0.142605 0.438894i
\(154\) −0.763932 −0.0615594
\(155\) 0 0
\(156\) 6.47214 0.518186
\(157\) 6.45492 + 19.8662i 0.515158 + 1.58549i 0.782994 + 0.622030i \(0.213692\pi\)
−0.267835 + 0.963465i \(0.586308\pi\)
\(158\) 5.85410 18.0171i 0.465727 1.43336i
\(159\) −27.4164 + 19.9192i −2.17426 + 1.57969i
\(160\) −3.38197 −0.267368
\(161\) −1.34752 −0.106200
\(162\) −31.9615 + 23.2214i −2.51113 + 1.82444i
\(163\) −8.66312 6.29412i −0.678548 0.492994i 0.194328 0.980937i \(-0.437747\pi\)
−0.872876 + 0.487943i \(0.837747\pi\)
\(164\) −3.50000 2.54290i −0.273304 0.198567i
\(165\) −2.00000 6.15537i −0.155700 0.479195i
\(166\) −19.5623 + 14.2128i −1.51833 + 1.10313i
\(167\) 2.00000 + 6.15537i 0.154765 + 0.476317i 0.998137 0.0610130i \(-0.0194331\pi\)
−0.843372 + 0.537330i \(0.819433\pi\)
\(168\) −0.527864 + 1.62460i −0.0407256 + 0.125340i
\(169\) 2.04508 + 1.48584i 0.157314 + 0.114295i
\(170\) −0.381966 + 1.17557i −0.0292955 + 0.0901621i
\(171\) −5.16312 + 15.8904i −0.394834 + 1.21517i
\(172\) 0.618034 + 0.449028i 0.0471246 + 0.0342381i
\(173\) 0.909830 2.80017i 0.0691731 0.212893i −0.910494 0.413522i \(-0.864299\pi\)
0.979667 + 0.200629i \(0.0642985\pi\)
\(174\) −4.47214 13.7638i −0.339032 1.04343i
\(175\) 0.763932 0.555029i 0.0577478 0.0419563i
\(176\) 3.00000 + 9.23305i 0.226134 + 0.695967i
\(177\) −5.85410 4.25325i −0.440021 0.319694i
\(178\) 15.3262 + 11.1352i 1.14875 + 0.834616i
\(179\) 1.38197 1.00406i 0.103293 0.0750467i −0.534940 0.844890i \(-0.679666\pi\)
0.638233 + 0.769843i \(0.279666\pi\)
\(180\) 4.61803 0.344208
\(181\) 4.18034 0.310722 0.155361 0.987858i \(-0.450346\pi\)
0.155361 + 0.987858i \(0.450346\pi\)
\(182\) −1.00000 + 0.726543i −0.0741249 + 0.0538549i
\(183\) −8.18034 + 25.1765i −0.604708 + 1.86110i
\(184\) 3.94427 + 12.1392i 0.290776 + 0.894915i
\(185\) 2.00000 0.147043
\(186\) 0 0
\(187\) 1.52786 0.111728
\(188\) 0.472136 + 1.45309i 0.0344341 + 0.105977i
\(189\) 1.05573 3.24920i 0.0767929 0.236344i
\(190\) 2.92705 2.12663i 0.212351 0.154282i
\(191\) −19.1803 −1.38784 −0.693920 0.720052i \(-0.744118\pi\)
−0.693920 + 0.720052i \(0.744118\pi\)
\(192\) 13.7082 0.989304
\(193\) −2.80902 + 2.04087i −0.202197 + 0.146905i −0.684276 0.729223i \(-0.739882\pi\)
0.482079 + 0.876128i \(0.339882\pi\)
\(194\) 20.8713 + 15.1639i 1.49847 + 1.08870i
\(195\) −8.47214 6.15537i −0.606702 0.440795i
\(196\) −1.32624 4.08174i −0.0947313 0.291553i
\(197\) 9.23607 6.71040i 0.658043 0.478096i −0.207959 0.978138i \(-0.566682\pi\)
0.866001 + 0.500042i \(0.166682\pi\)
\(198\) −7.47214 22.9969i −0.531022 1.63432i
\(199\) 5.85410 18.0171i 0.414986 1.27720i −0.497277 0.867592i \(-0.665667\pi\)
0.912263 0.409605i \(-0.134333\pi\)
\(200\) −7.23607 5.25731i −0.511667 0.371748i
\(201\) 8.00000 24.6215i 0.564276 1.73666i
\(202\) −1.50000 + 4.61653i −0.105540 + 0.324818i
\(203\) 0.527864 + 0.383516i 0.0370488 + 0.0269175i
\(204\) −0.472136 + 1.45309i −0.0330561 + 0.101736i
\(205\) 2.16312 + 6.65740i 0.151079 + 0.464973i
\(206\) −8.16312 + 5.93085i −0.568751 + 0.413222i
\(207\) −13.1803 40.5649i −0.916097 2.81946i
\(208\) 12.7082 + 9.23305i 0.881155 + 0.640197i
\(209\) −3.61803 2.62866i −0.250265 0.181828i
\(210\) −1.00000 + 0.726543i −0.0690066 + 0.0501362i
\(211\) 23.1803 1.59580 0.797900 0.602790i \(-0.205944\pi\)
0.797900 + 0.602790i \(0.205944\pi\)
\(212\) 6.47214 0.444508
\(213\) 24.0344 17.4620i 1.64681 1.19648i
\(214\) 2.88197 8.86978i 0.197007 0.606326i
\(215\) −0.381966 1.17557i −0.0260499 0.0801732i
\(216\) −32.3607 −2.20187
\(217\) 0 0
\(218\) −22.5623 −1.52811
\(219\) −8.47214 26.0746i −0.572494 1.76196i
\(220\) −0.381966 + 1.17557i −0.0257521 + 0.0792569i
\(221\) 2.00000 1.45309i 0.134535 0.0977451i
\(222\) 10.4721 0.702844
\(223\) −4.00000 −0.267860 −0.133930 0.990991i \(-0.542760\pi\)
−0.133930 + 0.990991i \(0.542760\pi\)
\(224\) 0.645898 0.469272i 0.0431559 0.0313546i
\(225\) 24.1803 + 17.5680i 1.61202 + 1.17120i
\(226\) −4.54508 3.30220i −0.302335 0.219659i
\(227\) −2.00000 6.15537i −0.132745 0.408546i 0.862488 0.506078i \(-0.168905\pi\)
−0.995232 + 0.0975319i \(0.968905\pi\)
\(228\) 3.61803 2.62866i 0.239610 0.174087i
\(229\) 4.14590 + 12.7598i 0.273969 + 0.843189i 0.989490 + 0.144598i \(0.0461890\pi\)
−0.715522 + 0.698590i \(0.753811\pi\)
\(230\) −2.85410 + 8.78402i −0.188194 + 0.579201i
\(231\) 1.23607 + 0.898056i 0.0813273 + 0.0590877i
\(232\) 1.90983 5.87785i 0.125386 0.385900i
\(233\) 5.54508 17.0660i 0.363271 1.11803i −0.587786 0.809016i \(-0.700000\pi\)
0.951057 0.309016i \(-0.0999996\pi\)
\(234\) −31.6525 22.9969i −2.06919 1.50335i
\(235\) 0.763932 2.35114i 0.0498334 0.153372i
\(236\) 0.427051 + 1.31433i 0.0277987 + 0.0855555i
\(237\) −30.6525 + 22.2703i −1.99109 + 1.44661i
\(238\) −0.0901699 0.277515i −0.00584485 0.0179886i
\(239\) −9.47214 6.88191i −0.612702 0.445154i 0.237663 0.971348i \(-0.423619\pi\)
−0.850365 + 0.526194i \(0.823619\pi\)
\(240\) 12.7082 + 9.23305i 0.820311 + 0.595991i
\(241\) 11.6180 8.44100i 0.748383 0.543732i −0.146942 0.989145i \(-0.546943\pi\)
0.895325 + 0.445413i \(0.146943\pi\)
\(242\) −11.3262 −0.728078
\(243\) 35.5967 2.28353
\(244\) 4.09017 2.97168i 0.261846 0.190242i
\(245\) −2.14590 + 6.60440i −0.137096 + 0.421939i
\(246\) 11.3262 + 34.8586i 0.722135 + 2.22250i
\(247\) −7.23607 −0.460420
\(248\) 0 0
\(249\) 48.3607 3.06473
\(250\) −4.50000 13.8496i −0.284605 0.875924i
\(251\) 0.562306 1.73060i 0.0354924 0.109234i −0.931741 0.363124i \(-0.881710\pi\)
0.967233 + 0.253890i \(0.0817100\pi\)
\(252\) −0.881966 + 0.640786i −0.0555586 + 0.0403657i
\(253\) 11.4164 0.717743
\(254\) −20.1803 −1.26623
\(255\) 2.00000 1.45309i 0.125245 0.0909957i
\(256\) −10.9721 7.97172i −0.685758 0.498233i
\(257\) −1.57295 1.14281i −0.0981179 0.0712868i 0.537645 0.843172i \(-0.319314\pi\)
−0.635762 + 0.771885i \(0.719314\pi\)
\(258\) −2.00000 6.15537i −0.124515 0.383216i
\(259\) −0.381966 + 0.277515i −0.0237342 + 0.0172439i
\(260\) 0.618034 + 1.90211i 0.0383288 + 0.117964i
\(261\) −6.38197 + 19.6417i −0.395034 + 1.21579i
\(262\) −15.7082 11.4127i −0.970456 0.705078i
\(263\) 7.18034 22.0988i 0.442759 1.36267i −0.442164 0.896934i \(-0.645789\pi\)
0.884923 0.465737i \(-0.154211\pi\)
\(264\) 4.47214 13.7638i 0.275241 0.847105i
\(265\) −8.47214 6.15537i −0.520439 0.378121i
\(266\) −0.263932 + 0.812299i −0.0161827 + 0.0498053i
\(267\) −11.7082 36.0341i −0.716530 2.20525i
\(268\) −4.00000 + 2.90617i −0.244339 + 0.177523i
\(269\) 3.41641 + 10.5146i 0.208302 + 0.641088i 0.999562 + 0.0296074i \(0.00942570\pi\)
−0.791260 + 0.611480i \(0.790574\pi\)
\(270\) −18.9443 13.7638i −1.15291 0.837639i
\(271\) −11.4721 8.33499i −0.696883 0.506315i 0.182033 0.983292i \(-0.441732\pi\)
−0.878915 + 0.476978i \(0.841732\pi\)
\(272\) −3.00000 + 2.17963i −0.181902 + 0.132159i
\(273\) 2.47214 0.149620
\(274\) −10.1803 −0.615017
\(275\) −6.47214 + 4.70228i −0.390284 + 0.283558i
\(276\) −3.52786 + 10.8576i −0.212352 + 0.653554i
\(277\) 3.90983 + 12.0332i 0.234919 + 0.723006i 0.997132 + 0.0756801i \(0.0241128\pi\)
−0.762213 + 0.647326i \(0.775887\pi\)
\(278\) −21.7082 −1.30197
\(279\) 0 0
\(280\) −0.527864 −0.0315459
\(281\) 5.25329 + 16.1680i 0.313385 + 0.964500i 0.976414 + 0.215906i \(0.0692705\pi\)
−0.663029 + 0.748594i \(0.730729\pi\)
\(282\) 4.00000 12.3107i 0.238197 0.733094i
\(283\) 11.2361 8.16348i 0.667915 0.485269i −0.201412 0.979507i \(-0.564553\pi\)
0.869327 + 0.494238i \(0.164553\pi\)
\(284\) −5.67376 −0.336676
\(285\) −7.23607 −0.428628
\(286\) 8.47214 6.15537i 0.500968 0.363974i
\(287\) −1.33688 0.971301i −0.0789136 0.0573341i
\(288\) 20.4443 + 14.8536i 1.20469 + 0.875259i
\(289\) −5.07295 15.6129i −0.298409 0.918408i
\(290\) 3.61803 2.62866i 0.212458 0.154360i
\(291\) −15.9443 49.0714i −0.934670 2.87662i
\(292\) −1.61803 + 4.97980i −0.0946883 + 0.291421i
\(293\) 0.381966 + 0.277515i 0.0223147 + 0.0162126i 0.598887 0.800834i \(-0.295610\pi\)
−0.576572 + 0.817046i \(0.695610\pi\)
\(294\) −11.2361 + 34.5811i −0.655301 + 2.01681i
\(295\) 0.690983 2.12663i 0.0402306 0.123817i
\(296\) 3.61803 + 2.62866i 0.210294 + 0.152788i
\(297\) −8.94427 + 27.5276i −0.518999 + 1.59732i
\(298\) 5.00000 + 15.3884i 0.289642 + 0.891427i
\(299\) 14.9443 10.8576i 0.864250 0.627914i
\(300\) −2.47214 7.60845i −0.142729 0.439274i
\(301\) 0.236068 + 0.171513i 0.0136067 + 0.00988587i
\(302\) −18.5623 13.4863i −1.06814 0.776050i
\(303\) 7.85410 5.70634i 0.451206 0.327821i
\(304\) 10.8541 0.622525
\(305\) −8.18034 −0.468405
\(306\) 7.47214 5.42882i 0.427154 0.310345i
\(307\) −8.87132 + 27.3031i −0.506313 + 1.55827i 0.292239 + 0.956345i \(0.405600\pi\)
−0.798552 + 0.601926i \(0.794400\pi\)
\(308\) −0.0901699 0.277515i −0.00513791 0.0158129i
\(309\) 20.1803 1.14802
\(310\) 0 0
\(311\) −29.1803 −1.65467 −0.827333 0.561712i \(-0.810143\pi\)
−0.827333 + 0.561712i \(0.810143\pi\)
\(312\) −7.23607 22.2703i −0.409662 1.26081i
\(313\) −5.18034 + 15.9434i −0.292810 + 0.901177i 0.691138 + 0.722723i \(0.257110\pi\)
−0.983948 + 0.178454i \(0.942890\pi\)
\(314\) −27.3435 + 19.8662i −1.54308 + 1.12111i
\(315\) 1.76393 0.0993863
\(316\) 7.23607 0.407061
\(317\) −3.28115 + 2.38390i −0.184288 + 0.133893i −0.676104 0.736806i \(-0.736333\pi\)
0.491816 + 0.870699i \(0.336333\pi\)
\(318\) −44.3607 32.2299i −2.48762 1.80736i
\(319\) −4.47214 3.24920i −0.250392 0.181920i
\(320\) 1.30902 + 4.02874i 0.0731763 + 0.225213i
\(321\) −15.0902 + 10.9637i −0.842251 + 0.611931i
\(322\) −0.673762 2.07363i −0.0375473 0.115559i
\(323\) 0.527864 1.62460i 0.0293711 0.0903951i
\(324\) −12.2082 8.86978i −0.678234 0.492766i
\(325\) −4.00000 + 12.3107i −0.221880 + 0.682877i
\(326\) 5.35410 16.4782i 0.296536 0.912645i
\(327\) 36.5066 + 26.5236i 2.01882 + 1.46676i
\(328\) −4.83688 + 14.8864i −0.267072 + 0.821963i
\(329\) 0.180340 + 0.555029i 0.00994246 + 0.0305997i
\(330\) 8.47214 6.15537i 0.466376 0.338842i
\(331\) −0.618034 1.90211i −0.0339702 0.104550i 0.932634 0.360825i \(-0.117505\pi\)
−0.966604 + 0.256275i \(0.917505\pi\)
\(332\) −7.47214 5.42882i −0.410087 0.297945i
\(333\) −12.0902 8.78402i −0.662537 0.481361i
\(334\) −8.47214 + 6.15537i −0.463575 + 0.336807i
\(335\) 8.00000 0.437087
\(336\) −3.70820 −0.202299
\(337\) −11.9443 + 8.67802i −0.650646 + 0.472722i −0.863491 0.504364i \(-0.831727\pi\)
0.212845 + 0.977086i \(0.431727\pi\)
\(338\) −1.26393 + 3.88998i −0.0687488 + 0.211587i
\(339\) 3.47214 + 10.6861i 0.188581 + 0.580391i
\(340\) −0.472136 −0.0256052
\(341\) 0 0
\(342\) −27.0344 −1.46186
\(343\) −1.01722 3.13068i −0.0549248 0.169041i
\(344\) 0.854102 2.62866i 0.0460501 0.141728i
\(345\) 14.9443 10.8576i 0.804573 0.584556i
\(346\) 4.76393 0.256111
\(347\) −24.1803 −1.29807 −0.649034 0.760759i \(-0.724827\pi\)
−0.649034 + 0.760759i \(0.724827\pi\)
\(348\) 4.47214 3.24920i 0.239732 0.174175i
\(349\) 6.38197 + 4.63677i 0.341619 + 0.248201i 0.745345 0.666679i \(-0.232285\pi\)
−0.403726 + 0.914880i \(0.632285\pi\)
\(350\) 1.23607 + 0.898056i 0.0660706 + 0.0480031i
\(351\) 14.4721 + 44.5407i 0.772465 + 2.37740i
\(352\) −5.47214 + 3.97574i −0.291666 + 0.211908i
\(353\) −2.29180 7.05342i −0.121980 0.375416i 0.871359 0.490646i \(-0.163239\pi\)
−0.993339 + 0.115231i \(0.963239\pi\)
\(354\) 3.61803 11.1352i 0.192296 0.591827i
\(355\) 7.42705 + 5.39607i 0.394187 + 0.286394i
\(356\) −2.23607 + 6.88191i −0.118511 + 0.364740i
\(357\) −0.180340 + 0.555029i −0.00954460 + 0.0293753i
\(358\) 2.23607 + 1.62460i 0.118180 + 0.0858627i
\(359\) 6.87132 21.1478i 0.362655 1.11614i −0.588782 0.808292i \(-0.700392\pi\)
0.951437 0.307844i \(-0.0996076\pi\)
\(360\) −5.16312 15.8904i −0.272120 0.837500i
\(361\) 11.3262 8.22899i 0.596118 0.433105i
\(362\) 2.09017 + 6.43288i 0.109857 + 0.338105i
\(363\) 18.3262 + 13.3148i 0.961878 + 0.698845i
\(364\) −0.381966 0.277515i −0.0200205 0.0145457i
\(365\) 6.85410 4.97980i 0.358760 0.260654i
\(366\) −42.8328 −2.23891
\(367\) −18.0000 −0.939592 −0.469796 0.882775i \(-0.655673\pi\)
−0.469796 + 0.882775i \(0.655673\pi\)
\(368\) −22.4164 + 16.2865i −1.16854 + 0.848991i
\(369\) 16.1631 49.7450i 0.841418 2.58962i
\(370\) 1.00000 + 3.07768i 0.0519875 + 0.160001i
\(371\) 2.47214 0.128347
\(372\) 0 0
\(373\) 19.0000 0.983783 0.491891 0.870657i \(-0.336306\pi\)
0.491891 + 0.870657i \(0.336306\pi\)
\(374\) 0.763932 + 2.35114i 0.0395020 + 0.121575i
\(375\) −9.00000 + 27.6992i −0.464758 + 1.43038i
\(376\) 4.47214 3.24920i 0.230633 0.167565i
\(377\) −8.94427 −0.460653
\(378\) 5.52786 0.284323
\(379\) 1.70820 1.24108i 0.0877445 0.0637501i −0.543048 0.839702i \(-0.682730\pi\)
0.630793 + 0.775951i \(0.282730\pi\)
\(380\) 1.11803 + 0.812299i 0.0573539 + 0.0416701i
\(381\) 32.6525 + 23.7234i 1.67284 + 1.21539i
\(382\) −9.59017 29.5155i −0.490676 1.51014i
\(383\) −19.3262 + 14.0413i −0.987525 + 0.717479i −0.959378 0.282125i \(-0.908961\pi\)
−0.0281470 + 0.999604i \(0.508961\pi\)
\(384\) 13.6180 + 41.9120i 0.694942 + 2.13881i
\(385\) −0.145898 + 0.449028i −0.00743565 + 0.0228846i
\(386\) −4.54508 3.30220i −0.231339 0.168077i
\(387\) −2.85410 + 8.78402i −0.145082 + 0.446517i
\(388\) −3.04508 + 9.37181i −0.154591 + 0.475781i
\(389\) −14.4721 10.5146i −0.733766 0.533113i 0.156986 0.987601i \(-0.449822\pi\)
−0.890753 + 0.454488i \(0.849822\pi\)
\(390\) 5.23607 16.1150i 0.265139 0.816013i
\(391\) 1.34752 + 4.14725i 0.0681472 + 0.209736i
\(392\) −12.5623 + 9.12705i −0.634492 + 0.460986i
\(393\) 12.0000 + 36.9322i 0.605320 + 1.86298i
\(394\) 14.9443 + 10.8576i 0.752882 + 0.547000i
\(395\) −9.47214 6.88191i −0.476595 0.346266i
\(396\) 7.47214 5.42882i 0.375489 0.272809i
\(397\) −7.00000 −0.351320 −0.175660 0.984451i \(-0.556206\pi\)
−0.175660 + 0.984451i \(0.556206\pi\)
\(398\) 30.6525 1.53647
\(399\) 1.38197 1.00406i 0.0691848 0.0502657i
\(400\) 6.00000 18.4661i 0.300000 0.923305i
\(401\) −11.7984 36.3117i −0.589183 1.81332i −0.581781 0.813345i \(-0.697644\pi\)
−0.00740130 0.999973i \(-0.502356\pi\)
\(402\) 41.8885 2.08921
\(403\) 0 0
\(404\) −1.85410 −0.0922450
\(405\) 7.54508 + 23.2214i 0.374918 + 1.15388i
\(406\) −0.326238 + 1.00406i −0.0161909 + 0.0498305i
\(407\) 3.23607 2.35114i 0.160406 0.116542i
\(408\) 5.52786 0.273670
\(409\) 3.81966 0.188870 0.0944350 0.995531i \(-0.469896\pi\)
0.0944350 + 0.995531i \(0.469896\pi\)
\(410\) −9.16312 + 6.65740i −0.452534 + 0.328785i
\(411\) 16.4721 + 11.9677i 0.812511 + 0.590323i
\(412\) −3.11803 2.26538i −0.153615 0.111607i
\(413\) 0.163119 + 0.502029i 0.00802656 + 0.0247032i
\(414\) 55.8328 40.5649i 2.74403 1.99366i
\(415\) 4.61803 + 14.2128i 0.226690 + 0.697681i
\(416\) −3.38197 + 10.4086i −0.165815 + 0.510325i
\(417\) 35.1246 + 25.5195i 1.72006 + 1.24970i
\(418\) 2.23607 6.88191i 0.109370 0.336605i
\(419\) −3.12868 + 9.62908i −0.152846 + 0.470411i −0.997936 0.0642122i \(-0.979547\pi\)
0.845090 + 0.534623i \(0.179547\pi\)
\(420\) −0.381966 0.277515i −0.0186380 0.0135413i
\(421\) 9.07295 27.9237i 0.442188 1.36092i −0.443349 0.896349i \(-0.646210\pi\)
0.885538 0.464567i \(-0.153790\pi\)
\(422\) 11.5902 + 35.6709i 0.564201 + 1.73643i
\(423\) −14.9443 + 10.8576i −0.726615 + 0.527917i
\(424\) −7.23607 22.2703i −0.351415 1.08154i
\(425\) −2.47214 1.79611i −0.119916 0.0871242i
\(426\) 38.8885 + 28.2542i 1.88416 + 1.36892i
\(427\) 1.56231 1.13508i 0.0756053 0.0549305i
\(428\) 3.56231 0.172191
\(429\) −20.9443 −1.01120
\(430\) 1.61803 1.17557i 0.0780285 0.0566910i
\(431\) 3.70820 11.4127i 0.178618 0.549729i −0.821162 0.570695i \(-0.806674\pi\)
0.999780 + 0.0209654i \(0.00667397\pi\)
\(432\) −21.7082 66.8110i −1.04444 3.21444i
\(433\) −10.1803 −0.489236 −0.244618 0.969620i \(-0.578663\pi\)
−0.244618 + 0.969620i \(0.578663\pi\)
\(434\) 0 0
\(435\) −8.94427 −0.428845
\(436\) −2.66312 8.19624i −0.127540 0.392529i
\(437\) 3.94427 12.1392i 0.188680 0.580698i
\(438\) 35.8885 26.0746i 1.71482 1.24589i
\(439\) −1.18034 −0.0563345 −0.0281673 0.999603i \(-0.508967\pi\)
−0.0281673 + 0.999603i \(0.508967\pi\)
\(440\) 4.47214 0.213201
\(441\) 41.9787 30.4993i 1.99899 1.45235i
\(442\) 3.23607 + 2.35114i 0.153924 + 0.111832i
\(443\) −24.8435 18.0498i −1.18035 0.857573i −0.188137 0.982143i \(-0.560245\pi\)
−0.992211 + 0.124569i \(0.960245\pi\)
\(444\) 1.23607 + 3.80423i 0.0586612 + 0.180541i
\(445\) 9.47214 6.88191i 0.449022 0.326234i
\(446\) −2.00000 6.15537i −0.0947027 0.291465i
\(447\) 10.0000 30.7768i 0.472984 1.45569i
\(448\) −0.809017 0.587785i −0.0382225 0.0277702i
\(449\) 9.67376 29.7728i 0.456533 1.40506i −0.412793 0.910825i \(-0.635447\pi\)
0.869326 0.494239i \(-0.164553\pi\)
\(450\) −14.9443 + 45.9937i −0.704480 + 2.16817i
\(451\) 11.3262 + 8.22899i 0.533332 + 0.387488i
\(452\) 0.663119 2.04087i 0.0311905 0.0959945i
\(453\) 14.1803 + 43.6426i 0.666250 + 2.05051i
\(454\) 8.47214 6.15537i 0.397617 0.288886i
\(455\) 0.236068 + 0.726543i 0.0110670 + 0.0340608i
\(456\) −13.0902 9.51057i −0.613003 0.445373i
\(457\) −2.47214 1.79611i −0.115642 0.0840186i 0.528461 0.848957i \(-0.322769\pi\)
−0.644103 + 0.764939i \(0.722769\pi\)
\(458\) −17.5623 + 12.7598i −0.820633 + 0.596225i
\(459\) −11.0557 −0.516037
\(460\) −3.52786 −0.164488
\(461\) 27.7984 20.1967i 1.29470 0.940654i 0.294810 0.955556i \(-0.404744\pi\)
0.999889 + 0.0149016i \(0.00474351\pi\)
\(462\) −0.763932 + 2.35114i −0.0355413 + 0.109385i
\(463\) 0.798374 + 2.45714i 0.0371036 + 0.114193i 0.967893 0.251363i \(-0.0808788\pi\)
−0.930789 + 0.365556i \(0.880879\pi\)
\(464\) 13.4164 0.622841
\(465\) 0 0
\(466\) 29.0344 1.34499
\(467\) 1.45492 + 4.47777i 0.0673254 + 0.207206i 0.979059 0.203575i \(-0.0652560\pi\)
−0.911734 + 0.410781i \(0.865256\pi\)
\(468\) 4.61803 14.2128i 0.213469 0.656989i
\(469\) −1.52786 + 1.11006i −0.0705502 + 0.0512577i
\(470\) 4.00000 0.184506
\(471\) 67.5967 3.11469
\(472\) 4.04508 2.93893i 0.186190 0.135275i
\(473\) −2.00000 1.45309i −0.0919601 0.0668129i
\(474\) −49.5967 36.0341i −2.27805 1.65510i
\(475\) 2.76393 + 8.50651i 0.126818 + 0.390305i
\(476\) 0.0901699 0.0655123i 0.00413293 0.00300275i
\(477\) 24.1803 + 74.4194i 1.10714 + 3.40743i
\(478\) 5.85410 18.0171i 0.267760 0.824082i
\(479\) −18.8435 13.6906i −0.860980 0.625538i 0.0671717 0.997741i \(-0.478602\pi\)
−0.928151 + 0.372203i \(0.878602\pi\)
\(480\) −3.38197 + 10.4086i −0.154365 + 0.475086i
\(481\) 2.00000 6.15537i 0.0911922 0.280661i
\(482\) 18.7984 + 13.6578i 0.856242 + 0.622097i
\(483\) −1.34752 + 4.14725i −0.0613145 + 0.188707i
\(484\) −1.33688 4.11450i −0.0607673 0.187023i
\(485\) 12.8992 9.37181i 0.585722 0.425552i
\(486\) 17.7984 + 54.7778i 0.807351 + 2.48477i
\(487\) −15.5623 11.3067i −0.705195 0.512354i 0.176425 0.984314i \(-0.443547\pi\)
−0.881620 + 0.471960i \(0.843547\pi\)
\(488\) −14.7984 10.7516i −0.669891 0.486704i
\(489\) −28.0344 + 20.3682i −1.26776 + 0.921082i
\(490\) −11.2361 −0.507594
\(491\) −4.36068 −0.196795 −0.0983974 0.995147i \(-0.531372\pi\)
−0.0983974 + 0.995147i \(0.531372\pi\)
\(492\) −11.3262 + 8.22899i −0.510626 + 0.370992i
\(493\) 0.652476 2.00811i 0.0293860 0.0904409i
\(494\) −3.61803 11.1352i −0.162783 0.500995i
\(495\) −14.9443 −0.671695
\(496\) 0 0
\(497\) −2.16718 −0.0972115
\(498\) 24.1803 + 74.4194i 1.08355 + 3.33481i
\(499\) 2.03444 6.26137i 0.0910741 0.280297i −0.895137 0.445792i \(-0.852922\pi\)
0.986211 + 0.165495i \(0.0529221\pi\)
\(500\) 4.50000 3.26944i 0.201246 0.146214i
\(501\) 20.9443 0.935721
\(502\) 2.94427 0.131409
\(503\) −23.9894 + 17.4293i −1.06963 + 0.777134i −0.975846 0.218459i \(-0.929897\pi\)
−0.0937864 + 0.995592i \(0.529897\pi\)
\(504\) 3.19098 + 2.31838i 0.142138 + 0.103269i
\(505\) 2.42705 + 1.76336i 0.108002 + 0.0784683i
\(506\) 5.70820 + 17.5680i 0.253761 + 0.780995i
\(507\) 6.61803 4.80828i 0.293917 0.213543i
\(508\) −2.38197 7.33094i −0.105683 0.325258i
\(509\) −9.14590 + 28.1482i −0.405385 + 1.24765i 0.515189 + 0.857077i \(0.327722\pi\)
−0.920574 + 0.390569i \(0.872278\pi\)
\(510\) 3.23607 + 2.35114i 0.143295 + 0.104110i
\(511\) −0.618034 + 1.90211i −0.0273402 + 0.0841445i
\(512\) −1.63525 + 5.03280i −0.0722687 + 0.222420i
\(513\) 26.1803 + 19.0211i 1.15589 + 0.839803i
\(514\) 0.972136 2.99193i 0.0428791 0.131968i
\(515\) 1.92705 + 5.93085i 0.0849160 + 0.261345i
\(516\) 2.00000 1.45309i 0.0880451 0.0639685i
\(517\) −1.52786 4.70228i −0.0671954 0.206806i
\(518\) −0.618034 0.449028i −0.0271549 0.0197292i
\(519\) −7.70820 5.60034i −0.338353 0.245828i
\(520\) 5.85410 4.25325i 0.256719 0.186518i
\(521\) 2.00000 0.0876216 0.0438108 0.999040i \(-0.486050\pi\)
0.0438108 + 0.999040i \(0.486050\pi\)
\(522\) −33.4164 −1.46260
\(523\) −14.3262 + 10.4086i −0.626443 + 0.455137i −0.855166 0.518354i \(-0.826545\pi\)
0.228723 + 0.973491i \(0.426545\pi\)
\(524\) 2.29180 7.05342i 0.100118 0.308130i
\(525\) −0.944272 2.90617i −0.0412114 0.126836i
\(526\) 37.5967 1.63930
\(527\) 0 0
\(528\) 31.4164 1.36722
\(529\) 2.96149 + 9.11454i 0.128761 + 0.396284i
\(530\) 5.23607 16.1150i 0.227440 0.699989i
\(531\) −13.5172 + 9.82084i −0.586597 + 0.426188i
\(532\) −0.326238 −0.0141442
\(533\) 22.6525 0.981188
\(534\) 49.5967 36.0341i 2.14626 1.55935i
\(535\) −4.66312 3.38795i −0.201604 0.146474i
\(536\) 14.4721 + 10.5146i 0.625101 + 0.454163i
\(537\) −1.70820 5.25731i −0.0737144 0.226870i
\(538\) −14.4721 + 10.5146i −0.623938 + 0.453318i
\(539\) 4.29180 + 13.2088i 0.184861 + 0.568943i
\(540\) 2.76393 8.50651i 0.118941 0.366062i
\(541\) 20.5172 + 14.9066i 0.882104 + 0.640886i 0.933807 0.357776i \(-0.116465\pi\)
−0.0517031 + 0.998662i \(0.516465\pi\)
\(542\) 7.09017 21.8213i 0.304549 0.937305i
\(543\) 4.18034 12.8658i 0.179396 0.552123i
\(544\) −2.09017 1.51860i −0.0896153 0.0651093i
\(545\) −4.30902 + 13.2618i −0.184578 + 0.568073i
\(546\) 1.23607 + 3.80423i 0.0528988 + 0.162806i
\(547\) 9.80902 7.12667i 0.419403 0.304714i −0.357994 0.933724i \(-0.616539\pi\)
0.777398 + 0.629009i \(0.216539\pi\)
\(548\) −1.20163 3.69822i −0.0513309 0.157980i
\(549\) 49.4508 + 35.9281i 2.11051 + 1.53338i
\(550\) −10.4721 7.60845i −0.446533 0.324425i
\(551\) −5.00000 + 3.63271i −0.213007 + 0.154759i
\(552\) 41.3050 1.75806
\(553\) 2.76393 0.117534
\(554\) −16.5623 + 12.0332i −0.703665 + 0.511243i
\(555\) 2.00000 6.15537i 0.0848953 0.261281i
\(556\) −2.56231 7.88597i −0.108666 0.334439i
\(557\) 12.0000 0.508456 0.254228 0.967144i \(-0.418179\pi\)
0.254228 + 0.967144i \(0.418179\pi\)
\(558\) 0 0
\(559\) −4.00000 −0.169182
\(560\) −0.354102 1.08981i −0.0149635 0.0460530i
\(561\) 1.52786 4.70228i 0.0645065 0.198531i
\(562\) −22.2533 + 16.1680i −0.938698 + 0.682004i
\(563\) 27.5410 1.16072 0.580358 0.814362i \(-0.302913\pi\)
0.580358 + 0.814362i \(0.302913\pi\)
\(564\) 4.94427 0.208191
\(565\) −2.80902 + 2.04087i −0.118176 + 0.0858601i
\(566\) 18.1803 + 13.2088i 0.764177 + 0.555207i
\(567\) −4.66312 3.38795i −0.195833 0.142281i
\(568\) 6.34346 + 19.5232i 0.266166 + 0.819174i
\(569\) 4.47214 3.24920i 0.187482 0.136213i −0.490085 0.871674i \(-0.663034\pi\)
0.677567 + 0.735461i \(0.263034\pi\)
\(570\) −3.61803 11.1352i −0.151543 0.466401i
\(571\) −8.70820 + 26.8011i −0.364427 + 1.12159i 0.585912 + 0.810375i \(0.300736\pi\)
−0.950339 + 0.311216i \(0.899264\pi\)
\(572\) 3.23607 + 2.35114i 0.135307 + 0.0983061i
\(573\) −19.1803 + 59.0310i −0.801270 + 2.46606i
\(574\) 0.826238 2.54290i 0.0344865 0.106139i
\(575\) −18.4721 13.4208i −0.770341 0.559686i
\(576\) 9.78115 30.1033i 0.407548 1.25430i
\(577\) −8.90983 27.4216i −0.370921 1.14158i −0.946190 0.323613i \(-0.895102\pi\)
0.575268 0.817965i \(-0.304898\pi\)
\(578\) 21.4894 15.6129i 0.893839 0.649412i
\(579\) 3.47214 + 10.6861i 0.144297 + 0.444101i
\(580\) 1.38197 + 1.00406i 0.0573830 + 0.0416912i
\(581\) −2.85410 2.07363i −0.118408 0.0860285i
\(582\) 67.5410 49.0714i 2.79967 2.03408i
\(583\) −20.9443 −0.867423
\(584\) 18.9443 0.783920
\(585\) −19.5623 + 14.2128i −0.808802 + 0.587629i
\(586\) −0.236068 + 0.726543i −0.00975188 + 0.0300132i
\(587\) 2.00000 + 6.15537i 0.0825488 + 0.254059i 0.983809 0.179219i \(-0.0573569\pi\)
−0.901260 + 0.433278i \(0.857357\pi\)
\(588\) −13.8885 −0.572754
\(589\) 0 0
\(590\) 3.61803 0.148952
\(591\) −11.4164 35.1361i −0.469608 1.44531i
\(592\) −3.00000 + 9.23305i −0.123299 + 0.379476i
\(593\) 5.28115 3.83698i 0.216871 0.157566i −0.474046 0.880500i \(-0.657207\pi\)
0.690917 + 0.722934i \(0.257207\pi\)
\(594\) −46.8328 −1.92157
\(595\) −0.180340 −0.00739321
\(596\) −5.00000 + 3.63271i −0.204808 + 0.148802i
\(597\) −49.5967 36.0341i −2.02986 1.47478i
\(598\) 24.1803 + 17.5680i 0.988808 + 0.718411i
\(599\) −4.51064 13.8823i −0.184300 0.567217i 0.815636 0.578566i \(-0.196387\pi\)
−0.999936 + 0.0113491i \(0.996387\pi\)
\(600\) −23.4164 + 17.0130i −0.955971 + 0.694553i
\(601\) −9.43769 29.0462i −0.384972 1.18482i −0.936501 0.350665i \(-0.885956\pi\)
0.551529 0.834156i \(-0.314044\pi\)
\(602\) −0.145898 + 0.449028i −0.00594636 + 0.0183010i
\(603\) −48.3607 35.1361i −1.96940 1.43085i
\(604\) 2.70820 8.33499i 0.110195 0.339146i
\(605\) −2.16312 + 6.65740i −0.0879433 + 0.270662i
\(606\) 12.7082 + 9.23305i 0.516235 + 0.375067i
\(607\) 6.94427 21.3723i 0.281859 0.867474i −0.705463 0.708747i \(-0.749261\pi\)
0.987322 0.158727i \(-0.0507390\pi\)
\(608\) 2.33688 + 7.19218i 0.0947730 + 0.291681i
\(609\) 1.70820 1.24108i 0.0692199 0.0502912i
\(610\) −4.09017 12.5882i −0.165606 0.509683i
\(611\) −6.47214 4.70228i −0.261835 0.190234i
\(612\) 2.85410 + 2.07363i 0.115370 + 0.0838214i
\(613\) −35.5066 + 25.7970i −1.43410 + 1.04193i −0.444862 + 0.895599i \(0.646747\pi\)
−0.989235 + 0.146333i \(0.953253\pi\)
\(614\) −46.4508 −1.87460
\(615\) 22.6525 0.913436
\(616\) −0.854102 + 0.620541i −0.0344127 + 0.0250023i
\(617\) 10.0344 30.8828i 0.403971 1.24330i −0.517780 0.855514i \(-0.673241\pi\)
0.921751 0.387782i \(-0.126759\pi\)
\(618\) 10.0902 + 31.0543i 0.405886 + 1.24919i
\(619\) −6.18034 −0.248409 −0.124204 0.992257i \(-0.539638\pi\)
−0.124204 + 0.992257i \(0.539638\pi\)
\(620\) 0 0
\(621\) −82.6099 −3.31502
\(622\) −14.5902 44.9039i −0.585013 1.80048i
\(623\) −0.854102 + 2.62866i −0.0342189 + 0.105315i
\(624\) 41.1246 29.8788i 1.64630 1.19611i
\(625\) 11.0000 0.440000
\(626\) −27.1246 −1.08412
\(627\) −11.7082 + 8.50651i −0.467581 + 0.339717i
\(628\) −10.4443 7.58821i −0.416772 0.302802i
\(629\) 1.23607 + 0.898056i 0.0492853 + 0.0358078i
\(630\) 0.881966 + 2.71441i 0.0351384 + 0.108145i
\(631\) 27.7984 20.1967i 1.10664 0.804018i 0.124505 0.992219i \(-0.460266\pi\)
0.982131 + 0.188201i \(0.0602656\pi\)
\(632\) −8.09017 24.8990i −0.321810 0.990428i
\(633\) 23.1803 71.3418i 0.921336 2.83558i
\(634\) −5.30902 3.85723i −0.210848 0.153190i
\(635\) −3.85410 + 11.8617i −0.152945 + 0.470717i
\(636\) 6.47214 19.9192i 0.256637 0.789847i
\(637\) 18.1803 + 13.2088i 0.720331 + 0.523351i
\(638\) 2.76393 8.50651i 0.109425 0.336776i
\(639\) −21.1976 65.2394i −0.838563 2.58083i
\(640\) −11.0172 + 8.00448i −0.435494 + 0.316405i
\(641\) −3.70820 11.4127i −0.146465 0.450774i 0.850731 0.525601i \(-0.176159\pi\)
−0.997197 + 0.0748272i \(0.976159\pi\)
\(642\) −24.4164 17.7396i −0.963639 0.700125i
\(643\) 15.7984 + 11.4782i 0.623027 + 0.452656i 0.853978 0.520310i \(-0.174184\pi\)
−0.230951 + 0.972966i \(0.574184\pi\)
\(644\) 0.673762 0.489517i 0.0265499 0.0192897i
\(645\) −4.00000 −0.157500
\(646\) 2.76393 0.108745
\(647\) −0.763932 + 0.555029i −0.0300333 + 0.0218204i −0.602701 0.797967i \(-0.705909\pi\)
0.572667 + 0.819788i \(0.305909\pi\)
\(648\) −16.8713 + 51.9246i −0.662768 + 2.03979i
\(649\) −1.38197 4.25325i −0.0542469 0.166955i
\(650\) −20.9443 −0.821502
\(651\) 0 0
\(652\) 6.61803 0.259182
\(653\) −14.6180 44.9897i −0.572048 1.76058i −0.646018 0.763322i \(-0.723567\pi\)
0.0739705 0.997260i \(-0.476433\pi\)
\(654\) −22.5623 + 69.4396i −0.882256 + 2.71530i
\(655\) −9.70820 + 7.05342i −0.379331 + 0.275600i
\(656\) −33.9787 −1.32665
\(657\) −63.3050 −2.46976
\(658\) −0.763932 + 0.555029i −0.0297812 + 0.0216373i
\(659\) −20.7533 15.0781i −0.808433 0.587361i 0.104943 0.994478i \(-0.466534\pi\)
−0.913376 + 0.407117i \(0.866534\pi\)
\(660\) 3.23607 + 2.35114i 0.125964 + 0.0915180i
\(661\) −0.197561 0.608030i −0.00768423 0.0236496i 0.947141 0.320818i \(-0.103958\pi\)
−0.954825 + 0.297168i \(0.903958\pi\)
\(662\) 2.61803 1.90211i 0.101753 0.0739277i
\(663\) −2.47214 7.60845i −0.0960098 0.295488i
\(664\) −10.3262 + 31.7809i −0.400736 + 1.23334i
\(665\) 0.427051 + 0.310271i 0.0165603 + 0.0120318i
\(666\) 7.47214 22.9969i 0.289539 0.891111i
\(667\) 4.87539 15.0049i 0.188776 0.580992i
\(668\) −3.23607 2.35114i −0.125207 0.0909684i
\(669\) −4.00000 + 12.3107i −0.154649 + 0.475960i
\(670\) 4.00000 + 12.3107i 0.154533 + 0.475605i
\(671\) −13.2361 + 9.61657i −0.510973 + 0.371243i
\(672\) −0.798374 2.45714i −0.0307979 0.0947863i
\(673\) −23.4721 17.0535i −0.904784 0.657364i 0.0349060 0.999391i \(-0.488887\pi\)
−0.939690 + 0.342026i \(0.888887\pi\)
\(674\) −19.3262 14.0413i −0.744419 0.540852i
\(675\) 46.8328 34.0260i 1.80260 1.30966i
\(676\) −1.56231 −0.0600887
\(677\) 46.7214 1.79565 0.897824 0.440355i \(-0.145147\pi\)
0.897824 + 0.440355i \(0.145147\pi\)
\(678\) −14.7082 + 10.6861i −0.564865 + 0.410399i
\(679\) −1.16312 + 3.57971i −0.0446364 + 0.137377i
\(680\) 0.527864 + 1.62460i 0.0202427 + 0.0623005i
\(681\) −20.9443 −0.802586
\(682\) 0 0
\(683\) 5.18034 0.198220 0.0991101 0.995076i \(-0.468400\pi\)
0.0991101 + 0.995076i \(0.468400\pi\)
\(684\) −3.19098 9.82084i −0.122010 0.375509i
\(685\) −1.94427 + 5.98385i −0.0742868 + 0.228631i
\(686\) 4.30902 3.13068i 0.164519 0.119530i
\(687\) 43.4164 1.65644
\(688\) 6.00000 0.228748
\(689\) −27.4164 + 19.9192i −1.04448 + 0.758861i
\(690\) 24.1803 + 17.5680i 0.920530 + 0.668804i
\(691\) −2.57295 1.86936i −0.0978796 0.0711137i 0.537769 0.843092i \(-0.319267\pi\)
−0.635649 + 0.771979i \(0.719267\pi\)
\(692\) 0.562306 + 1.73060i 0.0213757 + 0.0657875i
\(693\) 2.85410 2.07363i 0.108418 0.0787706i
\(694\) −12.0902 37.2097i −0.458937 1.41246i
\(695\) −4.14590 + 12.7598i −0.157263 + 0.484005i
\(696\) −16.1803 11.7557i −0.613314 0.445599i
\(697\) −1.65248 + 5.08580i −0.0625920 + 0.192638i
\(698\) −3.94427 + 12.1392i −0.149293 + 0.459476i
\(699\) −46.9787 34.1320i −1.77690 1.29099i
\(700\) −0.180340 + 0.555029i −0.00681621 + 0.0209781i
\(701\) 2.16312 + 6.65740i 0.0816999 + 0.251446i 0.983560 0.180582i \(-0.0577981\pi\)
−0.901860 + 0.432028i \(0.857798\pi\)
\(702\) −61.3050 + 44.5407i −2.31381 + 1.68108i
\(703\) −1.38197 4.25325i −0.0521218 0.160415i
\(704\) 6.85410 + 4.97980i 0.258324 + 0.187683i
\(705\) −6.47214 4.70228i −0.243755 0.177098i
\(706\) 9.70820 7.05342i 0.365373 0.265459i
\(707\) −0.708204 −0.0266348
\(708\) 4.47214 0.168073
\(709\) 20.6525 15.0049i 0.775620 0.563521i −0.128041 0.991769i \(-0.540869\pi\)
0.903661 + 0.428248i \(0.140869\pi\)
\(710\) −4.59017 + 14.1271i −0.172266 + 0.530180i
\(711\) 27.0344 + 83.2035i 1.01387 + 3.12037i
\(712\) 26.1803 0.981150
\(713\) 0 0
\(714\) −0.944272 −0.0353385
\(715\) −2.00000 6.15537i −0.0747958 0.230198i
\(716\) −0.326238 + 1.00406i −0.0121921 + 0.0375234i
\(717\) −30.6525 + 22.2703i −1.14474 + 0.831701i
\(718\) 35.9787 1.34271
\(719\) 13.8197 0.515386 0.257693 0.966227i \(-0.417038\pi\)
0.257693 + 0.966227i \(0.417038\pi\)
\(720\) 29.3435 21.3193i 1.09357 0.794522i
\(721\) −1.19098 0.865300i −0.0443545 0.0322254i
\(722\) 18.3262 + 13.3148i 0.682032 + 0.495525i
\(723\) −14.3607 44.1976i −0.534079 1.64373i
\(724\) −2.09017 + 1.51860i −0.0776806 + 0.0564382i
\(725\) 3.41641 + 10.5146i 0.126882 + 0.390503i
\(726\) −11.3262 + 34.8586i −0.420356 + 1.29372i
\(727\) 35.7877 + 26.0013i 1.32729 + 0.964335i 0.999810 + 0.0194781i \(0.00620048\pi\)
0.327483 + 0.944857i \(0.393800\pi\)
\(728\) −0.527864 + 1.62460i −0.0195639 + 0.0602116i
\(729\) 12.9615 39.8914i 0.480055 1.47746i
\(730\) 11.0902 + 8.05748i 0.410466 + 0.298221i
\(731\) 0.291796 0.898056i 0.0107925 0.0332158i
\(732\) −5.05573 15.5599i −0.186865 0.575112i
\(733\) −2.80902 + 2.04087i −0.103753 + 0.0753813i −0.638452 0.769661i \(-0.720425\pi\)
0.534699 + 0.845043i \(0.320425\pi\)
\(734\) −9.00000 27.6992i −0.332196 1.02239i
\(735\) 18.1803 + 13.2088i 0.670592 + 0.487214i
\(736\) −15.6180 11.3472i −0.575688 0.418262i
\(737\) 12.9443 9.40456i 0.476808 0.346422i
\(738\) 84.6312 3.11532
\(739\) −6.18034 −0.227347 −0.113674 0.993518i \(-0.536262\pi\)
−0.113674 + 0.993518i \(0.536262\pi\)
\(740\) −1.00000 + 0.726543i −0.0367607 + 0.0267082i
\(741\) −7.23607 + 22.2703i −0.265824 + 0.818121i
\(742\) 1.23607 + 3.80423i 0.0453775 + 0.139658i
\(743\) −50.1803 −1.84094 −0.920469 0.390815i \(-0.872193\pi\)
−0.920469 + 0.390815i \(0.872193\pi\)
\(744\) 0 0
\(745\) 10.0000 0.366372
\(746\) 9.50000 + 29.2380i 0.347820 + 1.07048i
\(747\) 34.5066 106.200i 1.26253 3.88567i
\(748\) −0.763932 + 0.555029i −0.0279321 + 0.0202939i
\(749\) 1.36068 0.0497182
\(750\) −47.1246 −1.72075
\(751\) 17.4271 12.6615i 0.635922 0.462024i −0.222525 0.974927i \(-0.571430\pi\)
0.858447 + 0.512903i \(0.171430\pi\)
\(752\) 9.70820 + 7.05342i 0.354022 + 0.257212i
\(753\) −4.76393 3.46120i −0.173607 0.126133i
\(754\) −4.47214 13.7638i −0.162866 0.501249i
\(755\) −11.4721 + 8.33499i −0.417514 + 0.303342i
\(756\) 0.652476 + 2.00811i 0.0237303 + 0.0730344i
\(757\) −2.67376 + 8.22899i −0.0971795 + 0.299088i −0.987816 0.155629i \(-0.950260\pi\)
0.890636 + 0.454717i \(0.150260\pi\)
\(758\) 2.76393 + 2.00811i 0.100391 + 0.0729380i
\(759\) 11.4164 35.1361i 0.414389 1.27536i
\(760\) 1.54508 4.75528i 0.0560461 0.172492i
\(761\) 1.61803 + 1.17557i 0.0586537 + 0.0426144i 0.616726 0.787178i \(-0.288459\pi\)
−0.558072 + 0.829792i \(0.688459\pi\)
\(762\) −20.1803 + 62.1087i −0.731057 + 2.24996i
\(763\) −1.01722 3.13068i −0.0368259 0.113338i
\(764\) 9.59017 6.96767i 0.346960 0.252081i
\(765\) −1.76393 5.42882i −0.0637751 0.196280i
\(766\) −31.2705 22.7194i −1.12985 0.820884i
\(767\) −5.85410 4.25325i −0.211379 0.153576i
\(768\) −35.5066 + 25.7970i −1.28123 + 0.930870i
\(769\) −47.3607 −1.70787 −0.853935 0.520380i \(-0.825790\pi\)
−0.853935 + 0.520380i \(0.825790\pi\)
\(770\) −0.763932 −0.0275302
\(771\) −5.09017 + 3.69822i −0.183318 + 0.133188i
\(772\) 0.663119 2.04087i 0.0238662 0.0734525i
\(773\) 3.43769 + 10.5801i 0.123645 + 0.380541i 0.993652 0.112499i \(-0.0358856\pi\)
−0.870007 + 0.493040i \(0.835886\pi\)
\(774\) −14.9443 −0.537161
\(775\) 0 0
\(776\) 35.6525 1.27985
\(777\) 0.472136 + 1.45309i 0.0169378 + 0.0521291i
\(778\) 8.94427 27.5276i 0.320668 0.986914i
\(779\) 12.6631 9.20029i 0.453703 0.329635i
\(780\) 6.47214 0.231740
\(781\) 18.3607 0.656997
\(782\) −5.70820 + 4.14725i −0.204125 + 0.148305i
\(783\) 32.3607 + 23.5114i 1.15648 + 0.840229i
\(784\) −27.2705 19.8132i −0.973947 0.707614i
\(785\) 6.45492 + 19.8662i 0.230386 + 0.709055i
\(786\) −50.8328 + 36.9322i −1.81315 + 1.31733i
\(787\) −2.27051 6.98791i −0.0809349 0.249092i 0.902399 0.430902i \(-0.141804\pi\)
−0.983334 + 0.181810i \(0.941804\pi\)
\(788\) −2.18034 + 6.71040i −0.0776714 + 0.239048i
\(789\) −60.8328 44.1976i −2.16571 1.57348i
\(790\) 5.85410 18.0171i 0.208280 0.641019i
\(791\) 0.253289 0.779543i 0.00900592 0.0277174i
\(792\) −27.0344 19.6417i −0.960627 0.697936i
\(793\) −8.18034 + 25.1765i −0.290492 + 0.894044i
\(794\) −3.50000 10.7719i −0.124210 0.382280i
\(795\) −27.4164 + 19.9192i −0.972360 + 0.706461i
\(796\) 3.61803 + 11.1352i 0.128238 + 0.394675i
\(797\) −44.8328 32.5729i −1.58806 1.15379i −0.906644 0.421896i \(-0.861365\pi\)
−0.681416 0.731897i \(-0.738635\pi\)
\(798\) 2.23607 + 1.62460i 0.0791559 + 0.0575102i
\(799\) 1.52786 1.11006i 0.0540519 0.0392710i
\(800\) 13.5279 0.478282
\(801\) −87.4853 −3.09114
\(802\) 49.9787 36.3117i 1.76481 1.28221i
\(803\) 5.23607 16.1150i 0.184777 0.568685i
\(804\) 4.94427 + 15.2169i 0.174371 + 0.536659i
\(805\) −1.34752 −0.0474940
\(806\) 0 0
\(807\) 35.7771 1.25941
\(808\) 2.07295 + 6.37988i 0.0729261 + 0.224443i
\(809\) −7.23607 + 22.2703i −0.254407 + 0.782983i 0.739539 + 0.673113i \(0.235043\pi\)
−0.993946 + 0.109870i \(0.964957\pi\)
\(810\) −31.9615 + 23.2214i −1.12301 + 0.815916i
\(811\) −28.0000 −0.983213 −0.491606 0.870817i \(-0.663590\pi\)
−0.491606 + 0.870817i \(0.663590\pi\)
\(812\) −0.403252 −0.0141514
\(813\) −37.1246 + 26.9726i −1.30202 + 0.945971i
\(814\) 5.23607 + 3.80423i 0.183524 + 0.133338i
\(815\) −8.66312 6.29412i −0.303456 0.220474i
\(816\) 3.70820 + 11.4127i 0.129813 + 0.399524i
\(817\) −2.23607 + 1.62460i −0.0782301 + 0.0568375i
\(818\) 1.90983 + 5.87785i 0.0667756 + 0.205514i
\(819\) 1.76393 5.42882i 0.0616368 0.189698i
\(820\) −3.50000 2.54290i −0.122225 0.0888019i
\(821\) −9.43769 + 29.0462i −0.329378 + 1.01372i 0.640048 + 0.768335i \(0.278915\pi\)
−0.969426 + 0.245386i \(0.921085\pi\)
\(822\) −10.1803 + 31.3319i −0.355080 + 1.09282i
\(823\) −11.5623 8.40051i −0.403037 0.292823i 0.367740 0.929929i \(-0.380132\pi\)
−0.770777 + 0.637105i \(0.780132\pi\)
\(824\) −4.30902 + 13.2618i −0.150112 + 0.461996i
\(825\) 8.00000 + 24.6215i 0.278524 + 0.857209i
\(826\) −0.690983 + 0.502029i −0.0240424 + 0.0174678i
\(827\) −5.36068 16.4985i −0.186409 0.573708i 0.813561 0.581480i \(-0.197526\pi\)
−0.999970 + 0.00777178i \(0.997526\pi\)
\(828\) 21.3262 + 15.4944i 0.741138 + 0.538468i
\(829\) 13.6180 + 9.89408i 0.472974 + 0.343636i 0.798599 0.601863i \(-0.205575\pi\)
−0.325625 + 0.945499i \(0.605575\pi\)
\(830\) −19.5623 + 14.2128i −0.679018 + 0.493335i
\(831\) 40.9443 1.42034
\(832\) 13.7082 0.475246
\(833\) −4.29180 + 3.11817i −0.148702 + 0.108038i
\(834\) −21.7082 + 66.8110i −0.751694 + 2.31348i
\(835\) 2.00000 + 6.15537i 0.0692129 + 0.213015i
\(836\) 2.76393 0.0955926
\(837\) 0 0
\(838\) −16.3820 −0.565906
\(839\) 8.94427 + 27.5276i 0.308791 + 0.950360i 0.978235 + 0.207498i \(0.0665320\pi\)
−0.669445 + 0.742862i \(0.733468\pi\)
\(840\) −0.527864 + 1.62460i −0.0182130 + 0.0560540i
\(841\) 17.2812 12.5555i 0.595902 0.432948i
\(842\) 47.5066 1.63718
\(843\) 55.0132 1.89475
\(844\) −11.5902 + 8.42075i −0.398950 + 0.289854i
\(845\) 2.04508 + 1.48584i 0.0703531 + 0.0511145i
\(846\) −24.1803 17.5680i −0.831337 0.604002i
\(847\) −0.510643 1.57160i −0.0175459 0.0540007i
\(848\) 41.1246 29.8788i 1.41222 1.02604i
\(849\) −13.8885 42.7445i −0.476654 1.46699i
\(850\) 1.52786 4.70228i 0.0524053 0.161287i
\(851\) 9.23607 + 6.71040i 0.316608 + 0.230029i
\(852\) −5.67376 + 17.4620i −0.194380 + 0.598240i
\(853\) 3.27051 10.0656i 0.111980 0.344639i −0.879325 0.476222i \(-0.842006\pi\)
0.991305 + 0.131583i \(0.0420059\pi\)
\(854\) 2.52786 + 1.83660i 0.0865017 + 0.0628472i
\(855\) −5.16312 + 15.8904i −0.176575 + 0.543442i
\(856\) −3.98278 12.2577i −0.136129 0.418961i
\(857\) 45.0344 32.7194i 1.53835 1.11767i 0.586986 0.809597i \(-0.300314\pi\)
0.951361 0.308078i \(-0.0996856\pi\)
\(858\) −10.4721 32.2299i −0.357513 1.10031i
\(859\) 1.70820 + 1.24108i 0.0582832 + 0.0423452i 0.616545 0.787319i \(-0.288532\pi\)
−0.558262 + 0.829665i \(0.688532\pi\)
\(860\) 0.618034 + 0.449028i 0.0210748 + 0.0153117i
\(861\) −4.32624 + 3.14320i −0.147438 + 0.107120i
\(862\) 19.4164 0.661325
\(863\) 9.81966 0.334265 0.167133 0.985934i \(-0.446549\pi\)
0.167133 + 0.985934i \(0.446549\pi\)
\(864\) 39.5967 28.7687i 1.34711 0.978732i
\(865\) 0.909830 2.80017i 0.0309351 0.0952086i
\(866\) −5.09017 15.6659i −0.172971 0.532350i
\(867\) −53.1246 −1.80421
\(868\) 0 0
\(869\) −23.4164 −0.794347
\(870\) −4.47214 13.7638i −0.151620 0.466637i
\(871\) 8.00000 24.6215i 0.271070 0.834267i
\(872\) −25.2254 + 18.3273i −0.854241 + 0.620642i
\(873\) −119.138 −4.03220
\(874\) 20.6525 0.698580
\(875\) 1.71885 1.24882i 0.0581076 0.0422177i
\(876\) 13.7082 + 9.95959i 0.463157 + 0.336503i
\(877\) 14.6074 + 10.6129i 0.493257 + 0.358372i 0.806435 0.591322i \(-0.201394\pi\)
−0.313179 + 0.949694i \(0.601394\pi\)
\(878\) −0.590170 1.81636i −0.0199173 0.0612991i
\(879\) 1.23607 0.898056i 0.0416915 0.0302907i
\(880\) 3.00000 + 9.23305i 0.101130 + 0.311246i
\(881\) 6.29180 19.3642i 0.211976 0.652395i −0.787378 0.616470i \(-0.788562\pi\)
0.999354 0.0359251i \(-0.0114378\pi\)
\(882\) 67.9230 + 49.3489i 2.28709 + 1.66167i
\(883\) 9.81966 30.2218i 0.330458 1.01704i −0.638458 0.769656i \(-0.720428\pi\)
0.968916 0.247389i \(-0.0795724\pi\)
\(884\) −0.472136 + 1.45309i −0.0158797 + 0.0488725i
\(885\) −5.85410 4.25325i −0.196783 0.142972i
\(886\) 15.3541 47.2551i 0.515831 1.58757i
\(887\) 8.36475 + 25.7440i 0.280861 + 0.864400i 0.987609 + 0.156935i \(0.0501613\pi\)
−0.706748 + 0.707465i \(0.749839\pi\)
\(888\) 11.7082 8.50651i 0.392902 0.285460i
\(889\) −0.909830 2.80017i −0.0305147 0.0939147i
\(890\) 15.3262 + 11.1352i 0.513737 + 0.373252i
\(891\) 39.5066 + 28.7032i 1.32352 + 0.961594i
\(892\) 2.00000 1.45309i 0.0669650 0.0486529i
\(893\) −5.52786 −0.184983
\(894\) 52.3607 1.75120
\(895\) 1.38197 1.00406i 0.0461940 0.0335619i
\(896\) 0.993422 3.05744i 0.0331879 0.102142i
\(897\) −18.4721 56.8514i −0.616767 1.89821i
\(898\) 50.6525 1.69030
\(899\) 0 0
\(900\) −18.4721 −0.615738
\(901\) −2.47214 7.60845i −0.0823588 0.253474i
\(902\) −7.00000 + 21.5438i −0.233075 + 0.717330i
\(903\) 0.763932 0.555029i 0.0254221 0.0184702i
\(904\) −7.76393 −0.258225
\(905\) 4.18034 0.138959
\(906\) −60.0689 + 43.6426i −1.99565 + 1.44993i
\(907\) 19.6074 + 14.2456i 0.651053 + 0.473017i 0.863630 0.504127i \(-0.168186\pi\)
−0.212577 + 0.977144i \(0.568186\pi\)
\(908\) 3.23607 + 2.35114i 0.107393 + 0.0780254i
\(909\) −6.92705 21.3193i −0.229756 0.707116i
\(910\) −1.00000 + 0.726543i −0.0331497 + 0.0240847i
\(911\) −5.61803 17.2905i −0.186134 0.572861i 0.813832 0.581100i \(-0.197377\pi\)
−0.999966 + 0.00823898i \(0.997377\pi\)
\(912\) 10.8541 33.4055i 0.359415 1.10617i
\(913\) 24.1803 + 17.5680i 0.800252 + 0.581417i
\(914\) 1.52786 4.70228i 0.0505373 0.155538i
\(915\) −8.18034 + 25.1765i −0.270434 + 0.832309i
\(916\) −6.70820 4.87380i −0.221645 0.161035i
\(917\) 0.875388 2.69417i 0.0289079 0.0889693i
\(918\) −5.52786 17.0130i −0.182447 0.561513i
\(919\) 11.7082 8.50651i 0.386218 0.280604i −0.377686 0.925934i \(-0.623280\pi\)
0.763904 + 0.645330i \(0.223280\pi\)
\(920\) 3.94427 + 12.1392i 0.130039 + 0.400218i
\(921\) 75.1591 + 54.6062i 2.47658 + 1.79934i
\(922\) 44.9787 + 32.6789i 1.48130 + 1.07622i
\(923\) 24.0344 17.4620i 0.791103 0.574770i
\(924\) −0.944272 −0.0310643
\(925\) −8.00000 −0.263038
\(926\) −3.38197 + 2.45714i −0.111138 + 0.0807467i
\(927\) 14.3992 44.3161i 0.472931 1.45553i
\(928\) 2.88854 + 8.89002i 0.0948211 + 0.291829i
\(929\) 20.0000 0.656179 0.328089 0.944647i \(-0.393595\pi\)
0.328089 + 0.944647i \(0.393595\pi\)
\(930\) 0 0
\(931\) 15.5279 0.508905
\(932\) 3.42705 + 10.5474i 0.112257 + 0.345491i
\(933\) −29.1803 + 89.8079i −0.955321 + 2.94018i
\(934\) −6.16312 + 4.47777i −0.201663 + 0.146517i
\(935\) 1.52786 0.0499665
\(936\) −54.0689 −1.76730
\(937\) −7.32624 + 5.32282i −0.239338 + 0.173889i −0.700988 0.713173i \(-0.747257\pi\)
0.461650 + 0.887062i \(0.347257\pi\)
\(938\) −2.47214 1.79611i −0.0807181 0.0586451i
\(939\) 43.8885 + 31.8869i 1.43225 + 1.04059i
\(940\) 0.472136 + 1.45309i 0.0153994 + 0.0473944i
\(941\) −30.7426 + 22.3358i −1.00218 + 0.728128i −0.962555 0.271087i \(-0.912617\pi\)
−0.0396268 + 0.999215i \(0.512617\pi\)
\(942\) 33.7984 + 104.021i 1.10121 + 3.38918i
\(943\) −12.3475 + 38.0018i −0.402091 + 1.23751i
\(944\) 8.78115 + 6.37988i 0.285802 + 0.207647i
\(945\) 1.05573 3.24920i 0.0343428 0.105696i
\(946\) 1.23607 3.80423i 0.0401880 0.123686i
\(947\) −10.5623 7.67396i −0.343229 0.249370i 0.402794 0.915291i \(-0.368039\pi\)
−0.746023 + 0.665920i \(0.768039\pi\)
\(948\) 7.23607 22.2703i 0.235017 0.723307i
\(949\) −8.47214 26.0746i −0.275017 0.846416i
\(950\) −11.7082 + 8.50651i −0.379864 + 0.275988i
\(951\) 4.05573 + 12.4822i 0.131516 + 0.404765i
\(952\) −0.326238 0.237026i −0.0105734 0.00768205i
\(953\) 36.9787 + 26.8666i 1.19786 + 0.870295i 0.994072 0.108721i \(-0.0346754\pi\)
0.203786 + 0.979016i \(0.434675\pi\)
\(954\) −102.430 + 74.4194i −3.31628 + 2.40942i
\(955\) −19.1803 −0.620661
\(956\) 7.23607 0.234031
\(957\) −14.4721 + 10.5146i −0.467818 + 0.339889i
\(958\) 11.6459 35.8424i 0.376262 1.15802i
\(959\) −0.458980 1.41260i −0.0148212 0.0456151i
\(960\) 13.7082 0.442430
\(961\) 0 0
\(962\) 10.4721 0.337635
\(963\) 13.3090 + 40.9609i 0.428877 + 1.31995i
\(964\) −2.74265 + 8.44100i −0.0883347 + 0.271866i
\(965\) −2.80902 + 2.04087i −0.0904255 + 0.0656979i
\(966\) −7.05573 −0.227014
\(967\) −60.3607 −1.94107 −0.970534 0.240963i \(-0.922537\pi\)
−0.970534 + 0.240963i \(0.922537\pi\)
\(968\) −12.6631 + 9.20029i −0.407008 + 0.295709i
\(969\) −4.47214 3.24920i −0.143666 0.104379i
\(970\) 20.8713 + 15.1639i 0.670138 + 0.486884i
\(971\) −8.65248 26.6296i −0.277671 0.854584i −0.988500 0.151219i \(-0.951680\pi\)
0.710829 0.703365i \(-0.248320\pi\)
\(972\) −17.7984 + 12.9313i −0.570883 + 0.414771i
\(973\) −0.978714 3.01217i −0.0313761 0.0965658i
\(974\) 9.61803 29.6013i 0.308182 0.948486i
\(975\) 33.8885 + 24.6215i 1.08530 + 0.788518i
\(976\) 12.2705 37.7647i 0.392769 1.20882i
\(977\) −14.6008 + 44.9367i −0.467121 + 1.43765i 0.389173 + 0.921164i \(0.372761\pi\)
−0.856295 + 0.516487i \(0.827239\pi\)
\(978\) −45.3607 32.9565i −1.45047 1.05383i
\(979\) 7.23607 22.2703i 0.231266 0.711763i
\(980\) −1.32624 4.08174i −0.0423651 0.130386i
\(981\) 84.2943 61.2434i 2.69131 1.95535i
\(982\) −2.18034 6.71040i −0.0695774 0.214137i
\(983\) 31.9787 + 23.2339i 1.01996 + 0.741046i 0.966275 0.257512i \(-0.0829026\pi\)
0.0536874 + 0.998558i \(0.482903\pi\)
\(984\) 40.9787 + 29.7728i 1.30635 + 0.949122i
\(985\) 9.23607 6.71040i 0.294286 0.213811i
\(986\) 3.41641 0.108801
\(987\) 1.88854 0.0601130
\(988\) 3.61803 2.62866i 0.115105 0.0836287i
\(989\) 2.18034 6.71040i 0.0693308 0.213378i
\(990\) −7.47214 22.9969i −0.237480 0.730889i
\(991\) 16.5410 0.525443 0.262721 0.964872i \(-0.415380\pi\)
0.262721 + 0.964872i \(0.415380\pi\)
\(992\) 0 0
\(993\) −6.47214 −0.205387
\(994\) −1.08359 3.33495i −0.0343695 0.105778i
\(995\) 5.85410 18.0171i 0.185588 0.571180i
\(996\) −24.1803 + 17.5680i −0.766183 + 0.556665i
\(997\) −29.3607 −0.929862 −0.464931 0.885347i \(-0.653921\pi\)
−0.464931 + 0.885347i \(0.653921\pi\)
\(998\) 10.6525 0.337198
\(999\) −23.4164 + 17.0130i −0.740862 + 0.538268i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 961.2.d.g.531.1 4
31.2 even 5 961.2.d.a.388.1 4
31.3 odd 30 961.2.c.e.439.2 4
31.4 even 5 961.2.d.a.374.1 4
31.5 even 3 961.2.g.e.844.1 8
31.6 odd 6 961.2.g.h.547.1 8
31.7 even 15 961.2.g.d.816.1 8
31.8 even 5 inner 961.2.d.g.628.1 4
31.9 even 15 961.2.g.e.448.1 8
31.10 even 15 961.2.g.d.338.1 8
31.11 odd 30 961.2.g.a.732.1 8
31.12 odd 30 961.2.g.a.235.1 8
31.13 odd 30 961.2.c.e.521.2 4
31.14 even 15 961.2.g.e.846.1 8
31.15 odd 10 31.2.a.a.1.2 2
31.16 even 5 961.2.a.f.1.2 2
31.17 odd 30 961.2.g.h.846.1 8
31.18 even 15 961.2.c.c.521.2 4
31.19 even 15 961.2.g.d.235.1 8
31.20 even 15 961.2.g.d.732.1 8
31.21 odd 30 961.2.g.a.338.1 8
31.22 odd 30 961.2.g.h.448.1 8
31.23 odd 10 961.2.d.d.628.1 4
31.24 odd 30 961.2.g.a.816.1 8
31.25 even 3 961.2.g.e.547.1 8
31.26 odd 6 961.2.g.h.844.1 8
31.27 odd 10 961.2.d.c.374.1 4
31.28 even 15 961.2.c.c.439.2 4
31.29 odd 10 961.2.d.c.388.1 4
31.30 odd 2 961.2.d.d.531.1 4
93.47 odd 10 8649.2.a.c.1.1 2
93.77 even 10 279.2.a.a.1.1 2
124.15 even 10 496.2.a.i.1.2 2
155.77 even 20 775.2.b.d.249.4 4
155.108 even 20 775.2.b.d.249.1 4
155.139 odd 10 775.2.a.d.1.1 2
217.139 even 10 1519.2.a.a.1.2 2
248.77 odd 10 1984.2.a.r.1.2 2
248.139 even 10 1984.2.a.n.1.1 2
341.263 even 10 3751.2.a.b.1.1 2
372.263 odd 10 4464.2.a.bf.1.1 2
403.77 odd 10 5239.2.a.f.1.1 2
465.449 even 10 6975.2.a.y.1.2 2
527.356 odd 10 8959.2.a.b.1.2 2
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
31.2.a.a.1.2 2 31.15 odd 10
279.2.a.a.1.1 2 93.77 even 10
496.2.a.i.1.2 2 124.15 even 10
775.2.a.d.1.1 2 155.139 odd 10
775.2.b.d.249.1 4 155.108 even 20
775.2.b.d.249.4 4 155.77 even 20
961.2.a.f.1.2 2 31.16 even 5
961.2.c.c.439.2 4 31.28 even 15
961.2.c.c.521.2 4 31.18 even 15
961.2.c.e.439.2 4 31.3 odd 30
961.2.c.e.521.2 4 31.13 odd 30
961.2.d.a.374.1 4 31.4 even 5
961.2.d.a.388.1 4 31.2 even 5
961.2.d.c.374.1 4 31.27 odd 10
961.2.d.c.388.1 4 31.29 odd 10
961.2.d.d.531.1 4 31.30 odd 2
961.2.d.d.628.1 4 31.23 odd 10
961.2.d.g.531.1 4 1.1 even 1 trivial
961.2.d.g.628.1 4 31.8 even 5 inner
961.2.g.a.235.1 8 31.12 odd 30
961.2.g.a.338.1 8 31.21 odd 30
961.2.g.a.732.1 8 31.11 odd 30
961.2.g.a.816.1 8 31.24 odd 30
961.2.g.d.235.1 8 31.19 even 15
961.2.g.d.338.1 8 31.10 even 15
961.2.g.d.732.1 8 31.20 even 15
961.2.g.d.816.1 8 31.7 even 15
961.2.g.e.448.1 8 31.9 even 15
961.2.g.e.547.1 8 31.25 even 3
961.2.g.e.844.1 8 31.5 even 3
961.2.g.e.846.1 8 31.14 even 15
961.2.g.h.448.1 8 31.22 odd 30
961.2.g.h.547.1 8 31.6 odd 6
961.2.g.h.844.1 8 31.26 odd 6
961.2.g.h.846.1 8 31.17 odd 30
1519.2.a.a.1.2 2 217.139 even 10
1984.2.a.n.1.1 2 248.139 even 10
1984.2.a.r.1.2 2 248.77 odd 10
3751.2.a.b.1.1 2 341.263 even 10
4464.2.a.bf.1.1 2 372.263 odd 10
5239.2.a.f.1.1 2 403.77 odd 10
6975.2.a.y.1.2 2 465.449 even 10
8649.2.a.c.1.1 2 93.47 odd 10
8959.2.a.b.1.2 2 527.356 odd 10