Properties

Label 700.2.p.e.551.9
Level $700$
Weight $2$
Character 700.551
Analytic conductor $5.590$
Analytic rank $0$
Dimension $32$
Inner twists $8$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [700,2,Mod(451,700)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(700, base_ring=CyclotomicField(6))
 
chi = DirichletCharacter(H, H._module([3, 0, 1]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("700.451");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 700 = 2^{2} \cdot 5^{2} \cdot 7 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 700.p (of order \(6\), degree \(2\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(5.58952814149\)
Analytic rank: \(0\)
Dimension: \(32\)
Relative dimension: \(16\) over \(\Q(\zeta_{6})\)
Twist minimal: no (minimal twist has level 140)
Sato-Tate group: $\mathrm{SU}(2)[C_{6}]$

Embedding invariants

Embedding label 551.9
Character \(\chi\) \(=\) 700.551
Dual form 700.2.p.e.451.9

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(0.0377920 + 1.41371i) q^{2} +(0.366453 + 0.634715i) q^{3} +(-1.99714 + 0.106854i) q^{4} +(-0.883452 + 0.542044i) q^{6} +(-0.664037 - 2.56107i) q^{7} +(-0.226536 - 2.81934i) q^{8} +(1.23142 - 2.13289i) q^{9} +(2.33007 - 1.34527i) q^{11} +(-0.799680 - 1.22846i) q^{12} +3.95118i q^{13} +(3.59550 - 1.03554i) q^{14} +(3.97716 - 0.426805i) q^{16} +(1.22891 - 0.709509i) q^{17} +(3.06182 + 1.66027i) q^{18} +(1.61265 - 2.79319i) q^{19} +(1.38221 - 1.35998i) q^{21} +(1.98987 + 3.24320i) q^{22} +(4.25426 + 2.45620i) q^{23} +(1.70646 - 1.17694i) q^{24} +(-5.58581 + 0.149323i) q^{26} +4.00375 q^{27} +(1.59984 + 5.04386i) q^{28} +5.17926 q^{29} +(-3.81745 - 6.61201i) q^{31} +(0.753682 + 5.60642i) q^{32} +(1.70772 + 0.985953i) q^{33} +(1.04948 + 1.71050i) q^{34} +(-2.23142 + 4.39127i) q^{36} +(-2.23990 + 3.87963i) q^{37} +(4.00970 + 2.17425i) q^{38} +(-2.50787 + 1.44792i) q^{39} +0.325509i q^{41} +(1.97486 + 1.90264i) q^{42} -9.28165i q^{43} +(-4.50974 + 2.93567i) q^{44} +(-3.31157 + 6.10710i) q^{46} +(-3.28287 + 5.68610i) q^{47} +(1.72834 + 2.36796i) q^{48} +(-6.11811 + 3.40128i) q^{49} +(0.900672 + 0.520003i) q^{51} +(-0.422198 - 7.89107i) q^{52} +(0.807955 + 1.39942i) q^{53} +(0.151310 + 5.66014i) q^{54} +(-7.07009 + 2.45232i) q^{56} +2.36383 q^{57} +(0.195735 + 7.32197i) q^{58} +(-3.81745 - 6.61201i) q^{59} +(12.3842 + 7.15003i) q^{61} +(9.20319 - 5.64664i) q^{62} +(-6.28018 - 1.73744i) q^{63} +(-7.89736 + 1.27737i) q^{64} +(-1.32931 + 2.45148i) q^{66} +(2.62109 - 1.51329i) q^{67} +(-2.37849 + 1.54830i) q^{68} +3.60032i q^{69} -15.4089i q^{71} +(-6.29231 - 2.98863i) q^{72} +(1.22891 - 0.709509i) q^{73} +(-5.56931 - 3.01995i) q^{74} +(-2.92222 + 5.75071i) q^{76} +(-4.99257 - 5.07415i) q^{77} +(-2.14171 - 3.49068i) q^{78} +(10.5765 + 6.10637i) q^{79} +(-2.22709 - 3.85743i) q^{81} +(-0.460175 + 0.0123016i) q^{82} +5.26172 q^{83} +(-2.61515 + 2.86378i) q^{84} +(13.1215 - 0.350772i) q^{86} +(1.89795 + 3.28735i) q^{87} +(-4.32061 - 6.26451i) q^{88} +(-4.10930 - 2.37250i) q^{89} +(10.1192 - 2.62373i) q^{91} +(-8.75882 - 4.45079i) q^{92} +(2.79783 - 4.84598i) q^{93} +(-8.16255 - 4.42613i) q^{94} +(-3.28229 + 2.53286i) q^{96} +8.35134i q^{97} +(-5.03964 - 8.52068i) q^{98} -6.62638i q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 32 q - 6 q^{4} - 4 q^{9} - 22 q^{14} + 18 q^{16} - 52 q^{21} + 48 q^{24} - 18 q^{26} - 28 q^{36} + 26 q^{44} - 22 q^{46} - 48 q^{54} - 16 q^{56} + 36 q^{61} - 36 q^{64} - 24 q^{66} - 14 q^{74} + 72 q^{81}+ \cdots + 60 q^{96}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/700\mathbb{Z}\right)^\times\).

\(n\) \(101\) \(351\) \(477\)
\(\chi(n)\) \(e\left(\frac{5}{6}\right)\) \(-1\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0.0377920 + 1.41371i 0.0267230 + 0.999643i
\(3\) 0.366453 + 0.634715i 0.211572 + 0.366453i 0.952207 0.305455i \(-0.0988085\pi\)
−0.740635 + 0.671908i \(0.765475\pi\)
\(4\) −1.99714 + 0.106854i −0.998572 + 0.0534269i
\(5\) 0 0
\(6\) −0.883452 + 0.542044i −0.360668 + 0.221289i
\(7\) −0.664037 2.56107i −0.250982 0.967992i
\(8\) −0.226536 2.81934i −0.0800926 0.996787i
\(9\) 1.23142 2.13289i 0.410475 0.710964i
\(10\) 0 0
\(11\) 2.33007 1.34527i 0.702542 0.405613i −0.105751 0.994393i \(-0.533725\pi\)
0.808294 + 0.588780i \(0.200391\pi\)
\(12\) −0.799680 1.22846i −0.230848 0.354626i
\(13\) 3.95118i 1.09586i 0.836524 + 0.547930i \(0.184584\pi\)
−0.836524 + 0.547930i \(0.815416\pi\)
\(14\) 3.59550 1.03554i 0.960939 0.276760i
\(15\) 0 0
\(16\) 3.97716 0.426805i 0.994291 0.106701i
\(17\) 1.22891 0.709509i 0.298053 0.172081i −0.343515 0.939147i \(-0.611618\pi\)
0.641568 + 0.767066i \(0.278284\pi\)
\(18\) 3.06182 + 1.66027i 0.721679 + 0.391329i
\(19\) 1.61265 2.79319i 0.369966 0.640801i −0.619593 0.784923i \(-0.712703\pi\)
0.989560 + 0.144122i \(0.0460358\pi\)
\(20\) 0 0
\(21\) 1.38221 1.35998i 0.301622 0.296773i
\(22\) 1.98987 + 3.24320i 0.424242 + 0.691452i
\(23\) 4.25426 + 2.45620i 0.887074 + 0.512152i 0.872984 0.487748i \(-0.162182\pi\)
0.0140897 + 0.999901i \(0.495515\pi\)
\(24\) 1.70646 1.17694i 0.348330 0.240242i
\(25\) 0 0
\(26\) −5.58581 + 0.149323i −1.09547 + 0.0292846i
\(27\) 4.00375 0.770522
\(28\) 1.59984 + 5.04386i 0.302341 + 0.953200i
\(29\) 5.17926 0.961765 0.480882 0.876785i \(-0.340316\pi\)
0.480882 + 0.876785i \(0.340316\pi\)
\(30\) 0 0
\(31\) −3.81745 6.61201i −0.685634 1.18755i −0.973237 0.229803i \(-0.926192\pi\)
0.287603 0.957750i \(-0.407142\pi\)
\(32\) 0.753682 + 5.60642i 0.133233 + 0.991085i
\(33\) 1.70772 + 0.985953i 0.297276 + 0.171632i
\(34\) 1.04948 + 1.71050i 0.179985 + 0.293349i
\(35\) 0 0
\(36\) −2.23142 + 4.39127i −0.371904 + 0.731878i
\(37\) −2.23990 + 3.87963i −0.368238 + 0.637806i −0.989290 0.145963i \(-0.953372\pi\)
0.621052 + 0.783769i \(0.286705\pi\)
\(38\) 4.00970 + 2.17425i 0.650458 + 0.352710i
\(39\) −2.50787 + 1.44792i −0.401581 + 0.231853i
\(40\) 0 0
\(41\) 0.325509i 0.0508359i 0.999677 + 0.0254180i \(0.00809166\pi\)
−0.999677 + 0.0254180i \(0.991908\pi\)
\(42\) 1.97486 + 1.90264i 0.304727 + 0.293584i
\(43\) 9.28165i 1.41544i −0.706494 0.707719i \(-0.749724\pi\)
0.706494 0.707719i \(-0.250276\pi\)
\(44\) −4.50974 + 2.93567i −0.679868 + 0.442568i
\(45\) 0 0
\(46\) −3.31157 + 6.10710i −0.488264 + 0.900443i
\(47\) −3.28287 + 5.68610i −0.478856 + 0.829403i −0.999706 0.0242453i \(-0.992282\pi\)
0.520850 + 0.853648i \(0.325615\pi\)
\(48\) 1.72834 + 2.36796i 0.249465 + 0.341786i
\(49\) −6.11811 + 3.40128i −0.874016 + 0.485898i
\(50\) 0 0
\(51\) 0.900672 + 0.520003i 0.126119 + 0.0728150i
\(52\) −0.422198 7.89107i −0.0585484 1.09429i
\(53\) 0.807955 + 1.39942i 0.110981 + 0.192225i 0.916166 0.400799i \(-0.131267\pi\)
−0.805185 + 0.593024i \(0.797934\pi\)
\(54\) 0.151310 + 5.66014i 0.0205907 + 0.770247i
\(55\) 0 0
\(56\) −7.07009 + 2.45232i −0.944780 + 0.327705i
\(57\) 2.36383 0.313097
\(58\) 0.195735 + 7.32197i 0.0257012 + 0.961421i
\(59\) −3.81745 6.61201i −0.496989 0.860811i 0.503005 0.864284i \(-0.332228\pi\)
−0.999994 + 0.00347297i \(0.998895\pi\)
\(60\) 0 0
\(61\) 12.3842 + 7.15003i 1.58564 + 0.915467i 0.994014 + 0.109252i \(0.0348455\pi\)
0.591622 + 0.806215i \(0.298488\pi\)
\(62\) 9.20319 5.64664i 1.16881 0.717124i
\(63\) −6.28018 1.73744i −0.791229 0.218897i
\(64\) −7.89736 + 1.27737i −0.987170 + 0.159671i
\(65\) 0 0
\(66\) −1.32931 + 2.45148i −0.163627 + 0.301756i
\(67\) 2.62109 1.51329i 0.320218 0.184878i −0.331272 0.943535i \(-0.607478\pi\)
0.651490 + 0.758658i \(0.274144\pi\)
\(68\) −2.37849 + 1.54830i −0.288434 + 0.187760i
\(69\) 3.60032i 0.433427i
\(70\) 0 0
\(71\) 15.4089i 1.82870i −0.404922 0.914351i \(-0.632701\pi\)
0.404922 0.914351i \(-0.367299\pi\)
\(72\) −6.29231 2.98863i −0.741556 0.352213i
\(73\) 1.22891 0.709509i 0.143833 0.0830418i −0.426357 0.904555i \(-0.640203\pi\)
0.570189 + 0.821513i \(0.306870\pi\)
\(74\) −5.56931 3.01995i −0.647419 0.351062i
\(75\) 0 0
\(76\) −2.92222 + 5.75071i −0.335202 + 0.659652i
\(77\) −4.99257 5.07415i −0.568956 0.578253i
\(78\) −2.14171 3.49068i −0.242501 0.395241i
\(79\) 10.5765 + 6.10637i 1.18995 + 0.687021i 0.958296 0.285776i \(-0.0922515\pi\)
0.231659 + 0.972797i \(0.425585\pi\)
\(80\) 0 0
\(81\) −2.22709 3.85743i −0.247454 0.428604i
\(82\) −0.460175 + 0.0123016i −0.0508178 + 0.00135849i
\(83\) 5.26172 0.577549 0.288774 0.957397i \(-0.406752\pi\)
0.288774 + 0.957397i \(0.406752\pi\)
\(84\) −2.61515 + 2.86378i −0.285336 + 0.312464i
\(85\) 0 0
\(86\) 13.1215 0.350772i 1.41493 0.0378247i
\(87\) 1.89795 + 3.28735i 0.203482 + 0.352441i
\(88\) −4.32061 6.26451i −0.460578 0.667799i
\(89\) −4.10930 2.37250i −0.435585 0.251485i 0.266138 0.963935i \(-0.414252\pi\)
−0.701723 + 0.712450i \(0.747586\pi\)
\(90\) 0 0
\(91\) 10.1192 2.62373i 1.06078 0.275041i
\(92\) −8.75882 4.45079i −0.913170 0.464027i
\(93\) 2.79783 4.84598i 0.290121 0.502505i
\(94\) −8.16255 4.42613i −0.841903 0.456521i
\(95\) 0 0
\(96\) −3.28229 + 2.53286i −0.334997 + 0.258509i
\(97\) 8.35134i 0.847950i 0.905674 + 0.423975i \(0.139366\pi\)
−0.905674 + 0.423975i \(0.860634\pi\)
\(98\) −5.03964 8.52068i −0.509080 0.860719i
\(99\) 6.62638i 0.665976i
\(100\) 0 0
\(101\) −0.241927 + 0.139677i −0.0240727 + 0.0138984i −0.511988 0.858993i \(-0.671091\pi\)
0.487915 + 0.872891i \(0.337757\pi\)
\(102\) −0.701095 + 1.29294i −0.0694187 + 0.128020i
\(103\) −6.70030 + 11.6053i −0.660200 + 1.14350i 0.320362 + 0.947295i \(0.396195\pi\)
−0.980563 + 0.196206i \(0.937138\pi\)
\(104\) 11.1397 0.895084i 1.09234 0.0877703i
\(105\) 0 0
\(106\) −1.94784 + 1.19510i −0.189191 + 0.116078i
\(107\) −4.70160 2.71447i −0.454521 0.262418i 0.255217 0.966884i \(-0.417853\pi\)
−0.709738 + 0.704466i \(0.751187\pi\)
\(108\) −7.99607 + 0.427816i −0.769422 + 0.0411666i
\(109\) 4.45851 + 7.72237i 0.427048 + 0.739669i 0.996609 0.0822798i \(-0.0262201\pi\)
−0.569561 + 0.821949i \(0.692887\pi\)
\(110\) 0 0
\(111\) −3.28327 −0.311634
\(112\) −3.73406 9.90236i −0.352835 0.935685i
\(113\) −1.05161 −0.0989268 −0.0494634 0.998776i \(-0.515751\pi\)
−0.0494634 + 0.998776i \(0.515751\pi\)
\(114\) 0.0893340 + 3.34177i 0.00836690 + 0.312986i
\(115\) 0 0
\(116\) −10.3437 + 0.553424i −0.960391 + 0.0513841i
\(117\) 8.42743 + 4.86558i 0.779116 + 0.449823i
\(118\) 9.20319 5.64664i 0.847222 0.519815i
\(119\) −2.63314 2.67617i −0.241379 0.245324i
\(120\) 0 0
\(121\) −1.88052 + 3.25715i −0.170956 + 0.296105i
\(122\) −9.64003 + 17.7779i −0.872768 + 1.60953i
\(123\) −0.206605 + 0.119284i −0.0186290 + 0.0107554i
\(124\) 8.33051 + 12.7972i 0.748102 + 1.14923i
\(125\) 0 0
\(126\) 2.21890 8.94401i 0.197675 0.796796i
\(127\) 1.71773i 0.152424i −0.997092 0.0762121i \(-0.975717\pi\)
0.997092 0.0762121i \(-0.0242826\pi\)
\(128\) −2.10428 11.1163i −0.185994 0.982551i
\(129\) 5.89120 3.40128i 0.518691 0.299466i
\(130\) 0 0
\(131\) −7.07173 + 12.2486i −0.617860 + 1.07016i 0.372016 + 0.928226i \(0.378667\pi\)
−0.989876 + 0.141938i \(0.954667\pi\)
\(132\) −3.51591 1.78661i −0.306021 0.155505i
\(133\) −8.22439 2.27531i −0.713145 0.197295i
\(134\) 2.23841 + 3.64827i 0.193369 + 0.315163i
\(135\) 0 0
\(136\) −2.27874 3.30397i −0.195400 0.283314i
\(137\) −7.43551 12.8787i −0.635259 1.10030i −0.986460 0.164000i \(-0.947560\pi\)
0.351202 0.936300i \(-0.385773\pi\)
\(138\) −5.08980 + 0.136063i −0.433273 + 0.0115825i
\(139\) −7.06762 −0.599468 −0.299734 0.954023i \(-0.596898\pi\)
−0.299734 + 0.954023i \(0.596898\pi\)
\(140\) 0 0
\(141\) −4.81207 −0.405249
\(142\) 21.7837 0.582334i 1.82805 0.0488684i
\(143\) 5.31538 + 9.20652i 0.444495 + 0.769888i
\(144\) 3.98725 9.00843i 0.332271 0.750703i
\(145\) 0 0
\(146\) 1.04948 + 1.71050i 0.0868557 + 0.141562i
\(147\) −4.40084 2.63684i −0.362975 0.217483i
\(148\) 4.05885 7.98751i 0.333636 0.656569i
\(149\) 4.39289 7.60870i 0.359879 0.623329i −0.628061 0.778164i \(-0.716151\pi\)
0.987940 + 0.154835i \(0.0494846\pi\)
\(150\) 0 0
\(151\) −0.260095 + 0.150166i −0.0211663 + 0.0122204i −0.510546 0.859851i \(-0.670557\pi\)
0.489380 + 0.872071i \(0.337223\pi\)
\(152\) −8.24026 3.91384i −0.668374 0.317454i
\(153\) 3.49483i 0.282540i
\(154\) 6.98469 7.24980i 0.562843 0.584205i
\(155\) 0 0
\(156\) 4.85386 3.15968i 0.388620 0.252977i
\(157\) 16.6579 9.61742i 1.32944 0.767553i 0.344228 0.938886i \(-0.388141\pi\)
0.985213 + 0.171333i \(0.0548073\pi\)
\(158\) −8.23292 + 15.1829i −0.654976 + 1.20789i
\(159\) −0.592155 + 1.02564i −0.0469609 + 0.0813387i
\(160\) 0 0
\(161\) 3.46550 12.5264i 0.273119 0.987221i
\(162\) 5.36912 3.29424i 0.421838 0.258820i
\(163\) −9.28306 5.35958i −0.727105 0.419795i 0.0902569 0.995919i \(-0.471231\pi\)
−0.817362 + 0.576124i \(0.804565\pi\)
\(164\) −0.0347818 0.650088i −0.00271601 0.0507633i
\(165\) 0 0
\(166\) 0.198851 + 7.43854i 0.0154338 + 0.577342i
\(167\) −13.2256 −1.02343 −0.511715 0.859155i \(-0.670990\pi\)
−0.511715 + 0.859155i \(0.670990\pi\)
\(168\) −4.14738 3.58883i −0.319977 0.276884i
\(169\) −2.61180 −0.200908
\(170\) 0 0
\(171\) −3.97171 6.87920i −0.303724 0.526065i
\(172\) 0.991779 + 18.5368i 0.0756224 + 1.41342i
\(173\) −9.74632 5.62704i −0.740999 0.427816i 0.0814335 0.996679i \(-0.474050\pi\)
−0.822432 + 0.568863i \(0.807384\pi\)
\(174\) −4.57563 + 2.80739i −0.346878 + 0.212828i
\(175\) 0 0
\(176\) 8.69290 6.34483i 0.655252 0.478259i
\(177\) 2.79783 4.84598i 0.210298 0.364246i
\(178\) 3.19873 5.89901i 0.239755 0.442149i
\(179\) −0.697992 + 0.402986i −0.0521703 + 0.0301206i −0.525858 0.850572i \(-0.676256\pi\)
0.473688 + 0.880693i \(0.342922\pi\)
\(180\) 0 0
\(181\) 0.0667108i 0.00495857i −0.999997 0.00247929i \(-0.999211\pi\)
0.999997 0.00247929i \(-0.000789182\pi\)
\(182\) 4.09161 + 14.2065i 0.303290 + 1.05305i
\(183\) 10.4806i 0.774747i
\(184\) 5.96111 12.5506i 0.439459 0.925244i
\(185\) 0 0
\(186\) 6.95654 + 3.77217i 0.510078 + 0.276589i
\(187\) 1.90896 3.30641i 0.139597 0.241789i
\(188\) 5.94878 11.7067i 0.433860 0.853802i
\(189\) −2.65864 10.2539i −0.193388 0.745859i
\(190\) 0 0
\(191\) 15.1210 + 8.73010i 1.09412 + 0.631688i 0.934669 0.355519i \(-0.115696\pi\)
0.159446 + 0.987207i \(0.449029\pi\)
\(192\) −3.70477 4.54448i −0.267369 0.327969i
\(193\) −8.59835 14.8928i −0.618923 1.07201i −0.989683 0.143277i \(-0.954236\pi\)
0.370760 0.928729i \(-0.379097\pi\)
\(194\) −11.8064 + 0.315614i −0.847647 + 0.0226597i
\(195\) 0 0
\(196\) 11.8553 7.44659i 0.846807 0.531900i
\(197\) −11.9392 −0.850635 −0.425318 0.905044i \(-0.639838\pi\)
−0.425318 + 0.905044i \(0.639838\pi\)
\(198\) 9.36777 0.250424i 0.665738 0.0177969i
\(199\) 7.76016 + 13.4410i 0.550103 + 0.952807i 0.998267 + 0.0588552i \(0.0187450\pi\)
−0.448163 + 0.893952i \(0.647922\pi\)
\(200\) 0 0
\(201\) 1.92101 + 1.10910i 0.135498 + 0.0782297i
\(202\) −0.206605 0.336736i −0.0145367 0.0236927i
\(203\) −3.43922 13.2644i −0.241386 0.930980i
\(204\) −1.85433 0.942281i −0.129829 0.0659728i
\(205\) 0 0
\(206\) −16.6597 9.03369i −1.16073 0.629407i
\(207\) 10.4776 6.04924i 0.728243 0.420452i
\(208\) 1.68638 + 15.7145i 0.116929 + 1.08960i
\(209\) 8.67775i 0.600253i
\(210\) 0 0
\(211\) 14.1636i 0.975063i 0.873105 + 0.487531i \(0.162103\pi\)
−0.873105 + 0.487531i \(0.837897\pi\)
\(212\) −1.76314 2.70851i −0.121093 0.186021i
\(213\) 9.78027 5.64664i 0.670133 0.386901i
\(214\) 3.65979 6.74928i 0.250178 0.461371i
\(215\) 0 0
\(216\) −0.906994 11.2879i −0.0617132 0.768047i
\(217\) −14.3989 + 14.1674i −0.977459 + 0.961742i
\(218\) −10.7487 + 6.59488i −0.727993 + 0.446662i
\(219\) 0.900672 + 0.520003i 0.0608618 + 0.0351385i
\(220\) 0 0
\(221\) 2.80340 + 4.85563i 0.188577 + 0.326625i
\(222\) −0.124081 4.64159i −0.00832780 0.311523i
\(223\) 3.03443 0.203201 0.101600 0.994825i \(-0.467604\pi\)
0.101600 + 0.994825i \(0.467604\pi\)
\(224\) 13.8579 5.65310i 0.925922 0.377714i
\(225\) 0 0
\(226\) −0.0397423 1.48666i −0.00264362 0.0988914i
\(227\) 7.38839 + 12.7971i 0.490385 + 0.849371i 0.999939 0.0110676i \(-0.00352299\pi\)
−0.509554 + 0.860439i \(0.670190\pi\)
\(228\) −4.72092 + 0.252585i −0.312650 + 0.0167278i
\(229\) 5.56933 + 3.21545i 0.368031 + 0.212483i 0.672598 0.740008i \(-0.265178\pi\)
−0.304567 + 0.952491i \(0.598512\pi\)
\(230\) 0 0
\(231\) 1.39110 5.02829i 0.0915277 0.330837i
\(232\) −1.17329 14.6021i −0.0770303 0.958675i
\(233\) −8.73532 + 15.1300i −0.572270 + 0.991201i 0.424062 + 0.905633i \(0.360604\pi\)
−0.996332 + 0.0855677i \(0.972730\pi\)
\(234\) −6.56002 + 12.0978i −0.428842 + 0.790858i
\(235\) 0 0
\(236\) 8.33051 + 12.7972i 0.542270 + 0.833029i
\(237\) 8.95079i 0.581416i
\(238\) 3.68381 3.82363i 0.238786 0.247849i
\(239\) 3.22490i 0.208601i −0.994546 0.104301i \(-0.966740\pi\)
0.994546 0.104301i \(-0.0332604\pi\)
\(240\) 0 0
\(241\) −17.7424 + 10.2436i −1.14289 + 0.659848i −0.947145 0.320807i \(-0.896046\pi\)
−0.195745 + 0.980655i \(0.562713\pi\)
\(242\) −4.67573 2.53541i −0.300568 0.162982i
\(243\) 7.63787 13.2292i 0.489970 0.848653i
\(244\) −25.4971 12.9563i −1.63228 0.829444i
\(245\) 0 0
\(246\) −0.176440 0.287572i −0.0112494 0.0183349i
\(247\) 11.0364 + 6.37185i 0.702227 + 0.405431i
\(248\) −17.7767 + 12.2605i −1.12882 + 0.778545i
\(249\) 1.92817 + 3.33969i 0.122193 + 0.211644i
\(250\) 0 0
\(251\) −15.1647 −0.957189 −0.478594 0.878036i \(-0.658854\pi\)
−0.478594 + 0.878036i \(0.658854\pi\)
\(252\) 12.7281 + 2.79886i 0.801794 + 0.176312i
\(253\) 13.2170 0.830943
\(254\) 2.42837 0.0649166i 0.152370 0.00407323i
\(255\) 0 0
\(256\) 15.6357 3.39494i 0.977230 0.212184i
\(257\) −4.09764 2.36577i −0.255604 0.147573i 0.366724 0.930330i \(-0.380479\pi\)
−0.622327 + 0.782757i \(0.713813\pi\)
\(258\) 5.03106 + 8.19989i 0.313220 + 0.510503i
\(259\) 11.4234 + 3.16032i 0.709813 + 0.196373i
\(260\) 0 0
\(261\) 6.37787 11.0468i 0.394780 0.683780i
\(262\) −17.5832 9.53447i −1.08629 0.589041i
\(263\) −4.07068 + 2.35021i −0.251009 + 0.144920i −0.620226 0.784423i \(-0.712959\pi\)
0.369217 + 0.929343i \(0.379626\pi\)
\(264\) 2.39288 5.03800i 0.147271 0.310067i
\(265\) 0 0
\(266\) 2.90582 11.7129i 0.178167 0.718162i
\(267\) 3.47764i 0.212828i
\(268\) −5.07300 + 3.30233i −0.309883 + 0.201722i
\(269\) −21.2532 + 12.2706i −1.29583 + 0.748149i −0.979682 0.200559i \(-0.935724\pi\)
−0.316151 + 0.948709i \(0.602391\pi\)
\(270\) 0 0
\(271\) −13.1957 + 22.8556i −0.801582 + 1.38838i 0.116993 + 0.993133i \(0.462675\pi\)
−0.918574 + 0.395248i \(0.870659\pi\)
\(272\) 4.58474 3.34634i 0.277991 0.202902i
\(273\) 5.37353 + 5.46135i 0.325221 + 0.330536i
\(274\) 17.9257 10.9984i 1.08293 0.664435i
\(275\) 0 0
\(276\) −0.384708 7.19035i −0.0231567 0.432808i
\(277\) −12.0350 20.8453i −0.723115 1.25247i −0.959745 0.280872i \(-0.909376\pi\)
0.236630 0.971600i \(-0.423957\pi\)
\(278\) −0.267100 9.99155i −0.0160196 0.599254i
\(279\) −18.8036 −1.12574
\(280\) 0 0
\(281\) −7.78577 −0.464460 −0.232230 0.972661i \(-0.574602\pi\)
−0.232230 + 0.972661i \(0.574602\pi\)
\(282\) −0.181858 6.80286i −0.0108295 0.405104i
\(283\) −3.97529 6.88540i −0.236306 0.409294i 0.723345 0.690487i \(-0.242604\pi\)
−0.959651 + 0.281192i \(0.909270\pi\)
\(284\) 1.64650 + 30.7738i 0.0977019 + 1.82609i
\(285\) 0 0
\(286\) −12.8145 + 7.86234i −0.757734 + 0.464910i
\(287\) 0.833649 0.216150i 0.0492088 0.0127589i
\(288\) 12.8860 + 5.29637i 0.759314 + 0.312091i
\(289\) −7.49319 + 12.9786i −0.440776 + 0.763447i
\(290\) 0 0
\(291\) −5.30071 + 3.06037i −0.310733 + 0.179402i
\(292\) −2.37849 + 1.54830i −0.139190 + 0.0906077i
\(293\) 2.11501i 0.123560i 0.998090 + 0.0617801i \(0.0196777\pi\)
−0.998090 + 0.0617801i \(0.980322\pi\)
\(294\) 3.56141 6.32116i 0.207706 0.368657i
\(295\) 0 0
\(296\) 11.4454 + 5.43617i 0.665251 + 0.315971i
\(297\) 9.32902 5.38611i 0.541325 0.312534i
\(298\) 10.9225 + 5.92271i 0.632723 + 0.343093i
\(299\) −9.70487 + 16.8093i −0.561247 + 0.972108i
\(300\) 0 0
\(301\) −23.7709 + 6.16335i −1.37013 + 0.355250i
\(302\) −0.222121 0.362024i −0.0127816 0.0208321i
\(303\) −0.177310 0.102370i −0.0101862 0.00588100i
\(304\) 5.22162 11.7972i 0.299480 0.676618i
\(305\) 0 0
\(306\) 4.94067 0.132077i 0.282439 0.00755032i
\(307\) −18.6560 −1.06475 −0.532376 0.846508i \(-0.678701\pi\)
−0.532376 + 0.846508i \(0.678701\pi\)
\(308\) 10.5131 + 9.60034i 0.599037 + 0.547030i
\(309\) −9.82137 −0.558718
\(310\) 0 0
\(311\) 4.09153 + 7.08673i 0.232009 + 0.401852i 0.958399 0.285431i \(-0.0921367\pi\)
−0.726390 + 0.687283i \(0.758803\pi\)
\(312\) 4.65030 + 6.74253i 0.263271 + 0.381721i
\(313\) 20.2427 + 11.6871i 1.14419 + 0.660597i 0.947464 0.319863i \(-0.103637\pi\)
0.196723 + 0.980459i \(0.436970\pi\)
\(314\) 14.2258 + 23.1859i 0.802806 + 1.30846i
\(315\) 0 0
\(316\) −21.7754 11.0652i −1.22496 0.622464i
\(317\) −13.1039 + 22.6966i −0.735988 + 1.27477i 0.218300 + 0.975882i \(0.429949\pi\)
−0.954288 + 0.298887i \(0.903385\pi\)
\(318\) −1.47234 0.798373i −0.0825646 0.0447705i
\(319\) 12.0680 6.96749i 0.675680 0.390104i
\(320\) 0 0
\(321\) 3.97890i 0.222081i
\(322\) 17.8397 + 4.42580i 0.994167 + 0.246640i
\(323\) 4.57675i 0.254657i
\(324\) 4.86000 + 7.46587i 0.270000 + 0.414771i
\(325\) 0 0
\(326\) 7.22606 13.3261i 0.400214 0.738064i
\(327\) −3.26767 + 5.65977i −0.180702 + 0.312986i
\(328\) 0.917720 0.0737395i 0.0506726 0.00407158i
\(329\) 16.7424 + 4.63187i 0.923039 + 0.255363i
\(330\) 0 0
\(331\) 16.9060 + 9.76067i 0.929237 + 0.536495i 0.886570 0.462594i \(-0.153081\pi\)
0.0426665 + 0.999089i \(0.486415\pi\)
\(332\) −10.5084 + 0.562234i −0.576724 + 0.0308566i
\(333\) 5.51654 + 9.55493i 0.302305 + 0.523607i
\(334\) −0.499824 18.6972i −0.0273491 1.02307i
\(335\) 0 0
\(336\) 4.91682 5.99881i 0.268234 0.327262i
\(337\) 31.7520 1.72964 0.864820 0.502082i \(-0.167433\pi\)
0.864820 + 0.502082i \(0.167433\pi\)
\(338\) −0.0987052 3.69233i −0.00536886 0.200836i
\(339\) −0.385364 0.667470i −0.0209301 0.0362520i
\(340\) 0 0
\(341\) −17.7898 10.2710i −0.963373 0.556204i
\(342\) 9.57508 5.87481i 0.517761 0.317674i
\(343\) 12.7736 + 13.4103i 0.689707 + 0.724088i
\(344\) −26.1681 + 2.10263i −1.41089 + 0.113366i
\(345\) 0 0
\(346\) 7.58666 13.9911i 0.407861 0.752167i
\(347\) 15.9212 9.19210i 0.854694 0.493458i −0.00753782 0.999972i \(-0.502399\pi\)
0.862232 + 0.506514i \(0.169066\pi\)
\(348\) −4.14175 6.36251i −0.222021 0.341066i
\(349\) 2.37390i 0.127072i 0.997980 + 0.0635360i \(0.0202378\pi\)
−0.997980 + 0.0635360i \(0.979762\pi\)
\(350\) 0 0
\(351\) 15.8195i 0.844384i
\(352\) 9.29826 + 12.0494i 0.495599 + 0.642238i
\(353\) 1.86560 1.07710i 0.0992958 0.0573284i −0.449530 0.893265i \(-0.648408\pi\)
0.548826 + 0.835937i \(0.315075\pi\)
\(354\) 6.95654 + 3.77217i 0.369736 + 0.200489i
\(355\) 0 0
\(356\) 8.46037 + 4.29914i 0.448399 + 0.227854i
\(357\) 0.733682 2.65198i 0.0388306 0.140358i
\(358\) −0.596083 0.971527i −0.0315039 0.0513468i
\(359\) −4.40004 2.54037i −0.232225 0.134075i 0.379373 0.925244i \(-0.376140\pi\)
−0.611598 + 0.791168i \(0.709473\pi\)
\(360\) 0 0
\(361\) 4.29874 + 7.44564i 0.226250 + 0.391876i
\(362\) 0.0943096 0.00252113i 0.00495680 0.000132508i
\(363\) −2.75648 −0.144678
\(364\) −19.9292 + 6.32124i −1.04457 + 0.331323i
\(365\) 0 0
\(366\) −14.8165 + 0.396082i −0.774471 + 0.0207036i
\(367\) 6.77267 + 11.7306i 0.353530 + 0.612333i 0.986865 0.161545i \(-0.0516478\pi\)
−0.633335 + 0.773878i \(0.718314\pi\)
\(368\) 17.9682 + 7.95296i 0.936657 + 0.414577i
\(369\) 0.694275 + 0.400840i 0.0361425 + 0.0208669i
\(370\) 0 0
\(371\) 3.04749 2.99849i 0.158218 0.155674i
\(372\) −5.06985 + 9.97707i −0.262860 + 0.517287i
\(373\) −3.56700 + 6.17822i −0.184692 + 0.319896i −0.943473 0.331450i \(-0.892462\pi\)
0.758781 + 0.651346i \(0.225795\pi\)
\(374\) 4.74644 + 2.57375i 0.245433 + 0.133086i
\(375\) 0 0
\(376\) 16.7747 + 7.96743i 0.865091 + 0.410889i
\(377\) 20.4642i 1.05396i
\(378\) 14.3955 4.14605i 0.740425 0.213250i
\(379\) 16.2436i 0.834379i 0.908820 + 0.417189i \(0.136985\pi\)
−0.908820 + 0.417189i \(0.863015\pi\)
\(380\) 0 0
\(381\) 1.09027 0.629468i 0.0558562 0.0322486i
\(382\) −11.7704 + 21.7066i −0.602224 + 1.11061i
\(383\) −4.94358 + 8.56254i −0.252605 + 0.437525i −0.964242 0.265022i \(-0.914621\pi\)
0.711637 + 0.702547i \(0.247954\pi\)
\(384\) 6.28456 5.40921i 0.320707 0.276038i
\(385\) 0 0
\(386\) 20.7291 12.7184i 1.05508 0.647349i
\(387\) −19.7967 11.4296i −1.00632 0.581002i
\(388\) −0.892372 16.6788i −0.0453033 0.846739i
\(389\) −15.9811 27.6802i −0.810276 1.40344i −0.912671 0.408696i \(-0.865984\pi\)
0.102395 0.994744i \(-0.467350\pi\)
\(390\) 0 0
\(391\) 6.97078 0.352527
\(392\) 10.9753 + 16.4785i 0.554339 + 0.832291i
\(393\) −10.3658 −0.522886
\(394\) −0.451208 16.8786i −0.0227315 0.850331i
\(395\) 0 0
\(396\) 0.708053 + 13.2338i 0.0355810 + 0.665025i
\(397\) 15.1344 + 8.73784i 0.759573 + 0.438539i 0.829142 0.559038i \(-0.188829\pi\)
−0.0695697 + 0.997577i \(0.522163\pi\)
\(398\) −18.7084 + 11.4786i −0.937766 + 0.575369i
\(399\) −1.56967 6.05393i −0.0785819 0.303076i
\(400\) 0 0
\(401\) 8.67926 15.0329i 0.433422 0.750708i −0.563744 0.825950i \(-0.690639\pi\)
0.997165 + 0.0752415i \(0.0239728\pi\)
\(402\) −1.49534 + 2.75767i −0.0745809 + 0.137540i
\(403\) 26.1252 15.0834i 1.30139 0.751358i
\(404\) 0.468239 0.304805i 0.0232957 0.0151646i
\(405\) 0 0
\(406\) 18.6221 5.36334i 0.924197 0.266178i
\(407\) 12.0531i 0.597448i
\(408\) 1.26203 2.65710i 0.0624798 0.131546i
\(409\) −6.32187 + 3.64993i −0.312596 + 0.180478i −0.648088 0.761566i \(-0.724431\pi\)
0.335491 + 0.942043i \(0.391098\pi\)
\(410\) 0 0
\(411\) 5.44952 9.43885i 0.268805 0.465584i
\(412\) 12.1414 23.8933i 0.598164 1.17714i
\(413\) −14.3989 + 14.1674i −0.708522 + 0.697130i
\(414\) 8.94784 + 14.5837i 0.439762 + 0.716748i
\(415\) 0 0
\(416\) −22.1520 + 2.97793i −1.08609 + 0.146005i
\(417\) −2.58995 4.48592i −0.126830 0.219677i
\(418\) 12.2678 0.327950i 0.600038 0.0160405i
\(419\) 17.9278 0.875831 0.437915 0.899016i \(-0.355717\pi\)
0.437915 + 0.899016i \(0.355717\pi\)
\(420\) 0 0
\(421\) 12.6334 0.615716 0.307858 0.951432i \(-0.400388\pi\)
0.307858 + 0.951432i \(0.400388\pi\)
\(422\) −20.0232 + 0.535271i −0.974715 + 0.0260566i
\(423\) 8.08522 + 14.0040i 0.393117 + 0.680898i
\(424\) 3.76241 2.59492i 0.182719 0.126020i
\(425\) 0 0
\(426\) 8.35232 + 13.6130i 0.404671 + 0.659554i
\(427\) 10.0881 36.4647i 0.488198 1.76465i
\(428\) 9.67983 + 4.91881i 0.467892 + 0.237759i
\(429\) −3.89567 + 6.74750i −0.188085 + 0.325773i
\(430\) 0 0
\(431\) −28.2962 + 16.3368i −1.36298 + 0.786918i −0.990020 0.140929i \(-0.954991\pi\)
−0.372962 + 0.927847i \(0.621658\pi\)
\(432\) 15.9236 1.70882i 0.766124 0.0822156i
\(433\) 23.5884i 1.13359i 0.823860 + 0.566794i \(0.191816\pi\)
−0.823860 + 0.566794i \(0.808184\pi\)
\(434\) −20.5727 19.8204i −0.987520 0.951409i
\(435\) 0 0
\(436\) −9.72946 14.9463i −0.465957 0.715797i
\(437\) 13.7212 7.92195i 0.656375 0.378958i
\(438\) −0.701095 + 1.29294i −0.0334996 + 0.0617790i
\(439\) −9.19501 + 15.9262i −0.438854 + 0.760117i −0.997601 0.0692207i \(-0.977949\pi\)
0.558748 + 0.829338i \(0.311282\pi\)
\(440\) 0 0
\(441\) −0.279428 + 17.2377i −0.0133061 + 0.820842i
\(442\) −6.75849 + 4.14669i −0.321469 + 0.197238i
\(443\) 2.93092 + 1.69217i 0.139252 + 0.0803973i 0.568008 0.823023i \(-0.307714\pi\)
−0.428755 + 0.903421i \(0.641048\pi\)
\(444\) 6.55717 0.350830i 0.311189 0.0166497i
\(445\) 0 0
\(446\) 0.114677 + 4.28980i 0.00543013 + 0.203128i
\(447\) 6.43914 0.304561
\(448\) 8.51556 + 19.3774i 0.402322 + 0.915498i
\(449\) 11.9013 0.561658 0.280829 0.959758i \(-0.409391\pi\)
0.280829 + 0.959758i \(0.409391\pi\)
\(450\) 0 0
\(451\) 0.437896 + 0.758458i 0.0206197 + 0.0357144i
\(452\) 2.10021 0.112368i 0.0987855 0.00528535i
\(453\) −0.190625 0.110058i −0.00895636 0.00517096i
\(454\) −17.8121 + 10.9287i −0.835963 + 0.512907i
\(455\) 0 0
\(456\) −0.535494 6.66445i −0.0250768 0.312092i
\(457\) 10.5352 18.2475i 0.492816 0.853582i −0.507150 0.861858i \(-0.669301\pi\)
0.999966 + 0.00827601i \(0.00263437\pi\)
\(458\) −4.33524 + 7.99492i −0.202572 + 0.373578i
\(459\) 4.92023 2.84070i 0.229657 0.132592i
\(460\) 0 0
\(461\) 29.6708i 1.38191i 0.722899 + 0.690954i \(0.242809\pi\)
−0.722899 + 0.690954i \(0.757191\pi\)
\(462\) 7.16111 + 1.77658i 0.333165 + 0.0826540i
\(463\) 15.0481i 0.699342i 0.936873 + 0.349671i \(0.113707\pi\)
−0.936873 + 0.349671i \(0.886293\pi\)
\(464\) 20.5988 2.21053i 0.956274 0.102621i
\(465\) 0 0
\(466\) −21.7196 11.7774i −1.00614 0.545578i
\(467\) −2.57299 + 4.45656i −0.119064 + 0.206225i −0.919397 0.393331i \(-0.871323\pi\)
0.800333 + 0.599556i \(0.204656\pi\)
\(468\) −17.3507 8.81676i −0.802036 0.407555i
\(469\) −5.61614 5.70791i −0.259329 0.263567i
\(470\) 0 0
\(471\) 12.2086 + 7.04865i 0.562544 + 0.324785i
\(472\) −17.7767 + 12.2605i −0.818240 + 0.564337i
\(473\) −12.4863 21.6269i −0.574120 0.994405i
\(474\) −12.6538 + 0.338268i −0.581208 + 0.0155372i
\(475\) 0 0
\(476\) 5.54471 + 5.06333i 0.254142 + 0.232077i
\(477\) 3.97974 0.182220
\(478\) 4.55907 0.121875i 0.208527 0.00557445i
\(479\) −19.9783 34.6035i −0.912834 1.58107i −0.810042 0.586372i \(-0.800556\pi\)
−0.102792 0.994703i \(-0.532778\pi\)
\(480\) 0 0
\(481\) −15.3291 8.85025i −0.698946 0.403537i
\(482\) −15.1520 24.6955i −0.690153 1.12485i
\(483\) 9.22065 2.39074i 0.419554 0.108783i
\(484\) 3.40763 6.70594i 0.154892 0.304816i
\(485\) 0 0
\(486\) 18.9909 + 10.2978i 0.861443 + 0.467116i
\(487\) −10.5871 + 6.11246i −0.479747 + 0.276982i −0.720311 0.693651i \(-0.756001\pi\)
0.240564 + 0.970633i \(0.422668\pi\)
\(488\) 17.3529 36.5351i 0.785529 1.65386i
\(489\) 7.85613i 0.355266i
\(490\) 0 0
\(491\) 22.9515i 1.03579i −0.855445 0.517894i \(-0.826716\pi\)
0.855445 0.517894i \(-0.173284\pi\)
\(492\) 0.399874 0.260303i 0.0180277 0.0117354i
\(493\) 6.36483 3.67473i 0.286657 0.165502i
\(494\) −8.59085 + 15.8430i −0.386521 + 0.712811i
\(495\) 0 0
\(496\) −18.0047 24.6678i −0.808433 1.10762i
\(497\) −39.4632 + 10.2321i −1.77017 + 0.458972i
\(498\) −4.64848 + 2.85209i −0.208303 + 0.127805i
\(499\) 3.64376 + 2.10372i 0.163117 + 0.0941756i 0.579336 0.815089i \(-0.303312\pi\)
−0.416219 + 0.909264i \(0.636645\pi\)
\(500\) 0 0
\(501\) −4.84657 8.39451i −0.216529 0.375039i
\(502\) −0.573105 21.4385i −0.0255789 0.956847i
\(503\) −43.1904 −1.92576 −0.962882 0.269924i \(-0.913001\pi\)
−0.962882 + 0.269924i \(0.913001\pi\)
\(504\) −3.47575 + 18.0996i −0.154822 + 0.806219i
\(505\) 0 0
\(506\) 0.499495 + 18.6849i 0.0222053 + 0.830646i
\(507\) −0.957101 1.65775i −0.0425064 0.0736232i
\(508\) 0.183546 + 3.43056i 0.00814355 + 0.152206i
\(509\) 32.3532 + 18.6791i 1.43403 + 0.827937i 0.997425 0.0717169i \(-0.0228478\pi\)
0.436604 + 0.899654i \(0.356181\pi\)
\(510\) 0 0
\(511\) −2.63314 2.67617i −0.116483 0.118387i
\(512\) 5.39037 + 21.9760i 0.238223 + 0.971211i
\(513\) 6.45664 11.1832i 0.285067 0.493751i
\(514\) 3.18966 5.88227i 0.140690 0.259456i
\(515\) 0 0
\(516\) −11.4021 + 7.42235i −0.501951 + 0.326751i
\(517\) 17.6653i 0.776921i
\(518\) −4.03606 + 16.2687i −0.177334 + 0.714807i
\(519\) 8.24817i 0.362055i
\(520\) 0 0
\(521\) 13.9610 8.06040i 0.611643 0.353132i −0.161965 0.986796i \(-0.551783\pi\)
0.773608 + 0.633664i \(0.218450\pi\)
\(522\) 15.8580 + 8.59897i 0.694085 + 0.376367i
\(523\) 7.98356 13.8279i 0.349097 0.604653i −0.636993 0.770870i \(-0.719822\pi\)
0.986089 + 0.166217i \(0.0531552\pi\)
\(524\) 12.8145 25.2178i 0.559802 1.10165i
\(525\) 0 0
\(526\) −3.47635 5.66594i −0.151576 0.247047i
\(527\) −9.38257 5.41703i −0.408711 0.235969i
\(528\) 7.21269 + 3.19243i 0.313892 + 0.138933i
\(529\) 0.565805 + 0.980002i 0.0246002 + 0.0426088i
\(530\) 0 0
\(531\) −18.8036 −0.816007
\(532\) 16.6684 + 3.66532i 0.722667 + 0.158912i
\(533\) −1.28614 −0.0557090
\(534\) 4.91637 0.131427i 0.212752 0.00568740i
\(535\) 0 0
\(536\) −4.86025 7.04694i −0.209931 0.304382i
\(537\) −0.511562 0.295350i −0.0220755 0.0127453i
\(538\) −18.1502 29.5822i −0.782511 1.27538i
\(539\) −9.67999 + 16.1557i −0.416947 + 0.695876i
\(540\) 0 0
\(541\) 7.31686 12.6732i 0.314576 0.544862i −0.664771 0.747047i \(-0.731471\pi\)
0.979347 + 0.202185i \(0.0648042\pi\)
\(542\) −32.8099 17.7911i −1.40931 0.764194i
\(543\) 0.0423423 0.0244463i 0.00181708 0.00104909i
\(544\) 4.90401 + 6.35502i 0.210258 + 0.272469i
\(545\) 0 0
\(546\) −7.51768 + 7.80301i −0.321727 + 0.333938i
\(547\) 16.5936i 0.709493i 0.934963 + 0.354747i \(0.115433\pi\)
−0.934963 + 0.354747i \(0.884567\pi\)
\(548\) 16.2259 + 24.9261i 0.693137 + 1.06479i
\(549\) 30.5005 17.6094i 1.30173 0.751553i
\(550\) 0 0
\(551\) 8.35232 14.4666i 0.355821 0.616300i
\(552\) 10.1505 0.815602i 0.432035 0.0347143i
\(553\) 8.61560 31.1421i 0.366373 1.32430i
\(554\) 29.0143 17.8018i 1.23270 0.756327i
\(555\) 0 0
\(556\) 14.1151 0.755202i 0.598611 0.0320277i
\(557\) −12.3878 21.4562i −0.524886 0.909129i −0.999580 0.0289782i \(-0.990775\pi\)
0.474694 0.880151i \(-0.342559\pi\)
\(558\) −0.710626 26.5828i −0.0300832 1.12534i
\(559\) 36.6734 1.55112
\(560\) 0 0
\(561\) 2.79817 0.118139
\(562\) −0.294240 11.0068i −0.0124118 0.464294i
\(563\) −11.9762 20.7434i −0.504737 0.874230i −0.999985 0.00547814i \(-0.998256\pi\)
0.495248 0.868751i \(-0.335077\pi\)
\(564\) 9.61039 0.514188i 0.404670 0.0216512i
\(565\) 0 0
\(566\) 9.58371 5.88011i 0.402833 0.247159i
\(567\) −8.40027 + 8.26520i −0.352778 + 0.347106i
\(568\) −43.4430 + 3.49068i −1.82283 + 0.146466i
\(569\) 4.58078 7.93415i 0.192036 0.332617i −0.753889 0.657002i \(-0.771824\pi\)
0.945925 + 0.324385i \(0.105157\pi\)
\(570\) 0 0
\(571\) 21.4132 12.3629i 0.896114 0.517372i 0.0201768 0.999796i \(-0.493577\pi\)
0.875938 + 0.482425i \(0.160244\pi\)
\(572\) −11.5993 17.8188i −0.484993 0.745040i
\(573\) 12.7967i 0.534589i
\(574\) 0.337078 + 1.17037i 0.0140694 + 0.0488502i
\(575\) 0 0
\(576\) −7.00053 + 18.4172i −0.291689 + 0.767383i
\(577\) 8.23042 4.75184i 0.342637 0.197822i −0.318801 0.947822i \(-0.603280\pi\)
0.661438 + 0.750000i \(0.269947\pi\)
\(578\) −18.6311 10.1027i −0.774953 0.420217i
\(579\) 6.30178 10.9150i 0.261893 0.453612i
\(580\) 0 0
\(581\) −3.49398 13.4756i −0.144955 0.559062i
\(582\) −4.52679 7.37801i −0.187642 0.305828i
\(583\) 3.76518 + 2.17383i 0.155938 + 0.0900308i
\(584\) −2.27874 3.30397i −0.0942949 0.136719i
\(585\) 0 0
\(586\) −2.99001 + 0.0799304i −0.123516 + 0.00330190i
\(587\) 14.2100 0.586508 0.293254 0.956035i \(-0.405262\pi\)
0.293254 + 0.956035i \(0.405262\pi\)
\(588\) 9.07087 + 4.79591i 0.374076 + 0.197780i
\(589\) −24.6248 −1.01465
\(590\) 0 0
\(591\) −4.37516 7.57801i −0.179970 0.311717i
\(592\) −7.25262 + 16.3859i −0.298081 + 0.673457i
\(593\) 15.3781 + 8.87854i 0.631502 + 0.364598i 0.781334 0.624114i \(-0.214540\pi\)
−0.149831 + 0.988712i \(0.547873\pi\)
\(594\) 7.96695 + 12.9850i 0.326888 + 0.532779i
\(595\) 0 0
\(596\) −7.96020 + 15.6651i −0.326063 + 0.641666i
\(597\) −5.68746 + 9.85098i −0.232772 + 0.403174i
\(598\) −24.1303 13.0846i −0.986759 0.535069i
\(599\) −18.1537 + 10.4811i −0.741741 + 0.428244i −0.822702 0.568473i \(-0.807534\pi\)
0.0809612 + 0.996717i \(0.474201\pi\)
\(600\) 0 0
\(601\) 20.7196i 0.845169i −0.906324 0.422585i \(-0.861123\pi\)
0.906324 0.422585i \(-0.138877\pi\)
\(602\) −9.61154 33.3722i −0.391737 1.36015i
\(603\) 7.45401i 0.303551i
\(604\) 0.503402 0.327696i 0.0204831 0.0133337i
\(605\) 0 0
\(606\) 0.138020 0.254533i 0.00560669 0.0103397i
\(607\) −1.60263 + 2.77584i −0.0650487 + 0.112668i −0.896716 0.442607i \(-0.854054\pi\)
0.831667 + 0.555275i \(0.187387\pi\)
\(608\) 16.8752 + 6.93600i 0.684380 + 0.281292i
\(609\) 7.15881 7.04371i 0.290090 0.285425i
\(610\) 0 0
\(611\) −22.4668 12.9712i −0.908909 0.524759i
\(612\) 0.373436 + 6.97968i 0.0150952 + 0.282137i
\(613\) −2.39778 4.15308i −0.0968454 0.167741i 0.813532 0.581520i \(-0.197542\pi\)
−0.910377 + 0.413779i \(0.864209\pi\)
\(614\) −0.705046 26.3741i −0.0284534 1.06437i
\(615\) 0 0
\(616\) −13.1748 + 15.2252i −0.530827 + 0.613442i
\(617\) −8.95961 −0.360700 −0.180350 0.983602i \(-0.557723\pi\)
−0.180350 + 0.983602i \(0.557723\pi\)
\(618\) −0.371169 13.8846i −0.0149306 0.558519i
\(619\) 12.8347 + 22.2303i 0.515868 + 0.893510i 0.999830 + 0.0184212i \(0.00586397\pi\)
−0.483962 + 0.875089i \(0.660803\pi\)
\(620\) 0 0
\(621\) 17.0330 + 9.83400i 0.683510 + 0.394625i
\(622\) −9.86394 + 6.05205i −0.395508 + 0.242665i
\(623\) −3.34741 + 12.0996i −0.134111 + 0.484761i
\(624\) −9.35623 + 6.82898i −0.374549 + 0.273378i
\(625\) 0 0
\(626\) −15.7572 + 29.0590i −0.629785 + 1.16143i
\(627\) 5.50790 3.17999i 0.219964 0.126996i
\(628\) −32.2405 + 20.9873i −1.28653 + 0.837485i
\(629\) 6.35693i 0.253467i
\(630\) 0 0
\(631\) 1.75095i 0.0697043i 0.999392 + 0.0348521i \(0.0110960\pi\)
−0.999392 + 0.0348521i \(0.988904\pi\)
\(632\) 14.8200 31.2022i 0.589507 1.24116i
\(633\) −8.98985 + 5.19029i −0.357314 + 0.206296i
\(634\) −32.5816 17.6673i −1.29398 0.701660i
\(635\) 0 0
\(636\) 1.07302 2.11163i 0.0425482 0.0837315i
\(637\) −13.4391 24.1737i −0.532475 0.957798i
\(638\) 10.3061 + 16.7974i 0.408021 + 0.665014i
\(639\) −32.8655 18.9749i −1.30014 0.750636i
\(640\) 0 0
\(641\) 20.3887 + 35.3143i 0.805306 + 1.39483i 0.916084 + 0.400986i \(0.131332\pi\)
−0.110778 + 0.993845i \(0.535334\pi\)
\(642\) 5.62501 0.150371i 0.222001 0.00593466i
\(643\) −35.0077 −1.38057 −0.690285 0.723538i \(-0.742515\pi\)
−0.690285 + 0.723538i \(0.742515\pi\)
\(644\) −5.58260 + 25.3874i −0.219985 + 1.00040i
\(645\) 0 0
\(646\) 6.47019 0.172965i 0.254566 0.00680520i
\(647\) 12.1215 + 20.9951i 0.476547 + 0.825404i 0.999639 0.0268724i \(-0.00855480\pi\)
−0.523092 + 0.852276i \(0.675221\pi\)
\(648\) −10.3709 + 7.15277i −0.407407 + 0.280987i
\(649\) −17.7898 10.2710i −0.698312 0.403171i
\(650\) 0 0
\(651\) −14.2687 3.94751i −0.559236 0.154715i
\(652\) 19.1123 + 9.71192i 0.748495 + 0.380348i
\(653\) 21.5956 37.4046i 0.845100 1.46376i −0.0404346 0.999182i \(-0.512874\pi\)
0.885534 0.464574i \(-0.153792\pi\)
\(654\) −8.12475 4.40564i −0.317703 0.172274i
\(655\) 0 0
\(656\) 0.138929 + 1.29460i 0.00542425 + 0.0505457i
\(657\) 3.49483i 0.136346i
\(658\) −5.91538 + 23.8439i −0.230606 + 0.929534i
\(659\) 11.6398i 0.453422i −0.973962 0.226711i \(-0.927203\pi\)
0.973962 0.226711i \(-0.0727973\pi\)
\(660\) 0 0
\(661\) 14.8021 8.54599i 0.575735 0.332400i −0.183702 0.982982i \(-0.558808\pi\)
0.759436 + 0.650582i \(0.225475\pi\)
\(662\) −13.1598 + 24.2690i −0.511471 + 0.943241i
\(663\) −2.05462 + 3.55871i −0.0797950 + 0.138209i
\(664\) −1.19197 14.8346i −0.0462574 0.575693i
\(665\) 0 0
\(666\) −13.2994 + 8.15989i −0.515342 + 0.316189i
\(667\) 22.0339 + 12.7213i 0.853157 + 0.492570i
\(668\) 26.4135 1.41321i 1.02197 0.0546787i
\(669\) 1.11198 + 1.92600i 0.0429915 + 0.0744634i
\(670\) 0 0
\(671\) 38.4748 1.48530
\(672\) 8.66638 + 6.72424i 0.334313 + 0.259393i
\(673\) −3.77972 −0.145697 −0.0728487 0.997343i \(-0.523209\pi\)
−0.0728487 + 0.997343i \(0.523209\pi\)
\(674\) 1.19997 + 44.8880i 0.0462211 + 1.72902i
\(675\) 0 0
\(676\) 5.21614 0.279081i 0.200621 0.0107339i
\(677\) 24.0534 + 13.8872i 0.924446 + 0.533729i 0.885051 0.465494i \(-0.154123\pi\)
0.0393956 + 0.999224i \(0.487457\pi\)
\(678\) 0.929044 0.570017i 0.0356797 0.0218914i
\(679\) 21.3883 5.54559i 0.820808 0.212820i
\(680\) 0 0
\(681\) −5.41499 + 9.37904i −0.207503 + 0.359405i
\(682\) 13.8478 25.5378i 0.530261 0.977893i
\(683\) 9.67614 5.58652i 0.370247 0.213762i −0.303319 0.952889i \(-0.598095\pi\)
0.673567 + 0.739127i \(0.264761\pi\)
\(684\) 8.66713 + 13.3144i 0.331396 + 0.509087i
\(685\) 0 0
\(686\) −18.4755 + 18.5649i −0.705399 + 0.708811i
\(687\) 4.71324i 0.179821i
\(688\) −3.96145 36.9146i −0.151029 1.40736i
\(689\) −5.52935 + 3.19237i −0.210652 + 0.121620i
\(690\) 0 0
\(691\) 17.7057 30.6672i 0.673556 1.16663i −0.303332 0.952885i \(-0.598099\pi\)
0.976889 0.213749i \(-0.0685675\pi\)
\(692\) 20.0661 + 10.1966i 0.762797 + 0.387616i
\(693\) −16.9706 + 4.40016i −0.644659 + 0.167148i
\(694\) 13.5966 + 22.1605i 0.516122 + 0.841202i
\(695\) 0 0
\(696\) 8.83821 6.09568i 0.335012 0.231056i
\(697\) 0.230952 + 0.400020i 0.00874791 + 0.0151518i
\(698\) −3.35600 + 0.0897145i −0.127027 + 0.00339574i
\(699\) −12.8043 −0.484304
\(700\) 0 0
\(701\) 2.24955 0.0849643 0.0424821 0.999097i \(-0.486473\pi\)
0.0424821 + 0.999097i \(0.486473\pi\)
\(702\) −22.3642 + 0.597852i −0.844083 + 0.0225645i
\(703\) 7.22434 + 12.5129i 0.272471 + 0.471934i
\(704\) −16.6830 + 13.6004i −0.628764 + 0.512584i
\(705\) 0 0
\(706\) 1.59321 + 2.59671i 0.0599614 + 0.0977283i
\(707\) 0.518370 + 0.526841i 0.0194953 + 0.0198139i
\(708\) −5.06985 + 9.97707i −0.190537 + 0.374961i
\(709\) −7.94601 + 13.7629i −0.298418 + 0.516876i −0.975774 0.218780i \(-0.929792\pi\)
0.677356 + 0.735656i \(0.263126\pi\)
\(710\) 0 0
\(711\) 26.0485 15.0391i 0.976893 0.564010i
\(712\) −5.75799 + 12.1230i −0.215790 + 0.454327i
\(713\) 37.5056i 1.40460i
\(714\) 3.77685 + 0.936989i 0.141345 + 0.0350660i
\(715\) 0 0
\(716\) 1.35093 0.879403i 0.0504866 0.0328648i
\(717\) 2.04689 1.18177i 0.0764425 0.0441341i
\(718\) 3.42505 6.31638i 0.127822 0.235725i
\(719\) 18.0142 31.2015i 0.671817 1.16362i −0.305572 0.952169i \(-0.598848\pi\)
0.977388 0.211452i \(-0.0678191\pi\)
\(720\) 0 0
\(721\) 34.1711 + 9.45359i 1.27260 + 0.352070i
\(722\) −10.3635 + 6.35856i −0.385690 + 0.236641i
\(723\) −13.0035 7.50758i −0.483606 0.279210i
\(724\) 0.00712830 + 0.133231i 0.000264921 + 0.00495149i
\(725\) 0 0
\(726\) −0.104173 3.89686i −0.00386622 0.144626i
\(727\) −51.4779 −1.90921 −0.954604 0.297878i \(-0.903721\pi\)
−0.954604 + 0.297878i \(0.903721\pi\)
\(728\) −9.68955 27.9352i −0.359119 1.03535i
\(729\) −2.16686 −0.0802541
\(730\) 0 0
\(731\) −6.58541 11.4063i −0.243570 0.421876i
\(732\) −1.11989 20.9312i −0.0413923 0.773641i
\(733\) −31.1280 17.9717i −1.14974 0.663801i −0.200914 0.979609i \(-0.564391\pi\)
−0.948823 + 0.315807i \(0.897725\pi\)
\(734\) −16.3277 + 10.0179i −0.602667 + 0.369768i
\(735\) 0 0
\(736\) −10.5641 + 25.7024i −0.389398 + 0.947401i
\(737\) 4.07155 7.05214i 0.149978 0.259769i
\(738\) −0.540432 + 0.996651i −0.0198936 + 0.0366872i
\(739\) −15.7903 + 9.11653i −0.580855 + 0.335357i −0.761473 0.648196i \(-0.775524\pi\)
0.180618 + 0.983553i \(0.442190\pi\)
\(740\) 0 0
\(741\) 9.33993i 0.343111i
\(742\) 4.35416 + 4.19495i 0.159846 + 0.154001i
\(743\) 29.1171i 1.06820i 0.845420 + 0.534102i \(0.179350\pi\)
−0.845420 + 0.534102i \(0.820650\pi\)
\(744\) −14.2963 6.79024i −0.524127 0.248942i
\(745\) 0 0
\(746\) −8.86901 4.80921i −0.324717 0.176078i
\(747\) 6.47941 11.2227i 0.237069 0.410616i
\(748\) −3.45916 + 6.80736i −0.126479 + 0.248902i
\(749\) −3.82990 + 13.8436i −0.139942 + 0.505835i
\(750\) 0 0
\(751\) −37.2703 21.5180i −1.36001 0.785203i −0.370386 0.928878i \(-0.620775\pi\)
−0.989625 + 0.143675i \(0.954108\pi\)
\(752\) −10.6297 + 24.0157i −0.387624 + 0.875762i
\(753\) −5.55715 9.62527i −0.202514 0.350764i
\(754\) −28.9304 + 0.773382i −1.05358 + 0.0281649i
\(755\) 0 0
\(756\) 6.40535 + 20.1944i 0.232960 + 0.734462i
\(757\) −10.6531 −0.387193 −0.193597 0.981081i \(-0.562015\pi\)
−0.193597 + 0.981081i \(0.562015\pi\)
\(758\) −22.9637 + 0.613879i −0.834081 + 0.0222971i
\(759\) 4.84339 + 8.38899i 0.175804 + 0.304501i
\(760\) 0 0
\(761\) 12.3298 + 7.11864i 0.446956 + 0.258050i 0.706544 0.707669i \(-0.250253\pi\)
−0.259588 + 0.965720i \(0.583587\pi\)
\(762\) 0.931088 + 1.51754i 0.0337297 + 0.0549745i
\(763\) 16.8169 16.5465i 0.608812 0.599023i
\(764\) −31.1316 15.8195i −1.12630 0.572331i
\(765\) 0 0
\(766\) −12.2918 6.66519i −0.444119 0.240823i
\(767\) 26.1252 15.0834i 0.943327 0.544630i
\(768\) 7.88456 + 8.68011i 0.284509 + 0.313216i
\(769\) 35.5770i 1.28294i 0.767149 + 0.641469i \(0.221675\pi\)
−0.767149 + 0.641469i \(0.778325\pi\)
\(770\) 0 0
\(771\) 3.46777i 0.124889i
\(772\) 18.7635 + 28.8242i 0.675313 + 1.03741i
\(773\) 10.2930 5.94268i 0.370214 0.213743i −0.303338 0.952883i \(-0.598101\pi\)
0.673552 + 0.739140i \(0.264768\pi\)
\(774\) 15.4100 28.4188i 0.553902 1.02149i
\(775\) 0 0
\(776\) 23.5453 1.89188i 0.845226 0.0679145i
\(777\) 2.18021 + 8.40868i 0.0782148 + 0.301660i
\(778\) 38.5277 23.6388i 1.38129 0.847491i
\(779\) 0.909207 + 0.524931i 0.0325757 + 0.0188076i
\(780\) 0 0
\(781\) −20.7291 35.9038i −0.741745 1.28474i
\(782\) 0.263440 + 9.85465i 0.00942058 + 0.352401i
\(783\) 20.7365 0.741061
\(784\) −22.8810 + 16.1387i −0.817180 + 0.576382i
\(785\) 0 0
\(786\) −0.391745 14.6542i −0.0139731 0.522700i
\(787\) −23.1890 40.1645i −0.826597 1.43171i −0.900692 0.434457i \(-0.856940\pi\)
0.0740951 0.997251i \(-0.476393\pi\)
\(788\) 23.8444 1.27575i 0.849420 0.0454468i
\(789\) −2.98342 1.72248i −0.106213 0.0613219i
\(790\) 0 0
\(791\) 0.698305 + 2.69323i 0.0248289 + 0.0957603i
\(792\) −18.6820 + 1.50111i −0.663836 + 0.0533398i
\(793\) −28.2510 + 48.9322i −1.00322 + 1.73763i
\(794\) −11.7808 + 21.7258i −0.418085 + 0.771020i
\(795\) 0 0
\(796\) −16.9344 26.0144i −0.600223 0.922056i
\(797\) 9.09251i 0.322073i −0.986948 0.161037i \(-0.948516\pi\)
0.986948 0.161037i \(-0.0514837\pi\)
\(798\) 8.49918 2.44785i 0.300868 0.0866530i
\(799\) 9.31691i 0.329609i
\(800\) 0 0
\(801\) −10.1206 + 5.84312i −0.357593 + 0.206457i
\(802\) 21.5802 + 11.7018i 0.762023 + 0.413206i
\(803\) 1.90896 3.30641i 0.0673656 0.116681i
\(804\) −3.95505 2.00976i −0.139484 0.0708788i
\(805\) 0 0
\(806\) 22.3109 + 36.3634i 0.785867 + 1.28085i
\(807\) −15.5766 8.99316i −0.548323 0.316574i
\(808\) 0.448602 + 0.650434i 0.0157818 + 0.0228822i
\(809\) 8.66128 + 15.0018i 0.304515 + 0.527435i 0.977153 0.212536i \(-0.0681724\pi\)
−0.672639 + 0.739971i \(0.734839\pi\)
\(810\) 0 0
\(811\) 16.4459 0.577493 0.288746 0.957406i \(-0.406762\pi\)
0.288746 + 0.957406i \(0.406762\pi\)
\(812\) 8.28597 + 26.1235i 0.290781 + 0.916754i
\(813\) −19.3424 −0.678368
\(814\) −17.0395 + 0.455509i −0.597235 + 0.0159656i
\(815\) 0 0
\(816\) 3.80406 + 1.68373i 0.133169 + 0.0589422i
\(817\) −25.9254 14.9680i −0.907013 0.523664i
\(818\) −5.39886 8.79934i −0.188767 0.307662i
\(819\) 6.86494 24.8141i 0.239880 0.867075i
\(820\) 0 0
\(821\) −22.4527 + 38.8892i −0.783603 + 1.35724i 0.146226 + 0.989251i \(0.453287\pi\)
−0.929830 + 0.367990i \(0.880046\pi\)
\(822\) 13.5497 + 7.34733i 0.472601 + 0.256267i
\(823\) −20.5328 + 11.8546i −0.715729 + 0.413226i −0.813179 0.582014i \(-0.802265\pi\)
0.0974497 + 0.995240i \(0.468931\pi\)
\(824\) 34.2371 + 16.2614i 1.19270 + 0.566493i
\(825\) 0 0
\(826\) −20.5727 19.8204i −0.715815 0.689640i
\(827\) 8.20536i 0.285328i −0.989771 0.142664i \(-0.954433\pi\)
0.989771 0.142664i \(-0.0455669\pi\)
\(828\) −20.2789 + 13.2008i −0.704740 + 0.458759i
\(829\) 19.1548 11.0590i 0.665272 0.384095i −0.129011 0.991643i \(-0.541180\pi\)
0.794283 + 0.607548i \(0.207847\pi\)
\(830\) 0 0
\(831\) 8.82054 15.2776i 0.305981 0.529975i
\(832\) −5.04710 31.2039i −0.174977 1.08180i
\(833\) −5.10534 + 8.52071i −0.176890 + 0.295225i
\(834\) 6.24391 3.83096i 0.216209 0.132655i
\(835\) 0 0
\(836\) 0.927251 + 17.3307i 0.0320696 + 0.599395i
\(837\) −15.2841 26.4729i −0.528296 0.915036i
\(838\) 0.677528 + 25.3447i 0.0234048 + 0.875518i
\(839\) 3.64977 0.126004 0.0630020 0.998013i \(-0.479933\pi\)
0.0630020 + 0.998013i \(0.479933\pi\)
\(840\) 0 0
\(841\) −2.17525 −0.0750086
\(842\) 0.477443 + 17.8600i 0.0164538 + 0.615496i
\(843\) −2.85312 4.94174i −0.0982665 0.170203i
\(844\) −1.51343 28.2868i −0.0520946 0.973670i
\(845\) 0 0
\(846\) −19.4920 + 11.9594i −0.670150 + 0.411172i
\(847\) 9.59051 + 2.65326i 0.329534 + 0.0911671i
\(848\) 3.81065 + 5.22088i 0.130858 + 0.179286i
\(849\) 2.91351 5.04634i 0.0999913 0.173190i
\(850\) 0 0
\(851\) −19.0582 + 11.0033i −0.653308 + 0.377188i
\(852\) −18.9292 + 12.3222i −0.648505 + 0.422152i
\(853\) 1.03474i 0.0354290i −0.999843 0.0177145i \(-0.994361\pi\)
0.999843 0.0177145i \(-0.00563899\pi\)
\(854\) 51.9317 + 12.8836i 1.77706 + 0.440867i
\(855\) 0 0
\(856\) −6.58794 + 13.8703i −0.225171 + 0.474079i
\(857\) 42.0132 24.2563i 1.43514 0.828581i 0.437637 0.899152i \(-0.355815\pi\)
0.997507 + 0.0705709i \(0.0224821\pi\)
\(858\) −9.68623 5.25235i −0.330682 0.179312i
\(859\) 12.4674 21.5941i 0.425382 0.736783i −0.571074 0.820898i \(-0.693473\pi\)
0.996456 + 0.0841157i \(0.0268065\pi\)
\(860\) 0 0
\(861\) 0.442687 + 0.449921i 0.0150867 + 0.0153333i
\(862\) −24.1649 39.3852i −0.823060 1.34147i
\(863\) 5.16765 + 2.98354i 0.175909 + 0.101561i 0.585369 0.810767i \(-0.300950\pi\)
−0.409460 + 0.912328i \(0.634283\pi\)
\(864\) 3.01756 + 22.4467i 0.102659 + 0.763653i
\(865\) 0 0
\(866\) −33.3472 + 0.891454i −1.13318 + 0.0302928i
\(867\) −10.9836 −0.373023
\(868\) 27.2428 29.8328i 0.924680 1.01259i
\(869\) 32.8588 1.11466
\(870\) 0 0
\(871\) 5.97927 + 10.3564i 0.202600 + 0.350913i
\(872\) 20.7620 14.3195i 0.703090 0.484918i
\(873\) 17.8125 + 10.2840i 0.602861 + 0.348062i
\(874\) 11.7179 + 19.0984i 0.396363 + 0.646014i
\(875\) 0 0
\(876\) −1.85433 0.942281i −0.0626522 0.0318367i
\(877\) −16.9149 + 29.2974i −0.571175 + 0.989304i 0.425270 + 0.905066i \(0.360179\pi\)
−0.996446 + 0.0842381i \(0.973154\pi\)
\(878\) −22.8625 12.3972i −0.771573 0.418384i
\(879\) −1.34243 + 0.775051i −0.0452789 + 0.0261418i
\(880\) 0 0
\(881\) 20.9239i 0.704944i −0.935822 0.352472i \(-0.885341\pi\)
0.935822 0.352472i \(-0.114659\pi\)
\(882\) −24.3796 + 0.256417i −0.820905 + 0.00863401i
\(883\) 14.7876i 0.497642i 0.968549 + 0.248821i \(0.0800432\pi\)
−0.968549 + 0.248821i \(0.919957\pi\)
\(884\) −6.11763 9.39783i −0.205758 0.316083i
\(885\) 0 0
\(886\) −2.28147 + 4.20742i −0.0766473 + 0.141351i
\(887\) 3.69958 6.40786i 0.124220 0.215155i −0.797208 0.603705i \(-0.793691\pi\)
0.921428 + 0.388550i \(0.127024\pi\)
\(888\) 0.743780 + 9.25667i 0.0249596 + 0.310633i
\(889\) −4.39923 + 1.14064i −0.147545 + 0.0382558i
\(890\) 0 0
\(891\) −10.3785 5.99206i −0.347694 0.200741i
\(892\) −6.06020 + 0.324241i −0.202910 + 0.0108564i
\(893\) 10.5882 + 18.3393i 0.354321 + 0.613702i
\(894\) 0.243348 + 9.10306i 0.00813877 + 0.304452i
\(895\) 0 0
\(896\) −27.0722 + 12.7708i −0.904420 + 0.426643i
\(897\) −14.2255 −0.474976
\(898\) 0.449775 + 16.8250i 0.0150092 + 0.561457i
\(899\) −19.7716 34.2453i −0.659418 1.14215i
\(900\) 0 0
\(901\) 1.98580 + 1.14650i 0.0661566 + 0.0381956i
\(902\) −1.05569 + 0.647721i −0.0351506 + 0.0215668i
\(903\) −12.6229 12.8292i −0.420063 0.426928i
\(904\) 0.238227 + 2.96484i 0.00792331 + 0.0986090i
\(905\) 0 0
\(906\) 0.148385 0.273648i 0.00492977 0.00909135i
\(907\) 16.0320 9.25608i 0.532334 0.307343i −0.209632 0.977780i \(-0.567227\pi\)
0.741966 + 0.670437i \(0.233893\pi\)
\(908\) −16.1231 24.7681i −0.535063 0.821958i
\(909\) 0.688006i 0.0228197i
\(910\) 0 0
\(911\) 10.8437i 0.359267i −0.983734 0.179634i \(-0.942509\pi\)
0.983734 0.179634i \(-0.0574912\pi\)
\(912\) 9.40136 1.00890i 0.311310 0.0334079i
\(913\) 12.2602 7.07841i 0.405752 0.234261i
\(914\) 26.1948 + 14.2041i 0.866446 + 0.469829i
\(915\) 0 0
\(916\) −11.4663 5.82661i −0.378858 0.192517i
\(917\) 36.0653 + 9.97764i 1.19098 + 0.329491i
\(918\) 4.20187 + 6.84842i 0.138682 + 0.226032i
\(919\) 13.9555 + 8.05723i 0.460351 + 0.265784i 0.712192 0.701985i \(-0.247703\pi\)
−0.251841 + 0.967769i \(0.581036\pi\)
\(920\) 0 0
\(921\) −6.83653 11.8412i −0.225271 0.390181i
\(922\) −41.9459 + 1.12132i −1.38141 + 0.0369287i
\(923\) 60.8834 2.00400
\(924\) −2.24093 + 10.1909i −0.0737213 + 0.335255i
\(925\) 0 0
\(926\) −21.2736 + 0.568696i −0.699093 + 0.0186885i
\(927\) 16.5018 + 28.5820i 0.541991 + 0.938757i
\(928\) 3.90352 + 29.0371i 0.128139 + 0.953190i
\(929\) −42.7419 24.6770i −1.40232 0.809627i −0.407686 0.913122i \(-0.633664\pi\)
−0.994630 + 0.103495i \(0.966998\pi\)
\(930\) 0 0
\(931\) −0.365932 + 22.5741i −0.0119930 + 0.739836i
\(932\) 15.8290 31.1502i 0.518496 1.02036i
\(933\) −2.99870 + 5.19390i −0.0981731 + 0.170041i
\(934\) −6.39751 3.46904i −0.209333 0.113511i
\(935\) 0 0
\(936\) 11.8086 24.8620i 0.385976 0.812641i
\(937\) 31.3085i 1.02280i 0.859342 + 0.511402i \(0.170874\pi\)
−0.859342 + 0.511402i \(0.829126\pi\)
\(938\) 7.85708 8.15529i 0.256543 0.266280i
\(939\) 17.1311i 0.559054i
\(940\) 0 0
\(941\) 37.9492 21.9100i 1.23711 0.714245i 0.268606 0.963250i \(-0.413437\pi\)
0.968502 + 0.249005i \(0.0801035\pi\)
\(942\) −9.50335 + 17.5258i −0.309636 + 0.571022i
\(943\) −0.799514 + 1.38480i −0.0260358 + 0.0450952i
\(944\) −18.0047 24.6678i −0.586002 0.802867i
\(945\) 0 0
\(946\) 30.1022 18.4693i 0.978708 0.600488i
\(947\) −12.6739 7.31729i −0.411847 0.237780i 0.279736 0.960077i \(-0.409753\pi\)
−0.691583 + 0.722297i \(0.743086\pi\)
\(948\) −0.956425 17.8760i −0.0310633 0.580586i
\(949\) 2.80340 + 4.85563i 0.0910021 + 0.157620i
\(950\) 0 0
\(951\) −19.2078 −0.622857
\(952\) −6.94853 + 8.02996i −0.225203 + 0.260253i
\(953\) 28.2044 0.913630 0.456815 0.889562i \(-0.348990\pi\)
0.456815 + 0.889562i \(0.348990\pi\)
\(954\) 0.150403 + 5.62620i 0.00486946 + 0.182155i
\(955\) 0 0
\(956\) 0.344593 + 6.44059i 0.0111449 + 0.208303i
\(957\) 8.84473 + 5.10651i 0.285909 + 0.165070i
\(958\) 48.1643 29.5513i 1.55612 0.954759i
\(959\) −28.0457 + 27.5947i −0.905643 + 0.891081i
\(960\) 0 0
\(961\) −13.6458 + 23.6352i −0.440187 + 0.762427i
\(962\) 11.9324 22.0053i 0.384715 0.709480i
\(963\) −11.5793 + 6.68534i −0.373139 + 0.215432i
\(964\) 34.3396 22.3538i 1.10600 0.719966i
\(965\) 0 0
\(966\) 3.72828 + 12.9450i 0.119956 + 0.416497i
\(967\) 8.88824i 0.285827i −0.989735 0.142913i \(-0.954353\pi\)
0.989735 0.142913i \(-0.0456470\pi\)
\(968\) 9.60903 + 4.56396i 0.308846 + 0.146691i
\(969\) 2.90493 1.67716i 0.0933198 0.0538782i
\(970\) 0 0
\(971\) −4.37105 + 7.57089i −0.140274 + 0.242961i −0.927600 0.373576i \(-0.878132\pi\)
0.787326 + 0.616537i \(0.211465\pi\)
\(972\) −13.8403 + 27.2367i −0.443929 + 0.873618i
\(973\) 4.69316 + 18.1006i 0.150456 + 0.580280i
\(974\) −9.04134 14.7360i −0.289703 0.472173i
\(975\) 0 0
\(976\) 52.3057 + 23.1512i 1.67427 + 0.741052i
\(977\) 20.9907 + 36.3569i 0.671551 + 1.16316i 0.977464 + 0.211100i \(0.0677047\pi\)
−0.305914 + 0.952059i \(0.598962\pi\)
\(978\) 11.1063 0.296899i 0.355139 0.00949378i
\(979\) −12.7666 −0.408022
\(980\) 0 0
\(981\) 21.9613 0.701170
\(982\) 32.4468 0.867385i 1.03542 0.0276794i
\(983\) 5.50236 + 9.53036i 0.175498 + 0.303971i 0.940333 0.340254i \(-0.110513\pi\)
−0.764836 + 0.644226i \(0.777180\pi\)
\(984\) 0.383105 + 0.555468i 0.0122129 + 0.0177077i
\(985\) 0 0
\(986\) 5.43554 + 8.85913i 0.173103 + 0.282132i
\(987\) 3.19539 + 12.3240i 0.101710 + 0.392278i
\(988\) −22.7221 11.5462i −0.722885 0.367334i
\(989\) 22.7975 39.4865i 0.724920 1.25560i
\(990\) 0 0
\(991\) 31.6799 18.2904i 1.00634 0.581013i 0.0962255 0.995360i \(-0.469323\pi\)
0.910119 + 0.414346i \(0.135990\pi\)
\(992\) 34.1926 26.3856i 1.08562 0.837743i
\(993\) 14.3073i 0.454028i
\(994\) −15.9566 55.4028i −0.506112 1.75727i
\(995\) 0 0
\(996\) −4.20769 6.46381i −0.133326 0.204814i
\(997\) −12.5263 + 7.23204i −0.396711 + 0.229041i −0.685064 0.728483i \(-0.740226\pi\)
0.288353 + 0.957524i \(0.406892\pi\)
\(998\) −2.83635 + 5.23071i −0.0897830 + 0.165575i
\(999\) −8.96801 + 15.5331i −0.283735 + 0.491444i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 700.2.p.e.551.9 32
4.3 odd 2 inner 700.2.p.e.551.3 32
5.2 odd 4 140.2.s.b.19.1 32
5.3 odd 4 140.2.s.b.19.16 yes 32
5.4 even 2 inner 700.2.p.e.551.8 32
7.3 odd 6 inner 700.2.p.e.451.3 32
20.3 even 4 140.2.s.b.19.11 yes 32
20.7 even 4 140.2.s.b.19.6 yes 32
20.19 odd 2 inner 700.2.p.e.551.14 32
28.3 even 6 inner 700.2.p.e.451.9 32
35.2 odd 12 980.2.c.d.979.24 32
35.3 even 12 140.2.s.b.59.6 yes 32
35.12 even 12 980.2.c.d.979.23 32
35.13 even 4 980.2.s.e.19.16 32
35.17 even 12 140.2.s.b.59.11 yes 32
35.18 odd 12 980.2.s.e.619.6 32
35.23 odd 12 980.2.c.d.979.9 32
35.24 odd 6 inner 700.2.p.e.451.14 32
35.27 even 4 980.2.s.e.19.1 32
35.32 odd 12 980.2.s.e.619.11 32
35.33 even 12 980.2.c.d.979.10 32
140.3 odd 12 140.2.s.b.59.1 yes 32
140.23 even 12 980.2.c.d.979.22 32
140.27 odd 4 980.2.s.e.19.6 32
140.47 odd 12 980.2.c.d.979.12 32
140.59 even 6 inner 700.2.p.e.451.8 32
140.67 even 12 980.2.s.e.619.16 32
140.83 odd 4 980.2.s.e.19.11 32
140.87 odd 12 140.2.s.b.59.16 yes 32
140.103 odd 12 980.2.c.d.979.21 32
140.107 even 12 980.2.c.d.979.11 32
140.123 even 12 980.2.s.e.619.1 32
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
140.2.s.b.19.1 32 5.2 odd 4
140.2.s.b.19.6 yes 32 20.7 even 4
140.2.s.b.19.11 yes 32 20.3 even 4
140.2.s.b.19.16 yes 32 5.3 odd 4
140.2.s.b.59.1 yes 32 140.3 odd 12
140.2.s.b.59.6 yes 32 35.3 even 12
140.2.s.b.59.11 yes 32 35.17 even 12
140.2.s.b.59.16 yes 32 140.87 odd 12
700.2.p.e.451.3 32 7.3 odd 6 inner
700.2.p.e.451.8 32 140.59 even 6 inner
700.2.p.e.451.9 32 28.3 even 6 inner
700.2.p.e.451.14 32 35.24 odd 6 inner
700.2.p.e.551.3 32 4.3 odd 2 inner
700.2.p.e.551.8 32 5.4 even 2 inner
700.2.p.e.551.9 32 1.1 even 1 trivial
700.2.p.e.551.14 32 20.19 odd 2 inner
980.2.c.d.979.9 32 35.23 odd 12
980.2.c.d.979.10 32 35.33 even 12
980.2.c.d.979.11 32 140.107 even 12
980.2.c.d.979.12 32 140.47 odd 12
980.2.c.d.979.21 32 140.103 odd 12
980.2.c.d.979.22 32 140.23 even 12
980.2.c.d.979.23 32 35.12 even 12
980.2.c.d.979.24 32 35.2 odd 12
980.2.s.e.19.1 32 35.27 even 4
980.2.s.e.19.6 32 140.27 odd 4
980.2.s.e.19.11 32 140.83 odd 4
980.2.s.e.19.16 32 35.13 even 4
980.2.s.e.619.1 32 140.123 even 12
980.2.s.e.619.6 32 35.18 odd 12
980.2.s.e.619.11 32 35.32 odd 12
980.2.s.e.619.16 32 140.67 even 12