Properties

Label 140.2.w.b.23.6
Level $140$
Weight $2$
Character 140.23
Analytic conductor $1.118$
Analytic rank $0$
Dimension $72$
Inner twists $8$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [140,2,Mod(23,140)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(140, base_ring=CyclotomicField(12))
 
chi = DirichletCharacter(H, H._module([6, 9, 4]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("140.23");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 140 = 2^{2} \cdot 5 \cdot 7 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 140.w (of order \(12\), degree \(4\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(1.11790562830\)
Analytic rank: \(0\)
Dimension: \(72\)
Relative dimension: \(18\) over \(\Q(\zeta_{12})\)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{12}]$

Embedding invariants

Embedding label 23.6
Character \(\chi\) \(=\) 140.23
Dual form 140.2.w.b.67.6

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-0.809319 + 1.15974i) q^{2} +(-0.551941 - 0.147892i) q^{3} +(-0.690004 - 1.87720i) q^{4} +(1.08510 - 1.95513i) q^{5} +(0.618214 - 0.520418i) q^{6} +(2.54158 + 0.735093i) q^{7} +(2.73551 + 0.719030i) q^{8} +(-2.31531 - 1.33674i) q^{9} +O(q^{10})\) \(q+(-0.809319 + 1.15974i) q^{2} +(-0.551941 - 0.147892i) q^{3} +(-0.690004 - 1.87720i) q^{4} +(1.08510 - 1.95513i) q^{5} +(0.618214 - 0.520418i) q^{6} +(2.54158 + 0.735093i) q^{7} +(2.73551 + 0.719030i) q^{8} +(-2.31531 - 1.33674i) q^{9} +(1.38926 + 2.84077i) q^{10} +(3.42960 - 1.98008i) q^{11} +(0.103218 + 1.13815i) q^{12} +(2.04987 + 2.04987i) q^{13} +(-2.90947 + 2.35266i) q^{14} +(-0.888062 + 0.918641i) q^{15} +(-3.04779 + 2.59056i) q^{16} +(0.580528 + 0.155552i) q^{17} +(3.42410 - 1.60331i) q^{18} +(-1.00269 + 1.73671i) q^{19} +(-4.41891 - 0.687909i) q^{20} +(-1.29409 - 0.781608i) q^{21} +(-0.479259 + 5.57997i) q^{22} +(-0.640717 - 2.39119i) q^{23} +(-1.40350 - 0.801422i) q^{24} +(-2.64510 - 4.24305i) q^{25} +(-4.03632 + 0.718322i) q^{26} +(2.29237 + 2.29237i) q^{27} +(-0.373784 - 5.27828i) q^{28} -7.25964i q^{29} +(-0.346661 - 1.77340i) q^{30} +(-2.83005 + 1.63393i) q^{31} +(-0.537745 - 5.63124i) q^{32} +(-2.18578 + 0.585677i) q^{33} +(-0.650233 + 0.547372i) q^{34} +(4.19508 - 4.17148i) q^{35} +(-0.911768 + 5.26867i) q^{36} +(2.49187 + 9.29977i) q^{37} +(-1.20264 - 2.56841i) q^{38} +(-0.828248 - 1.43457i) q^{39} +(4.37411 - 4.56806i) q^{40} -3.35439 q^{41} +(1.95380 - 0.868240i) q^{42} +(-3.31777 + 3.31777i) q^{43} +(-6.08345 - 5.07179i) q^{44} +(-5.12586 + 3.07624i) q^{45} +(3.29171 + 1.19217i) q^{46} +(-12.1147 + 3.24611i) q^{47} +(2.06532 - 0.979091i) q^{48} +(5.91928 + 3.73660i) q^{49} +(7.06157 + 0.366343i) q^{50} +(-0.297413 - 0.171711i) q^{51} +(2.43360 - 5.26244i) q^{52} +(-0.779134 + 2.90777i) q^{53} +(-4.51381 + 0.803298i) q^{54} +(-0.149853 - 8.85392i) q^{55} +(6.42396 + 3.83832i) q^{56} +(0.810271 - 0.810271i) q^{57} +(8.41932 + 5.87537i) q^{58} +(7.41735 + 12.8472i) q^{59} +(2.33724 + 1.03321i) q^{60} +(-2.11676 + 3.66633i) q^{61} +(0.395476 - 4.60450i) q^{62} +(-4.90192 - 5.09941i) q^{63} +(6.96599 + 3.93382i) q^{64} +(6.23209 - 1.78345i) q^{65} +(1.08976 - 3.00894i) q^{66} +(0.984566 - 3.67445i) q^{67} +(-0.108564 - 1.19710i) q^{68} +1.41455i q^{69} +(1.44268 + 8.24128i) q^{70} -4.86004i q^{71} +(-5.37238 - 5.32145i) q^{72} +(-2.53197 + 9.44944i) q^{73} +(-12.8021 - 4.63656i) q^{74} +(0.832427 + 2.73310i) q^{75} +(3.95201 + 0.683915i) q^{76} +(10.1722 - 2.51146i) q^{77} +(2.33405 + 0.200469i) q^{78} +(3.45719 - 5.98803i) q^{79} +(1.75772 + 8.76986i) q^{80} +(3.08400 + 5.34165i) q^{81} +(2.71477 - 3.89023i) q^{82} +(-5.46792 + 5.46792i) q^{83} +(-0.574310 + 2.96858i) q^{84} +(0.934058 - 0.966221i) q^{85} +(-1.16262 - 6.53289i) q^{86} +(-1.07364 + 4.00690i) q^{87} +(10.8054 - 2.95054i) q^{88} +(3.35292 + 1.93581i) q^{89} +(0.580822 - 8.43434i) q^{90} +(3.70307 + 6.71676i) q^{91} +(-4.04665 + 2.85269i) q^{92} +(1.80367 - 0.483291i) q^{93} +(6.03997 - 16.6770i) q^{94} +(2.30748 + 3.84490i) q^{95} +(-0.536012 + 3.18764i) q^{96} +(1.11914 - 1.11914i) q^{97} +(-9.12407 + 3.84074i) q^{98} -10.5874 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 72 q + 2 q^{2} - 8 q^{5} - 16 q^{6} - 4 q^{8}+O(q^{10}) \) Copy content Toggle raw display \( 72 q + 2 q^{2} - 8 q^{5} - 16 q^{6} - 4 q^{8} + 2 q^{10} + 10 q^{12} - 28 q^{16} + 4 q^{17} - 20 q^{18} - 56 q^{20} + 4 q^{21} - 16 q^{22} - 16 q^{25} - 4 q^{26} + 42 q^{28} - 32 q^{30} - 38 q^{32} - 64 q^{33} + 16 q^{36} - 4 q^{37} + 12 q^{38} + 2 q^{40} - 40 q^{41} + 78 q^{42} - 12 q^{45} - 28 q^{46} + 12 q^{48} - 28 q^{50} + 48 q^{52} - 24 q^{53} + 36 q^{56} - 16 q^{57} + 30 q^{58} - 10 q^{60} - 20 q^{61} + 56 q^{62} + 4 q^{65} + 44 q^{66} - 12 q^{68} + 84 q^{70} + 44 q^{72} - 12 q^{73} + 112 q^{76} + 16 q^{77} + 64 q^{78} + 52 q^{80} - 52 q^{81} - 34 q^{82} + 16 q^{85} + 64 q^{86} + 16 q^{88} - 32 q^{90} + 44 q^{92} + 12 q^{93} - 48 q^{96} - 24 q^{97} - 90 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/140\mathbb{Z}\right)^\times\).

\(n\) \(57\) \(71\) \(101\)
\(\chi(n)\) \(e\left(\frac{3}{4}\right)\) \(-1\) \(e\left(\frac{1}{3}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −0.809319 + 1.15974i −0.572275 + 0.820062i
\(3\) −0.551941 0.147892i −0.318663 0.0853856i 0.0959419 0.995387i \(-0.469414\pi\)
−0.414605 + 0.910001i \(0.636080\pi\)
\(4\) −0.690004 1.87720i −0.345002 0.938602i
\(5\) 1.08510 1.95513i 0.485273 0.874363i
\(6\) 0.618214 0.520418i 0.252385 0.212460i
\(7\) 2.54158 + 0.735093i 0.960628 + 0.277839i
\(8\) 2.73551 + 0.719030i 0.967148 + 0.254216i
\(9\) −2.31531 1.33674i −0.771770 0.445581i
\(10\) 1.38926 + 2.84077i 0.439322 + 0.898330i
\(11\) 3.42960 1.98008i 1.03406 0.597017i 0.115917 0.993259i \(-0.463019\pi\)
0.918146 + 0.396242i \(0.129686\pi\)
\(12\) 0.103218 + 1.13815i 0.0297965 + 0.328556i
\(13\) 2.04987 + 2.04987i 0.568532 + 0.568532i 0.931717 0.363185i \(-0.118311\pi\)
−0.363185 + 0.931717i \(0.618311\pi\)
\(14\) −2.90947 + 2.35266i −0.777588 + 0.628774i
\(15\) −0.888062 + 0.918641i −0.229297 + 0.237192i
\(16\) −3.04779 + 2.59056i −0.761947 + 0.647639i
\(17\) 0.580528 + 0.155552i 0.140799 + 0.0377269i 0.328530 0.944493i \(-0.393447\pi\)
−0.187731 + 0.982220i \(0.560113\pi\)
\(18\) 3.42410 1.60331i 0.807069 0.377904i
\(19\) −1.00269 + 1.73671i −0.230033 + 0.398428i −0.957817 0.287377i \(-0.907217\pi\)
0.727785 + 0.685805i \(0.240550\pi\)
\(20\) −4.41891 0.687909i −0.988099 0.153821i
\(21\) −1.29409 0.781608i −0.282393 0.170561i
\(22\) −0.479259 + 5.57997i −0.102178 + 1.18965i
\(23\) −0.640717 2.39119i −0.133599 0.498597i 0.866401 0.499349i \(-0.166427\pi\)
−1.00000 0.000751542i \(0.999761\pi\)
\(24\) −1.40350 0.801422i −0.286488 0.163590i
\(25\) −2.64510 4.24305i −0.529020 0.848609i
\(26\) −4.03632 + 0.718322i −0.791588 + 0.140874i
\(27\) 2.29237 + 2.29237i 0.441166 + 0.441166i
\(28\) −0.373784 5.27828i −0.0706386 0.997502i
\(29\) 7.25964i 1.34808i −0.738694 0.674041i \(-0.764557\pi\)
0.738694 0.674041i \(-0.235443\pi\)
\(30\) −0.346661 1.77340i −0.0632913 0.323777i
\(31\) −2.83005 + 1.63393i −0.508292 + 0.293462i −0.732131 0.681164i \(-0.761474\pi\)
0.223840 + 0.974626i \(0.428141\pi\)
\(32\) −0.537745 5.63124i −0.0950609 0.995471i
\(33\) −2.18578 + 0.585677i −0.380495 + 0.101953i
\(34\) −0.650233 + 0.547372i −0.111514 + 0.0938735i
\(35\) 4.19508 4.17148i 0.709099 0.705109i
\(36\) −0.911768 + 5.26867i −0.151961 + 0.878111i
\(37\) 2.49187 + 9.29977i 0.409660 + 1.52887i 0.795295 + 0.606222i \(0.207316\pi\)
−0.385635 + 0.922651i \(0.626018\pi\)
\(38\) −1.20264 2.56841i −0.195094 0.416651i
\(39\) −0.828248 1.43457i −0.132626 0.229715i
\(40\) 4.37411 4.56806i 0.691607 0.722274i
\(41\) −3.35439 −0.523868 −0.261934 0.965086i \(-0.584360\pi\)
−0.261934 + 0.965086i \(0.584360\pi\)
\(42\) 1.95380 0.868240i 0.301477 0.133972i
\(43\) −3.31777 + 3.31777i −0.505955 + 0.505955i −0.913282 0.407327i \(-0.866461\pi\)
0.407327 + 0.913282i \(0.366461\pi\)
\(44\) −6.08345 5.07179i −0.917115 0.764602i
\(45\) −5.12586 + 3.07624i −0.764119 + 0.458578i
\(46\) 3.29171 + 1.19217i 0.485336 + 0.175776i
\(47\) −12.1147 + 3.24611i −1.76710 + 0.473494i −0.988137 0.153572i \(-0.950922\pi\)
−0.778966 + 0.627066i \(0.784256\pi\)
\(48\) 2.06532 0.979091i 0.298104 0.141320i
\(49\) 5.91928 + 3.73660i 0.845611 + 0.533799i
\(50\) 7.06157 + 0.366343i 0.998657 + 0.0518087i
\(51\) −0.297413 0.171711i −0.0416461 0.0240444i
\(52\) 2.43360 5.26244i 0.337480 0.729770i
\(53\) −0.779134 + 2.90777i −0.107022 + 0.399413i −0.998567 0.0535205i \(-0.982956\pi\)
0.891544 + 0.452933i \(0.149622\pi\)
\(54\) −4.51381 + 0.803298i −0.614252 + 0.109315i
\(55\) −0.149853 8.85392i −0.0202062 1.19386i
\(56\) 6.42396 + 3.83832i 0.858438 + 0.512918i
\(57\) 0.810271 0.810271i 0.107323 0.107323i
\(58\) 8.41932 + 5.87537i 1.10551 + 0.771474i
\(59\) 7.41735 + 12.8472i 0.965657 + 1.67257i 0.707839 + 0.706374i \(0.249670\pi\)
0.257818 + 0.966193i \(0.416996\pi\)
\(60\) 2.33724 + 1.03321i 0.301737 + 0.133387i
\(61\) −2.11676 + 3.66633i −0.271023 + 0.469426i −0.969124 0.246574i \(-0.920695\pi\)
0.698101 + 0.715999i \(0.254029\pi\)
\(62\) 0.395476 4.60450i 0.0502255 0.584772i
\(63\) −4.90192 5.09941i −0.617584 0.642466i
\(64\) 6.96599 + 3.93382i 0.870749 + 0.491728i
\(65\) 6.23209 1.78345i 0.772996 0.221210i
\(66\) 1.08976 3.00894i 0.134140 0.370375i
\(67\) 0.984566 3.67445i 0.120284 0.448906i −0.879344 0.476187i \(-0.842018\pi\)
0.999628 + 0.0272817i \(0.00868511\pi\)
\(68\) −0.108564 1.19710i −0.0131653 0.145170i
\(69\) 1.41455i 0.170292i
\(70\) 1.44268 + 8.24128i 0.172434 + 0.985021i
\(71\) 4.86004i 0.576781i −0.957513 0.288390i \(-0.906880\pi\)
0.957513 0.288390i \(-0.0931201\pi\)
\(72\) −5.37238 5.32145i −0.633142 0.627139i
\(73\) −2.53197 + 9.44944i −0.296345 + 1.10597i 0.643799 + 0.765195i \(0.277357\pi\)
−0.940143 + 0.340779i \(0.889309\pi\)
\(74\) −12.8021 4.63656i −1.48821 0.538990i
\(75\) 0.832427 + 2.73310i 0.0961204 + 0.315591i
\(76\) 3.95201 + 0.683915i 0.453327 + 0.0784504i
\(77\) 10.1722 2.51146i 1.15922 0.286208i
\(78\) 2.33405 + 0.200469i 0.264279 + 0.0226987i
\(79\) 3.45719 5.98803i 0.388965 0.673706i −0.603346 0.797480i \(-0.706166\pi\)
0.992311 + 0.123773i \(0.0394995\pi\)
\(80\) 1.75772 + 8.76986i 0.196519 + 0.980500i
\(81\) 3.08400 + 5.34165i 0.342667 + 0.593517i
\(82\) 2.71477 3.89023i 0.299796 0.429604i
\(83\) −5.46792 + 5.46792i −0.600182 + 0.600182i −0.940361 0.340179i \(-0.889512\pi\)
0.340179 + 0.940361i \(0.389512\pi\)
\(84\) −0.574310 + 2.96858i −0.0626624 + 0.323899i
\(85\) 0.934058 0.966221i 0.101313 0.104801i
\(86\) −1.16262 6.53289i −0.125369 0.704460i
\(87\) −1.07364 + 4.00690i −0.115107 + 0.429584i
\(88\) 10.8054 2.95054i 1.15186 0.314528i
\(89\) 3.35292 + 1.93581i 0.355409 + 0.205195i 0.667065 0.745000i \(-0.267550\pi\)
−0.311656 + 0.950195i \(0.600884\pi\)
\(90\) 0.580822 8.43434i 0.0612240 0.889057i
\(91\) 3.70307 + 6.71676i 0.388187 + 0.704108i
\(92\) −4.04665 + 2.85269i −0.421893 + 0.297413i
\(93\) 1.80367 0.483291i 0.187031 0.0501149i
\(94\) 6.03997 16.6770i 0.622975 1.72010i
\(95\) 2.30748 + 3.84490i 0.236742 + 0.394478i
\(96\) −0.536012 + 3.18764i −0.0547065 + 0.325337i
\(97\) 1.11914 1.11914i 0.113632 0.113632i −0.648005 0.761636i \(-0.724396\pi\)
0.761636 + 0.648005i \(0.224396\pi\)
\(98\) −9.12407 + 3.84074i −0.921671 + 0.387973i
\(99\) −10.5874 −1.06408
\(100\) −6.13993 + 7.89311i −0.613993 + 0.789311i
\(101\) −8.93266 15.4718i −0.888833 1.53950i −0.841257 0.540636i \(-0.818184\pi\)
−0.0475759 0.998868i \(-0.515150\pi\)
\(102\) 0.439843 0.205953i 0.0435509 0.0203924i
\(103\) −2.90309 10.8345i −0.286050 1.06755i −0.948069 0.318066i \(-0.896967\pi\)
0.662019 0.749487i \(-0.269700\pi\)
\(104\) 4.13352 + 7.08135i 0.405325 + 0.694384i
\(105\) −2.93237 + 1.68199i −0.286170 + 0.164146i
\(106\) −2.74169 3.25691i −0.266297 0.316339i
\(107\) 7.59541 2.03518i 0.734276 0.196749i 0.127743 0.991807i \(-0.459227\pi\)
0.606533 + 0.795059i \(0.292560\pi\)
\(108\) 2.72150 5.88498i 0.261876 0.566283i
\(109\) 0.350133 0.202149i 0.0335366 0.0193624i −0.483138 0.875544i \(-0.660503\pi\)
0.516675 + 0.856182i \(0.327170\pi\)
\(110\) 10.3895 + 6.99186i 0.990604 + 0.666648i
\(111\) 5.50146i 0.522175i
\(112\) −9.65050 + 4.34371i −0.911887 + 0.410442i
\(113\) −3.57217 3.57217i −0.336041 0.336041i 0.518834 0.854875i \(-0.326366\pi\)
−0.854875 + 0.518834i \(0.826366\pi\)
\(114\) 0.283937 + 1.59547i 0.0265932 + 0.149430i
\(115\) −5.37034 1.34200i −0.500787 0.125142i
\(116\) −13.6278 + 5.00919i −1.26531 + 0.465091i
\(117\) −2.00593 7.48624i −0.185448 0.692103i
\(118\) −20.9025 1.79530i −1.92423 0.165270i
\(119\) 1.36112 + 0.822090i 0.124773 + 0.0753609i
\(120\) −3.08983 + 1.87440i −0.282062 + 0.171109i
\(121\) 2.34144 4.05549i 0.212858 0.368681i
\(122\) −2.53887 5.42213i −0.229858 0.490896i
\(123\) 1.85143 + 0.496088i 0.166937 + 0.0447308i
\(124\) 5.01996 + 4.18516i 0.450806 + 0.375838i
\(125\) −11.1659 + 0.567387i −0.998711 + 0.0507486i
\(126\) 9.88122 1.55791i 0.880289 0.138789i
\(127\) −4.80151 4.80151i −0.426065 0.426065i 0.461221 0.887286i \(-0.347412\pi\)
−0.887286 + 0.461221i \(0.847412\pi\)
\(128\) −10.1999 + 4.89504i −0.901555 + 0.432664i
\(129\) 2.32188 1.34054i 0.204431 0.118028i
\(130\) −2.97541 + 8.67100i −0.260961 + 0.760497i
\(131\) 13.1564 + 7.59586i 1.14948 + 0.663653i 0.948761 0.315996i \(-0.102339\pi\)
0.200720 + 0.979649i \(0.435672\pi\)
\(132\) 2.60763 + 3.69903i 0.226965 + 0.321959i
\(133\) −3.82506 + 3.67692i −0.331674 + 0.318829i
\(134\) 3.46459 + 4.11565i 0.299295 + 0.355538i
\(135\) 6.96934 1.99443i 0.599825 0.171653i
\(136\) 1.47619 + 0.842931i 0.126582 + 0.0722807i
\(137\) −4.42171 1.18479i −0.377772 0.101224i 0.0649361 0.997889i \(-0.479316\pi\)
−0.442708 + 0.896666i \(0.645982\pi\)
\(138\) −1.64052 1.14483i −0.139650 0.0974540i
\(139\) 11.1198 0.943167 0.471583 0.881821i \(-0.343683\pi\)
0.471583 + 0.881821i \(0.343683\pi\)
\(140\) −10.7254 4.99669i −0.906458 0.422297i
\(141\) 7.16665 0.603541
\(142\) 5.63639 + 3.93332i 0.472996 + 0.330077i
\(143\) 11.0891 + 2.97133i 0.927321 + 0.248475i
\(144\) 10.5195 1.92383i 0.876624 0.160319i
\(145\) −14.1936 7.87746i −1.17871 0.654188i
\(146\) −8.90975 10.5841i −0.737376 0.875942i
\(147\) −2.71448 2.93780i −0.223887 0.242305i
\(148\) 15.7382 11.0946i 1.29367 0.911973i
\(149\) 4.24169 + 2.44894i 0.347493 + 0.200625i 0.663580 0.748105i \(-0.269036\pi\)
−0.316088 + 0.948730i \(0.602369\pi\)
\(150\) −3.84339 1.24655i −0.313812 0.101780i
\(151\) −12.7632 + 7.36881i −1.03865 + 0.599666i −0.919451 0.393205i \(-0.871366\pi\)
−0.119200 + 0.992870i \(0.538033\pi\)
\(152\) −3.99161 + 4.02981i −0.323762 + 0.326861i
\(153\) −1.13617 1.13617i −0.0918538 0.0918538i
\(154\) −5.31987 + 13.8297i −0.428687 + 1.11443i
\(155\) 0.123656 + 7.30611i 0.00993233 + 0.586841i
\(156\) −2.12148 + 2.54465i −0.169854 + 0.203735i
\(157\) −10.7377 2.87717i −0.856964 0.229623i −0.196522 0.980499i \(-0.562965\pi\)
−0.660442 + 0.750877i \(0.729631\pi\)
\(158\) 4.14660 + 8.85568i 0.329886 + 0.704520i
\(159\) 0.860073 1.48969i 0.0682082 0.118140i
\(160\) −11.5933 5.05911i −0.916534 0.399958i
\(161\) 0.129310 6.54839i 0.0101911 0.516085i
\(162\) −8.69088 0.746452i −0.682820 0.0586468i
\(163\) 4.75254 + 17.7367i 0.372248 + 1.38925i 0.857324 + 0.514776i \(0.172125\pi\)
−0.485077 + 0.874472i \(0.661208\pi\)
\(164\) 2.31454 + 6.29687i 0.180735 + 0.491703i
\(165\) −1.22672 + 4.90901i −0.0954997 + 0.382166i
\(166\) −1.91608 10.7667i −0.148717 0.835655i
\(167\) 13.1233 + 13.1233i 1.01551 + 1.01551i 0.999878 + 0.0156336i \(0.00497655\pi\)
0.0156336 + 0.999878i \(0.495023\pi\)
\(168\) −2.97799 3.06858i −0.229757 0.236746i
\(169\) 4.59606i 0.353543i
\(170\) 0.364616 + 1.86525i 0.0279647 + 0.143058i
\(171\) 4.64307 2.68068i 0.355064 0.204996i
\(172\) 8.51740 + 3.93885i 0.649446 + 0.300335i
\(173\) 7.49083 2.00716i 0.569517 0.152602i 0.0374420 0.999299i \(-0.488079\pi\)
0.532075 + 0.846697i \(0.321412\pi\)
\(174\) −3.77805 4.48801i −0.286413 0.340235i
\(175\) −3.60371 12.7284i −0.272415 0.962180i
\(176\) −5.32318 + 14.9194i −0.401250 + 1.12460i
\(177\) −2.19394 8.18789i −0.164906 0.615439i
\(178\) −4.95862 + 2.32184i −0.371665 + 0.174029i
\(179\) −2.56434 4.44157i −0.191668 0.331979i 0.754135 0.656719i \(-0.228056\pi\)
−0.945803 + 0.324741i \(0.894723\pi\)
\(180\) 9.31159 + 7.49968i 0.694045 + 0.558993i
\(181\) 18.1294 1.34755 0.673774 0.738938i \(-0.264672\pi\)
0.673774 + 0.738938i \(0.264672\pi\)
\(182\) −10.7867 1.14140i −0.799561 0.0846059i
\(183\) 1.71055 1.71055i 0.126447 0.126447i
\(184\) −0.0333491 7.00181i −0.00245853 0.516180i
\(185\) 20.8862 + 5.21928i 1.53559 + 0.383729i
\(186\) −0.899249 + 2.48292i −0.0659361 + 0.182057i
\(187\) 2.29899 0.616011i 0.168118 0.0450472i
\(188\) 14.4528 + 20.5018i 1.05408 + 1.49525i
\(189\) 4.14114 + 7.51134i 0.301223 + 0.546370i
\(190\) −6.32658 0.435673i −0.458978 0.0316070i
\(191\) −13.5825 7.84185i −0.982794 0.567416i −0.0796814 0.996820i \(-0.525390\pi\)
−0.903112 + 0.429404i \(0.858724\pi\)
\(192\) −3.26304 3.20145i −0.235489 0.231045i
\(193\) 2.00899 7.49764i 0.144610 0.539692i −0.855162 0.518360i \(-0.826543\pi\)
0.999772 0.0213318i \(-0.00679064\pi\)
\(194\) 0.392173 + 2.20366i 0.0281564 + 0.158214i
\(195\) −3.70351 + 0.0626822i −0.265214 + 0.00448876i
\(196\) 2.93002 13.6900i 0.209287 0.977854i
\(197\) 4.22983 4.22983i 0.301363 0.301363i −0.540184 0.841547i \(-0.681645\pi\)
0.841547 + 0.540184i \(0.181645\pi\)
\(198\) 8.56863 12.2787i 0.608946 0.872610i
\(199\) −7.04403 12.2006i −0.499338 0.864879i 0.500661 0.865643i \(-0.333090\pi\)
−1.00000 0.000763945i \(0.999757\pi\)
\(200\) −4.18482 13.5088i −0.295911 0.955215i
\(201\) −1.08685 + 1.88247i −0.0766601 + 0.132779i
\(202\) 25.1727 + 2.16206i 1.77114 + 0.152122i
\(203\) 5.33651 18.4510i 0.374550 1.29501i
\(204\) −0.117121 + 0.676785i −0.00820011 + 0.0473845i
\(205\) −3.63986 + 6.55828i −0.254219 + 0.458050i
\(206\) 14.9147 + 5.40172i 1.03916 + 0.376356i
\(207\) −1.71295 + 6.39282i −0.119058 + 0.444332i
\(208\) −11.5579 0.937263i −0.801395 0.0649875i
\(209\) 7.94162i 0.549333i
\(210\) 0.422544 4.76206i 0.0291583 0.328614i
\(211\) 17.2435i 1.18709i −0.804799 0.593547i \(-0.797727\pi\)
0.804799 0.593547i \(-0.202273\pi\)
\(212\) 5.99608 0.543779i 0.411813 0.0373469i
\(213\) −0.718762 + 2.68246i −0.0492488 + 0.183799i
\(214\) −3.78682 + 10.4558i −0.258862 + 0.714746i
\(215\) 2.88656 + 10.0868i 0.196862 + 0.687914i
\(216\) 4.62250 + 7.91907i 0.314522 + 0.538824i
\(217\) −8.39389 + 2.07242i −0.569814 + 0.140685i
\(218\) −0.0489282 + 0.569667i −0.00331383 + 0.0385827i
\(219\) 2.79500 4.84108i 0.188868 0.327130i
\(220\) −16.5172 + 6.39055i −1.11359 + 0.430851i
\(221\) 0.871146 + 1.50887i 0.0585996 + 0.101498i
\(222\) 6.38027 + 4.45244i 0.428216 + 0.298828i
\(223\) −11.5356 + 11.5356i −0.772484 + 0.772484i −0.978540 0.206056i \(-0.933937\pi\)
0.206056 + 0.978540i \(0.433937\pi\)
\(224\) 2.77276 14.7075i 0.185263 0.982689i
\(225\) 0.452361 + 13.3598i 0.0301574 + 0.890653i
\(226\) 7.03382 1.25177i 0.467882 0.0832664i
\(227\) 3.12892 11.6773i 0.207674 0.775049i −0.780944 0.624601i \(-0.785262\pi\)
0.988618 0.150448i \(-0.0480717\pi\)
\(228\) −2.08013 0.961953i −0.137760 0.0637069i
\(229\) −1.89994 1.09693i −0.125552 0.0724873i 0.435909 0.899991i \(-0.356427\pi\)
−0.561460 + 0.827504i \(0.689760\pi\)
\(230\) 5.90269 5.14211i 0.389212 0.339060i
\(231\) −5.98586 0.118202i −0.393840 0.00777710i
\(232\) 5.21990 19.8588i 0.342703 1.30379i
\(233\) −1.08868 + 0.291712i −0.0713220 + 0.0191107i −0.294304 0.955712i \(-0.595088\pi\)
0.222982 + 0.974823i \(0.428421\pi\)
\(234\) 10.3055 + 3.73239i 0.673694 + 0.243994i
\(235\) −6.79907 + 27.2081i −0.443522 + 1.77486i
\(236\) 18.9989 22.7885i 1.23672 1.48341i
\(237\) −2.79375 + 2.79375i −0.181474 + 0.181474i
\(238\) −2.05499 + 0.913209i −0.133205 + 0.0591946i
\(239\) −19.8536 −1.28422 −0.642111 0.766612i \(-0.721941\pi\)
−0.642111 + 0.766612i \(0.721941\pi\)
\(240\) 0.326833 5.10040i 0.0210970 0.329229i
\(241\) 4.32744 + 7.49535i 0.278755 + 0.482818i 0.971076 0.238772i \(-0.0767449\pi\)
−0.692321 + 0.721590i \(0.743412\pi\)
\(242\) 2.80835 + 5.99765i 0.180528 + 0.385544i
\(243\) −3.42939 12.7987i −0.219996 0.821035i
\(244\) 8.34302 + 1.44380i 0.534107 + 0.0924299i
\(245\) 13.7286 7.51839i 0.877087 0.480332i
\(246\) −2.07373 + 1.74568i −0.132216 + 0.111301i
\(247\) −5.61541 + 1.50464i −0.357300 + 0.0957382i
\(248\) −8.91646 + 2.43473i −0.566196 + 0.154606i
\(249\) 3.82663 2.20931i 0.242503 0.140009i
\(250\) 8.37878 13.4088i 0.529921 0.848047i
\(251\) 1.55623i 0.0982283i −0.998793 0.0491141i \(-0.984360\pi\)
0.998793 0.0491141i \(-0.0156398\pi\)
\(252\) −6.19029 + 12.7205i −0.389952 + 0.801317i
\(253\) −6.93215 6.93215i −0.435821 0.435821i
\(254\) 9.45447 1.68256i 0.593226 0.105573i
\(255\) −0.658442 + 0.395157i −0.0412332 + 0.0247457i
\(256\) 2.57802 15.7909i 0.161126 0.986934i
\(257\) 4.60489 + 17.1857i 0.287245 + 1.07201i 0.947183 + 0.320693i \(0.103916\pi\)
−0.659938 + 0.751320i \(0.729418\pi\)
\(258\) −0.324464 + 3.77771i −0.0202003 + 0.235190i
\(259\) −0.502910 + 25.4679i −0.0312493 + 1.58250i
\(260\) −7.64807 10.4683i −0.474313 0.649218i
\(261\) −9.70429 + 16.8083i −0.600680 + 1.04041i
\(262\) −19.4570 + 9.11057i −1.20206 + 0.562853i
\(263\) 18.5489 + 4.97016i 1.14377 + 0.306473i 0.780467 0.625197i \(-0.214981\pi\)
0.363306 + 0.931670i \(0.381648\pi\)
\(264\) −6.40032 + 0.0304843i −0.393913 + 0.00187618i
\(265\) 4.83964 + 4.67854i 0.297297 + 0.287401i
\(266\) −1.16858 7.41188i −0.0716504 0.454451i
\(267\) −1.56432 1.56432i −0.0957350 0.0957350i
\(268\) −7.57705 + 0.687156i −0.462842 + 0.0419747i
\(269\) −12.4257 + 7.17398i −0.757608 + 0.437405i −0.828436 0.560083i \(-0.810769\pi\)
0.0708284 + 0.997489i \(0.477436\pi\)
\(270\) −3.32740 + 9.69677i −0.202499 + 0.590127i
\(271\) 17.9057 + 10.3379i 1.08770 + 0.627981i 0.932962 0.359975i \(-0.117215\pi\)
0.154733 + 0.987956i \(0.450548\pi\)
\(272\) −2.17229 + 1.02980i −0.131715 + 0.0624409i
\(273\) −1.05052 4.25491i −0.0635804 0.257519i
\(274\) 4.95263 4.16917i 0.299199 0.251869i
\(275\) −17.4732 9.31444i −1.05367 0.561682i
\(276\) 2.65540 0.976048i 0.159837 0.0587512i
\(277\) −4.70760 1.26140i −0.282853 0.0757901i 0.114604 0.993411i \(-0.463440\pi\)
−0.397456 + 0.917621i \(0.630107\pi\)
\(278\) −8.99945 + 12.8961i −0.539751 + 0.773455i
\(279\) 8.73658 0.523045
\(280\) 14.4751 8.39473i 0.865053 0.501681i
\(281\) −9.71163 −0.579347 −0.289674 0.957125i \(-0.593547\pi\)
−0.289674 + 0.957125i \(0.593547\pi\)
\(282\) −5.80011 + 8.31147i −0.345391 + 0.494941i
\(283\) −1.36959 0.366980i −0.0814136 0.0218147i 0.217882 0.975975i \(-0.430085\pi\)
−0.299296 + 0.954160i \(0.596752\pi\)
\(284\) −9.12328 + 3.35345i −0.541367 + 0.198991i
\(285\) −0.704961 2.46342i −0.0417583 0.145920i
\(286\) −12.4206 + 10.4558i −0.734447 + 0.618264i
\(287\) −8.52546 2.46579i −0.503242 0.145551i
\(288\) −6.28248 + 13.7569i −0.370199 + 0.810632i
\(289\) −14.4096 8.31940i −0.847624 0.489376i
\(290\) 20.6230 10.0855i 1.21102 0.592242i
\(291\) −0.783214 + 0.452189i −0.0459128 + 0.0265078i
\(292\) 19.4856 1.76713i 1.14031 0.103414i
\(293\) −6.02648 6.02648i −0.352071 0.352071i 0.508809 0.860880i \(-0.330086\pi\)
−0.860880 + 0.508809i \(0.830086\pi\)
\(294\) 5.60397 0.770482i 0.326830 0.0449354i
\(295\) 33.1667 0.561349i 1.93104 0.0326830i
\(296\) 0.129701 + 27.2313i 0.00753870 + 1.58279i
\(297\) 12.4010 + 3.32283i 0.719578 + 0.192810i
\(298\) −6.27302 + 2.93729i −0.363386 + 0.170153i
\(299\) 3.58824 6.21502i 0.207513 0.359424i
\(300\) 4.55621 3.44849i 0.263053 0.199099i
\(301\) −10.8712 + 5.99351i −0.626608 + 0.345460i
\(302\) 1.78355 20.7657i 0.102632 1.19493i
\(303\) 2.64214 + 9.86060i 0.151787 + 0.566477i
\(304\) −1.44306 7.89064i −0.0827651 0.452559i
\(305\) 4.87127 + 8.11690i 0.278928 + 0.464772i
\(306\) 2.23719 0.398140i 0.127891 0.0227601i
\(307\) −11.0030 11.0030i −0.627975 0.627975i 0.319583 0.947558i \(-0.396457\pi\)
−0.947558 + 0.319583i \(0.896457\pi\)
\(308\) −11.7334 17.3623i −0.668570 0.989308i
\(309\) 6.40934i 0.364615i
\(310\) −8.57328 5.76956i −0.486929 0.327689i
\(311\) −21.9956 + 12.6992i −1.24726 + 0.720104i −0.970561 0.240854i \(-0.922572\pi\)
−0.276695 + 0.960958i \(0.589239\pi\)
\(312\) −1.23418 4.51980i −0.0698717 0.255884i
\(313\) 25.0624 6.71544i 1.41661 0.379579i 0.532330 0.846537i \(-0.321317\pi\)
0.884280 + 0.466958i \(0.154650\pi\)
\(314\) 12.0270 10.1245i 0.678724 0.571356i
\(315\) −15.2891 + 4.05052i −0.861444 + 0.228221i
\(316\) −13.6262 2.35809i −0.766536 0.132653i
\(317\) 0.0554686 + 0.207012i 0.00311543 + 0.0116269i 0.967466 0.253001i \(-0.0814176\pi\)
−0.964351 + 0.264628i \(0.914751\pi\)
\(318\) 1.03158 + 2.20310i 0.0578483 + 0.123544i
\(319\) −14.3747 24.8977i −0.804828 1.39400i
\(320\) 15.2500 9.35085i 0.852499 0.522728i
\(321\) −4.49321 −0.250786
\(322\) 7.48979 + 5.44971i 0.417390 + 0.303700i
\(323\) −0.852238 + 0.852238i −0.0474198 + 0.0474198i
\(324\) 7.89939 9.47507i 0.438855 0.526393i
\(325\) 3.27558 14.1198i 0.181696 0.783226i
\(326\) −24.4164 8.84296i −1.35230 0.489766i
\(327\) −0.223149 + 0.0597926i −0.0123402 + 0.00330654i
\(328\) −9.17595 2.41191i −0.506657 0.133175i
\(329\) −33.1766 0.655132i −1.82908 0.0361186i
\(330\) −4.70038 5.39563i −0.258747 0.297020i
\(331\) 1.84066 + 1.06270i 0.101172 + 0.0584115i 0.549732 0.835341i \(-0.314730\pi\)
−0.448560 + 0.893753i \(0.648063\pi\)
\(332\) 14.0373 + 6.49151i 0.770396 + 0.356268i
\(333\) 6.66198 24.8628i 0.365074 1.36248i
\(334\) −25.8406 + 4.59871i −1.41393 + 0.251630i
\(335\) −6.11569 5.91212i −0.334136 0.323013i
\(336\) 5.96891 0.970238i 0.325631 0.0529308i
\(337\) −22.4528 + 22.4528i −1.22308 + 1.22308i −0.256552 + 0.966530i \(0.582586\pi\)
−0.966530 + 0.256552i \(0.917414\pi\)
\(338\) 5.33025 + 3.71968i 0.289927 + 0.202324i
\(339\) 1.44333 + 2.49992i 0.0783909 + 0.135777i
\(340\) −2.45830 1.08672i −0.133320 0.0589357i
\(341\) −6.47062 + 11.2074i −0.350404 + 0.606917i
\(342\) −0.648831 + 7.55429i −0.0350848 + 0.408489i
\(343\) 12.2976 + 13.8481i 0.664007 + 0.747726i
\(344\) −11.4613 + 6.69020i −0.617955 + 0.360711i
\(345\) 2.76564 + 1.53494i 0.148897 + 0.0826382i
\(346\) −3.73468 + 10.3119i −0.200778 + 0.554369i
\(347\) 4.72717 17.6420i 0.253768 0.947074i −0.715004 0.699120i \(-0.753575\pi\)
0.968772 0.247954i \(-0.0797582\pi\)
\(348\) 8.26258 0.749326i 0.442921 0.0401681i
\(349\) 21.6072i 1.15661i −0.815821 0.578304i \(-0.803715\pi\)
0.815821 0.578304i \(-0.196285\pi\)
\(350\) 17.6783 + 6.12200i 0.944943 + 0.327235i
\(351\) 9.39811i 0.501634i
\(352\) −12.9946 18.2481i −0.692612 0.972628i
\(353\) 4.39216 16.3918i 0.233771 0.872446i −0.744928 0.667145i \(-0.767516\pi\)
0.978699 0.205301i \(-0.0658173\pi\)
\(354\) 11.2714 + 4.08221i 0.599070 + 0.216967i
\(355\) −9.50203 5.27365i −0.504315 0.279896i
\(356\) 1.32038 7.62983i 0.0699799 0.404380i
\(357\) −0.629675 0.655044i −0.0333259 0.0346686i
\(358\) 7.22645 + 0.620673i 0.381930 + 0.0328036i
\(359\) −4.43990 + 7.69014i −0.234329 + 0.405870i −0.959078 0.283144i \(-0.908623\pi\)
0.724748 + 0.689014i \(0.241956\pi\)
\(360\) −16.2337 + 4.72941i −0.855593 + 0.249262i
\(361\) 7.48923 + 12.9717i 0.394170 + 0.682723i
\(362\) −14.6725 + 21.0254i −0.771168 + 1.10507i
\(363\) −1.89211 + 1.89211i −0.0993101 + 0.0993101i
\(364\) 10.0536 11.5860i 0.526951 0.607272i
\(365\) 15.7275 + 15.2040i 0.823214 + 0.795812i
\(366\) 0.599415 + 3.36817i 0.0313319 + 0.176057i
\(367\) 5.62655 20.9986i 0.293704 1.09612i −0.648538 0.761182i \(-0.724619\pi\)
0.942241 0.334934i \(-0.108714\pi\)
\(368\) 8.14728 + 5.62802i 0.424707 + 0.293381i
\(369\) 7.76645 + 4.48396i 0.404305 + 0.233426i
\(370\) −22.9567 + 19.9986i −1.19346 + 1.03968i
\(371\) −4.11771 + 6.81760i −0.213781 + 0.353952i
\(372\) −2.15177 3.05237i −0.111564 0.158258i
\(373\) 0.472145 0.126511i 0.0244467 0.00655048i −0.246575 0.969124i \(-0.579305\pi\)
0.271022 + 0.962573i \(0.412638\pi\)
\(374\) −1.14620 + 3.16478i −0.0592686 + 0.163647i
\(375\) 6.24685 + 1.33819i 0.322586 + 0.0691039i
\(376\) −35.4738 + 0.168959i −1.82942 + 0.00871339i
\(377\) 14.8813 14.8813i 0.766427 0.766427i
\(378\) −12.0627 1.27642i −0.620440 0.0656521i
\(379\) 27.8315 1.42961 0.714805 0.699324i \(-0.246516\pi\)
0.714805 + 0.699324i \(0.246516\pi\)
\(380\) 5.62549 6.98460i 0.288581 0.358302i
\(381\) 1.94004 + 3.36026i 0.0993915 + 0.172151i
\(382\) 20.0871 9.40562i 1.02774 0.481233i
\(383\) −1.33854 4.99551i −0.0683964 0.255259i 0.923259 0.384179i \(-0.125516\pi\)
−0.991655 + 0.128920i \(0.958849\pi\)
\(384\) 6.35370 1.19328i 0.324236 0.0608944i
\(385\) 6.12759 22.6131i 0.312291 1.15247i
\(386\) 7.06942 + 8.39789i 0.359824 + 0.427441i
\(387\) 12.1167 3.24665i 0.615925 0.165037i
\(388\) −2.87307 1.32865i −0.145858 0.0674518i
\(389\) −10.5873 + 6.11259i −0.536798 + 0.309921i −0.743780 0.668424i \(-0.766969\pi\)
0.206982 + 0.978345i \(0.433636\pi\)
\(390\) 2.92463 4.34584i 0.148094 0.220060i
\(391\) 1.48782i 0.0752422i
\(392\) 13.5055 + 14.4776i 0.682131 + 0.731230i
\(393\) −6.13820 6.13820i −0.309631 0.309631i
\(394\) 1.48223 + 8.32880i 0.0746737 + 0.419599i
\(395\) −7.95600 13.2569i −0.400310 0.667028i
\(396\) 7.30538 + 19.8748i 0.367109 + 0.998746i
\(397\) −4.52602 16.8913i −0.227154 0.847751i −0.981530 0.191308i \(-0.938727\pi\)
0.754376 0.656443i \(-0.227940\pi\)
\(398\) 19.8505 + 1.70494i 0.995013 + 0.0854608i
\(399\) 2.65499 1.46375i 0.132916 0.0732789i
\(400\) 19.0536 + 6.07962i 0.952678 + 0.303981i
\(401\) 15.5612 26.9528i 0.777089 1.34596i −0.156524 0.987674i \(-0.550029\pi\)
0.933613 0.358284i \(-0.116638\pi\)
\(402\) −1.30358 2.78398i −0.0650165 0.138852i
\(403\) −9.15057 2.45189i −0.455823 0.122137i
\(404\) −22.8802 + 27.4440i −1.13833 + 1.36539i
\(405\) 13.7901 0.233399i 0.685236 0.0115977i
\(406\) 17.0794 + 21.1217i 0.847639 + 1.04825i
\(407\) 26.9604 + 26.9604i 1.33638 + 1.33638i
\(408\) −0.690108 0.683566i −0.0341655 0.0338415i
\(409\) −4.43457 + 2.56030i −0.219275 + 0.126599i −0.605615 0.795758i \(-0.707073\pi\)
0.386339 + 0.922357i \(0.373739\pi\)
\(410\) −4.66011 9.52904i −0.230146 0.470606i
\(411\) 2.26530 + 1.30787i 0.111739 + 0.0645126i
\(412\) −18.3354 + 12.9255i −0.903319 + 0.636795i
\(413\) 9.40791 + 38.1047i 0.462933 + 1.87501i
\(414\) −6.02770 7.16041i −0.296245 0.351915i
\(415\) 4.75726 + 16.6238i 0.233525 + 0.816028i
\(416\) 10.4410 12.6456i 0.511912 0.620002i
\(417\) −6.13746 1.64453i −0.300553 0.0805329i
\(418\) −9.21023 6.42730i −0.450487 0.314370i
\(419\) −14.0529 −0.686531 −0.343266 0.939238i \(-0.611533\pi\)
−0.343266 + 0.939238i \(0.611533\pi\)
\(420\) 5.18079 + 4.34407i 0.252797 + 0.211969i
\(421\) 37.5305 1.82913 0.914563 0.404443i \(-0.132535\pi\)
0.914563 + 0.404443i \(0.132535\pi\)
\(422\) 19.9981 + 13.9555i 0.973491 + 0.679345i
\(423\) 32.3884 + 8.67844i 1.57478 + 0.421960i
\(424\) −4.22210 + 7.39400i −0.205043 + 0.359084i
\(425\) −0.875542 2.87466i −0.0424700 0.139441i
\(426\) −2.52925 3.00454i −0.122543 0.145571i
\(427\) −8.07501 + 7.76227i −0.390777 + 0.375643i
\(428\) −9.06132 12.8538i −0.437995 0.621314i
\(429\) −5.68112 3.28000i −0.274287 0.158360i
\(430\) −14.0342 4.81578i −0.676791 0.232237i
\(431\) 21.0173 12.1344i 1.01237 0.584492i 0.100485 0.994939i \(-0.467961\pi\)
0.911885 + 0.410447i \(0.134627\pi\)
\(432\) −12.9252 1.04814i −0.621862 0.0504287i
\(433\) 0.0253628 + 0.0253628i 0.00121886 + 0.00121886i 0.707716 0.706497i \(-0.249726\pi\)
−0.706497 + 0.707716i \(0.749726\pi\)
\(434\) 4.38987 11.4120i 0.210720 0.547793i
\(435\) 6.66901 + 6.44702i 0.319754 + 0.309111i
\(436\) −0.621068 0.517787i −0.0297438 0.0247975i
\(437\) 4.79524 + 1.28488i 0.229387 + 0.0614641i
\(438\) 3.35236 + 7.15946i 0.160182 + 0.342092i
\(439\) 7.62951 13.2147i 0.364137 0.630703i −0.624500 0.781024i \(-0.714697\pi\)
0.988637 + 0.150321i \(0.0480307\pi\)
\(440\) 5.95631 24.3277i 0.283956 1.15978i
\(441\) −8.71009 16.5639i −0.414766 0.788759i
\(442\) −2.45494 0.210852i −0.116769 0.0100292i
\(443\) −3.09446 11.5487i −0.147022 0.548695i −0.999657 0.0261872i \(-0.991663\pi\)
0.852635 0.522507i \(-0.175003\pi\)
\(444\) −10.3274 + 3.79603i −0.490115 + 0.180152i
\(445\) 7.42303 4.45486i 0.351885 0.211180i
\(446\) −4.04235 22.7144i −0.191411 1.07556i
\(447\) −1.97898 1.97898i −0.0936027 0.0936027i
\(448\) 14.8129 + 15.1188i 0.699844 + 0.714295i
\(449\) 13.7142i 0.647213i 0.946192 + 0.323607i \(0.104895\pi\)
−0.946192 + 0.323607i \(0.895105\pi\)
\(450\) −15.8600 10.2877i −0.747648 0.484967i
\(451\) −11.5042 + 6.64196i −0.541712 + 0.312758i
\(452\) −4.24087 + 9.17049i −0.199474 + 0.431344i
\(453\) 8.13430 2.17958i 0.382183 0.102406i
\(454\) 11.0104 + 13.0794i 0.516741 + 0.613847i
\(455\) 17.1504 + 0.0483779i 0.804022 + 0.00226799i
\(456\) 2.79911 1.63389i 0.131080 0.0765140i
\(457\) −3.61073 13.4754i −0.168903 0.630354i −0.997510 0.0705235i \(-0.977533\pi\)
0.828607 0.559830i \(-0.189134\pi\)
\(458\) 2.80982 1.31567i 0.131294 0.0614774i
\(459\) 0.974202 + 1.68737i 0.0454718 + 0.0787595i
\(460\) 1.18635 + 11.0072i 0.0553140 + 0.513214i
\(461\) −27.6588 −1.28820 −0.644100 0.764941i \(-0.722768\pi\)
−0.644100 + 0.764941i \(0.722768\pi\)
\(462\) 4.98155 6.84639i 0.231763 0.318523i
\(463\) 4.03783 4.03783i 0.187654 0.187654i −0.607027 0.794681i \(-0.707638\pi\)
0.794681 + 0.607027i \(0.207638\pi\)
\(464\) 18.8065 + 22.1259i 0.873071 + 1.02717i
\(465\) 1.01226 4.05083i 0.0469427 0.187853i
\(466\) 0.542782 1.49868i 0.0251439 0.0694250i
\(467\) −11.8626 + 3.17857i −0.548935 + 0.147087i −0.522618 0.852567i \(-0.675045\pi\)
−0.0263172 + 0.999654i \(0.508378\pi\)
\(468\) −12.6691 + 8.93108i −0.585629 + 0.412839i
\(469\) 5.20342 8.61517i 0.240271 0.397812i
\(470\) −26.0518 29.9052i −1.20168 1.37943i
\(471\) 5.50108 + 3.17605i 0.253477 + 0.146345i
\(472\) 11.0527 + 40.4770i 0.508740 + 1.86310i
\(473\) −4.80917 + 17.9481i −0.221126 + 0.825253i
\(474\) −0.978994 5.50107i −0.0449667 0.252672i
\(475\) 10.0211 0.339315i 0.459802 0.0155688i
\(476\) 0.604056 3.12234i 0.0276869 0.143112i
\(477\) 5.69088 5.69088i 0.260568 0.260568i
\(478\) 16.0679 23.0250i 0.734928 1.05314i
\(479\) −12.0422 20.8577i −0.550223 0.953014i −0.998258 0.0589981i \(-0.981209\pi\)
0.448035 0.894016i \(-0.352124\pi\)
\(480\) 5.65064 + 4.50689i 0.257915 + 0.205711i
\(481\) −13.9553 + 24.1713i −0.636308 + 1.10212i
\(482\) −12.1950 1.04741i −0.555465 0.0477084i
\(483\) −1.03983 + 3.59520i −0.0473138 + 0.163587i
\(484\) −9.22859 1.59705i −0.419481 0.0725932i
\(485\) −0.973689 3.40246i −0.0442130 0.154498i
\(486\) 17.6186 + 6.38100i 0.799198 + 0.289448i
\(487\) 0.888247 3.31498i 0.0402503 0.150216i −0.942876 0.333144i \(-0.891891\pi\)
0.983126 + 0.182927i \(0.0585573\pi\)
\(488\) −8.42661 + 8.50726i −0.381455 + 0.385106i
\(489\) 10.4925i 0.474487i
\(490\) −2.39140 + 22.0064i −0.108033 + 0.994147i
\(491\) 3.54370i 0.159925i −0.996798 0.0799626i \(-0.974520\pi\)
0.996798 0.0799626i \(-0.0254801\pi\)
\(492\) −0.346234 3.81781i −0.0156094 0.172120i
\(493\) 1.12925 4.21443i 0.0508590 0.189808i
\(494\) 2.79966 7.73016i 0.125963 0.347796i
\(495\) −11.4885 + 20.6999i −0.516368 + 0.930391i
\(496\) 4.39260 12.3113i 0.197234 0.552792i
\(497\) 3.57258 12.3522i 0.160252 0.554071i
\(498\) −0.534740 + 6.22594i −0.0239623 + 0.278991i
\(499\) −15.1647 + 26.2660i −0.678864 + 1.17583i 0.296460 + 0.955045i \(0.404194\pi\)
−0.975323 + 0.220781i \(0.929139\pi\)
\(500\) 8.76964 + 20.5692i 0.392190 + 0.919884i
\(501\) −5.30246 9.18412i −0.236896 0.410316i
\(502\) 1.80482 + 1.25949i 0.0805532 + 0.0562136i
\(503\) −6.85172 + 6.85172i −0.305503 + 0.305503i −0.843162 0.537659i \(-0.819309\pi\)
0.537659 + 0.843162i \(0.319309\pi\)
\(504\) −9.74260 17.4741i −0.433970 0.778358i
\(505\) −39.9423 + 0.676027i −1.77741 + 0.0300828i
\(506\) 13.6498 2.42919i 0.606809 0.107990i
\(507\) −0.679722 + 2.53676i −0.0301875 + 0.112661i
\(508\) −5.70035 + 12.3265i −0.252912 + 0.546899i
\(509\) 8.23953 + 4.75709i 0.365211 + 0.210854i 0.671364 0.741128i \(-0.265709\pi\)
−0.306153 + 0.951982i \(0.599042\pi\)
\(510\) 0.0746093 1.08343i 0.00330376 0.0479751i
\(511\) −13.3814 + 22.1553i −0.591960 + 0.980093i
\(512\) 16.2270 + 15.7698i 0.717138 + 0.696931i
\(513\) −6.27970 + 1.68264i −0.277256 + 0.0742904i
\(514\) −23.6578 8.56822i −1.04350 0.377928i
\(515\) −24.3330 6.08060i −1.07224 0.267943i
\(516\) −4.11858 3.43367i −0.181310 0.151159i
\(517\) −35.1209 + 35.1209i −1.54461 + 1.54461i
\(518\) −29.1292 21.1949i −1.27986 0.931251i
\(519\) −4.43134 −0.194514
\(520\) 18.3303 0.397579i 0.803836 0.0174350i
\(521\) 2.30406 + 3.99075i 0.100943 + 0.174838i 0.912073 0.410027i \(-0.134481\pi\)
−0.811131 + 0.584865i \(0.801147\pi\)
\(522\) −11.6395 24.8578i −0.509445 1.08800i
\(523\) −8.89583 33.1997i −0.388987 1.45172i −0.831784 0.555099i \(-0.812680\pi\)
0.442797 0.896622i \(-0.353986\pi\)
\(524\) 5.18099 29.9384i 0.226333 1.30787i
\(525\) 0.106599 + 7.55831i 0.00465238 + 0.329872i
\(526\) −20.7761 + 17.4895i −0.905880 + 0.762578i
\(527\) −1.89708 + 0.508322i −0.0826383 + 0.0221429i
\(528\) 5.14455 7.44740i 0.223888 0.324106i
\(529\) 14.6113 8.43585i 0.635275 0.366776i
\(530\) −9.34272 + 1.82630i −0.405822 + 0.0793293i
\(531\) 39.6604i 1.72112i
\(532\) 9.54163 + 4.64332i 0.413682 + 0.201314i
\(533\) −6.87606 6.87606i −0.297835 0.297835i
\(534\) 3.08025 0.548175i 0.133295 0.0237218i
\(535\) 4.26275 17.0584i 0.184295 0.737500i
\(536\) 5.33533 9.34355i 0.230451 0.403580i
\(537\) 0.758493 + 2.83073i 0.0327314 + 0.122155i
\(538\) 1.73639 20.2166i 0.0748610 0.871601i
\(539\) 27.6995 + 1.09438i 1.19310 + 0.0471384i
\(540\) −8.55283 11.7067i −0.368055 0.503777i
\(541\) 7.78637 13.4864i 0.334762 0.579825i −0.648677 0.761064i \(-0.724677\pi\)
0.983439 + 0.181239i \(0.0580107\pi\)
\(542\) −26.4807 + 12.3994i −1.13744 + 0.532599i
\(543\) −10.0064 2.68120i −0.429414 0.115061i
\(544\) 0.563774 3.35274i 0.0241716 0.143748i
\(545\) −0.0152987 0.903909i −0.000655326 0.0387192i
\(546\) 5.78481 + 2.22525i 0.247567 + 0.0952318i
\(547\) 6.09970 + 6.09970i 0.260804 + 0.260804i 0.825381 0.564577i \(-0.190961\pi\)
−0.564577 + 0.825381i \(0.690961\pi\)
\(548\) 0.826900 + 9.11797i 0.0353234 + 0.389500i
\(549\) 9.80190 5.65913i 0.418335 0.241526i
\(550\) 24.9438 12.7261i 1.06361 0.542642i
\(551\) 12.6079 + 7.27916i 0.537114 + 0.310103i
\(552\) −1.01711 + 3.86952i −0.0432909 + 0.164698i
\(553\) 13.1885 12.6777i 0.560832 0.539112i
\(554\) 5.27285 4.43873i 0.224022 0.188584i
\(555\) −10.7561 5.96965i −0.456570 0.253397i
\(556\) −7.67269 20.8741i −0.325395 0.885258i
\(557\) 12.5982 + 3.37568i 0.533804 + 0.143032i 0.515644 0.856803i \(-0.327553\pi\)
0.0181595 + 0.999835i \(0.494219\pi\)
\(558\) −7.07068 + 10.1322i −0.299326 + 0.428930i
\(559\) −13.6020 −0.575303
\(560\) −1.97926 + 23.5814i −0.0836389 + 0.996496i
\(561\) −1.36001 −0.0574196
\(562\) 7.85981 11.2630i 0.331546 0.475100i
\(563\) −20.1494 5.39902i −0.849197 0.227542i −0.192126 0.981370i \(-0.561538\pi\)
−0.657071 + 0.753829i \(0.728205\pi\)
\(564\) −4.94502 13.4533i −0.208223 0.566485i
\(565\) −10.8602 + 3.10790i −0.456894 + 0.130750i
\(566\) 1.53404 1.29137i 0.0644804 0.0542801i
\(567\) 3.91164 + 15.8433i 0.164274 + 0.665355i
\(568\) 3.49451 13.2947i 0.146627 0.557832i
\(569\) 6.92763 + 3.99967i 0.290422 + 0.167675i 0.638132 0.769927i \(-0.279707\pi\)
−0.347710 + 0.937602i \(0.613041\pi\)
\(570\) 3.42747 + 1.17612i 0.143561 + 0.0492621i
\(571\) 28.4622 16.4326i 1.19110 0.687684i 0.232547 0.972585i \(-0.425294\pi\)
0.958557 + 0.284901i \(0.0919607\pi\)
\(572\) −2.07377 22.8668i −0.0867087 0.956109i
\(573\) 6.33698 + 6.33698i 0.264731 + 0.264731i
\(574\) 9.75949 7.89172i 0.407353 0.329394i
\(575\) −8.45116 + 9.04353i −0.352438 + 0.377141i
\(576\) −10.8699 18.4198i −0.452913 0.767490i
\(577\) 37.4537 + 10.0357i 1.55922 + 0.417791i 0.932416 0.361387i \(-0.117697\pi\)
0.626802 + 0.779178i \(0.284363\pi\)
\(578\) 21.3103 9.97839i 0.886393 0.415046i
\(579\) −2.21768 + 3.84114i −0.0921638 + 0.159632i
\(580\) −4.99397 + 32.0797i −0.207363 + 1.33204i
\(581\) −17.9166 + 9.87773i −0.743305 + 0.409797i
\(582\) 0.109448 1.27429i 0.00453675 0.0528211i
\(583\) 3.08550 + 11.5152i 0.127788 + 0.476912i
\(584\) −13.7207 + 24.0285i −0.567765 + 0.994304i
\(585\) −16.8132 4.20147i −0.695142 0.173710i
\(586\) 11.8665 2.11182i 0.490201 0.0872383i
\(587\) 6.10922 + 6.10922i 0.252155 + 0.252155i 0.821854 0.569699i \(-0.192940\pi\)
−0.569699 + 0.821854i \(0.692940\pi\)
\(588\) −3.64184 + 7.12272i −0.150187 + 0.293736i
\(589\) 6.55329i 0.270023i
\(590\) −26.1914 + 38.9191i −1.07828 + 1.60227i
\(591\) −2.96018 + 1.70906i −0.121765 + 0.0703013i
\(592\) −31.6863 21.8884i −1.30230 0.899608i
\(593\) −41.4359 + 11.1027i −1.70157 + 0.455934i −0.973334 0.229392i \(-0.926326\pi\)
−0.728236 + 0.685327i \(0.759659\pi\)
\(594\) −13.8900 + 11.6927i −0.569913 + 0.479757i
\(595\) 3.08425 1.76911i 0.126442 0.0725264i
\(596\) 1.67038 9.65229i 0.0684212 0.395373i
\(597\) 2.08351 + 7.77578i 0.0852726 + 0.318242i
\(598\) 4.30378 + 9.19137i 0.175995 + 0.375863i
\(599\) 5.01596 + 8.68789i 0.204946 + 0.354978i 0.950116 0.311898i \(-0.100965\pi\)
−0.745169 + 0.666875i \(0.767631\pi\)
\(600\) 0.311928 + 8.07496i 0.0127344 + 0.329659i
\(601\) 24.3587 0.993613 0.496806 0.867861i \(-0.334506\pi\)
0.496806 + 0.867861i \(0.334506\pi\)
\(602\) 1.84738 17.4585i 0.0752935 0.711556i
\(603\) −7.19138 + 7.19138i −0.292855 + 0.292855i
\(604\) 22.6394 + 18.8745i 0.921184 + 0.767994i
\(605\) −5.38833 8.97845i −0.219067 0.365026i
\(606\) −13.5741 4.91618i −0.551410 0.199706i
\(607\) −24.1790 + 6.47873i −0.981394 + 0.262964i −0.713632 0.700521i \(-0.752951\pi\)
−0.267762 + 0.963485i \(0.586284\pi\)
\(608\) 10.3190 + 4.71247i 0.418491 + 0.191116i
\(609\) −5.67420 + 9.39463i −0.229930 + 0.380690i
\(610\) −13.3559 0.919741i −0.540765 0.0372392i
\(611\) −31.4876 18.1794i −1.27385 0.735458i
\(612\) −1.34886 + 2.91678i −0.0545244 + 0.117904i
\(613\) −2.42522 + 9.05103i −0.0979535 + 0.365568i −0.997451 0.0713590i \(-0.977266\pi\)
0.899497 + 0.436927i \(0.143933\pi\)
\(614\) 21.6656 3.85571i 0.874353 0.155604i
\(615\) 2.97891 3.08148i 0.120121 0.124257i
\(616\) 29.6318 + 0.443959i 1.19390 + 0.0178876i
\(617\) −16.6913 + 16.6913i −0.671965 + 0.671965i −0.958169 0.286204i \(-0.907606\pi\)
0.286204 + 0.958169i \(0.407606\pi\)
\(618\) −7.43318 5.18720i −0.299006 0.208660i
\(619\) 14.8926 + 25.7947i 0.598582 + 1.03677i 0.993031 + 0.117857i \(0.0376023\pi\)
−0.394448 + 0.918918i \(0.629064\pi\)
\(620\) 13.6297 5.27337i 0.547383 0.211784i
\(621\) 4.01273 6.95024i 0.161025 0.278904i
\(622\) 3.07371 35.7869i 0.123244 1.43492i
\(623\) 7.09872 + 7.38472i 0.284404 + 0.295863i
\(624\) 6.24065 + 2.22663i 0.249826 + 0.0891367i
\(625\) −11.0069 + 22.4466i −0.440275 + 0.897863i
\(626\) −12.4953 + 34.5008i −0.499412 + 1.37893i
\(627\) 1.17450 4.38331i 0.0469051 0.175052i
\(628\) 2.00805 + 22.1422i 0.0801301 + 0.883569i
\(629\) 5.78640i 0.230719i
\(630\) 7.67623 21.0096i 0.305828 0.837043i
\(631\) 9.29850i 0.370167i −0.982723 0.185084i \(-0.940744\pi\)
0.982723 0.185084i \(-0.0592556\pi\)
\(632\) 13.7627 13.8945i 0.547453 0.552693i
\(633\) −2.55019 + 9.51742i −0.101361 + 0.378284i
\(634\) −0.284972 0.103209i −0.0113177 0.00409896i
\(635\) −14.5977 + 4.17746i −0.579293 + 0.165778i
\(636\) −3.38991 0.586639i −0.134418 0.0232618i
\(637\) 4.47422 + 19.7933i 0.177275 + 0.784239i
\(638\) 40.5086 + 3.47925i 1.60375 + 0.137745i
\(639\) −6.49663 + 11.2525i −0.257003 + 0.445142i
\(640\) −1.49753 + 25.2539i −0.0591950 + 0.998246i
\(641\) 1.37174 + 2.37592i 0.0541805 + 0.0938434i 0.891844 0.452344i \(-0.149412\pi\)
−0.837663 + 0.546187i \(0.816079\pi\)
\(642\) 3.63644 5.21096i 0.143519 0.205660i
\(643\) 4.45513 4.45513i 0.175693 0.175693i −0.613782 0.789475i \(-0.710353\pi\)
0.789475 + 0.613782i \(0.210353\pi\)
\(644\) −12.3819 + 4.27568i −0.487915 + 0.168485i
\(645\) −0.101453 5.99422i −0.00399470 0.236022i
\(646\) −0.298644 1.67811i −0.0117500 0.0660243i
\(647\) −5.58856 + 20.8568i −0.219709 + 0.819964i 0.764747 + 0.644331i \(0.222864\pi\)
−0.984456 + 0.175633i \(0.943803\pi\)
\(648\) 4.59551 + 16.8296i 0.180528 + 0.661130i
\(649\) 50.8771 + 29.3739i 1.99710 + 1.15303i
\(650\) 13.7244 + 15.2263i 0.538313 + 0.597223i
\(651\) 4.93943 + 0.0975380i 0.193591 + 0.00382282i
\(652\) 30.0162 21.1599i 1.17552 0.828686i
\(653\) −28.1634 + 7.54635i −1.10212 + 0.295311i −0.763627 0.645658i \(-0.776583\pi\)
−0.338491 + 0.940970i \(0.609916\pi\)
\(654\) 0.111255 0.307187i 0.00435041 0.0120119i
\(655\) 29.1270 17.4803i 1.13809 0.683010i
\(656\) 10.2235 8.68974i 0.399159 0.339277i
\(657\) 18.4938 18.4938i 0.721511 0.721511i
\(658\) 27.6102 37.9461i 1.07636 1.47929i
\(659\) −8.28576 −0.322768 −0.161384 0.986892i \(-0.551596\pi\)
−0.161384 + 0.986892i \(0.551596\pi\)
\(660\) 10.0616 1.08444i 0.391649 0.0422118i
\(661\) −10.4781 18.1487i −0.407553 0.705902i 0.587062 0.809542i \(-0.300284\pi\)
−0.994615 + 0.103640i \(0.966951\pi\)
\(662\) −2.72214 + 1.27462i −0.105799 + 0.0495396i
\(663\) −0.257671 0.961643i −0.0100071 0.0373471i
\(664\) −18.8891 + 11.0259i −0.733040 + 0.427889i
\(665\) 3.03828 + 11.4683i 0.117820 + 0.444723i
\(666\) 23.4428 + 27.8482i 0.908391 + 1.07909i
\(667\) −17.3592 + 4.65138i −0.672150 + 0.180102i
\(668\) 15.5800 33.6902i 0.602807 1.30351i
\(669\) 8.07303 4.66096i 0.312121 0.180203i
\(670\) 11.8061 2.30783i 0.456109 0.0891593i
\(671\) 16.7654i 0.647221i
\(672\) −3.70553 + 7.70763i −0.142944 + 0.297328i
\(673\) 29.0523 + 29.0523i 1.11988 + 1.11988i 0.991758 + 0.128125i \(0.0408958\pi\)
0.128125 + 0.991758i \(0.459104\pi\)
\(674\) −7.86798 44.2110i −0.303063 1.70294i
\(675\) 3.66307 15.7902i 0.140992 0.607764i
\(676\) −8.62775 + 3.17130i −0.331836 + 0.121973i
\(677\) −10.1358 37.8274i −0.389551 1.45383i −0.830866 0.556473i \(-0.812154\pi\)
0.441314 0.897353i \(-0.354512\pi\)
\(678\) −4.06738 0.349344i −0.156207 0.0134165i
\(679\) 3.66707 2.02172i 0.140729 0.0775865i
\(680\) 3.24986 1.97149i 0.124627 0.0756031i
\(681\) −3.45396 + 5.98243i −0.132356 + 0.229247i
\(682\) −7.76095 16.5747i −0.297182 0.634676i
\(683\) −11.4729 3.07415i −0.438998 0.117629i 0.0325489 0.999470i \(-0.489638\pi\)
−0.471547 + 0.881841i \(0.656304\pi\)
\(684\) −8.23591 6.86631i −0.314908 0.262540i
\(685\) −7.11444 + 7.35942i −0.271829 + 0.281189i
\(686\) −26.0129 + 3.05451i −0.993176 + 0.116622i
\(687\) 0.886428 + 0.886428i 0.0338193 + 0.0338193i
\(688\) 1.51698 18.7067i 0.0578345 0.713187i
\(689\) −7.55767 + 4.36343i −0.287924 + 0.166233i
\(690\) −4.01842 + 1.96518i −0.152979 + 0.0748130i
\(691\) −6.84816 3.95379i −0.260516 0.150409i 0.364054 0.931378i \(-0.381392\pi\)
−0.624570 + 0.780969i \(0.714726\pi\)
\(692\) −8.93656 12.6769i −0.339717 0.481902i
\(693\) −26.9089 7.78275i −1.02218 0.295642i
\(694\) 16.6344 + 19.7603i 0.631434 + 0.750092i
\(695\) 12.0661 21.7407i 0.457693 0.824670i
\(696\) −5.81804 + 10.1889i −0.220532 + 0.386210i
\(697\) −1.94732 0.521782i −0.0737599 0.0197639i
\(698\) 25.0588 + 17.4871i 0.948490 + 0.661898i
\(699\) 0.644031 0.0243595
\(700\) −21.4073 + 15.5476i −0.809120 + 0.587643i
\(701\) 29.1974 1.10277 0.551386 0.834250i \(-0.314099\pi\)
0.551386 + 0.834250i \(0.314099\pi\)
\(702\) −10.8994 7.60607i −0.411371 0.287073i
\(703\) −18.6496 4.99713i −0.703381 0.188470i
\(704\) 31.6799 0.301784i 1.19398 0.0113739i
\(705\) 7.77656 14.0118i 0.292882 0.527714i
\(706\) 15.4556 + 18.3600i 0.581678 + 0.690986i
\(707\) −11.3299 45.8892i −0.426103 1.72584i
\(708\) −13.8565 + 9.76814i −0.520759 + 0.367109i
\(709\) 23.6133 + 13.6331i 0.886816 + 0.512003i 0.872900 0.487900i \(-0.162237\pi\)
0.0139163 + 0.999903i \(0.495570\pi\)
\(710\) 13.8062 6.75184i 0.518139 0.253392i
\(711\) −16.0089 + 9.24277i −0.600382 + 0.346631i
\(712\) 7.78003 + 7.70627i 0.291569 + 0.288805i
\(713\) 5.72029 + 5.72029i 0.214227 + 0.214227i
\(714\) 1.26929 0.200121i 0.0475020 0.00748933i
\(715\) 17.8422 18.4566i 0.667261 0.690237i
\(716\) −6.56833 + 7.87850i −0.245470 + 0.294433i
\(717\) 10.9580 + 2.93619i 0.409234 + 0.109654i
\(718\) −5.32528 11.3729i −0.198738 0.424434i
\(719\) 17.9745 31.1327i 0.670335 1.16105i −0.307474 0.951557i \(-0.599484\pi\)
0.977809 0.209498i \(-0.0671831\pi\)
\(720\) 7.65338 22.6546i 0.285225 0.844286i
\(721\) 0.585904 29.6708i 0.0218202 1.10500i
\(722\) −21.1050 1.81269i −0.785448 0.0674615i
\(723\) −1.27999 4.77699i −0.0476033 0.177658i
\(724\) −12.5094 34.0326i −0.464907 1.26481i
\(725\) −30.8030 + 19.2025i −1.14399 + 0.713163i
\(726\) −0.663039 3.72568i −0.0246077 0.138273i
\(727\) −5.64012 5.64012i −0.209180 0.209180i 0.594739 0.803919i \(-0.297256\pi\)
−0.803919 + 0.594739i \(0.797256\pi\)
\(728\) 5.30022 + 21.0364i 0.196439 + 0.779659i
\(729\) 10.9327i 0.404916i
\(730\) −30.3612 + 5.93496i −1.12372 + 0.219663i
\(731\) −2.44214 + 1.40997i −0.0903260 + 0.0521497i
\(732\) −4.39133 2.03076i −0.162308 0.0750591i
\(733\) 15.5419 4.16444i 0.574053 0.153817i 0.0398983 0.999204i \(-0.487297\pi\)
0.534155 + 0.845387i \(0.320630\pi\)
\(734\) 19.7993 + 23.5199i 0.730804 + 0.868136i
\(735\) −8.68928 + 2.11936i −0.320509 + 0.0781738i
\(736\) −13.1208 + 4.89388i −0.483640 + 0.180391i
\(737\) −3.89904 14.5514i −0.143623 0.536008i
\(738\) −11.4858 + 5.37812i −0.422797 + 0.197971i
\(739\) 11.4543 + 19.8395i 0.421355 + 0.729808i 0.996072 0.0885439i \(-0.0282214\pi\)
−0.574717 + 0.818352i \(0.694888\pi\)
\(740\) −4.61395 42.8091i −0.169612 1.57369i
\(741\) 3.32190 0.122033
\(742\) −4.57411 10.2931i −0.167921 0.377872i
\(743\) −21.3493 + 21.3493i −0.783229 + 0.783229i −0.980374 0.197145i \(-0.936833\pi\)
0.197145 + 0.980374i \(0.436833\pi\)
\(744\) 5.28144 0.0251551i 0.193627 0.000922230i
\(745\) 9.39067 5.63572i 0.344048 0.206477i
\(746\) −0.235396 + 0.649954i −0.00861846 + 0.0237965i
\(747\) 19.9691 5.35071i 0.730632 0.195772i
\(748\) −2.74269 3.89061i −0.100283 0.142255i
\(749\) 20.8004 + 0.410742i 0.760030 + 0.0150082i
\(750\) −6.60765 + 6.16171i −0.241277 + 0.224994i
\(751\) 31.7774 + 18.3467i 1.15958 + 0.669481i 0.951202 0.308568i \(-0.0998498\pi\)
0.208373 + 0.978049i \(0.433183\pi\)
\(752\) 28.5137 41.2772i 1.03979 1.50522i
\(753\) −0.230154 + 0.858946i −0.00838728 + 0.0313017i
\(754\) 5.21476 + 29.3023i 0.189910 + 1.06713i
\(755\) 0.557675 + 32.9496i 0.0202959 + 1.19916i
\(756\) 11.2429 12.9566i 0.408901 0.471228i
\(757\) 23.2904 23.2904i 0.846504 0.846504i −0.143191 0.989695i \(-0.545736\pi\)
0.989695 + 0.143191i \(0.0457363\pi\)
\(758\) −22.5246 + 32.2774i −0.818130 + 1.17237i
\(759\) 2.80093 + 4.85135i 0.101667 + 0.176093i
\(760\) 3.54752 + 12.1769i 0.128682 + 0.441702i
\(761\) −3.80960 + 6.59842i −0.138098 + 0.239192i −0.926777 0.375613i \(-0.877432\pi\)
0.788679 + 0.614806i \(0.210766\pi\)
\(762\) −5.46715 0.469568i −0.198054 0.0170107i
\(763\) 1.03849 0.256399i 0.0375958 0.00928226i
\(764\) −5.34878 + 30.9080i −0.193512 + 1.11821i
\(765\) −3.45422 + 0.988503i −0.124888 + 0.0357394i
\(766\) 6.87682 + 2.49060i 0.248470 + 0.0899890i
\(767\) −11.1305 + 41.5398i −0.401901 + 1.49991i
\(768\) −3.75827 + 8.33440i −0.135615 + 0.300742i
\(769\) 30.3461i 1.09431i −0.837031 0.547155i \(-0.815711\pi\)
0.837031 0.547155i \(-0.184289\pi\)
\(770\) 21.2662 + 25.4077i 0.766381 + 0.915629i
\(771\) 10.1665i 0.366138i
\(772\) −15.4608 + 1.40213i −0.556447 + 0.0504637i
\(773\) −6.78186 + 25.3103i −0.243927 + 0.910347i 0.729993 + 0.683454i \(0.239523\pi\)
−0.973920 + 0.226892i \(0.927143\pi\)
\(774\) −6.04097 + 16.6798i −0.217138 + 0.599543i
\(775\) 14.4186 + 7.68611i 0.517931 + 0.276093i
\(776\) 3.86612 2.25673i 0.138786 0.0810117i
\(777\) 4.04408 13.9824i 0.145081 0.501616i
\(778\) 1.47949 17.2256i 0.0530423 0.617568i
\(779\) 3.36341 5.82559i 0.120507 0.208724i
\(780\) 2.67310 + 6.90899i 0.0957125 + 0.247381i
\(781\) −9.62327 16.6680i −0.344348 0.596428i
\(782\) 1.72549 + 1.20412i 0.0617032 + 0.0430592i
\(783\) 16.6418 16.6418i 0.594728 0.594728i
\(784\) −27.7206 + 3.94588i −0.990020 + 0.140924i
\(785\) −17.2768 + 17.8717i −0.616635 + 0.637868i
\(786\) 12.0865 2.15096i 0.431111 0.0767224i
\(787\) 2.88594 10.7705i 0.102873 0.383926i −0.895222 0.445619i \(-0.852983\pi\)
0.998095 + 0.0616935i \(0.0196501\pi\)
\(788\) −10.8589 5.02166i −0.386831 0.178889i
\(789\) −9.50285 5.48647i −0.338310 0.195324i
\(790\) 21.8135 + 1.50217i 0.776091 + 0.0534447i
\(791\) −6.45308 11.7048i −0.229445 0.416176i
\(792\) −28.9620 7.61269i −1.02912 0.270505i
\(793\) −11.8546 + 3.17643i −0.420969 + 0.112798i
\(794\) 23.2526 + 8.42146i 0.825203 + 0.298866i
\(795\) −1.97928 3.29803i −0.0701977 0.116969i
\(796\) −18.0426 + 21.6416i −0.639504 + 0.767065i
\(797\) 9.45111 9.45111i 0.334775 0.334775i −0.519621 0.854397i \(-0.673927\pi\)
0.854397 + 0.519621i \(0.173927\pi\)
\(798\) −0.451170 + 4.26374i −0.0159712 + 0.150935i
\(799\) −7.53784 −0.266670
\(800\) −22.4712 + 17.1769i −0.794477 + 0.607294i
\(801\) −5.17536 8.96399i −0.182863 0.316727i
\(802\) 18.6643 + 39.8604i 0.659060 + 1.40752i
\(803\) 10.0270 + 37.4213i 0.353846 + 1.32057i
\(804\) 4.28371 + 0.741317i 0.151075 + 0.0261442i
\(805\) −12.6627 7.35850i −0.446300 0.259353i
\(806\) 10.2493 8.62795i 0.361016 0.303906i
\(807\) 7.91923 2.12195i 0.278770 0.0746962i
\(808\) −13.3106 48.7461i −0.468267 1.71488i
\(809\) 28.2738 16.3239i 0.994055 0.573918i 0.0875707 0.996158i \(-0.472090\pi\)
0.906484 + 0.422241i \(0.138756\pi\)
\(810\) −10.8899 + 16.1819i −0.382633 + 0.568573i
\(811\) 38.0037i 1.33449i 0.744838 + 0.667245i \(0.232527\pi\)
−0.744838 + 0.667245i \(0.767473\pi\)
\(812\) −38.3185 + 2.71354i −1.34471 + 0.0952266i
\(813\) −8.35402 8.35402i −0.292988 0.292988i
\(814\) −53.0867 + 9.44755i −1.86069 + 0.331136i
\(815\) 39.8347 + 9.95433i 1.39535 + 0.348685i
\(816\) 1.35128 0.247125i 0.0473042 0.00865110i
\(817\) −2.43530 9.08868i −0.0852005 0.317973i
\(818\) 0.619695 7.21506i 0.0216671 0.252269i
\(819\) 0.404838 20.5014i 0.0141462 0.716378i
\(820\) 14.8228 + 2.30751i 0.517633 + 0.0805819i
\(821\) 5.78912 10.0271i 0.202042 0.349947i −0.747144 0.664662i \(-0.768576\pi\)
0.949186 + 0.314715i \(0.101909\pi\)
\(822\) −3.35015 + 1.56868i −0.116850 + 0.0547140i
\(823\) −32.4334 8.69051i −1.13056 0.302932i −0.355409 0.934711i \(-0.615659\pi\)
−0.775149 + 0.631779i \(0.782325\pi\)
\(824\) −0.151105 31.7252i −0.00526398 1.10520i
\(825\) 8.26665 + 7.72517i 0.287808 + 0.268956i
\(826\) −51.8057 19.9282i −1.80255 0.693389i
\(827\) −4.77258 4.77258i −0.165959 0.165959i 0.619242 0.785200i \(-0.287440\pi\)
−0.785200 + 0.619242i \(0.787440\pi\)
\(828\) 13.1826 1.19552i 0.458126 0.0415470i
\(829\) −29.2731 + 16.9008i −1.01670 + 0.586989i −0.913145 0.407635i \(-0.866354\pi\)
−0.103550 + 0.994624i \(0.533020\pi\)
\(830\) −23.1294 7.93674i −0.802834 0.275488i
\(831\) 2.41177 + 1.39244i 0.0836634 + 0.0483031i
\(832\) 6.21555 + 22.3432i 0.215485 + 0.774611i
\(833\) 2.85507 + 3.08996i 0.0989224 + 0.107061i
\(834\) 6.87439 5.78693i 0.238041 0.200385i
\(835\) 39.8980 11.4177i 1.38073 0.395125i
\(836\) 14.9080 5.47975i 0.515605 0.189521i
\(837\) −10.2331 2.74194i −0.353707 0.0947755i
\(838\) 11.3733 16.2978i 0.392885 0.562998i
\(839\) −3.12360 −0.107839 −0.0539193 0.998545i \(-0.517171\pi\)
−0.0539193 + 0.998545i \(0.517171\pi\)
\(840\) −9.23092 + 2.49264i −0.318497 + 0.0860043i
\(841\) −23.7024 −0.817325
\(842\) −30.3742 + 43.5258i −1.04676 + 1.50000i
\(843\) 5.36025 + 1.43627i 0.184617 + 0.0494679i
\(844\) −32.3696 + 11.8981i −1.11421 + 0.409550i
\(845\) −8.98592 4.98720i −0.309125 0.171565i
\(846\) −36.2773 + 30.5386i −1.24724 + 1.04994i
\(847\) 8.93212 8.58619i 0.306911 0.295025i
\(848\) −5.15811 10.8807i −0.177130 0.373643i
\(849\) 0.701659 + 0.405103i 0.0240809 + 0.0139031i
\(850\) 4.04246 + 1.31111i 0.138655 + 0.0449709i
\(851\) 20.6409 11.9171i 0.707562 0.408511i
\(852\) 5.53147 0.501644i 0.189505 0.0171860i
\(853\) −3.22775 3.22775i −0.110516 0.110516i 0.649686 0.760202i \(-0.274900\pi\)
−0.760202 + 0.649686i \(0.774900\pi\)
\(854\) −2.46697 15.6471i −0.0844181 0.535432i
\(855\) −0.202875 11.9866i −0.00693817 0.409934i
\(856\) 22.2406 0.105930i 0.760170 0.00362063i
\(857\) −37.2336 9.97671i −1.27187 0.340798i −0.441126 0.897445i \(-0.645421\pi\)
−0.830749 + 0.556647i \(0.812087\pi\)
\(858\) 8.40179 3.93407i 0.286832 0.134307i
\(859\) −6.97976 + 12.0893i −0.238146 + 0.412482i −0.960182 0.279374i \(-0.909873\pi\)
0.722036 + 0.691855i \(0.243206\pi\)
\(860\) 16.9432 12.3786i 0.577760 0.422107i
\(861\) 4.34088 + 2.62182i 0.147937 + 0.0893513i
\(862\) −2.93700 + 34.1953i −0.100035 + 1.16470i
\(863\) −10.7069 39.9587i −0.364467 1.36021i −0.868142 0.496316i \(-0.834686\pi\)
0.503675 0.863893i \(-0.331981\pi\)
\(864\) 11.6762 14.1416i 0.397231 0.481106i
\(865\) 4.20405 16.8236i 0.142942 0.572018i
\(866\) −0.0499409 + 0.00888771i −0.00169706 + 0.000302017i
\(867\) 6.72289 + 6.72289i 0.228321 + 0.228321i
\(868\) 9.68217 + 14.3271i 0.328634 + 0.486292i
\(869\) 27.3821i 0.928873i
\(870\) −12.8742 + 2.51663i −0.436477 + 0.0853219i
\(871\) 9.55038 5.51391i 0.323602 0.186832i
\(872\) 1.10314 0.301224i 0.0373571 0.0102007i
\(873\) −4.08717 + 1.09515i −0.138330 + 0.0370653i
\(874\) −5.37101 + 4.52136i −0.181677 + 0.152937i
\(875\) −28.7962 6.76593i −0.973490 0.228730i
\(876\) −11.0163 1.90642i −0.372205 0.0644118i
\(877\) 8.94885 + 33.3976i 0.302181 + 1.12776i 0.935345 + 0.353737i \(0.115089\pi\)
−0.633164 + 0.774018i \(0.718244\pi\)
\(878\) 9.15094 + 19.5432i 0.308829 + 0.659550i
\(879\) 2.43499 + 4.21753i 0.0821303 + 0.142254i
\(880\) 23.3933 + 26.5967i 0.788589 + 0.896574i
\(881\) −9.22163 −0.310685 −0.155342 0.987861i \(-0.549648\pi\)
−0.155342 + 0.987861i \(0.549648\pi\)
\(882\) 26.2591 + 3.30406i 0.884191 + 0.111253i
\(883\) −18.1891 + 18.1891i −0.612111 + 0.612111i −0.943496 0.331385i \(-0.892484\pi\)
0.331385 + 0.943496i \(0.392484\pi\)
\(884\) 2.23136 2.67645i 0.0750488 0.0900186i
\(885\) −18.3891 4.59526i −0.618142 0.154468i
\(886\) 15.8979 + 5.75780i 0.534101 + 0.193437i
\(887\) 19.5218 5.23085i 0.655477 0.175635i 0.0842733 0.996443i \(-0.473143\pi\)
0.571204 + 0.820808i \(0.306476\pi\)
\(888\) 3.95571 15.0493i 0.132745 0.505020i
\(889\) −8.67387 15.7330i −0.290912 0.527667i
\(890\) −0.841118 + 12.2142i −0.0281943 + 0.409421i
\(891\) 21.1538 + 12.2132i 0.708679 + 0.409156i
\(892\) 29.6144 + 13.6951i 0.991563 + 0.458546i
\(893\) 6.50968 24.2944i 0.217838 0.812983i
\(894\) 3.89674 0.693481i 0.130326 0.0231935i
\(895\) −11.4664 + 0.194071i −0.383281 + 0.00648706i
\(896\) −29.5223 + 4.94324i −0.986270 + 0.165142i
\(897\) −2.89965 + 2.89965i −0.0968165 + 0.0968165i
\(898\) −15.9049 11.0992i −0.530755 0.370384i
\(899\) 11.8617 + 20.5451i 0.395611 + 0.685219i
\(900\) 24.7669 10.0675i 0.825564 0.335583i
\(901\) −0.904619 + 1.56685i −0.0301372 + 0.0521992i
\(902\) 1.60762 18.7174i 0.0535279 0.623221i
\(903\) 6.88668 1.70029i 0.229174 0.0565822i
\(904\) −7.20319 12.3402i −0.239574 0.410428i
\(905\) 19.6723 35.4454i 0.653928 1.17825i
\(906\) −4.05550 + 11.1977i −0.134735 + 0.372018i
\(907\) −10.9408 + 40.8315i −0.363282 + 1.35579i 0.506452 + 0.862268i \(0.330957\pi\)
−0.869734 + 0.493520i \(0.835710\pi\)
\(908\) −24.0796 + 2.18376i −0.799110 + 0.0724706i
\(909\) 47.7627i 1.58419i
\(910\) −13.9362 + 19.8509i −0.461982 + 0.658050i
\(911\) 47.4291i 1.57140i −0.618610 0.785698i \(-0.712304\pi\)
0.618610 0.785698i \(-0.287696\pi\)
\(912\) −0.370480 + 4.56859i −0.0122678 + 0.151281i
\(913\) −7.92585 + 29.5797i −0.262307 + 0.978945i
\(914\) 18.5503 + 6.71841i 0.613588 + 0.222225i
\(915\) −1.48823 5.20047i −0.0491994 0.171922i
\(916\) −0.748196 + 4.32346i −0.0247211 + 0.142851i
\(917\) 27.8544 + 28.9767i 0.919834 + 0.956894i
\(918\) −2.74535 0.235796i −0.0906101 0.00778242i
\(919\) 15.8502 27.4533i 0.522849 0.905601i −0.476797 0.879013i \(-0.658202\pi\)
0.999646 0.0265881i \(-0.00846425\pi\)
\(920\) −13.7257 7.53248i −0.452522 0.248339i
\(921\) 4.44575 + 7.70027i 0.146493 + 0.253733i
\(922\) 22.3848 32.0771i 0.737205 1.05640i
\(923\) 9.96245 9.96245i 0.327918 0.327918i
\(924\) 3.90838 + 11.3182i 0.128576 + 0.372342i
\(925\) 32.8681 35.1720i 1.08070 1.15645i
\(926\) 1.41495 + 7.95074i 0.0464981 + 0.261278i
\(927\) −7.76138 + 28.9659i −0.254917 + 0.951364i
\(928\) −40.8808 + 3.90384i −1.34198 + 0.128150i
\(929\) −37.2981 21.5341i −1.22371 0.706509i −0.258003 0.966144i \(-0.583065\pi\)
−0.965707 + 0.259635i \(0.916398\pi\)
\(930\) 3.87867 + 4.45238i 0.127187 + 0.145999i
\(931\) −12.4246 + 6.53341i −0.407199 + 0.214124i
\(932\) 1.29880 + 1.84240i 0.0425436 + 0.0603498i
\(933\) 14.0184 3.75622i 0.458941 0.122973i
\(934\) 5.91430 16.3300i 0.193522 0.534335i
\(935\) 1.29025 5.16326i 0.0421958 0.168857i
\(936\) −0.104408 21.9210i −0.00341268 0.716509i
\(937\) −11.9105 + 11.9105i −0.389100 + 0.389100i −0.874366 0.485266i \(-0.838723\pi\)
0.485266 + 0.874366i \(0.338723\pi\)
\(938\) 5.78015 + 13.0070i 0.188729 + 0.424695i
\(939\) −14.8261 −0.483832
\(940\) 55.7666 6.01051i 1.81891 0.196041i
\(941\) −14.1264 24.4676i −0.460507 0.797622i 0.538479 0.842639i \(-0.318999\pi\)
−0.998986 + 0.0450169i \(0.985666\pi\)
\(942\) −8.13554 + 3.80940i −0.265070 + 0.124117i
\(943\) 2.14922 + 8.02098i 0.0699881 + 0.261199i
\(944\) −55.8880 19.9406i −1.81900 0.649010i
\(945\) 19.1792 + 0.0541009i 0.623901 + 0.00175990i
\(946\) −16.9230 20.1031i −0.550213 0.653609i
\(947\) 23.9653 6.42148i 0.778767 0.208670i 0.152526 0.988299i \(-0.451259\pi\)
0.626241 + 0.779629i \(0.284592\pi\)
\(948\) 7.17214 + 3.31674i 0.232940 + 0.107723i
\(949\) −24.5603 + 14.1799i −0.797263 + 0.460300i
\(950\) −7.71679 + 11.8966i −0.250366 + 0.385975i
\(951\) 0.122462i 0.00397109i
\(952\) 3.13223 + 3.22752i 0.101516 + 0.104604i
\(953\) −19.4338 19.4338i −0.629523 0.629523i 0.318425 0.947948i \(-0.396846\pi\)
−0.947948 + 0.318425i \(0.896846\pi\)
\(954\) 1.99422 + 11.2057i 0.0645651 + 0.362798i
\(955\) −30.0703 + 18.0464i −0.973051 + 0.583967i
\(956\) 13.6991 + 37.2692i 0.443059 + 1.20537i
\(957\) 4.25181 + 15.8680i 0.137441 + 0.512938i
\(958\) 33.9356 + 2.91470i 1.09641 + 0.0941696i
\(959\) −10.3672 6.26162i −0.334775 0.202198i
\(960\) −9.80001 + 2.90576i −0.316294 + 0.0937832i
\(961\) −10.1606 + 17.5986i −0.327760 + 0.567697i
\(962\) −16.7382 35.7469i −0.539661 1.15253i
\(963\) −20.3062 5.44104i −0.654359 0.175335i
\(964\) 11.0843 13.2953i 0.357003 0.428213i
\(965\) −12.4789 12.0636i −0.401711 0.388339i
\(966\) −3.32796 4.11560i −0.107075 0.132417i
\(967\) −34.9483 34.9483i −1.12386 1.12386i −0.991155 0.132706i \(-0.957633\pi\)
−0.132706 0.991155i \(-0.542367\pi\)
\(968\) 9.32104 9.41026i 0.299590 0.302457i
\(969\) 0.596424 0.344346i 0.0191599 0.0110620i
\(970\) 4.73400 + 1.62445i 0.152000 + 0.0521579i
\(971\) 42.2275 + 24.3801i 1.35515 + 0.782393i 0.988965 0.148150i \(-0.0473320\pi\)
0.366180 + 0.930544i \(0.380665\pi\)
\(972\) −21.6594 + 15.2688i −0.694726 + 0.489747i
\(973\) 28.2618 + 8.17406i 0.906032 + 0.262048i
\(974\) 3.12565 + 3.71302i 0.100152 + 0.118973i
\(975\) −3.89614 + 7.30887i −0.124776 + 0.234071i
\(976\) −3.04642 16.6578i −0.0975134 0.533203i
\(977\) 42.7841 + 11.4640i 1.36879 + 0.366765i 0.867035 0.498248i \(-0.166023\pi\)
0.501750 + 0.865012i \(0.332690\pi\)
\(978\) 12.1686 + 8.49178i 0.389109 + 0.271537i
\(979\) 15.3322 0.490020
\(980\) −23.5863 20.5836i −0.753438 0.657519i
\(981\) −1.08089 −0.0345101
\(982\) 4.10978 + 2.86799i 0.131148 + 0.0915212i
\(983\) −6.04477 1.61969i −0.192798 0.0516601i 0.161128 0.986934i \(-0.448487\pi\)
−0.353926 + 0.935273i \(0.615154\pi\)
\(984\) 4.70789 + 2.68828i 0.150082 + 0.0856993i
\(985\) −3.68009 12.8597i −0.117257 0.409744i
\(986\) 3.97373 + 4.72046i 0.126549 + 0.150330i
\(987\) 18.2146 + 5.26815i 0.579778 + 0.167687i
\(988\) 6.69918 + 9.50305i 0.213129 + 0.302332i
\(989\) 10.0592 + 5.80766i 0.319863 + 0.184673i
\(990\) −14.7087 30.0765i −0.467473 0.955893i
\(991\) −23.9504 + 13.8278i −0.760809 + 0.439253i −0.829586 0.558379i \(-0.811424\pi\)
0.0687769 + 0.997632i \(0.478090\pi\)
\(992\) 10.7229 + 15.0580i 0.340452 + 0.478093i
\(993\) −0.858769 0.858769i −0.0272522 0.0272522i
\(994\) 11.4340 + 14.1401i 0.362664 + 0.448498i
\(995\) −31.4974 + 0.533095i −0.998534 + 0.0169003i
\(996\) −6.78771 5.65893i −0.215077 0.179310i
\(997\) −8.67546 2.32458i −0.274755 0.0736203i 0.118811 0.992917i \(-0.462092\pi\)
−0.393565 + 0.919297i \(0.628758\pi\)
\(998\) −18.1887 38.8447i −0.575753 1.22961i
\(999\) −15.6062 + 27.0308i −0.493759 + 0.855216i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 140.2.w.b.23.6 72
4.3 odd 2 inner 140.2.w.b.23.17 yes 72
5.2 odd 4 inner 140.2.w.b.107.3 yes 72
5.3 odd 4 700.2.be.e.107.16 72
5.4 even 2 700.2.be.e.443.13 72
7.2 even 3 980.2.k.k.883.17 36
7.3 odd 6 980.2.x.m.263.7 72
7.4 even 3 inner 140.2.w.b.123.7 yes 72
7.5 odd 6 980.2.k.j.883.17 36
7.6 odd 2 980.2.x.m.863.6 72
20.3 even 4 700.2.be.e.107.12 72
20.7 even 4 inner 140.2.w.b.107.7 yes 72
20.19 odd 2 700.2.be.e.443.2 72
28.3 even 6 980.2.x.m.263.3 72
28.11 odd 6 inner 140.2.w.b.123.3 yes 72
28.19 even 6 980.2.k.j.883.9 36
28.23 odd 6 980.2.k.k.883.9 36
28.27 even 2 980.2.x.m.863.17 72
35.2 odd 12 980.2.k.k.687.9 36
35.4 even 6 700.2.be.e.543.12 72
35.12 even 12 980.2.k.j.687.9 36
35.17 even 12 980.2.x.m.67.17 72
35.18 odd 12 700.2.be.e.207.2 72
35.27 even 4 980.2.x.m.667.3 72
35.32 odd 12 inner 140.2.w.b.67.17 yes 72
140.27 odd 4 980.2.x.m.667.7 72
140.39 odd 6 700.2.be.e.543.16 72
140.47 odd 12 980.2.k.j.687.17 36
140.67 even 12 inner 140.2.w.b.67.6 yes 72
140.87 odd 12 980.2.x.m.67.6 72
140.107 even 12 980.2.k.k.687.17 36
140.123 even 12 700.2.be.e.207.13 72
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
140.2.w.b.23.6 72 1.1 even 1 trivial
140.2.w.b.23.17 yes 72 4.3 odd 2 inner
140.2.w.b.67.6 yes 72 140.67 even 12 inner
140.2.w.b.67.17 yes 72 35.32 odd 12 inner
140.2.w.b.107.3 yes 72 5.2 odd 4 inner
140.2.w.b.107.7 yes 72 20.7 even 4 inner
140.2.w.b.123.3 yes 72 28.11 odd 6 inner
140.2.w.b.123.7 yes 72 7.4 even 3 inner
700.2.be.e.107.12 72 20.3 even 4
700.2.be.e.107.16 72 5.3 odd 4
700.2.be.e.207.2 72 35.18 odd 12
700.2.be.e.207.13 72 140.123 even 12
700.2.be.e.443.2 72 20.19 odd 2
700.2.be.e.443.13 72 5.4 even 2
700.2.be.e.543.12 72 35.4 even 6
700.2.be.e.543.16 72 140.39 odd 6
980.2.k.j.687.9 36 35.12 even 12
980.2.k.j.687.17 36 140.47 odd 12
980.2.k.j.883.9 36 28.19 even 6
980.2.k.j.883.17 36 7.5 odd 6
980.2.k.k.687.9 36 35.2 odd 12
980.2.k.k.687.17 36 140.107 even 12
980.2.k.k.883.9 36 28.23 odd 6
980.2.k.k.883.17 36 7.2 even 3
980.2.x.m.67.6 72 140.87 odd 12
980.2.x.m.67.17 72 35.17 even 12
980.2.x.m.263.3 72 28.3 even 6
980.2.x.m.263.7 72 7.3 odd 6
980.2.x.m.667.3 72 35.27 even 4
980.2.x.m.667.7 72 140.27 odd 4
980.2.x.m.863.6 72 7.6 odd 2
980.2.x.m.863.17 72 28.27 even 2