Properties

Label 700.2.be.e.443.13
Level $700$
Weight $2$
Character 700.443
Analytic conductor $5.590$
Analytic rank $0$
Dimension $72$
Inner twists $8$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [700,2,Mod(107,700)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(700, base_ring=CyclotomicField(12))
 
chi = DirichletCharacter(H, H._module([6, 3, 4]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("700.107");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 700 = 2^{2} \cdot 5^{2} \cdot 7 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 700.be (of order \(12\), degree \(4\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(5.58952814149\)
Analytic rank: \(0\)
Dimension: \(72\)
Relative dimension: \(18\) over \(\Q(\zeta_{12})\)
Twist minimal: no (minimal twist has level 140)
Sato-Tate group: $\mathrm{SU}(2)[C_{12}]$

Embedding invariants

Embedding label 443.13
Character \(\chi\) \(=\) 700.443
Dual form 700.2.be.e.207.13

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(0.809319 - 1.15974i) q^{2} +(0.551941 + 0.147892i) q^{3} +(-0.690004 - 1.87720i) q^{4} +(0.618214 - 0.520418i) q^{6} +(-2.54158 - 0.735093i) q^{7} +(-2.73551 - 0.719030i) q^{8} +(-2.31531 - 1.33674i) q^{9} +O(q^{10})\) \(q+(0.809319 - 1.15974i) q^{2} +(0.551941 + 0.147892i) q^{3} +(-0.690004 - 1.87720i) q^{4} +(0.618214 - 0.520418i) q^{6} +(-2.54158 - 0.735093i) q^{7} +(-2.73551 - 0.719030i) q^{8} +(-2.31531 - 1.33674i) q^{9} +(3.42960 - 1.98008i) q^{11} +(-0.103218 - 1.13815i) q^{12} +(-2.04987 - 2.04987i) q^{13} +(-2.90947 + 2.35266i) q^{14} +(-3.04779 + 2.59056i) q^{16} +(-0.580528 - 0.155552i) q^{17} +(-3.42410 + 1.60331i) q^{18} +(-1.00269 + 1.73671i) q^{19} +(-1.29409 - 0.781608i) q^{21} +(0.479259 - 5.57997i) q^{22} +(0.640717 + 2.39119i) q^{23} +(-1.40350 - 0.801422i) q^{24} +(-4.03632 + 0.718322i) q^{26} +(-2.29237 - 2.29237i) q^{27} +(0.373784 + 5.27828i) q^{28} -7.25964i q^{29} +(-2.83005 + 1.63393i) q^{31} +(0.537745 + 5.63124i) q^{32} +(2.18578 - 0.585677i) q^{33} +(-0.650233 + 0.547372i) q^{34} +(-0.911768 + 5.26867i) q^{36} +(-2.49187 - 9.29977i) q^{37} +(1.20264 + 2.56841i) q^{38} +(-0.828248 - 1.43457i) q^{39} -3.35439 q^{41} +(-1.95380 + 0.868240i) q^{42} +(3.31777 - 3.31777i) q^{43} +(-6.08345 - 5.07179i) q^{44} +(3.29171 + 1.19217i) q^{46} +(12.1147 - 3.24611i) q^{47} +(-2.06532 + 0.979091i) q^{48} +(5.91928 + 3.73660i) q^{49} +(-0.297413 - 0.171711i) q^{51} +(-2.43360 + 5.26244i) q^{52} +(0.779134 - 2.90777i) q^{53} +(-4.51381 + 0.803298i) q^{54} +(6.42396 + 3.83832i) q^{56} +(-0.810271 + 0.810271i) q^{57} +(-8.41932 - 5.87537i) q^{58} +(7.41735 + 12.8472i) q^{59} +(-2.11676 + 3.66633i) q^{61} +(-0.395476 + 4.60450i) q^{62} +(4.90192 + 5.09941i) q^{63} +(6.96599 + 3.93382i) q^{64} +(1.08976 - 3.00894i) q^{66} +(-0.984566 + 3.67445i) q^{67} +(0.108564 + 1.19710i) q^{68} +1.41455i q^{69} -4.86004i q^{71} +(5.37238 + 5.32145i) q^{72} +(2.53197 - 9.44944i) q^{73} +(-12.8021 - 4.63656i) q^{74} +(3.95201 + 0.683915i) q^{76} +(-10.1722 + 2.51146i) q^{77} +(-2.33405 - 0.200469i) q^{78} +(3.45719 - 5.98803i) q^{79} +(3.08400 + 5.34165i) q^{81} +(-2.71477 + 3.89023i) q^{82} +(5.46792 - 5.46792i) q^{83} +(-0.574310 + 2.96858i) q^{84} +(-1.16262 - 6.53289i) q^{86} +(1.07364 - 4.00690i) q^{87} +(-10.8054 + 2.95054i) q^{88} +(3.35292 + 1.93581i) q^{89} +(3.70307 + 6.71676i) q^{91} +(4.04665 - 2.85269i) q^{92} +(-1.80367 + 0.483291i) q^{93} +(6.03997 - 16.6770i) q^{94} +(-0.536012 + 3.18764i) q^{96} +(-1.11914 + 1.11914i) q^{97} +(9.12407 - 3.84074i) q^{98} -10.5874 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 72 q - 2 q^{2} - 16 q^{6} + 4 q^{8}+O(q^{10}) \) Copy content Toggle raw display \( 72 q - 2 q^{2} - 16 q^{6} + 4 q^{8} - 10 q^{12} - 28 q^{16} - 4 q^{17} + 20 q^{18} + 4 q^{21} + 16 q^{22} - 4 q^{26} - 42 q^{28} + 38 q^{32} + 64 q^{33} + 16 q^{36} + 4 q^{37} - 12 q^{38} - 40 q^{41} - 78 q^{42} - 28 q^{46} - 12 q^{48} - 48 q^{52} + 24 q^{53} + 36 q^{56} + 16 q^{57} - 30 q^{58} - 20 q^{61} - 56 q^{62} + 44 q^{66} + 12 q^{68} - 44 q^{72} + 12 q^{73} + 112 q^{76} - 16 q^{77} - 64 q^{78} - 52 q^{81} + 34 q^{82} + 64 q^{86} - 16 q^{88} - 44 q^{92} - 12 q^{93} - 48 q^{96} + 24 q^{97} + 90 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/700\mathbb{Z}\right)^\times\).

\(n\) \(101\) \(351\) \(477\)
\(\chi(n)\) \(e\left(\frac{1}{3}\right)\) \(-1\) \(e\left(\frac{3}{4}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0.809319 1.15974i 0.572275 0.820062i
\(3\) 0.551941 + 0.147892i 0.318663 + 0.0853856i 0.414605 0.910001i \(-0.363920\pi\)
−0.0959419 + 0.995387i \(0.530586\pi\)
\(4\) −0.690004 1.87720i −0.345002 0.938602i
\(5\) 0 0
\(6\) 0.618214 0.520418i 0.252385 0.212460i
\(7\) −2.54158 0.735093i −0.960628 0.277839i
\(8\) −2.73551 0.719030i −0.967148 0.254216i
\(9\) −2.31531 1.33674i −0.771770 0.445581i
\(10\) 0 0
\(11\) 3.42960 1.98008i 1.03406 0.597017i 0.115917 0.993259i \(-0.463019\pi\)
0.918146 + 0.396242i \(0.129686\pi\)
\(12\) −0.103218 1.13815i −0.0297965 0.328556i
\(13\) −2.04987 2.04987i −0.568532 0.568532i 0.363185 0.931717i \(-0.381689\pi\)
−0.931717 + 0.363185i \(0.881689\pi\)
\(14\) −2.90947 + 2.35266i −0.777588 + 0.628774i
\(15\) 0 0
\(16\) −3.04779 + 2.59056i −0.761947 + 0.647639i
\(17\) −0.580528 0.155552i −0.140799 0.0377269i 0.187731 0.982220i \(-0.439887\pi\)
−0.328530 + 0.944493i \(0.606553\pi\)
\(18\) −3.42410 + 1.60331i −0.807069 + 0.377904i
\(19\) −1.00269 + 1.73671i −0.230033 + 0.398428i −0.957817 0.287377i \(-0.907217\pi\)
0.727785 + 0.685805i \(0.240550\pi\)
\(20\) 0 0
\(21\) −1.29409 0.781608i −0.282393 0.170561i
\(22\) 0.479259 5.57997i 0.102178 1.18965i
\(23\) 0.640717 + 2.39119i 0.133599 + 0.498597i 1.00000 0.000751542i \(-0.000239223\pi\)
−0.866401 + 0.499349i \(0.833573\pi\)
\(24\) −1.40350 0.801422i −0.286488 0.163590i
\(25\) 0 0
\(26\) −4.03632 + 0.718322i −0.791588 + 0.140874i
\(27\) −2.29237 2.29237i −0.441166 0.441166i
\(28\) 0.373784 + 5.27828i 0.0706386 + 0.997502i
\(29\) 7.25964i 1.34808i −0.738694 0.674041i \(-0.764557\pi\)
0.738694 0.674041i \(-0.235443\pi\)
\(30\) 0 0
\(31\) −2.83005 + 1.63393i −0.508292 + 0.293462i −0.732131 0.681164i \(-0.761474\pi\)
0.223840 + 0.974626i \(0.428141\pi\)
\(32\) 0.537745 + 5.63124i 0.0950609 + 0.995471i
\(33\) 2.18578 0.585677i 0.380495 0.101953i
\(34\) −0.650233 + 0.547372i −0.111514 + 0.0938735i
\(35\) 0 0
\(36\) −0.911768 + 5.26867i −0.151961 + 0.878111i
\(37\) −2.49187 9.29977i −0.409660 1.52887i −0.795295 0.606222i \(-0.792684\pi\)
0.385635 0.922651i \(-0.373982\pi\)
\(38\) 1.20264 + 2.56841i 0.195094 + 0.416651i
\(39\) −0.828248 1.43457i −0.132626 0.229715i
\(40\) 0 0
\(41\) −3.35439 −0.523868 −0.261934 0.965086i \(-0.584360\pi\)
−0.261934 + 0.965086i \(0.584360\pi\)
\(42\) −1.95380 + 0.868240i −0.301477 + 0.133972i
\(43\) 3.31777 3.31777i 0.505955 0.505955i −0.407327 0.913282i \(-0.633539\pi\)
0.913282 + 0.407327i \(0.133539\pi\)
\(44\) −6.08345 5.07179i −0.917115 0.764602i
\(45\) 0 0
\(46\) 3.29171 + 1.19217i 0.485336 + 0.175776i
\(47\) 12.1147 3.24611i 1.76710 0.473494i 0.778966 0.627066i \(-0.215744\pi\)
0.988137 + 0.153572i \(0.0490776\pi\)
\(48\) −2.06532 + 0.979091i −0.298104 + 0.141320i
\(49\) 5.91928 + 3.73660i 0.845611 + 0.533799i
\(50\) 0 0
\(51\) −0.297413 0.171711i −0.0416461 0.0240444i
\(52\) −2.43360 + 5.26244i −0.337480 + 0.729770i
\(53\) 0.779134 2.90777i 0.107022 0.399413i −0.891544 0.452933i \(-0.850378\pi\)
0.998567 + 0.0535205i \(0.0170442\pi\)
\(54\) −4.51381 + 0.803298i −0.614252 + 0.109315i
\(55\) 0 0
\(56\) 6.42396 + 3.83832i 0.858438 + 0.512918i
\(57\) −0.810271 + 0.810271i −0.107323 + 0.107323i
\(58\) −8.41932 5.87537i −1.10551 0.771474i
\(59\) 7.41735 + 12.8472i 0.965657 + 1.67257i 0.707839 + 0.706374i \(0.249670\pi\)
0.257818 + 0.966193i \(0.416996\pi\)
\(60\) 0 0
\(61\) −2.11676 + 3.66633i −0.271023 + 0.469426i −0.969124 0.246574i \(-0.920695\pi\)
0.698101 + 0.715999i \(0.254029\pi\)
\(62\) −0.395476 + 4.60450i −0.0502255 + 0.584772i
\(63\) 4.90192 + 5.09941i 0.617584 + 0.642466i
\(64\) 6.96599 + 3.93382i 0.870749 + 0.491728i
\(65\) 0 0
\(66\) 1.08976 3.00894i 0.134140 0.370375i
\(67\) −0.984566 + 3.67445i −0.120284 + 0.448906i −0.999628 0.0272817i \(-0.991315\pi\)
0.879344 + 0.476187i \(0.157982\pi\)
\(68\) 0.108564 + 1.19710i 0.0131653 + 0.145170i
\(69\) 1.41455i 0.170292i
\(70\) 0 0
\(71\) 4.86004i 0.576781i −0.957513 0.288390i \(-0.906880\pi\)
0.957513 0.288390i \(-0.0931201\pi\)
\(72\) 5.37238 + 5.32145i 0.633142 + 0.627139i
\(73\) 2.53197 9.44944i 0.296345 1.10597i −0.643799 0.765195i \(-0.722643\pi\)
0.940143 0.340779i \(-0.110691\pi\)
\(74\) −12.8021 4.63656i −1.48821 0.538990i
\(75\) 0 0
\(76\) 3.95201 + 0.683915i 0.453327 + 0.0784504i
\(77\) −10.1722 + 2.51146i −1.15922 + 0.286208i
\(78\) −2.33405 0.200469i −0.264279 0.0226987i
\(79\) 3.45719 5.98803i 0.388965 0.673706i −0.603346 0.797480i \(-0.706166\pi\)
0.992311 + 0.123773i \(0.0394995\pi\)
\(80\) 0 0
\(81\) 3.08400 + 5.34165i 0.342667 + 0.593517i
\(82\) −2.71477 + 3.89023i −0.299796 + 0.429604i
\(83\) 5.46792 5.46792i 0.600182 0.600182i −0.340179 0.940361i \(-0.610488\pi\)
0.940361 + 0.340179i \(0.110488\pi\)
\(84\) −0.574310 + 2.96858i −0.0626624 + 0.323899i
\(85\) 0 0
\(86\) −1.16262 6.53289i −0.125369 0.704460i
\(87\) 1.07364 4.00690i 0.115107 0.429584i
\(88\) −10.8054 + 2.95054i −1.15186 + 0.314528i
\(89\) 3.35292 + 1.93581i 0.355409 + 0.205195i 0.667065 0.745000i \(-0.267550\pi\)
−0.311656 + 0.950195i \(0.600884\pi\)
\(90\) 0 0
\(91\) 3.70307 + 6.71676i 0.388187 + 0.704108i
\(92\) 4.04665 2.85269i 0.421893 0.297413i
\(93\) −1.80367 + 0.483291i −0.187031 + 0.0501149i
\(94\) 6.03997 16.6770i 0.622975 1.72010i
\(95\) 0 0
\(96\) −0.536012 + 3.18764i −0.0547065 + 0.325337i
\(97\) −1.11914 + 1.11914i −0.113632 + 0.113632i −0.761636 0.648005i \(-0.775604\pi\)
0.648005 + 0.761636i \(0.275604\pi\)
\(98\) 9.12407 3.84074i 0.921671 0.387973i
\(99\) −10.5874 −1.06408
\(100\) 0 0
\(101\) −8.93266 15.4718i −0.888833 1.53950i −0.841257 0.540636i \(-0.818184\pi\)
−0.0475759 0.998868i \(-0.515150\pi\)
\(102\) −0.439843 + 0.205953i −0.0435509 + 0.0203924i
\(103\) 2.90309 + 10.8345i 0.286050 + 1.06755i 0.948069 + 0.318066i \(0.103033\pi\)
−0.662019 + 0.749487i \(0.730300\pi\)
\(104\) 4.13352 + 7.08135i 0.405325 + 0.694384i
\(105\) 0 0
\(106\) −2.74169 3.25691i −0.266297 0.316339i
\(107\) −7.59541 + 2.03518i −0.734276 + 0.196749i −0.606533 0.795059i \(-0.707440\pi\)
−0.127743 + 0.991807i \(0.540773\pi\)
\(108\) −2.72150 + 5.88498i −0.261876 + 0.566283i
\(109\) 0.350133 0.202149i 0.0335366 0.0193624i −0.483138 0.875544i \(-0.660503\pi\)
0.516675 + 0.856182i \(0.327170\pi\)
\(110\) 0 0
\(111\) 5.50146i 0.522175i
\(112\) 9.65050 4.34371i 0.911887 0.410442i
\(113\) 3.57217 + 3.57217i 0.336041 + 0.336041i 0.854875 0.518834i \(-0.173634\pi\)
−0.518834 + 0.854875i \(0.673634\pi\)
\(114\) 0.283937 + 1.59547i 0.0265932 + 0.149430i
\(115\) 0 0
\(116\) −13.6278 + 5.00919i −1.26531 + 0.465091i
\(117\) 2.00593 + 7.48624i 0.185448 + 0.692103i
\(118\) 20.9025 + 1.79530i 1.92423 + 0.165270i
\(119\) 1.36112 + 0.822090i 0.124773 + 0.0753609i
\(120\) 0 0
\(121\) 2.34144 4.05549i 0.212858 0.368681i
\(122\) 2.53887 + 5.42213i 0.229858 + 0.490896i
\(123\) −1.85143 0.496088i −0.166937 0.0447308i
\(124\) 5.01996 + 4.18516i 0.450806 + 0.375838i
\(125\) 0 0
\(126\) 9.88122 1.55791i 0.880289 0.138789i
\(127\) 4.80151 + 4.80151i 0.426065 + 0.426065i 0.887286 0.461221i \(-0.152588\pi\)
−0.461221 + 0.887286i \(0.652588\pi\)
\(128\) 10.1999 4.89504i 0.901555 0.432664i
\(129\) 2.32188 1.34054i 0.204431 0.118028i
\(130\) 0 0
\(131\) 13.1564 + 7.59586i 1.14948 + 0.663653i 0.948761 0.315996i \(-0.102339\pi\)
0.200720 + 0.979649i \(0.435672\pi\)
\(132\) −2.60763 3.69903i −0.226965 0.321959i
\(133\) 3.82506 3.67692i 0.331674 0.318829i
\(134\) 3.46459 + 4.11565i 0.299295 + 0.355538i
\(135\) 0 0
\(136\) 1.47619 + 0.842931i 0.126582 + 0.0722807i
\(137\) 4.42171 + 1.18479i 0.377772 + 0.101224i 0.442708 0.896666i \(-0.354018\pi\)
−0.0649361 + 0.997889i \(0.520684\pi\)
\(138\) 1.64052 + 1.14483i 0.139650 + 0.0974540i
\(139\) 11.1198 0.943167 0.471583 0.881821i \(-0.343683\pi\)
0.471583 + 0.881821i \(0.343683\pi\)
\(140\) 0 0
\(141\) 7.16665 0.603541
\(142\) −5.63639 3.93332i −0.472996 0.330077i
\(143\) −11.0891 2.97133i −0.927321 0.248475i
\(144\) 10.5195 1.92383i 0.876624 0.160319i
\(145\) 0 0
\(146\) −8.90975 10.5841i −0.737376 0.875942i
\(147\) 2.71448 + 2.93780i 0.223887 + 0.242305i
\(148\) −15.7382 + 11.0946i −1.29367 + 0.911973i
\(149\) 4.24169 + 2.44894i 0.347493 + 0.200625i 0.663580 0.748105i \(-0.269036\pi\)
−0.316088 + 0.948730i \(0.602369\pi\)
\(150\) 0 0
\(151\) −12.7632 + 7.36881i −1.03865 + 0.599666i −0.919451 0.393205i \(-0.871366\pi\)
−0.119200 + 0.992870i \(0.538033\pi\)
\(152\) 3.99161 4.02981i 0.323762 0.326861i
\(153\) 1.13617 + 1.13617i 0.0918538 + 0.0918538i
\(154\) −5.31987 + 13.8297i −0.428687 + 1.11443i
\(155\) 0 0
\(156\) −2.12148 + 2.54465i −0.169854 + 0.203735i
\(157\) 10.7377 + 2.87717i 0.856964 + 0.229623i 0.660442 0.750877i \(-0.270369\pi\)
0.196522 + 0.980499i \(0.437035\pi\)
\(158\) −4.14660 8.85568i −0.329886 0.704520i
\(159\) 0.860073 1.48969i 0.0682082 0.118140i
\(160\) 0 0
\(161\) 0.129310 6.54839i 0.0101911 0.516085i
\(162\) 8.69088 + 0.746452i 0.682820 + 0.0586468i
\(163\) −4.75254 17.7367i −0.372248 1.38925i −0.857324 0.514776i \(-0.827875\pi\)
0.485077 0.874472i \(-0.338792\pi\)
\(164\) 2.31454 + 6.29687i 0.180735 + 0.491703i
\(165\) 0 0
\(166\) −1.91608 10.7667i −0.148717 0.835655i
\(167\) −13.1233 13.1233i −1.01551 1.01551i −0.999878 0.0156336i \(-0.995023\pi\)
−0.0156336 0.999878i \(-0.504977\pi\)
\(168\) 2.97799 + 3.06858i 0.229757 + 0.236746i
\(169\) 4.59606i 0.353543i
\(170\) 0 0
\(171\) 4.64307 2.68068i 0.355064 0.204996i
\(172\) −8.51740 3.93885i −0.649446 0.300335i
\(173\) −7.49083 + 2.00716i −0.569517 + 0.152602i −0.532075 0.846697i \(-0.678588\pi\)
−0.0374420 + 0.999299i \(0.511921\pi\)
\(174\) −3.77805 4.48801i −0.286413 0.340235i
\(175\) 0 0
\(176\) −5.32318 + 14.9194i −0.401250 + 1.12460i
\(177\) 2.19394 + 8.18789i 0.164906 + 0.615439i
\(178\) 4.95862 2.32184i 0.371665 0.174029i
\(179\) −2.56434 4.44157i −0.191668 0.331979i 0.754135 0.656719i \(-0.228056\pi\)
−0.945803 + 0.324741i \(0.894723\pi\)
\(180\) 0 0
\(181\) 18.1294 1.34755 0.673774 0.738938i \(-0.264672\pi\)
0.673774 + 0.738938i \(0.264672\pi\)
\(182\) 10.7867 + 1.14140i 0.799561 + 0.0846059i
\(183\) −1.71055 + 1.71055i −0.126447 + 0.126447i
\(184\) −0.0333491 7.00181i −0.00245853 0.516180i
\(185\) 0 0
\(186\) −0.899249 + 2.48292i −0.0659361 + 0.182057i
\(187\) −2.29899 + 0.616011i −0.168118 + 0.0450472i
\(188\) −14.4528 20.5018i −1.05408 1.49525i
\(189\) 4.14114 + 7.51134i 0.301223 + 0.546370i
\(190\) 0 0
\(191\) −13.5825 7.84185i −0.982794 0.567416i −0.0796814 0.996820i \(-0.525390\pi\)
−0.903112 + 0.429404i \(0.858724\pi\)
\(192\) 3.26304 + 3.20145i 0.235489 + 0.231045i
\(193\) −2.00899 + 7.49764i −0.144610 + 0.539692i 0.855162 + 0.518360i \(0.173457\pi\)
−0.999772 + 0.0213318i \(0.993209\pi\)
\(194\) 0.392173 + 2.20366i 0.0281564 + 0.158214i
\(195\) 0 0
\(196\) 2.93002 13.6900i 0.209287 0.977854i
\(197\) −4.22983 + 4.22983i −0.301363 + 0.301363i −0.841547 0.540184i \(-0.818355\pi\)
0.540184 + 0.841547i \(0.318355\pi\)
\(198\) −8.56863 + 12.2787i −0.608946 + 0.872610i
\(199\) −7.04403 12.2006i −0.499338 0.864879i 0.500661 0.865643i \(-0.333090\pi\)
−1.00000 0.000763945i \(0.999757\pi\)
\(200\) 0 0
\(201\) −1.08685 + 1.88247i −0.0766601 + 0.132779i
\(202\) −25.1727 2.16206i −1.77114 0.152122i
\(203\) −5.33651 + 18.4510i −0.374550 + 1.29501i
\(204\) −0.117121 + 0.676785i −0.00820011 + 0.0473845i
\(205\) 0 0
\(206\) 14.9147 + 5.40172i 1.03916 + 0.376356i
\(207\) 1.71295 6.39282i 0.119058 0.444332i
\(208\) 11.5579 + 0.937263i 0.801395 + 0.0649875i
\(209\) 7.94162i 0.549333i
\(210\) 0 0
\(211\) 17.2435i 1.18709i −0.804799 0.593547i \(-0.797727\pi\)
0.804799 0.593547i \(-0.202273\pi\)
\(212\) −5.99608 + 0.543779i −0.411813 + 0.0373469i
\(213\) 0.718762 2.68246i 0.0492488 0.183799i
\(214\) −3.78682 + 10.4558i −0.258862 + 0.714746i
\(215\) 0 0
\(216\) 4.62250 + 7.91907i 0.314522 + 0.538824i
\(217\) 8.39389 2.07242i 0.569814 0.140685i
\(218\) 0.0489282 0.569667i 0.00331383 0.0385827i
\(219\) 2.79500 4.84108i 0.188868 0.327130i
\(220\) 0 0
\(221\) 0.871146 + 1.50887i 0.0585996 + 0.101498i
\(222\) −6.38027 4.45244i −0.428216 0.298828i
\(223\) 11.5356 11.5356i 0.772484 0.772484i −0.206056 0.978540i \(-0.566063\pi\)
0.978540 + 0.206056i \(0.0660630\pi\)
\(224\) 2.77276 14.7075i 0.185263 0.982689i
\(225\) 0 0
\(226\) 7.03382 1.25177i 0.467882 0.0832664i
\(227\) −3.12892 + 11.6773i −0.207674 + 0.775049i 0.780944 + 0.624601i \(0.214738\pi\)
−0.988618 + 0.150448i \(0.951928\pi\)
\(228\) 2.08013 + 0.961953i 0.137760 + 0.0637069i
\(229\) −1.89994 1.09693i −0.125552 0.0724873i 0.435909 0.899991i \(-0.356427\pi\)
−0.561460 + 0.827504i \(0.689760\pi\)
\(230\) 0 0
\(231\) −5.98586 0.118202i −0.393840 0.00777710i
\(232\) −5.21990 + 19.8588i −0.342703 + 1.30379i
\(233\) 1.08868 0.291712i 0.0713220 0.0191107i −0.222982 0.974823i \(-0.571579\pi\)
0.294304 + 0.955712i \(0.404912\pi\)
\(234\) 10.3055 + 3.73239i 0.673694 + 0.243994i
\(235\) 0 0
\(236\) 18.9989 22.7885i 1.23672 1.48341i
\(237\) 2.79375 2.79375i 0.181474 0.181474i
\(238\) 2.05499 0.913209i 0.133205 0.0591946i
\(239\) −19.8536 −1.28422 −0.642111 0.766612i \(-0.721941\pi\)
−0.642111 + 0.766612i \(0.721941\pi\)
\(240\) 0 0
\(241\) 4.32744 + 7.49535i 0.278755 + 0.482818i 0.971076 0.238772i \(-0.0767449\pi\)
−0.692321 + 0.721590i \(0.743412\pi\)
\(242\) −2.80835 5.99765i −0.180528 0.385544i
\(243\) 3.42939 + 12.7987i 0.219996 + 0.821035i
\(244\) 8.34302 + 1.44380i 0.534107 + 0.0924299i
\(245\) 0 0
\(246\) −2.07373 + 1.74568i −0.132216 + 0.111301i
\(247\) 5.61541 1.50464i 0.357300 0.0957382i
\(248\) 8.91646 2.43473i 0.566196 0.154606i
\(249\) 3.82663 2.20931i 0.242503 0.140009i
\(250\) 0 0
\(251\) 1.55623i 0.0982283i −0.998793 0.0491141i \(-0.984360\pi\)
0.998793 0.0491141i \(-0.0156398\pi\)
\(252\) 6.19029 12.7205i 0.389952 0.801317i
\(253\) 6.93215 + 6.93215i 0.435821 + 0.435821i
\(254\) 9.45447 1.68256i 0.593226 0.105573i
\(255\) 0 0
\(256\) 2.57802 15.7909i 0.161126 0.986934i
\(257\) −4.60489 17.1857i −0.287245 1.07201i −0.947183 0.320693i \(-0.896084\pi\)
0.659938 0.751320i \(-0.270582\pi\)
\(258\) 0.324464 3.77771i 0.0202003 0.235190i
\(259\) −0.502910 + 25.4679i −0.0312493 + 1.58250i
\(260\) 0 0
\(261\) −9.70429 + 16.8083i −0.600680 + 1.04041i
\(262\) 19.4570 9.11057i 1.20206 0.562853i
\(263\) −18.5489 4.97016i −1.14377 0.306473i −0.363306 0.931670i \(-0.618352\pi\)
−0.780467 + 0.625197i \(0.785019\pi\)
\(264\) −6.40032 + 0.0304843i −0.393913 + 0.00187618i
\(265\) 0 0
\(266\) −1.16858 7.41188i −0.0716504 0.454451i
\(267\) 1.56432 + 1.56432i 0.0957350 + 0.0957350i
\(268\) 7.57705 0.687156i 0.462842 0.0419747i
\(269\) −12.4257 + 7.17398i −0.757608 + 0.437405i −0.828436 0.560083i \(-0.810769\pi\)
0.0708284 + 0.997489i \(0.477436\pi\)
\(270\) 0 0
\(271\) 17.9057 + 10.3379i 1.08770 + 0.627981i 0.932962 0.359975i \(-0.117215\pi\)
0.154733 + 0.987956i \(0.450548\pi\)
\(272\) 2.17229 1.02980i 0.131715 0.0624409i
\(273\) 1.05052 + 4.25491i 0.0635804 + 0.257519i
\(274\) 4.95263 4.16917i 0.299199 0.251869i
\(275\) 0 0
\(276\) 2.65540 0.976048i 0.159837 0.0587512i
\(277\) 4.70760 + 1.26140i 0.282853 + 0.0757901i 0.397456 0.917621i \(-0.369893\pi\)
−0.114604 + 0.993411i \(0.536560\pi\)
\(278\) 8.99945 12.8961i 0.539751 0.773455i
\(279\) 8.73658 0.523045
\(280\) 0 0
\(281\) −9.71163 −0.579347 −0.289674 0.957125i \(-0.593547\pi\)
−0.289674 + 0.957125i \(0.593547\pi\)
\(282\) 5.80011 8.31147i 0.345391 0.494941i
\(283\) 1.36959 + 0.366980i 0.0814136 + 0.0218147i 0.299296 0.954160i \(-0.403248\pi\)
−0.217882 + 0.975975i \(0.569915\pi\)
\(284\) −9.12328 + 3.35345i −0.541367 + 0.198991i
\(285\) 0 0
\(286\) −12.4206 + 10.4558i −0.734447 + 0.618264i
\(287\) 8.52546 + 2.46579i 0.503242 + 0.145551i
\(288\) 6.28248 13.7569i 0.370199 0.810632i
\(289\) −14.4096 8.31940i −0.847624 0.489376i
\(290\) 0 0
\(291\) −0.783214 + 0.452189i −0.0459128 + 0.0265078i
\(292\) −19.4856 + 1.76713i −1.14031 + 0.103414i
\(293\) 6.02648 + 6.02648i 0.352071 + 0.352071i 0.860880 0.508809i \(-0.169914\pi\)
−0.508809 + 0.860880i \(0.669914\pi\)
\(294\) 5.60397 0.770482i 0.326830 0.0449354i
\(295\) 0 0
\(296\) 0.129701 + 27.2313i 0.00753870 + 1.58279i
\(297\) −12.4010 3.32283i −0.719578 0.192810i
\(298\) 6.27302 2.93729i 0.363386 0.170153i
\(299\) 3.58824 6.21502i 0.207513 0.359424i
\(300\) 0 0
\(301\) −10.8712 + 5.99351i −0.626608 + 0.345460i
\(302\) −1.78355 + 20.7657i −0.102632 + 1.19493i
\(303\) −2.64214 9.86060i −0.151787 0.566477i
\(304\) −1.44306 7.89064i −0.0827651 0.452559i
\(305\) 0 0
\(306\) 2.23719 0.398140i 0.127891 0.0227601i
\(307\) 11.0030 + 11.0030i 0.627975 + 0.627975i 0.947558 0.319583i \(-0.103543\pi\)
−0.319583 + 0.947558i \(0.603543\pi\)
\(308\) 11.7334 + 17.3623i 0.668570 + 0.989308i
\(309\) 6.40934i 0.364615i
\(310\) 0 0
\(311\) −21.9956 + 12.6992i −1.24726 + 0.720104i −0.970561 0.240854i \(-0.922572\pi\)
−0.276695 + 0.960958i \(0.589239\pi\)
\(312\) 1.23418 + 4.51980i 0.0698717 + 0.255884i
\(313\) −25.0624 + 6.71544i −1.41661 + 0.379579i −0.884280 0.466958i \(-0.845350\pi\)
−0.532330 + 0.846537i \(0.678683\pi\)
\(314\) 12.0270 10.1245i 0.678724 0.571356i
\(315\) 0 0
\(316\) −13.6262 2.35809i −0.766536 0.132653i
\(317\) −0.0554686 0.207012i −0.00311543 0.0116269i 0.964351 0.264628i \(-0.0852491\pi\)
−0.967466 + 0.253001i \(0.918582\pi\)
\(318\) −1.03158 2.20310i −0.0578483 0.123544i
\(319\) −14.3747 24.8977i −0.804828 1.39400i
\(320\) 0 0
\(321\) −4.49321 −0.250786
\(322\) −7.48979 5.44971i −0.417390 0.303700i
\(323\) 0.852238 0.852238i 0.0474198 0.0474198i
\(324\) 7.89939 9.47507i 0.438855 0.526393i
\(325\) 0 0
\(326\) −24.4164 8.84296i −1.35230 0.489766i
\(327\) 0.223149 0.0597926i 0.0123402 0.00330654i
\(328\) 9.17595 + 2.41191i 0.506657 + 0.133175i
\(329\) −33.1766 0.655132i −1.82908 0.0361186i
\(330\) 0 0
\(331\) 1.84066 + 1.06270i 0.101172 + 0.0584115i 0.549732 0.835341i \(-0.314730\pi\)
−0.448560 + 0.893753i \(0.648063\pi\)
\(332\) −14.0373 6.49151i −0.770396 0.356268i
\(333\) −6.66198 + 24.8628i −0.365074 + 1.36248i
\(334\) −25.8406 + 4.59871i −1.41393 + 0.251630i
\(335\) 0 0
\(336\) 5.96891 0.970238i 0.325631 0.0529308i
\(337\) 22.4528 22.4528i 1.22308 1.22308i 0.256552 0.966530i \(-0.417414\pi\)
0.966530 0.256552i \(-0.0825865\pi\)
\(338\) −5.33025 3.71968i −0.289927 0.202324i
\(339\) 1.44333 + 2.49992i 0.0783909 + 0.135777i
\(340\) 0 0
\(341\) −6.47062 + 11.2074i −0.350404 + 0.606917i
\(342\) 0.648831 7.55429i 0.0350848 0.408489i
\(343\) −12.2976 13.8481i −0.664007 0.747726i
\(344\) −11.4613 + 6.69020i −0.617955 + 0.360711i
\(345\) 0 0
\(346\) −3.73468 + 10.3119i −0.200778 + 0.554369i
\(347\) −4.72717 + 17.6420i −0.253768 + 0.947074i 0.715004 + 0.699120i \(0.246425\pi\)
−0.968772 + 0.247954i \(0.920242\pi\)
\(348\) −8.26258 + 0.749326i −0.442921 + 0.0401681i
\(349\) 21.6072i 1.15661i −0.815821 0.578304i \(-0.803715\pi\)
0.815821 0.578304i \(-0.196285\pi\)
\(350\) 0 0
\(351\) 9.39811i 0.501634i
\(352\) 12.9946 + 18.2481i 0.692612 + 0.972628i
\(353\) −4.39216 + 16.3918i −0.233771 + 0.872446i 0.744928 + 0.667145i \(0.232484\pi\)
−0.978699 + 0.205301i \(0.934183\pi\)
\(354\) 11.2714 + 4.08221i 0.599070 + 0.216967i
\(355\) 0 0
\(356\) 1.32038 7.62983i 0.0699799 0.404380i
\(357\) 0.629675 + 0.655044i 0.0333259 + 0.0346686i
\(358\) −7.22645 0.620673i −0.381930 0.0328036i
\(359\) −4.43990 + 7.69014i −0.234329 + 0.405870i −0.959078 0.283144i \(-0.908623\pi\)
0.724748 + 0.689014i \(0.241956\pi\)
\(360\) 0 0
\(361\) 7.48923 + 12.9717i 0.394170 + 0.682723i
\(362\) 14.6725 21.0254i 0.771168 1.10507i
\(363\) 1.89211 1.89211i 0.0993101 0.0993101i
\(364\) 10.0536 11.5860i 0.526951 0.607272i
\(365\) 0 0
\(366\) 0.599415 + 3.36817i 0.0313319 + 0.176057i
\(367\) −5.62655 + 20.9986i −0.293704 + 1.09612i 0.648538 + 0.761182i \(0.275381\pi\)
−0.942241 + 0.334934i \(0.891286\pi\)
\(368\) −8.14728 5.62802i −0.424707 0.293381i
\(369\) 7.76645 + 4.48396i 0.404305 + 0.233426i
\(370\) 0 0
\(371\) −4.11771 + 6.81760i −0.213781 + 0.353952i
\(372\) 2.15177 + 3.05237i 0.111564 + 0.158258i
\(373\) −0.472145 + 0.126511i −0.0244467 + 0.00655048i −0.271022 0.962573i \(-0.587362\pi\)
0.246575 + 0.969124i \(0.420695\pi\)
\(374\) −1.14620 + 3.16478i −0.0592686 + 0.163647i
\(375\) 0 0
\(376\) −35.4738 + 0.168959i −1.82942 + 0.00871339i
\(377\) −14.8813 + 14.8813i −0.766427 + 0.766427i
\(378\) 12.0627 + 1.27642i 0.620440 + 0.0656521i
\(379\) 27.8315 1.42961 0.714805 0.699324i \(-0.246516\pi\)
0.714805 + 0.699324i \(0.246516\pi\)
\(380\) 0 0
\(381\) 1.94004 + 3.36026i 0.0993915 + 0.172151i
\(382\) −20.0871 + 9.40562i −1.02774 + 0.481233i
\(383\) 1.33854 + 4.99551i 0.0683964 + 0.255259i 0.991655 0.128920i \(-0.0411512\pi\)
−0.923259 + 0.384179i \(0.874484\pi\)
\(384\) 6.35370 1.19328i 0.324236 0.0608944i
\(385\) 0 0
\(386\) 7.06942 + 8.39789i 0.359824 + 0.427441i
\(387\) −12.1167 + 3.24665i −0.615925 + 0.165037i
\(388\) 2.87307 + 1.32865i 0.145858 + 0.0674518i
\(389\) −10.5873 + 6.11259i −0.536798 + 0.309921i −0.743780 0.668424i \(-0.766969\pi\)
0.206982 + 0.978345i \(0.433636\pi\)
\(390\) 0 0
\(391\) 1.48782i 0.0752422i
\(392\) −13.5055 14.4776i −0.682131 0.731230i
\(393\) 6.13820 + 6.13820i 0.309631 + 0.309631i
\(394\) 1.48223 + 8.32880i 0.0746737 + 0.419599i
\(395\) 0 0
\(396\) 7.30538 + 19.8748i 0.367109 + 0.998746i
\(397\) 4.52602 + 16.8913i 0.227154 + 0.847751i 0.981530 + 0.191308i \(0.0612730\pi\)
−0.754376 + 0.656443i \(0.772060\pi\)
\(398\) −19.8505 1.70494i −0.995013 0.0854608i
\(399\) 2.65499 1.46375i 0.132916 0.0732789i
\(400\) 0 0
\(401\) 15.5612 26.9528i 0.777089 1.34596i −0.156524 0.987674i \(-0.550029\pi\)
0.933613 0.358284i \(-0.116638\pi\)
\(402\) 1.30358 + 2.78398i 0.0650165 + 0.138852i
\(403\) 9.15057 + 2.45189i 0.455823 + 0.122137i
\(404\) −22.8802 + 27.4440i −1.13833 + 1.36539i
\(405\) 0 0
\(406\) 17.0794 + 21.1217i 0.847639 + 1.04825i
\(407\) −26.9604 26.9604i −1.33638 1.33638i
\(408\) 0.690108 + 0.683566i 0.0341655 + 0.0338415i
\(409\) −4.43457 + 2.56030i −0.219275 + 0.126599i −0.605615 0.795758i \(-0.707073\pi\)
0.386339 + 0.922357i \(0.373739\pi\)
\(410\) 0 0
\(411\) 2.26530 + 1.30787i 0.111739 + 0.0645126i
\(412\) 18.3354 12.9255i 0.903319 0.636795i
\(413\) −9.40791 38.1047i −0.462933 1.87501i
\(414\) −6.02770 7.16041i −0.296245 0.351915i
\(415\) 0 0
\(416\) 10.4410 12.6456i 0.511912 0.620002i
\(417\) 6.13746 + 1.64453i 0.300553 + 0.0805329i
\(418\) 9.21023 + 6.42730i 0.450487 + 0.314370i
\(419\) −14.0529 −0.686531 −0.343266 0.939238i \(-0.611533\pi\)
−0.343266 + 0.939238i \(0.611533\pi\)
\(420\) 0 0
\(421\) 37.5305 1.82913 0.914563 0.404443i \(-0.132535\pi\)
0.914563 + 0.404443i \(0.132535\pi\)
\(422\) −19.9981 13.9555i −0.973491 0.679345i
\(423\) −32.3884 8.67844i −1.57478 0.421960i
\(424\) −4.22210 + 7.39400i −0.205043 + 0.359084i
\(425\) 0 0
\(426\) −2.52925 3.00454i −0.122543 0.145571i
\(427\) 8.07501 7.76227i 0.390777 0.375643i
\(428\) 9.06132 + 12.8538i 0.437995 + 0.621314i
\(429\) −5.68112 3.28000i −0.274287 0.158360i
\(430\) 0 0
\(431\) 21.0173 12.1344i 1.01237 0.584492i 0.100485 0.994939i \(-0.467961\pi\)
0.911885 + 0.410447i \(0.134627\pi\)
\(432\) 12.9252 + 1.04814i 0.621862 + 0.0504287i
\(433\) −0.0253628 0.0253628i −0.00121886 0.00121886i 0.706497 0.707716i \(-0.250274\pi\)
−0.707716 + 0.706497i \(0.750274\pi\)
\(434\) 4.38987 11.4120i 0.210720 0.547793i
\(435\) 0 0
\(436\) −0.621068 0.517787i −0.0297438 0.0247975i
\(437\) −4.79524 1.28488i −0.229387 0.0614641i
\(438\) −3.35236 7.15946i −0.160182 0.342092i
\(439\) 7.62951 13.2147i 0.364137 0.630703i −0.624500 0.781024i \(-0.714697\pi\)
0.988637 + 0.150321i \(0.0480307\pi\)
\(440\) 0 0
\(441\) −8.71009 16.5639i −0.414766 0.788759i
\(442\) 2.45494 + 0.210852i 0.116769 + 0.0100292i
\(443\) 3.09446 + 11.5487i 0.147022 + 0.548695i 0.999657 + 0.0261872i \(0.00833660\pi\)
−0.852635 + 0.522507i \(0.824997\pi\)
\(444\) −10.3274 + 3.79603i −0.490115 + 0.180152i
\(445\) 0 0
\(446\) −4.04235 22.7144i −0.191411 1.07556i
\(447\) 1.97898 + 1.97898i 0.0936027 + 0.0936027i
\(448\) −14.8129 15.1188i −0.699844 0.714295i
\(449\) 13.7142i 0.647213i 0.946192 + 0.323607i \(0.104895\pi\)
−0.946192 + 0.323607i \(0.895105\pi\)
\(450\) 0 0
\(451\) −11.5042 + 6.64196i −0.541712 + 0.312758i
\(452\) 4.24087 9.17049i 0.199474 0.431344i
\(453\) −8.13430 + 2.17958i −0.382183 + 0.102406i
\(454\) 11.0104 + 13.0794i 0.516741 + 0.613847i
\(455\) 0 0
\(456\) 2.79911 1.63389i 0.131080 0.0765140i
\(457\) 3.61073 + 13.4754i 0.168903 + 0.630354i 0.997510 + 0.0705235i \(0.0224670\pi\)
−0.828607 + 0.559830i \(0.810866\pi\)
\(458\) −2.80982 + 1.31567i −0.131294 + 0.0614774i
\(459\) 0.974202 + 1.68737i 0.0454718 + 0.0787595i
\(460\) 0 0
\(461\) −27.6588 −1.28820 −0.644100 0.764941i \(-0.722768\pi\)
−0.644100 + 0.764941i \(0.722768\pi\)
\(462\) −4.98155 + 6.84639i −0.231763 + 0.318523i
\(463\) −4.03783 + 4.03783i −0.187654 + 0.187654i −0.794681 0.607027i \(-0.792362\pi\)
0.607027 + 0.794681i \(0.292362\pi\)
\(464\) 18.8065 + 22.1259i 0.873071 + 1.02717i
\(465\) 0 0
\(466\) 0.542782 1.49868i 0.0251439 0.0694250i
\(467\) 11.8626 3.17857i 0.548935 0.147087i 0.0263172 0.999654i \(-0.491622\pi\)
0.522618 + 0.852567i \(0.324955\pi\)
\(468\) 12.6691 8.93108i 0.585629 0.412839i
\(469\) 5.20342 8.61517i 0.240271 0.397812i
\(470\) 0 0
\(471\) 5.50108 + 3.17605i 0.253477 + 0.146345i
\(472\) −11.0527 40.4770i −0.508740 1.86310i
\(473\) 4.80917 17.9481i 0.221126 0.825253i
\(474\) −0.978994 5.50107i −0.0449667 0.252672i
\(475\) 0 0
\(476\) 0.604056 3.12234i 0.0276869 0.143112i
\(477\) −5.69088 + 5.69088i −0.260568 + 0.260568i
\(478\) −16.0679 + 23.0250i −0.734928 + 1.05314i
\(479\) −12.0422 20.8577i −0.550223 0.953014i −0.998258 0.0589981i \(-0.981209\pi\)
0.448035 0.894016i \(-0.352124\pi\)
\(480\) 0 0
\(481\) −13.9553 + 24.1713i −0.636308 + 1.10212i
\(482\) 12.1950 + 1.04741i 0.555465 + 0.0477084i
\(483\) 1.03983 3.59520i 0.0473138 0.163587i
\(484\) −9.22859 1.59705i −0.419481 0.0725932i
\(485\) 0 0
\(486\) 17.6186 + 6.38100i 0.799198 + 0.289448i
\(487\) −0.888247 + 3.31498i −0.0402503 + 0.150216i −0.983126 0.182927i \(-0.941443\pi\)
0.942876 + 0.333144i \(0.108109\pi\)
\(488\) 8.42661 8.50726i 0.381455 0.385106i
\(489\) 10.4925i 0.474487i
\(490\) 0 0
\(491\) 3.54370i 0.159925i −0.996798 0.0799626i \(-0.974520\pi\)
0.996798 0.0799626i \(-0.0254801\pi\)
\(492\) 0.346234 + 3.81781i 0.0156094 + 0.172120i
\(493\) −1.12925 + 4.21443i −0.0508590 + 0.189808i
\(494\) 2.79966 7.73016i 0.125963 0.347796i
\(495\) 0 0
\(496\) 4.39260 12.3113i 0.197234 0.552792i
\(497\) −3.57258 + 12.3522i −0.160252 + 0.554071i
\(498\) 0.534740 6.22594i 0.0239623 0.278991i
\(499\) −15.1647 + 26.2660i −0.678864 + 1.17583i 0.296460 + 0.955045i \(0.404194\pi\)
−0.975323 + 0.220781i \(0.929139\pi\)
\(500\) 0 0
\(501\) −5.30246 9.18412i −0.236896 0.410316i
\(502\) −1.80482 1.25949i −0.0805532 0.0562136i
\(503\) 6.85172 6.85172i 0.305503 0.305503i −0.537659 0.843162i \(-0.680691\pi\)
0.843162 + 0.537659i \(0.180691\pi\)
\(504\) −9.74260 17.4741i −0.433970 0.778358i
\(505\) 0 0
\(506\) 13.6498 2.42919i 0.606809 0.107990i
\(507\) 0.679722 2.53676i 0.0301875 0.112661i
\(508\) 5.70035 12.3265i 0.252912 0.546899i
\(509\) 8.23953 + 4.75709i 0.365211 + 0.210854i 0.671364 0.741128i \(-0.265709\pi\)
−0.306153 + 0.951982i \(0.599042\pi\)
\(510\) 0 0
\(511\) −13.3814 + 22.1553i −0.591960 + 0.980093i
\(512\) −16.2270 15.7698i −0.717138 0.696931i
\(513\) 6.27970 1.68264i 0.277256 0.0742904i
\(514\) −23.6578 8.56822i −1.04350 0.377928i
\(515\) 0 0
\(516\) −4.11858 3.43367i −0.181310 0.151159i
\(517\) 35.1209 35.1209i 1.54461 1.54461i
\(518\) 29.1292 + 21.1949i 1.27986 + 0.931251i
\(519\) −4.43134 −0.194514
\(520\) 0 0
\(521\) 2.30406 + 3.99075i 0.100943 + 0.174838i 0.912073 0.410027i \(-0.134481\pi\)
−0.811131 + 0.584865i \(0.801147\pi\)
\(522\) 11.6395 + 24.8578i 0.509445 + 1.08800i
\(523\) 8.89583 + 33.1997i 0.388987 + 1.45172i 0.831784 + 0.555099i \(0.187320\pi\)
−0.442797 + 0.896622i \(0.646014\pi\)
\(524\) 5.18099 29.9384i 0.226333 1.30787i
\(525\) 0 0
\(526\) −20.7761 + 17.4895i −0.905880 + 0.762578i
\(527\) 1.89708 0.508322i 0.0826383 0.0221429i
\(528\) −5.14455 + 7.44740i −0.223888 + 0.324106i
\(529\) 14.6113 8.43585i 0.635275 0.366776i
\(530\) 0 0
\(531\) 39.6604i 1.72112i
\(532\) −9.54163 4.64332i −0.413682 0.201314i
\(533\) 6.87606 + 6.87606i 0.297835 + 0.297835i
\(534\) 3.08025 0.548175i 0.133295 0.0237218i
\(535\) 0 0
\(536\) 5.33533 9.34355i 0.230451 0.403580i
\(537\) −0.758493 2.83073i −0.0327314 0.122155i
\(538\) −1.73639 + 20.2166i −0.0748610 + 0.871601i
\(539\) 27.6995 + 1.09438i 1.19310 + 0.0471384i
\(540\) 0 0
\(541\) 7.78637 13.4864i 0.334762 0.579825i −0.648677 0.761064i \(-0.724677\pi\)
0.983439 + 0.181239i \(0.0580107\pi\)
\(542\) 26.4807 12.3994i 1.13744 0.532599i
\(543\) 10.0064 + 2.68120i 0.429414 + 0.115061i
\(544\) 0.563774 3.35274i 0.0241716 0.143748i
\(545\) 0 0
\(546\) 5.78481 + 2.22525i 0.247567 + 0.0952318i
\(547\) −6.09970 6.09970i −0.260804 0.260804i 0.564577 0.825381i \(-0.309039\pi\)
−0.825381 + 0.564577i \(0.809039\pi\)
\(548\) −0.826900 9.11797i −0.0353234 0.389500i
\(549\) 9.80190 5.65913i 0.418335 0.241526i
\(550\) 0 0
\(551\) 12.6079 + 7.27916i 0.537114 + 0.310103i
\(552\) 1.01711 3.86952i 0.0432909 0.164698i
\(553\) −13.1885 + 12.6777i −0.560832 + 0.539112i
\(554\) 5.27285 4.43873i 0.224022 0.188584i
\(555\) 0 0
\(556\) −7.67269 20.8741i −0.325395 0.885258i
\(557\) −12.5982 3.37568i −0.533804 0.143032i −0.0181595 0.999835i \(-0.505781\pi\)
−0.515644 + 0.856803i \(0.672447\pi\)
\(558\) 7.07068 10.1322i 0.299326 0.428930i
\(559\) −13.6020 −0.575303
\(560\) 0 0
\(561\) −1.36001 −0.0574196
\(562\) −7.85981 + 11.2630i −0.331546 + 0.475100i
\(563\) 20.1494 + 5.39902i 0.849197 + 0.227542i 0.657071 0.753829i \(-0.271795\pi\)
0.192126 + 0.981370i \(0.438462\pi\)
\(564\) −4.94502 13.4533i −0.208223 0.566485i
\(565\) 0 0
\(566\) 1.53404 1.29137i 0.0644804 0.0542801i
\(567\) −3.91164 15.8433i −0.164274 0.665355i
\(568\) −3.49451 + 13.2947i −0.146627 + 0.557832i
\(569\) 6.92763 + 3.99967i 0.290422 + 0.167675i 0.638132 0.769927i \(-0.279707\pi\)
−0.347710 + 0.937602i \(0.613041\pi\)
\(570\) 0 0
\(571\) 28.4622 16.4326i 1.19110 0.687684i 0.232547 0.972585i \(-0.425294\pi\)
0.958557 + 0.284901i \(0.0919607\pi\)
\(572\) 2.07377 + 22.8668i 0.0867087 + 0.956109i
\(573\) −6.33698 6.33698i −0.264731 0.264731i
\(574\) 9.75949 7.89172i 0.407353 0.329394i
\(575\) 0 0
\(576\) −10.8699 18.4198i −0.452913 0.767490i
\(577\) −37.4537 10.0357i −1.55922 0.417791i −0.626802 0.779178i \(-0.715637\pi\)
−0.932416 + 0.361387i \(0.882303\pi\)
\(578\) −21.3103 + 9.97839i −0.886393 + 0.415046i
\(579\) −2.21768 + 3.84114i −0.0921638 + 0.159632i
\(580\) 0 0
\(581\) −17.9166 + 9.87773i −0.743305 + 0.409797i
\(582\) −0.109448 + 1.27429i −0.00453675 + 0.0528211i
\(583\) −3.08550 11.5152i −0.127788 0.476912i
\(584\) −13.7207 + 24.0285i −0.567765 + 0.994304i
\(585\) 0 0
\(586\) 11.8665 2.11182i 0.490201 0.0872383i
\(587\) −6.10922 6.10922i −0.252155 0.252155i 0.569699 0.821854i \(-0.307060\pi\)
−0.821854 + 0.569699i \(0.807060\pi\)
\(588\) 3.64184 7.12272i 0.150187 0.293736i
\(589\) 6.55329i 0.270023i
\(590\) 0 0
\(591\) −2.96018 + 1.70906i −0.121765 + 0.0703013i
\(592\) 31.6863 + 21.8884i 1.30230 + 0.899608i
\(593\) 41.4359 11.1027i 1.70157 0.455934i 0.728236 0.685327i \(-0.240341\pi\)
0.973334 + 0.229392i \(0.0736739\pi\)
\(594\) −13.8900 + 11.6927i −0.569913 + 0.479757i
\(595\) 0 0
\(596\) 1.67038 9.65229i 0.0684212 0.395373i
\(597\) −2.08351 7.77578i −0.0852726 0.318242i
\(598\) −4.30378 9.19137i −0.175995 0.375863i
\(599\) 5.01596 + 8.68789i 0.204946 + 0.354978i 0.950116 0.311898i \(-0.100965\pi\)
−0.745169 + 0.666875i \(0.767631\pi\)
\(600\) 0 0
\(601\) 24.3587 0.993613 0.496806 0.867861i \(-0.334506\pi\)
0.496806 + 0.867861i \(0.334506\pi\)
\(602\) −1.84738 + 17.4585i −0.0752935 + 0.711556i
\(603\) 7.19138 7.19138i 0.292855 0.292855i
\(604\) 22.6394 + 18.8745i 0.921184 + 0.767994i
\(605\) 0 0
\(606\) −13.5741 4.91618i −0.551410 0.199706i
\(607\) 24.1790 6.47873i 0.981394 0.262964i 0.267762 0.963485i \(-0.413716\pi\)
0.713632 + 0.700521i \(0.247049\pi\)
\(608\) −10.3190 4.71247i −0.418491 0.191116i
\(609\) −5.67420 + 9.39463i −0.229930 + 0.380690i
\(610\) 0 0
\(611\) −31.4876 18.1794i −1.27385 0.735458i
\(612\) 1.34886 2.91678i 0.0545244 0.117904i
\(613\) 2.42522 9.05103i 0.0979535 0.365568i −0.899497 0.436927i \(-0.856067\pi\)
0.997451 + 0.0713590i \(0.0227336\pi\)
\(614\) 21.6656 3.85571i 0.874353 0.155604i
\(615\) 0 0
\(616\) 29.6318 + 0.443959i 1.19390 + 0.0178876i
\(617\) 16.6913 16.6913i 0.671965 0.671965i −0.286204 0.958169i \(-0.592394\pi\)
0.958169 + 0.286204i \(0.0923935\pi\)
\(618\) 7.43318 + 5.18720i 0.299006 + 0.208660i
\(619\) 14.8926 + 25.7947i 0.598582 + 1.03677i 0.993031 + 0.117857i \(0.0376023\pi\)
−0.394448 + 0.918918i \(0.629064\pi\)
\(620\) 0 0
\(621\) 4.01273 6.95024i 0.161025 0.278904i
\(622\) −3.07371 + 35.7869i −0.123244 + 1.43492i
\(623\) −7.09872 7.38472i −0.284404 0.295863i
\(624\) 6.24065 + 2.22663i 0.249826 + 0.0891367i
\(625\) 0 0
\(626\) −12.4953 + 34.5008i −0.499412 + 1.37893i
\(627\) −1.17450 + 4.38331i −0.0469051 + 0.175052i
\(628\) −2.00805 22.1422i −0.0801301 0.883569i
\(629\) 5.78640i 0.230719i
\(630\) 0 0
\(631\) 9.29850i 0.370167i −0.982723 0.185084i \(-0.940744\pi\)
0.982723 0.185084i \(-0.0592556\pi\)
\(632\) −13.7627 + 13.8945i −0.547453 + 0.552693i
\(633\) 2.55019 9.51742i 0.101361 0.378284i
\(634\) −0.284972 0.103209i −0.0113177 0.00409896i
\(635\) 0 0
\(636\) −3.38991 0.586639i −0.134418 0.0232618i
\(637\) −4.47422 19.7933i −0.177275 0.784239i
\(638\) −40.5086 3.47925i −1.60375 0.137745i
\(639\) −6.49663 + 11.2525i −0.257003 + 0.445142i
\(640\) 0 0
\(641\) 1.37174 + 2.37592i 0.0541805 + 0.0938434i 0.891844 0.452344i \(-0.149412\pi\)
−0.837663 + 0.546187i \(0.816079\pi\)
\(642\) −3.63644 + 5.21096i −0.143519 + 0.205660i
\(643\) −4.45513 + 4.45513i −0.175693 + 0.175693i −0.789475 0.613782i \(-0.789647\pi\)
0.613782 + 0.789475i \(0.289647\pi\)
\(644\) −12.3819 + 4.27568i −0.487915 + 0.168485i
\(645\) 0 0
\(646\) −0.298644 1.67811i −0.0117500 0.0660243i
\(647\) 5.58856 20.8568i 0.219709 0.819964i −0.764747 0.644331i \(-0.777136\pi\)
0.984456 0.175633i \(-0.0561974\pi\)
\(648\) −4.59551 16.8296i −0.180528 0.661130i
\(649\) 50.8771 + 29.3739i 1.99710 + 1.15303i
\(650\) 0 0
\(651\) 4.93943 + 0.0975380i 0.193591 + 0.00382282i
\(652\) −30.0162 + 21.1599i −1.17552 + 0.828686i
\(653\) 28.1634 7.54635i 1.10212 0.295311i 0.338491 0.940970i \(-0.390084\pi\)
0.763627 + 0.645658i \(0.223417\pi\)
\(654\) 0.111255 0.307187i 0.00435041 0.0120119i
\(655\) 0 0
\(656\) 10.2235 8.68974i 0.399159 0.339277i
\(657\) −18.4938 + 18.4938i −0.721511 + 0.721511i
\(658\) −27.6102 + 37.9461i −1.07636 + 1.47929i
\(659\) −8.28576 −0.322768 −0.161384 0.986892i \(-0.551596\pi\)
−0.161384 + 0.986892i \(0.551596\pi\)
\(660\) 0 0
\(661\) −10.4781 18.1487i −0.407553 0.705902i 0.587062 0.809542i \(-0.300284\pi\)
−0.994615 + 0.103640i \(0.966951\pi\)
\(662\) 2.72214 1.27462i 0.105799 0.0495396i
\(663\) 0.257671 + 0.961643i 0.0100071 + 0.0373471i
\(664\) −18.8891 + 11.0259i −0.733040 + 0.427889i
\(665\) 0 0
\(666\) 23.4428 + 27.8482i 0.908391 + 1.07909i
\(667\) 17.3592 4.65138i 0.672150 0.180102i
\(668\) −15.5800 + 33.6902i −0.602807 + 1.30351i
\(669\) 8.07303 4.66096i 0.312121 0.180203i
\(670\) 0 0
\(671\) 16.7654i 0.647221i
\(672\) 3.70553 7.70763i 0.142944 0.297328i
\(673\) −29.0523 29.0523i −1.11988 1.11988i −0.991758 0.128125i \(-0.959104\pi\)
−0.128125 0.991758i \(-0.540896\pi\)
\(674\) −7.86798 44.2110i −0.303063 1.70294i
\(675\) 0 0
\(676\) −8.62775 + 3.17130i −0.331836 + 0.121973i
\(677\) 10.1358 + 37.8274i 0.389551 + 1.45383i 0.830866 + 0.556473i \(0.187846\pi\)
−0.441314 + 0.897353i \(0.645488\pi\)
\(678\) 4.06738 + 0.349344i 0.156207 + 0.0134165i
\(679\) 3.66707 2.02172i 0.140729 0.0775865i
\(680\) 0 0
\(681\) −3.45396 + 5.98243i −0.132356 + 0.229247i
\(682\) 7.76095 + 16.5747i 0.297182 + 0.634676i
\(683\) 11.4729 + 3.07415i 0.438998 + 0.117629i 0.471547 0.881841i \(-0.343696\pi\)
−0.0325489 + 0.999470i \(0.510362\pi\)
\(684\) −8.23591 6.86631i −0.314908 0.262540i
\(685\) 0 0
\(686\) −26.0129 + 3.05451i −0.993176 + 0.116622i
\(687\) −0.886428 0.886428i −0.0338193 0.0338193i
\(688\) −1.51698 + 18.7067i −0.0578345 + 0.713187i
\(689\) −7.55767 + 4.36343i −0.287924 + 0.166233i
\(690\) 0 0
\(691\) −6.84816 3.95379i −0.260516 0.150409i 0.364054 0.931378i \(-0.381392\pi\)
−0.624570 + 0.780969i \(0.714726\pi\)
\(692\) 8.93656 + 12.6769i 0.339717 + 0.481902i
\(693\) 26.9089 + 7.78275i 1.02218 + 0.295642i
\(694\) 16.6344 + 19.7603i 0.631434 + 0.750092i
\(695\) 0 0
\(696\) −5.81804 + 10.1889i −0.220532 + 0.386210i
\(697\) 1.94732 + 0.521782i 0.0737599 + 0.0197639i
\(698\) −25.0588 17.4871i −0.948490 0.661898i
\(699\) 0.644031 0.0243595
\(700\) 0 0
\(701\) 29.1974 1.10277 0.551386 0.834250i \(-0.314099\pi\)
0.551386 + 0.834250i \(0.314099\pi\)
\(702\) 10.8994 + 7.60607i 0.411371 + 0.287073i
\(703\) 18.6496 + 4.99713i 0.703381 + 0.188470i
\(704\) 31.6799 0.301784i 1.19398 0.0113739i
\(705\) 0 0
\(706\) 15.4556 + 18.3600i 0.581678 + 0.690986i
\(707\) 11.3299 + 45.8892i 0.426103 + 1.72584i
\(708\) 13.8565 9.76814i 0.520759 0.367109i
\(709\) 23.6133 + 13.6331i 0.886816 + 0.512003i 0.872900 0.487900i \(-0.162237\pi\)
0.0139163 + 0.999903i \(0.495570\pi\)
\(710\) 0 0
\(711\) −16.0089 + 9.24277i −0.600382 + 0.346631i
\(712\) −7.78003 7.70627i −0.291569 0.288805i
\(713\) −5.72029 5.72029i −0.214227 0.214227i
\(714\) 1.26929 0.200121i 0.0475020 0.00748933i
\(715\) 0 0
\(716\) −6.56833 + 7.87850i −0.245470 + 0.294433i
\(717\) −10.9580 2.93619i −0.409234 0.109654i
\(718\) 5.32528 + 11.3729i 0.198738 + 0.424434i
\(719\) 17.9745 31.1327i 0.670335 1.16105i −0.307474 0.951557i \(-0.599484\pi\)
0.977809 0.209498i \(-0.0671831\pi\)
\(720\) 0 0
\(721\) 0.585904 29.6708i 0.0218202 1.10500i
\(722\) 21.1050 + 1.81269i 0.785448 + 0.0674615i
\(723\) 1.27999 + 4.77699i 0.0476033 + 0.177658i
\(724\) −12.5094 34.0326i −0.464907 1.26481i
\(725\) 0 0
\(726\) −0.663039 3.72568i −0.0246077 0.138273i
\(727\) 5.64012 + 5.64012i 0.209180 + 0.209180i 0.803919 0.594739i \(-0.202744\pi\)
−0.594739 + 0.803919i \(0.702744\pi\)
\(728\) −5.30022 21.0364i −0.196439 0.779659i
\(729\) 10.9327i 0.404916i
\(730\) 0 0
\(731\) −2.44214 + 1.40997i −0.0903260 + 0.0521497i
\(732\) 4.39133 + 2.03076i 0.162308 + 0.0750591i
\(733\) −15.5419 + 4.16444i −0.574053 + 0.153817i −0.534155 0.845387i \(-0.679370\pi\)
−0.0398983 + 0.999204i \(0.512703\pi\)
\(734\) 19.7993 + 23.5199i 0.730804 + 0.868136i
\(735\) 0 0
\(736\) −13.1208 + 4.89388i −0.483640 + 0.180391i
\(737\) 3.89904 + 14.5514i 0.143623 + 0.536008i
\(738\) 11.4858 5.37812i 0.422797 0.197971i
\(739\) 11.4543 + 19.8395i 0.421355 + 0.729808i 0.996072 0.0885439i \(-0.0282214\pi\)
−0.574717 + 0.818352i \(0.694888\pi\)
\(740\) 0 0
\(741\) 3.32190 0.122033
\(742\) 4.57411 + 10.2931i 0.167921 + 0.377872i
\(743\) 21.3493 21.3493i 0.783229 0.783229i −0.197145 0.980374i \(-0.563167\pi\)
0.980374 + 0.197145i \(0.0631669\pi\)
\(744\) 5.28144 0.0251551i 0.193627 0.000922230i
\(745\) 0 0
\(746\) −0.235396 + 0.649954i −0.00861846 + 0.0237965i
\(747\) −19.9691 + 5.35071i −0.730632 + 0.195772i
\(748\) 2.74269 + 3.89061i 0.100283 + 0.142255i
\(749\) 20.8004 + 0.410742i 0.760030 + 0.0150082i
\(750\) 0 0
\(751\) 31.7774 + 18.3467i 1.15958 + 0.669481i 0.951202 0.308568i \(-0.0998498\pi\)
0.208373 + 0.978049i \(0.433183\pi\)
\(752\) −28.5137 + 41.2772i −1.03979 + 1.50522i
\(753\) 0.230154 0.858946i 0.00838728 0.0313017i
\(754\) 5.21476 + 29.3023i 0.189910 + 1.06713i
\(755\) 0 0
\(756\) 11.2429 12.9566i 0.408901 0.471228i
\(757\) −23.2904 + 23.2904i −0.846504 + 0.846504i −0.989695 0.143191i \(-0.954264\pi\)
0.143191 + 0.989695i \(0.454264\pi\)
\(758\) 22.5246 32.2774i 0.818130 1.17237i
\(759\) 2.80093 + 4.85135i 0.101667 + 0.176093i
\(760\) 0 0
\(761\) −3.80960 + 6.59842i −0.138098 + 0.239192i −0.926777 0.375613i \(-0.877432\pi\)
0.788679 + 0.614806i \(0.210766\pi\)
\(762\) 5.46715 + 0.469568i 0.198054 + 0.0170107i
\(763\) −1.03849 + 0.256399i −0.0375958 + 0.00928226i
\(764\) −5.34878 + 30.9080i −0.193512 + 1.11821i
\(765\) 0 0
\(766\) 6.87682 + 2.49060i 0.248470 + 0.0899890i
\(767\) 11.1305 41.5398i 0.401901 1.49991i
\(768\) 3.75827 8.33440i 0.135615 0.300742i
\(769\) 30.3461i 1.09431i −0.837031 0.547155i \(-0.815711\pi\)
0.837031 0.547155i \(-0.184289\pi\)
\(770\) 0 0
\(771\) 10.1665i 0.366138i
\(772\) 15.4608 1.40213i 0.556447 0.0504637i
\(773\) 6.78186 25.3103i 0.243927 0.910347i −0.729993 0.683454i \(-0.760477\pi\)
0.973920 0.226892i \(-0.0728565\pi\)
\(774\) −6.04097 + 16.6798i −0.217138 + 0.599543i
\(775\) 0 0
\(776\) 3.86612 2.25673i 0.138786 0.0810117i
\(777\) −4.04408 + 13.9824i −0.145081 + 0.501616i
\(778\) −1.47949 + 17.2256i −0.0530423 + 0.617568i
\(779\) 3.36341 5.82559i 0.120507 0.208724i
\(780\) 0 0
\(781\) −9.62327 16.6680i −0.344348 0.596428i
\(782\) −1.72549 1.20412i −0.0617032 0.0430592i
\(783\) −16.6418 + 16.6418i −0.594728 + 0.594728i
\(784\) −27.7206 + 3.94588i −0.990020 + 0.140924i
\(785\) 0 0
\(786\) 12.0865 2.15096i 0.431111 0.0767224i
\(787\) −2.88594 + 10.7705i −0.102873 + 0.383926i −0.998095 0.0616935i \(-0.980350\pi\)
0.895222 + 0.445619i \(0.147017\pi\)
\(788\) 10.8589 + 5.02166i 0.386831 + 0.178889i
\(789\) −9.50285 5.48647i −0.338310 0.195324i
\(790\) 0 0
\(791\) −6.45308 11.7048i −0.229445 0.416176i
\(792\) 28.9620 + 7.61269i 1.02912 + 0.270505i
\(793\) 11.8546 3.17643i 0.420969 0.112798i
\(794\) 23.2526 + 8.42146i 0.825203 + 0.298866i
\(795\) 0 0
\(796\) −18.0426 + 21.6416i −0.639504 + 0.767065i
\(797\) −9.45111 + 9.45111i −0.334775 + 0.334775i −0.854397 0.519621i \(-0.826073\pi\)
0.519621 + 0.854397i \(0.326073\pi\)
\(798\) 0.451170 4.26374i 0.0159712 0.150935i
\(799\) −7.53784 −0.266670
\(800\) 0 0
\(801\) −5.17536 8.96399i −0.182863 0.316727i
\(802\) −18.6643 39.8604i −0.659060 1.40752i
\(803\) −10.0270 37.4213i −0.353846 1.32057i
\(804\) 4.28371 + 0.741317i 0.151075 + 0.0261442i
\(805\) 0 0
\(806\) 10.2493 8.62795i 0.361016 0.303906i
\(807\) −7.91923 + 2.12195i −0.278770 + 0.0746962i
\(808\) 13.3106 + 48.7461i 0.468267 + 1.71488i
\(809\) 28.2738 16.3239i 0.994055 0.573918i 0.0875707 0.996158i \(-0.472090\pi\)
0.906484 + 0.422241i \(0.138756\pi\)
\(810\) 0 0
\(811\) 38.0037i 1.33449i 0.744838 + 0.667245i \(0.232527\pi\)
−0.744838 + 0.667245i \(0.767473\pi\)
\(812\) 38.3185 2.71354i 1.34471 0.0952266i
\(813\) 8.35402 + 8.35402i 0.292988 + 0.292988i
\(814\) −53.0867 + 9.44755i −1.86069 + 0.331136i
\(815\) 0 0
\(816\) 1.35128 0.247125i 0.0473042 0.00865110i
\(817\) 2.43530 + 9.08868i 0.0852005 + 0.317973i
\(818\) −0.619695 + 7.21506i −0.0216671 + 0.252269i
\(819\) 0.404838 20.5014i 0.0141462 0.716378i
\(820\) 0 0
\(821\) 5.78912 10.0271i 0.202042 0.349947i −0.747144 0.664662i \(-0.768576\pi\)
0.949186 + 0.314715i \(0.101909\pi\)
\(822\) 3.35015 1.56868i 0.116850 0.0547140i
\(823\) 32.4334 + 8.69051i 1.13056 + 0.302932i 0.775149 0.631779i \(-0.217675\pi\)
0.355409 + 0.934711i \(0.384341\pi\)
\(824\) −0.151105 31.7252i −0.00526398 1.10520i
\(825\) 0 0
\(826\) −51.8057 19.9282i −1.80255 0.693389i
\(827\) 4.77258 + 4.77258i 0.165959 + 0.165959i 0.785200 0.619242i \(-0.212560\pi\)
−0.619242 + 0.785200i \(0.712560\pi\)
\(828\) −13.1826 + 1.19552i −0.458126 + 0.0415470i
\(829\) −29.2731 + 16.9008i −1.01670 + 0.586989i −0.913145 0.407635i \(-0.866354\pi\)
−0.103550 + 0.994624i \(0.533020\pi\)
\(830\) 0 0
\(831\) 2.41177 + 1.39244i 0.0836634 + 0.0483031i
\(832\) −6.21555 22.3432i −0.215485 0.774611i
\(833\) −2.85507 3.08996i −0.0989224 0.107061i
\(834\) 6.87439 5.78693i 0.238041 0.200385i
\(835\) 0 0
\(836\) 14.9080 5.47975i 0.515605 0.189521i
\(837\) 10.2331 + 2.74194i 0.353707 + 0.0947755i
\(838\) −11.3733 + 16.2978i −0.392885 + 0.562998i
\(839\) −3.12360 −0.107839 −0.0539193 0.998545i \(-0.517171\pi\)
−0.0539193 + 0.998545i \(0.517171\pi\)
\(840\) 0 0
\(841\) −23.7024 −0.817325
\(842\) 30.3742 43.5258i 1.04676 1.50000i
\(843\) −5.36025 1.43627i −0.184617 0.0494679i
\(844\) −32.3696 + 11.8981i −1.11421 + 0.409550i
\(845\) 0 0
\(846\) −36.2773 + 30.5386i −1.24724 + 1.04994i
\(847\) −8.93212 + 8.58619i −0.306911 + 0.295025i
\(848\) 5.15811 + 10.8807i 0.177130 + 0.373643i
\(849\) 0.701659 + 0.405103i 0.0240809 + 0.0139031i
\(850\) 0 0
\(851\) 20.6409 11.9171i 0.707562 0.408511i
\(852\) −5.53147 + 0.501644i −0.189505 + 0.0171860i
\(853\) 3.22775 + 3.22775i 0.110516 + 0.110516i 0.760202 0.649686i \(-0.225100\pi\)
−0.649686 + 0.760202i \(0.725100\pi\)
\(854\) −2.46697 15.6471i −0.0844181 0.535432i
\(855\) 0 0
\(856\) 22.2406 0.105930i 0.760170 0.00362063i
\(857\) 37.2336 + 9.97671i 1.27187 + 0.340798i 0.830749 0.556647i \(-0.187913\pi\)
0.441126 + 0.897445i \(0.354579\pi\)
\(858\) −8.40179 + 3.93407i −0.286832 + 0.134307i
\(859\) −6.97976 + 12.0893i −0.238146 + 0.412482i −0.960182 0.279374i \(-0.909873\pi\)
0.722036 + 0.691855i \(0.243206\pi\)
\(860\) 0 0
\(861\) 4.34088 + 2.62182i 0.147937 + 0.0893513i
\(862\) 2.93700 34.1953i 0.100035 1.16470i
\(863\) 10.7069 + 39.9587i 0.364467 + 1.36021i 0.868142 + 0.496316i \(0.165314\pi\)
−0.503675 + 0.863893i \(0.668019\pi\)
\(864\) 11.6762 14.1416i 0.397231 0.481106i
\(865\) 0 0
\(866\) −0.0499409 + 0.00888771i −0.00169706 + 0.000302017i
\(867\) −6.72289 6.72289i −0.228321 0.228321i
\(868\) −9.68217 14.3271i −0.328634 0.486292i
\(869\) 27.3821i 0.928873i
\(870\) 0 0
\(871\) 9.55038 5.51391i 0.323602 0.186832i
\(872\) −1.10314 + 0.301224i −0.0373571 + 0.0102007i
\(873\) 4.08717 1.09515i 0.138330 0.0370653i
\(874\) −5.37101 + 4.52136i −0.181677 + 0.152937i
\(875\) 0 0
\(876\) −11.0163 1.90642i −0.372205 0.0644118i
\(877\) −8.94885 33.3976i −0.302181 1.12776i −0.935345 0.353737i \(-0.884911\pi\)
0.633164 0.774018i \(-0.281756\pi\)
\(878\) −9.15094 19.5432i −0.308829 0.659550i
\(879\) 2.43499 + 4.21753i 0.0821303 + 0.142254i
\(880\) 0 0
\(881\) −9.22163 −0.310685 −0.155342 0.987861i \(-0.549648\pi\)
−0.155342 + 0.987861i \(0.549648\pi\)
\(882\) −26.2591 3.30406i −0.884191 0.111253i
\(883\) 18.1891 18.1891i 0.612111 0.612111i −0.331385 0.943496i \(-0.607516\pi\)
0.943496 + 0.331385i \(0.107516\pi\)
\(884\) 2.23136 2.67645i 0.0750488 0.0900186i
\(885\) 0 0
\(886\) 15.8979 + 5.75780i 0.534101 + 0.193437i
\(887\) −19.5218 + 5.23085i −0.655477 + 0.175635i −0.571204 0.820808i \(-0.693524\pi\)
−0.0842733 + 0.996443i \(0.526857\pi\)
\(888\) −3.95571 + 15.0493i −0.132745 + 0.505020i
\(889\) −8.67387 15.7330i −0.290912 0.527667i
\(890\) 0 0
\(891\) 21.1538 + 12.2132i 0.708679 + 0.409156i
\(892\) −29.6144 13.6951i −0.991563 0.458546i
\(893\) −6.50968 + 24.2944i −0.217838 + 0.812983i
\(894\) 3.89674 0.693481i 0.130326 0.0231935i
\(895\) 0 0
\(896\) −29.5223 + 4.94324i −0.986270 + 0.165142i
\(897\) 2.89965 2.89965i 0.0968165 0.0968165i
\(898\) 15.9049 + 11.0992i 0.530755 + 0.370384i
\(899\) 11.8617 + 20.5451i 0.395611 + 0.685219i
\(900\) 0 0
\(901\) −0.904619 + 1.56685i −0.0301372 + 0.0521992i
\(902\) −1.60762 + 18.7174i −0.0535279 + 0.623221i
\(903\) −6.88668 + 1.70029i −0.229174 + 0.0565822i
\(904\) −7.20319 12.3402i −0.239574 0.410428i
\(905\) 0 0
\(906\) −4.05550 + 11.1977i −0.134735 + 0.372018i
\(907\) 10.9408 40.8315i 0.363282 1.35579i −0.506452 0.862268i \(-0.669043\pi\)
0.869734 0.493520i \(-0.164290\pi\)
\(908\) 24.0796 2.18376i 0.799110 0.0724706i
\(909\) 47.7627i 1.58419i
\(910\) 0 0
\(911\) 47.4291i 1.57140i −0.618610 0.785698i \(-0.712304\pi\)
0.618610 0.785698i \(-0.287696\pi\)
\(912\) 0.370480 4.56859i 0.0122678 0.151281i
\(913\) 7.92585 29.5797i 0.262307 0.978945i
\(914\) 18.5503 + 6.71841i 0.613588 + 0.222225i
\(915\) 0 0
\(916\) −0.748196 + 4.32346i −0.0247211 + 0.142851i
\(917\) −27.8544 28.9767i −0.919834 0.956894i
\(918\) 2.74535 + 0.235796i 0.0906101 + 0.00778242i
\(919\) 15.8502 27.4533i 0.522849 0.905601i −0.476797 0.879013i \(-0.658202\pi\)
0.999646 0.0265881i \(-0.00846425\pi\)
\(920\) 0 0
\(921\) 4.44575 + 7.70027i 0.146493 + 0.253733i
\(922\) −22.3848 + 32.0771i −0.737205 + 1.05640i
\(923\) −9.96245 + 9.96245i −0.327918 + 0.327918i
\(924\) 3.90838 + 11.3182i 0.128576 + 0.372342i
\(925\) 0 0
\(926\) 1.41495 + 7.95074i 0.0464981 + 0.261278i
\(927\) 7.76138 28.9659i 0.254917 0.951364i
\(928\) 40.8808 3.90384i 1.34198 0.128150i
\(929\) −37.2981 21.5341i −1.22371 0.706509i −0.258003 0.966144i \(-0.583065\pi\)
−0.965707 + 0.259635i \(0.916398\pi\)
\(930\) 0 0
\(931\) −12.4246 + 6.53341i −0.407199 + 0.214124i
\(932\) −1.29880 1.84240i −0.0425436 0.0603498i
\(933\) −14.0184 + 3.75622i −0.458941 + 0.122973i
\(934\) 5.91430 16.3300i 0.193522 0.534335i
\(935\) 0 0
\(936\) −0.104408 21.9210i −0.00341268 0.716509i
\(937\) 11.9105 11.9105i 0.389100 0.389100i −0.485266 0.874366i \(-0.661277\pi\)
0.874366 + 0.485266i \(0.161277\pi\)
\(938\) −5.78015 13.0070i −0.188729 0.424695i
\(939\) −14.8261 −0.483832
\(940\) 0 0
\(941\) −14.1264 24.4676i −0.460507 0.797622i 0.538479 0.842639i \(-0.318999\pi\)
−0.998986 + 0.0450169i \(0.985666\pi\)
\(942\) 8.13554 3.80940i 0.265070 0.124117i
\(943\) −2.14922 8.02098i −0.0699881 0.261199i
\(944\) −55.8880 19.9406i −1.81900 0.649010i
\(945\) 0 0
\(946\) −16.9230 20.1031i −0.550213 0.653609i
\(947\) −23.9653 + 6.42148i −0.778767 + 0.208670i −0.626241 0.779629i \(-0.715408\pi\)
−0.152526 + 0.988299i \(0.548741\pi\)
\(948\) −7.17214 3.31674i −0.232940 0.107723i
\(949\) −24.5603 + 14.1799i −0.797263 + 0.460300i
\(950\) 0 0
\(951\) 0.122462i 0.00397109i
\(952\) −3.13223 3.22752i −0.101516 0.104604i
\(953\) 19.4338 + 19.4338i 0.629523 + 0.629523i 0.947948 0.318425i \(-0.103154\pi\)
−0.318425 + 0.947948i \(0.603154\pi\)
\(954\) 1.99422 + 11.2057i 0.0645651 + 0.362798i
\(955\) 0 0
\(956\) 13.6991 + 37.2692i 0.443059 + 1.20537i
\(957\) −4.25181 15.8680i −0.137441 0.512938i
\(958\) −33.9356 2.91470i −1.09641 0.0941696i
\(959\) −10.3672 6.26162i −0.334775 0.202198i
\(960\) 0 0
\(961\) −10.1606 + 17.5986i −0.327760 + 0.567697i
\(962\) 16.7382 + 35.7469i 0.539661 + 1.15253i
\(963\) 20.3062 + 5.44104i 0.654359 + 0.175335i
\(964\) 11.0843 13.2953i 0.357003 0.428213i
\(965\) 0 0
\(966\) −3.32796 4.11560i −0.107075 0.132417i
\(967\) 34.9483 + 34.9483i 1.12386 + 1.12386i 0.991155 + 0.132706i \(0.0423665\pi\)
0.132706 + 0.991155i \(0.457633\pi\)
\(968\) −9.32104 + 9.41026i −0.299590 + 0.302457i
\(969\) 0.596424 0.344346i 0.0191599 0.0110620i
\(970\) 0 0
\(971\) 42.2275 + 24.3801i 1.35515 + 0.782393i 0.988965 0.148150i \(-0.0473320\pi\)
0.366180 + 0.930544i \(0.380665\pi\)
\(972\) 21.6594 15.2688i 0.694726 0.489747i
\(973\) −28.2618 8.17406i −0.906032 0.262048i
\(974\) 3.12565 + 3.71302i 0.100152 + 0.118973i
\(975\) 0 0
\(976\) −3.04642 16.6578i −0.0975134 0.533203i
\(977\) −42.7841 11.4640i −1.36879 0.366765i −0.501750 0.865012i \(-0.667310\pi\)
−0.867035 + 0.498248i \(0.833977\pi\)
\(978\) −12.1686 8.49178i −0.389109 0.271537i
\(979\) 15.3322 0.490020
\(980\) 0 0
\(981\) −1.08089 −0.0345101
\(982\) −4.10978 2.86799i −0.131148 0.0915212i
\(983\) 6.04477 + 1.61969i 0.192798 + 0.0516601i 0.353926 0.935273i \(-0.384846\pi\)
−0.161128 + 0.986934i \(0.551513\pi\)
\(984\) 4.70789 + 2.68828i 0.150082 + 0.0856993i
\(985\) 0 0
\(986\) 3.97373 + 4.72046i 0.126549 + 0.150330i
\(987\) −18.2146 5.26815i −0.579778 0.167687i
\(988\) −6.69918 9.50305i −0.213129 0.302332i
\(989\) 10.0592 + 5.80766i 0.319863 + 0.184673i
\(990\) 0 0
\(991\) −23.9504 + 13.8278i −0.760809 + 0.439253i −0.829586 0.558379i \(-0.811424\pi\)
0.0687769 + 0.997632i \(0.478090\pi\)
\(992\) −10.7229 15.0580i −0.340452 0.478093i
\(993\) 0.858769 + 0.858769i 0.0272522 + 0.0272522i
\(994\) 11.4340 + 14.1401i 0.362664 + 0.448498i
\(995\) 0 0
\(996\) −6.78771 5.65893i −0.215077 0.179310i
\(997\) 8.67546 + 2.32458i 0.274755 + 0.0736203i 0.393565 0.919297i \(-0.371242\pi\)
−0.118811 + 0.992917i \(0.537908\pi\)
\(998\) 18.1887 + 38.8447i 0.575753 + 1.22961i
\(999\) −15.6062 + 27.0308i −0.493759 + 0.855216i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 700.2.be.e.443.13 72
4.3 odd 2 inner 700.2.be.e.443.2 72
5.2 odd 4 inner 700.2.be.e.107.16 72
5.3 odd 4 140.2.w.b.107.3 yes 72
5.4 even 2 140.2.w.b.23.6 72
7.4 even 3 inner 700.2.be.e.543.12 72
20.3 even 4 140.2.w.b.107.7 yes 72
20.7 even 4 inner 700.2.be.e.107.12 72
20.19 odd 2 140.2.w.b.23.17 yes 72
28.11 odd 6 inner 700.2.be.e.543.16 72
35.3 even 12 980.2.x.m.67.17 72
35.4 even 6 140.2.w.b.123.7 yes 72
35.9 even 6 980.2.k.k.883.17 36
35.13 even 4 980.2.x.m.667.3 72
35.18 odd 12 140.2.w.b.67.17 yes 72
35.19 odd 6 980.2.k.j.883.17 36
35.23 odd 12 980.2.k.k.687.9 36
35.24 odd 6 980.2.x.m.263.7 72
35.32 odd 12 inner 700.2.be.e.207.2 72
35.33 even 12 980.2.k.j.687.9 36
35.34 odd 2 980.2.x.m.863.6 72
140.3 odd 12 980.2.x.m.67.6 72
140.19 even 6 980.2.k.j.883.9 36
140.23 even 12 980.2.k.k.687.17 36
140.39 odd 6 140.2.w.b.123.3 yes 72
140.59 even 6 980.2.x.m.263.3 72
140.67 even 12 inner 700.2.be.e.207.13 72
140.79 odd 6 980.2.k.k.883.9 36
140.83 odd 4 980.2.x.m.667.7 72
140.103 odd 12 980.2.k.j.687.17 36
140.123 even 12 140.2.w.b.67.6 yes 72
140.139 even 2 980.2.x.m.863.17 72
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
140.2.w.b.23.6 72 5.4 even 2
140.2.w.b.23.17 yes 72 20.19 odd 2
140.2.w.b.67.6 yes 72 140.123 even 12
140.2.w.b.67.17 yes 72 35.18 odd 12
140.2.w.b.107.3 yes 72 5.3 odd 4
140.2.w.b.107.7 yes 72 20.3 even 4
140.2.w.b.123.3 yes 72 140.39 odd 6
140.2.w.b.123.7 yes 72 35.4 even 6
700.2.be.e.107.12 72 20.7 even 4 inner
700.2.be.e.107.16 72 5.2 odd 4 inner
700.2.be.e.207.2 72 35.32 odd 12 inner
700.2.be.e.207.13 72 140.67 even 12 inner
700.2.be.e.443.2 72 4.3 odd 2 inner
700.2.be.e.443.13 72 1.1 even 1 trivial
700.2.be.e.543.12 72 7.4 even 3 inner
700.2.be.e.543.16 72 28.11 odd 6 inner
980.2.k.j.687.9 36 35.33 even 12
980.2.k.j.687.17 36 140.103 odd 12
980.2.k.j.883.9 36 140.19 even 6
980.2.k.j.883.17 36 35.19 odd 6
980.2.k.k.687.9 36 35.23 odd 12
980.2.k.k.687.17 36 140.23 even 12
980.2.k.k.883.9 36 140.79 odd 6
980.2.k.k.883.17 36 35.9 even 6
980.2.x.m.67.6 72 140.3 odd 12
980.2.x.m.67.17 72 35.3 even 12
980.2.x.m.263.3 72 140.59 even 6
980.2.x.m.263.7 72 35.24 odd 6
980.2.x.m.667.3 72 35.13 even 4
980.2.x.m.667.7 72 140.83 odd 4
980.2.x.m.863.6 72 35.34 odd 2
980.2.x.m.863.17 72 140.139 even 2