Properties

Label 980.2.c.d.979.12
Level $980$
Weight $2$
Character 980.979
Analytic conductor $7.825$
Analytic rank $0$
Dimension $32$
Inner twists $8$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [980,2,Mod(979,980)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(980, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([1, 1, 1]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("980.979");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 980 = 2^{2} \cdot 5 \cdot 7^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 980.c (of order \(2\), degree \(1\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(7.82533939809\)
Analytic rank: \(0\)
Dimension: \(32\)
Twist minimal: no (minimal twist has level 140)
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

Embedding invariants

Embedding label 979.12
Character \(\chi\) \(=\) 980.979
Dual form 980.2.c.d.979.9

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-0.739583 + 1.20541i) q^{2} +0.732905i q^{3} +(-0.906034 - 1.78300i) q^{4} +(-2.18048 + 0.495485i) q^{5} +(-0.883452 - 0.542044i) q^{6} +(2.81934 + 0.226536i) q^{8} +2.46285 q^{9} +(1.01538 - 2.99483i) q^{10} -2.69053i q^{11} +(1.30677 - 0.664037i) q^{12} -3.95118 q^{13} +(-0.363144 - 1.59809i) q^{15} +(-2.35821 + 3.23092i) q^{16} +1.41902 q^{17} +(-1.82148 + 2.96875i) q^{18} +3.22529 q^{19} +(2.85904 + 3.43888i) q^{20} +(3.24320 + 1.98987i) q^{22} +4.91239 q^{23} +(-0.166030 + 2.06631i) q^{24} +(4.50899 - 2.16079i) q^{25} +(2.92222 - 4.76279i) q^{26} +4.00375i q^{27} -5.17926 q^{29} +(2.19493 + 0.744179i) q^{30} +7.63489 q^{31} +(-2.15050 - 5.23214i) q^{32} +1.97191 q^{33} +(-1.04948 + 1.71050i) q^{34} +(-2.23142 - 4.39127i) q^{36} +4.47981i q^{37} +(-2.38537 + 3.88780i) q^{38} -2.89584i q^{39} +(-6.25976 + 0.902985i) q^{40} -0.325509i q^{41} +9.28165 q^{43} +(-4.79723 + 2.43771i) q^{44} +(-5.37020 + 1.22031i) q^{45} +(-3.63312 + 5.92146i) q^{46} +6.56574i q^{47} +(-2.36796 - 1.72834i) q^{48} +(-0.730128 + 7.03327i) q^{50} +1.04001i q^{51} +(3.57990 + 7.04496i) q^{52} +1.61591i q^{53} +(-4.82617 - 2.96111i) q^{54} +(1.33312 + 5.86665i) q^{55} +2.36383i q^{57} +(3.83049 - 6.24314i) q^{58} -7.63489 q^{59} +(-2.52037 + 2.09541i) q^{60} +14.3001i q^{61} +(-5.64664 + 9.20319i) q^{62} +(7.89736 + 1.27737i) q^{64} +(8.61546 - 1.95775i) q^{65} +(-1.45839 + 2.37696i) q^{66} +3.02658 q^{67} +(-1.28568 - 2.53012i) q^{68} +3.60032i q^{69} +15.4089i q^{71} +(6.94361 + 0.557925i) q^{72} -1.41902 q^{73} +(-5.40001 - 3.31319i) q^{74} +(1.58366 + 3.30466i) q^{75} +(-2.92222 - 5.75071i) q^{76} +(3.49068 + 2.14171i) q^{78} -12.2127i q^{79} +(3.54115 - 8.21342i) q^{80} +4.45418 q^{81} +(0.392372 + 0.240741i) q^{82} -5.26172i q^{83} +(-3.09414 + 0.703103i) q^{85} +(-6.86455 + 11.1882i) q^{86} -3.79591i q^{87} +(0.609503 - 7.58553i) q^{88} +4.74501i q^{89} +(2.50073 - 7.37581i) q^{90} +(-4.45079 - 8.75882i) q^{92} +5.59565i q^{93} +(-7.91442 - 4.85591i) q^{94} +(-7.03269 + 1.59809i) q^{95} +(3.83467 - 1.57611i) q^{96} +8.35134 q^{97} -6.62638i q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 32 q - 12 q^{4} - 8 q^{9} - 36 q^{16} + 52 q^{25} + 52 q^{30} - 28 q^{36} + 52 q^{44} + 44 q^{46} + 36 q^{50} - 8 q^{60} + 36 q^{64} + 8 q^{65} - 28 q^{74} - 144 q^{81} + 20 q^{85} - 16 q^{86}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/980\mathbb{Z}\right)^\times\).

\(n\) \(101\) \(197\) \(491\)
\(\chi(n)\) \(-1\) \(-1\) \(-1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −0.739583 + 1.20541i −0.522964 + 0.852355i
\(3\) 0.732905i 0.423143i 0.977363 + 0.211572i \(0.0678581\pi\)
−0.977363 + 0.211572i \(0.932142\pi\)
\(4\) −0.906034 1.78300i −0.453017 0.891502i
\(5\) −2.18048 + 0.495485i −0.975140 + 0.221588i
\(6\) −0.883452 0.542044i −0.360668 0.221289i
\(7\) 0 0
\(8\) 2.81934 + 0.226536i 0.996787 + 0.0800926i
\(9\) 2.46285 0.820950
\(10\) 1.01538 2.99483i 0.321092 0.947048i
\(11\) 2.69053i 0.811226i −0.914045 0.405613i \(-0.867058\pi\)
0.914045 0.405613i \(-0.132942\pi\)
\(12\) 1.30677 0.664037i 0.377233 0.191691i
\(13\) −3.95118 −1.09586 −0.547930 0.836524i \(-0.684584\pi\)
−0.547930 + 0.836524i \(0.684584\pi\)
\(14\) 0 0
\(15\) −0.363144 1.59809i −0.0937633 0.412624i
\(16\) −2.35821 + 3.23092i −0.589551 + 0.807731i
\(17\) 1.41902 0.344163 0.172081 0.985083i \(-0.444951\pi\)
0.172081 + 0.985083i \(0.444951\pi\)
\(18\) −1.82148 + 2.96875i −0.429327 + 0.699740i
\(19\) 3.22529 0.739933 0.369966 0.929045i \(-0.379369\pi\)
0.369966 + 0.929045i \(0.379369\pi\)
\(20\) 2.85904 + 3.43888i 0.639301 + 0.768957i
\(21\) 0 0
\(22\) 3.24320 + 1.98987i 0.691452 + 0.424242i
\(23\) 4.91239 1.02430 0.512152 0.858895i \(-0.328848\pi\)
0.512152 + 0.858895i \(0.328848\pi\)
\(24\) −0.166030 + 2.06631i −0.0338906 + 0.421784i
\(25\) 4.50899 2.16079i 0.901798 0.432158i
\(26\) 2.92222 4.76279i 0.573095 0.934061i
\(27\) 4.00375i 0.770522i
\(28\) 0 0
\(29\) −5.17926 −0.961765 −0.480882 0.876785i \(-0.659684\pi\)
−0.480882 + 0.876785i \(0.659684\pi\)
\(30\) 2.19493 + 0.744179i 0.400737 + 0.135868i
\(31\) 7.63489 1.37127 0.685634 0.727947i \(-0.259525\pi\)
0.685634 + 0.727947i \(0.259525\pi\)
\(32\) −2.15050 5.23214i −0.380159 0.924921i
\(33\) 1.97191 0.343265
\(34\) −1.04948 + 1.71050i −0.179985 + 0.293349i
\(35\) 0 0
\(36\) −2.23142 4.39127i −0.371904 0.731878i
\(37\) 4.47981i 0.736475i 0.929732 + 0.368238i \(0.120039\pi\)
−0.929732 + 0.368238i \(0.879961\pi\)
\(38\) −2.38537 + 3.88780i −0.386958 + 0.630685i
\(39\) 2.89584i 0.463705i
\(40\) −6.25976 + 0.902985i −0.989755 + 0.142774i
\(41\) 0.325509i 0.0508359i −0.999677 0.0254180i \(-0.991908\pi\)
0.999677 0.0254180i \(-0.00809166\pi\)
\(42\) 0 0
\(43\) 9.28165 1.41544 0.707719 0.706494i \(-0.249724\pi\)
0.707719 + 0.706494i \(0.249724\pi\)
\(44\) −4.79723 + 2.43771i −0.723210 + 0.367499i
\(45\) −5.37020 + 1.22031i −0.800541 + 0.181913i
\(46\) −3.63312 + 5.92146i −0.535675 + 0.873071i
\(47\) 6.56574i 0.957712i 0.877893 + 0.478856i \(0.158948\pi\)
−0.877893 + 0.478856i \(0.841052\pi\)
\(48\) −2.36796 1.72834i −0.341786 0.249465i
\(49\) 0 0
\(50\) −0.730128 + 7.03327i −0.103256 + 0.994655i
\(51\) 1.04001i 0.145630i
\(52\) 3.57990 + 7.04496i 0.496443 + 0.976961i
\(53\) 1.61591i 0.221962i 0.993823 + 0.110981i \(0.0353993\pi\)
−0.993823 + 0.110981i \(0.964601\pi\)
\(54\) −4.82617 2.96111i −0.656758 0.402956i
\(55\) 1.33312 + 5.86665i 0.179758 + 0.791059i
\(56\) 0 0
\(57\) 2.36383i 0.313097i
\(58\) 3.83049 6.24314i 0.502969 0.819765i
\(59\) −7.63489 −0.993979 −0.496989 0.867757i \(-0.665561\pi\)
−0.496989 + 0.867757i \(0.665561\pi\)
\(60\) −2.52037 + 2.09541i −0.325379 + 0.270516i
\(61\) 14.3001i 1.83093i 0.402392 + 0.915467i \(0.368179\pi\)
−0.402392 + 0.915467i \(0.631821\pi\)
\(62\) −5.64664 + 9.20319i −0.717124 + 1.16881i
\(63\) 0 0
\(64\) 7.89736 + 1.27737i 0.987170 + 0.159671i
\(65\) 8.61546 1.95775i 1.06862 0.242829i
\(66\) −1.45839 + 2.37696i −0.179515 + 0.292583i
\(67\) 3.02658 0.369755 0.184878 0.982762i \(-0.440811\pi\)
0.184878 + 0.982762i \(0.440811\pi\)
\(68\) −1.28568 2.53012i −0.155911 0.306822i
\(69\) 3.60032i 0.433427i
\(70\) 0 0
\(71\) 15.4089i 1.82870i 0.404922 + 0.914351i \(0.367299\pi\)
−0.404922 + 0.914351i \(0.632701\pi\)
\(72\) 6.94361 + 0.557925i 0.818313 + 0.0657520i
\(73\) −1.41902 −0.166084 −0.0830418 0.996546i \(-0.526463\pi\)
−0.0830418 + 0.996546i \(0.526463\pi\)
\(74\) −5.40001 3.31319i −0.627738 0.385150i
\(75\) 1.58366 + 3.30466i 0.182865 + 0.381589i
\(76\) −2.92222 5.75071i −0.335202 0.659652i
\(77\) 0 0
\(78\) 3.49068 + 2.14171i 0.395241 + 0.242501i
\(79\) 12.2127i 1.37404i −0.726638 0.687021i \(-0.758918\pi\)
0.726638 0.687021i \(-0.241082\pi\)
\(80\) 3.54115 8.21342i 0.395912 0.918288i
\(81\) 4.45418 0.494909
\(82\) 0.392372 + 0.240741i 0.0433303 + 0.0265854i
\(83\) 5.26172i 0.577549i −0.957397 0.288774i \(-0.906752\pi\)
0.957397 0.288774i \(-0.0932477\pi\)
\(84\) 0 0
\(85\) −3.09414 + 0.703103i −0.335607 + 0.0762622i
\(86\) −6.86455 + 11.1882i −0.740223 + 1.20645i
\(87\) 3.79591i 0.406964i
\(88\) 0.609503 7.58553i 0.0649732 0.808620i
\(89\) 4.74501i 0.502970i 0.967861 + 0.251485i \(0.0809189\pi\)
−0.967861 + 0.251485i \(0.919081\pi\)
\(90\) 2.50073 7.37581i 0.263601 0.777479i
\(91\) 0 0
\(92\) −4.45079 8.75882i −0.464027 0.913170i
\(93\) 5.59565i 0.580242i
\(94\) −7.91442 4.85591i −0.816310 0.500849i
\(95\) −7.03269 + 1.59809i −0.721538 + 0.163960i
\(96\) 3.83467 1.57611i 0.391374 0.160862i
\(97\) 8.35134 0.847950 0.423975 0.905674i \(-0.360634\pi\)
0.423975 + 0.905674i \(0.360634\pi\)
\(98\) 0 0
\(99\) 6.62638i 0.665976i
\(100\) −7.93800 6.08179i −0.793800 0.608179i
\(101\) 0.279354i 0.0277967i 0.999903 + 0.0138984i \(0.00442413\pi\)
−0.999903 + 0.0138984i \(0.995576\pi\)
\(102\) −1.25364 0.769171i −0.124128 0.0761593i
\(103\) 13.4006i 1.32040i −0.751090 0.660200i \(-0.770471\pi\)
0.751090 0.660200i \(-0.229529\pi\)
\(104\) −11.1397 0.895084i −1.09234 0.0877703i
\(105\) 0 0
\(106\) −1.94784 1.19510i −0.189191 0.116078i
\(107\) 5.42894 0.524836 0.262418 0.964954i \(-0.415480\pi\)
0.262418 + 0.964954i \(0.415480\pi\)
\(108\) 7.13870 3.62753i 0.686922 0.349060i
\(109\) 8.91703 0.854096 0.427048 0.904229i \(-0.359553\pi\)
0.427048 + 0.904229i \(0.359553\pi\)
\(110\) −8.05768 2.73192i −0.768270 0.260478i
\(111\) −3.28327 −0.311634
\(112\) 0 0
\(113\) 1.05161i 0.0989268i 0.998776 + 0.0494634i \(0.0157511\pi\)
−0.998776 + 0.0494634i \(0.984249\pi\)
\(114\) −2.84939 1.74825i −0.266870 0.163739i
\(115\) −10.7114 + 2.43402i −0.998841 + 0.226973i
\(116\) 4.69259 + 9.23464i 0.435696 + 0.857415i
\(117\) −9.73116 −0.899646
\(118\) 5.64664 9.20319i 0.519815 0.847222i
\(119\) 0 0
\(120\) −0.661802 4.58781i −0.0604140 0.418808i
\(121\) 3.76104 0.341912
\(122\) −17.2375 10.5761i −1.56061 0.957513i
\(123\) 0.238567 0.0215109
\(124\) −6.91747 13.6130i −0.621207 1.22249i
\(125\) −8.76112 + 6.94570i −0.783618 + 0.621243i
\(126\) 0 0
\(127\) −1.71773 −0.152424 −0.0762121 0.997092i \(-0.524283\pi\)
−0.0762121 + 0.997092i \(0.524283\pi\)
\(128\) −7.38051 + 8.57485i −0.652351 + 0.757917i
\(129\) 6.80257i 0.598933i
\(130\) −4.01196 + 11.8331i −0.351872 + 1.03783i
\(131\) 14.1435 1.23572 0.617860 0.786288i \(-0.288000\pi\)
0.617860 + 0.786288i \(0.288000\pi\)
\(132\) −1.78661 3.51591i −0.155505 0.306021i
\(133\) 0 0
\(134\) −2.23841 + 3.64827i −0.193369 + 0.315163i
\(135\) −1.98380 8.73010i −0.170738 0.751367i
\(136\) 4.00070 + 0.321459i 0.343057 + 0.0275649i
\(137\) 14.8710i 1.27052i 0.772300 + 0.635259i \(0.219106\pi\)
−0.772300 + 0.635259i \(0.780894\pi\)
\(138\) −4.33987 2.66274i −0.369434 0.226667i
\(139\) 7.06762 0.599468 0.299734 0.954023i \(-0.403102\pi\)
0.299734 + 0.954023i \(0.403102\pi\)
\(140\) 0 0
\(141\) −4.81207 −0.405249
\(142\) −18.5741 11.3962i −1.55870 0.956346i
\(143\) 10.6308i 0.888990i
\(144\) −5.80791 + 7.95728i −0.483992 + 0.663107i
\(145\) 11.2933 2.56625i 0.937856 0.213115i
\(146\) 1.04948 1.71050i 0.0868557 0.141562i
\(147\) 0 0
\(148\) 7.98751 4.05885i 0.656569 0.333636i
\(149\) 8.78577 0.719758 0.359879 0.932999i \(-0.382818\pi\)
0.359879 + 0.932999i \(0.382818\pi\)
\(150\) −5.15472 0.535114i −0.420881 0.0436919i
\(151\) 0.300332i 0.0244407i 0.999925 + 0.0122204i \(0.00388996\pi\)
−0.999925 + 0.0122204i \(0.996110\pi\)
\(152\) 9.09320 + 0.730645i 0.737556 + 0.0592632i
\(153\) 3.49483 0.282540
\(154\) 0 0
\(155\) −16.6477 + 3.78298i −1.33718 + 0.303856i
\(156\) −5.16329 + 2.62373i −0.413394 + 0.210066i
\(157\) 19.2348 1.53511 0.767553 0.640985i \(-0.221474\pi\)
0.767553 + 0.640985i \(0.221474\pi\)
\(158\) 14.7214 + 9.03234i 1.17117 + 0.718575i
\(159\) −1.18431 −0.0939218
\(160\) 7.28158 + 10.3430i 0.575659 + 0.817690i
\(161\) 0 0
\(162\) −3.29424 + 5.36912i −0.258820 + 0.421838i
\(163\) −10.7192 −0.839589 −0.419795 0.907619i \(-0.637898\pi\)
−0.419795 + 0.907619i \(0.637898\pi\)
\(164\) −0.580384 + 0.294922i −0.0453203 + 0.0230295i
\(165\) −4.29970 + 0.977050i −0.334731 + 0.0760633i
\(166\) 6.34254 + 3.89148i 0.492276 + 0.302037i
\(167\) 13.2256i 1.02343i −0.859155 0.511715i \(-0.829010\pi\)
0.859155 0.511715i \(-0.170990\pi\)
\(168\) 0 0
\(169\) 2.61180 0.200908
\(170\) 1.44085 4.24972i 0.110508 0.325938i
\(171\) 7.94341 0.607448
\(172\) −8.40948 16.5492i −0.641217 1.26187i
\(173\) −11.2541 −0.855632 −0.427816 0.903866i \(-0.640717\pi\)
−0.427816 + 0.903866i \(0.640717\pi\)
\(174\) 4.57563 + 2.80739i 0.346878 + 0.212828i
\(175\) 0 0
\(176\) 8.69290 + 6.34483i 0.655252 + 0.478259i
\(177\) 5.59565i 0.420595i
\(178\) −5.71969 3.50933i −0.428709 0.263035i
\(179\) 0.805971i 0.0602411i −0.999546 0.0301206i \(-0.990411\pi\)
0.999546 0.0301206i \(-0.00958912\pi\)
\(180\) 7.04139 + 8.46944i 0.524834 + 0.631275i
\(181\) 0.0667108i 0.00495857i 0.999997 + 0.00247929i \(0.000789182\pi\)
−0.999997 + 0.00247929i \(0.999211\pi\)
\(182\) 0 0
\(183\) −10.4806 −0.774747
\(184\) 13.8497 + 1.11283i 1.02101 + 0.0820393i
\(185\) −2.21968 9.76813i −0.163194 0.718167i
\(186\) −6.74507 4.13845i −0.494572 0.303446i
\(187\) 3.81791i 0.279194i
\(188\) 11.7067 5.94878i 0.853802 0.433860i
\(189\) 0 0
\(190\) 3.27491 9.65920i 0.237587 0.700752i
\(191\) 17.4602i 1.26338i 0.775223 + 0.631688i \(0.217638\pi\)
−0.775223 + 0.631688i \(0.782362\pi\)
\(192\) −0.936188 + 5.78802i −0.0675635 + 0.417714i
\(193\) 17.1967i 1.23785i −0.785452 0.618923i \(-0.787569\pi\)
0.785452 0.618923i \(-0.212431\pi\)
\(194\) −6.17651 + 10.0668i −0.443447 + 0.722754i
\(195\) 1.43485 + 6.31432i 0.102751 + 0.452178i
\(196\) 0 0
\(197\) 11.9392i 0.850635i −0.905044 0.425318i \(-0.860162\pi\)
0.905044 0.425318i \(-0.139838\pi\)
\(198\) 7.98751 + 4.90076i 0.567648 + 0.348282i
\(199\) 15.5203 1.10021 0.550103 0.835097i \(-0.314588\pi\)
0.550103 + 0.835097i \(0.314588\pi\)
\(200\) 13.2019 5.07056i 0.933513 0.358543i
\(201\) 2.21820i 0.156459i
\(202\) −0.336736 0.206605i −0.0236927 0.0145367i
\(203\) 0 0
\(204\) 1.85433 0.942281i 0.129829 0.0659728i
\(205\) 0.161285 + 0.709766i 0.0112646 + 0.0495722i
\(206\) 16.1532 + 9.91086i 1.12545 + 0.690522i
\(207\) 12.0985 0.840903
\(208\) 9.31769 12.7659i 0.646066 0.885159i
\(209\) 8.67775i 0.600253i
\(210\) 0 0
\(211\) 14.1636i 0.975063i −0.873105 0.487531i \(-0.837897\pi\)
0.873105 0.487531i \(-0.162103\pi\)
\(212\) 2.88117 1.46407i 0.197880 0.100553i
\(213\) −11.2933 −0.773803
\(214\) −4.01516 + 6.54411i −0.274470 + 0.447346i
\(215\) −20.2384 + 4.59892i −1.38025 + 0.313644i
\(216\) −0.906994 + 11.2879i −0.0617132 + 0.768047i
\(217\) 0 0
\(218\) −6.59488 + 10.7487i −0.446662 + 0.727993i
\(219\) 1.04001i 0.0702771i
\(220\) 9.25241 7.69234i 0.623798 0.518618i
\(221\) −5.60679 −0.377154
\(222\) 2.42825 3.95770i 0.162974 0.265623i
\(223\) 3.03443i 0.203201i −0.994825 0.101600i \(-0.967604\pi\)
0.994825 0.101600i \(-0.0323963\pi\)
\(224\) 0 0
\(225\) 11.1050 5.32171i 0.740331 0.354780i
\(226\) −1.26762 0.777750i −0.0843207 0.0517352i
\(227\) 14.7768i 0.980769i −0.871506 0.490385i \(-0.836856\pi\)
0.871506 0.490385i \(-0.163144\pi\)
\(228\) 4.21473 2.14171i 0.279127 0.141838i
\(229\) 6.43090i 0.424966i −0.977165 0.212483i \(-0.931845\pi\)
0.977165 0.212483i \(-0.0681550\pi\)
\(230\) 4.98796 14.7118i 0.328896 0.970066i
\(231\) 0 0
\(232\) −14.6021 1.17329i −0.958675 0.0770303i
\(233\) 17.4706i 1.14454i −0.820065 0.572270i \(-0.806063\pi\)
0.820065 0.572270i \(-0.193937\pi\)
\(234\) 7.19700 11.7300i 0.470483 0.766817i
\(235\) −3.25323 14.3165i −0.212217 0.933904i
\(236\) 6.91747 + 13.6130i 0.450289 + 0.886134i
\(237\) 8.95079 0.581416
\(238\) 0 0
\(239\) 3.22490i 0.208601i −0.994546 0.104301i \(-0.966740\pi\)
0.994546 0.104301i \(-0.0332604\pi\)
\(240\) 6.01966 + 2.59532i 0.388567 + 0.167527i
\(241\) 20.4872i 1.31970i 0.751399 + 0.659848i \(0.229379\pi\)
−0.751399 + 0.659848i \(0.770621\pi\)
\(242\) −2.78160 + 4.53360i −0.178808 + 0.291431i
\(243\) 15.2757i 0.979940i
\(244\) 25.4971 12.9563i 1.63228 0.829444i
\(245\) 0 0
\(246\) −0.176440 + 0.287572i −0.0112494 + 0.0183349i
\(247\) −12.7437 −0.810862
\(248\) 21.5254 + 1.72958i 1.36686 + 0.109828i
\(249\) 3.85634 0.244386
\(250\) −1.89285 15.6977i −0.119715 0.992808i
\(251\) −15.1647 −0.957189 −0.478594 0.878036i \(-0.658854\pi\)
−0.478594 + 0.878036i \(0.658854\pi\)
\(252\) 0 0
\(253\) 13.2170i 0.830943i
\(254\) 1.27041 2.07058i 0.0797124 0.129919i
\(255\) −0.515308 2.26771i −0.0322698 0.142010i
\(256\) −4.87773 15.2384i −0.304858 0.952398i
\(257\) 4.73155 0.295146 0.147573 0.989051i \(-0.452854\pi\)
0.147573 + 0.989051i \(0.452854\pi\)
\(258\) −8.19989 5.03106i −0.510503 0.313220i
\(259\) 0 0
\(260\) −11.2966 13.5876i −0.700584 0.842668i
\(261\) −12.7557 −0.789561
\(262\) −10.4603 + 17.0487i −0.646237 + 1.05327i
\(263\) 4.70042 0.289840 0.144920 0.989443i \(-0.453707\pi\)
0.144920 + 0.989443i \(0.453707\pi\)
\(264\) 5.55947 + 0.446708i 0.342162 + 0.0274930i
\(265\) −0.800660 3.52346i −0.0491842 0.216444i
\(266\) 0 0
\(267\) −3.47764 −0.212828
\(268\) −2.74218 5.39640i −0.167505 0.329638i
\(269\) 24.5411i 1.49630i −0.663530 0.748149i \(-0.730943\pi\)
0.663530 0.748149i \(-0.269057\pi\)
\(270\) 11.9905 + 4.06534i 0.729722 + 0.247409i
\(271\) 26.3914 1.60316 0.801582 0.597885i \(-0.203992\pi\)
0.801582 + 0.597885i \(0.203992\pi\)
\(272\) −3.34634 + 4.58474i −0.202902 + 0.277991i
\(273\) 0 0
\(274\) −17.9257 10.9984i −1.08293 0.664435i
\(275\) −5.81368 12.1316i −0.350578 0.731562i
\(276\) 6.41938 3.26201i 0.386401 0.196350i
\(277\) 24.0701i 1.44623i 0.690727 + 0.723115i \(0.257290\pi\)
−0.690727 + 0.723115i \(0.742710\pi\)
\(278\) −5.22709 + 8.51939i −0.313500 + 0.510959i
\(279\) 18.8036 1.12574
\(280\) 0 0
\(281\) −7.78577 −0.464460 −0.232230 0.972661i \(-0.574602\pi\)
−0.232230 + 0.972661i \(0.574602\pi\)
\(282\) 3.55892 5.80052i 0.211931 0.345416i
\(283\) 7.95057i 0.472612i −0.971679 0.236306i \(-0.924063\pi\)
0.971679 0.236306i \(-0.0759368\pi\)
\(284\) 27.4742 13.9610i 1.63029 0.828433i
\(285\) −1.17125 5.15429i −0.0693786 0.305314i
\(286\) −12.8145 7.86234i −0.757734 0.464910i
\(287\) 0 0
\(288\) −5.29637 12.8860i −0.312091 0.759314i
\(289\) −14.9864 −0.881552
\(290\) −5.25893 + 15.5110i −0.308815 + 0.910837i
\(291\) 6.12074i 0.358804i
\(292\) 1.28568 + 2.53012i 0.0752386 + 0.148064i
\(293\) −2.11501 −0.123560 −0.0617801 0.998090i \(-0.519678\pi\)
−0.0617801 + 0.998090i \(0.519678\pi\)
\(294\) 0 0
\(295\) 16.6477 3.78298i 0.969269 0.220254i
\(296\) −1.01484 + 12.6301i −0.0589863 + 0.734110i
\(297\) 10.7722 0.625068
\(298\) −6.49781 + 10.5905i −0.376408 + 0.613489i
\(299\) −19.4097 −1.12249
\(300\) 4.45738 5.81780i 0.257347 0.335891i
\(301\) 0 0
\(302\) −0.362024 0.222121i −0.0208321 0.0127816i
\(303\) −0.204740 −0.0117620
\(304\) −7.60590 + 10.4207i −0.436229 + 0.597667i
\(305\) −7.08547 31.1810i −0.405713 1.78542i
\(306\) −2.58472 + 4.21271i −0.147758 + 0.240824i
\(307\) 18.6560i 1.06475i −0.846508 0.532376i \(-0.821299\pi\)
0.846508 0.532376i \(-0.178701\pi\)
\(308\) 0 0
\(309\) 9.82137 0.558718
\(310\) 7.75234 22.8652i 0.440303 1.29866i
\(311\) −8.18305 −0.464018 −0.232009 0.972714i \(-0.574530\pi\)
−0.232009 + 0.972714i \(0.574530\pi\)
\(312\) 0.656012 8.16436i 0.0371394 0.462216i
\(313\) 23.3743 1.32119 0.660597 0.750741i \(-0.270303\pi\)
0.660597 + 0.750741i \(0.270303\pi\)
\(314\) −14.2258 + 23.1859i −0.802806 + 1.30846i
\(315\) 0 0
\(316\) −21.7754 + 11.0652i −1.22496 + 0.622464i
\(317\) 26.2078i 1.47198i 0.676994 + 0.735988i \(0.263282\pi\)
−0.676994 + 0.735988i \(0.736718\pi\)
\(318\) 0.875895 1.42758i 0.0491178 0.0800547i
\(319\) 13.9350i 0.780209i
\(320\) −17.8530 + 1.12776i −0.998011 + 0.0630436i
\(321\) 3.97890i 0.222081i
\(322\) 0 0
\(323\) 4.57675 0.254657
\(324\) −4.03564 7.94182i −0.224202 0.441212i
\(325\) −17.8158 + 8.53767i −0.988243 + 0.473585i
\(326\) 7.92771 12.9210i 0.439075 0.715628i
\(327\) 6.53534i 0.361405i
\(328\) 0.0737395 0.917720i 0.00407158 0.0506726i
\(329\) 0 0
\(330\) 2.00224 5.90552i 0.110220 0.325088i
\(331\) 19.5213i 1.07299i 0.843904 + 0.536495i \(0.180252\pi\)
−0.843904 + 0.536495i \(0.819748\pi\)
\(332\) −9.38167 + 4.76729i −0.514886 + 0.261639i
\(333\) 11.0331i 0.604610i
\(334\) 15.9423 + 9.78146i 0.872326 + 0.535218i
\(335\) −6.59940 + 1.49963i −0.360564 + 0.0819333i
\(336\) 0 0
\(337\) 31.7520i 1.72964i 0.502082 + 0.864820i \(0.332567\pi\)
−0.502082 + 0.864820i \(0.667433\pi\)
\(338\) −1.93164 + 3.14829i −0.105068 + 0.171245i
\(339\) −0.770728 −0.0418602
\(340\) 4.05703 + 4.87983i 0.220023 + 0.264646i
\(341\) 20.5419i 1.11241i
\(342\) −5.87481 + 9.57508i −0.317674 + 0.517761i
\(343\) 0 0
\(344\) 26.1681 + 2.10263i 1.41089 + 0.113366i
\(345\) −1.78391 7.85042i −0.0960422 0.422653i
\(346\) 8.32333 13.5658i 0.447465 0.729302i
\(347\) 18.3842 0.986916 0.493458 0.869770i \(-0.335733\pi\)
0.493458 + 0.869770i \(0.335733\pi\)
\(348\) −6.76812 + 3.43922i −0.362809 + 0.184362i
\(349\) 2.37390i 0.127072i 0.997980 + 0.0635360i \(0.0202378\pi\)
−0.997980 + 0.0635360i \(0.979762\pi\)
\(350\) 0 0
\(351\) 15.8195i 0.844384i
\(352\) −14.0773 + 5.78600i −0.750320 + 0.308395i
\(353\) −2.15421 −0.114657 −0.0573284 0.998355i \(-0.518258\pi\)
−0.0573284 + 0.998355i \(0.518258\pi\)
\(354\) 6.74507 + 4.13845i 0.358496 + 0.219956i
\(355\) −7.63489 33.5988i −0.405218 1.78324i
\(356\) 8.46037 4.29914i 0.448399 0.227854i
\(357\) 0 0
\(358\) 0.971527 + 0.596083i 0.0513468 + 0.0315039i
\(359\) 5.08073i 0.268151i 0.990971 + 0.134075i \(0.0428064\pi\)
−0.990971 + 0.134075i \(0.957194\pi\)
\(360\) −15.4169 + 2.22392i −0.812540 + 0.117211i
\(361\) −8.59749 −0.452499
\(362\) −0.0804139 0.0493381i −0.00422646 0.00259316i
\(363\) 2.75648i 0.144678i
\(364\) 0 0
\(365\) 3.09414 0.703103i 0.161955 0.0368021i
\(366\) 7.75127 12.6334i 0.405165 0.660360i
\(367\) 13.5453i 0.707061i −0.935423 0.353530i \(-0.884981\pi\)
0.935423 0.353530i \(-0.115019\pi\)
\(368\) −11.5844 + 15.8716i −0.603880 + 0.827363i
\(369\) 0.801679i 0.0417338i
\(370\) 13.4162 + 4.54872i 0.697478 + 0.236476i
\(371\) 0 0
\(372\) 9.97707 5.06985i 0.517287 0.262860i
\(373\) 7.13400i 0.369384i −0.982796 0.184692i \(-0.940871\pi\)
0.982796 0.184692i \(-0.0591288\pi\)
\(374\) 4.60216 + 2.82367i 0.237972 + 0.146008i
\(375\) −5.09054 6.42107i −0.262874 0.331583i
\(376\) −1.48738 + 18.5111i −0.0767057 + 0.954635i
\(377\) 20.4642 1.05396
\(378\) 0 0
\(379\) 16.2436i 0.834379i 0.908820 + 0.417189i \(0.136985\pi\)
−0.908820 + 0.417189i \(0.863015\pi\)
\(380\) 9.22124 + 11.0914i 0.473040 + 0.568976i
\(381\) 1.25894i 0.0644972i
\(382\) −21.0467 12.9133i −1.07684 0.660700i
\(383\) 9.88716i 0.505211i −0.967569 0.252605i \(-0.918713\pi\)
0.967569 0.252605i \(-0.0812874\pi\)
\(384\) −6.28456 5.40921i −0.320707 0.276038i
\(385\) 0 0
\(386\) 20.7291 + 12.7184i 1.05508 + 0.647349i
\(387\) 22.8593 1.16200
\(388\) −7.56659 14.8905i −0.384135 0.755949i
\(389\) −31.9623 −1.62055 −0.810276 0.586048i \(-0.800683\pi\)
−0.810276 + 0.586048i \(0.800683\pi\)
\(390\) −8.67254 2.94038i −0.439151 0.148892i
\(391\) 6.97078 0.352527
\(392\) 0 0
\(393\) 10.3658i 0.522886i
\(394\) 14.3917 + 8.83005i 0.725043 + 0.444852i
\(395\) 6.05124 + 26.6297i 0.304471 + 1.33988i
\(396\) −11.8149 + 6.00372i −0.593719 + 0.301698i
\(397\) −17.4757 −0.877079 −0.438539 0.898712i \(-0.644504\pi\)
−0.438539 + 0.898712i \(0.644504\pi\)
\(398\) −11.4786 + 18.7084i −0.575369 + 0.937766i
\(399\) 0 0
\(400\) −3.65177 + 19.6638i −0.182588 + 0.983189i
\(401\) −17.3585 −0.866843 −0.433422 0.901191i \(-0.642694\pi\)
−0.433422 + 0.901191i \(0.642694\pi\)
\(402\) −2.67384 1.64054i −0.133359 0.0818227i
\(403\) −30.1668 −1.50272
\(404\) 0.498089 0.253104i 0.0247808 0.0125924i
\(405\) −9.71225 + 2.20698i −0.482606 + 0.109666i
\(406\) 0 0
\(407\) 12.0531 0.597448
\(408\) −0.235599 + 2.93213i −0.0116639 + 0.145162i
\(409\) 7.29987i 0.360955i −0.983579 0.180478i \(-0.942236\pi\)
0.983579 0.180478i \(-0.0577643\pi\)
\(410\) −0.974843 0.330516i −0.0481441 0.0163230i
\(411\) −10.8990 −0.537610
\(412\) −23.8933 + 12.1414i −1.17714 + 0.598164i
\(413\) 0 0
\(414\) −8.94784 + 14.5837i −0.439762 + 0.716748i
\(415\) 2.60710 + 11.4731i 0.127978 + 0.563191i
\(416\) 8.49702 + 20.6731i 0.416601 + 1.01358i
\(417\) 5.17990i 0.253661i
\(418\) 10.4603 + 6.41792i 0.511628 + 0.313911i
\(419\) −17.9278 −0.875831 −0.437915 0.899016i \(-0.644283\pi\)
−0.437915 + 0.899016i \(0.644283\pi\)
\(420\) 0 0
\(421\) 12.6334 0.615716 0.307858 0.951432i \(-0.400388\pi\)
0.307858 + 0.951432i \(0.400388\pi\)
\(422\) 17.0730 + 10.4752i 0.831099 + 0.509923i
\(423\) 16.1704i 0.786234i
\(424\) −0.366062 + 4.55580i −0.0177775 + 0.221249i
\(425\) 6.39834 3.06620i 0.310365 0.148733i
\(426\) 8.35232 13.6130i 0.404671 0.659554i
\(427\) 0 0
\(428\) −4.91881 9.67983i −0.237759 0.467892i
\(429\) −7.79135 −0.376170
\(430\) 9.42442 27.7969i 0.454486 1.34049i
\(431\) 32.6737i 1.57384i 0.617058 + 0.786918i \(0.288324\pi\)
−0.617058 + 0.786918i \(0.711676\pi\)
\(432\) −12.9358 9.44167i −0.622375 0.454263i
\(433\) −23.5884 −1.13359 −0.566794 0.823860i \(-0.691816\pi\)
−0.566794 + 0.823860i \(0.691816\pi\)
\(434\) 0 0
\(435\) 1.88082 + 8.27690i 0.0901783 + 0.396847i
\(436\) −8.07913 15.8991i −0.386920 0.761429i
\(437\) 15.8439 0.757917
\(438\) 1.25364 + 0.769171i 0.0599010 + 0.0367524i
\(439\) −18.3900 −0.877708 −0.438854 0.898558i \(-0.644615\pi\)
−0.438854 + 0.898558i \(0.644615\pi\)
\(440\) 2.42951 + 16.8421i 0.115822 + 0.802915i
\(441\) 0 0
\(442\) 4.14669 6.75849i 0.197238 0.321469i
\(443\) 3.38433 0.160795 0.0803973 0.996763i \(-0.474381\pi\)
0.0803973 + 0.996763i \(0.474381\pi\)
\(444\) 2.97476 + 5.85409i 0.141176 + 0.277823i
\(445\) −2.35108 10.3464i −0.111452 0.490466i
\(446\) 3.65774 + 2.24422i 0.173199 + 0.106267i
\(447\) 6.43914i 0.304561i
\(448\) 0 0
\(449\) −11.9013 −0.561658 −0.280829 0.959758i \(-0.590609\pi\)
−0.280829 + 0.959758i \(0.590609\pi\)
\(450\) −1.79819 + 17.3219i −0.0847677 + 0.816562i
\(451\) −0.875792 −0.0412394
\(452\) 1.87502 0.952791i 0.0881934 0.0448155i
\(453\) −0.220115 −0.0103419
\(454\) 17.8121 + 10.9287i 0.835963 + 0.512907i
\(455\) 0 0
\(456\) −0.535494 + 6.66445i −0.0250768 + 0.312092i
\(457\) 21.0704i 0.985631i −0.870134 0.492816i \(-0.835968\pi\)
0.870134 0.492816i \(-0.164032\pi\)
\(458\) 7.75188 + 4.75619i 0.362222 + 0.222242i
\(459\) 5.68140i 0.265185i
\(460\) 14.0447 + 16.8931i 0.654839 + 0.787646i
\(461\) 29.6708i 1.38191i −0.722899 0.690954i \(-0.757191\pi\)
0.722899 0.690954i \(-0.242809\pi\)
\(462\) 0 0
\(463\) −15.0481 −0.699342 −0.349671 0.936873i \(-0.613707\pi\)
−0.349671 + 0.936873i \(0.613707\pi\)
\(464\) 12.2138 16.7338i 0.567010 0.776847i
\(465\) −2.77257 12.2012i −0.128575 0.565818i
\(466\) 21.0593 + 12.9210i 0.975554 + 0.598553i
\(467\) 5.14599i 0.238128i 0.992887 + 0.119064i \(0.0379894\pi\)
−0.992887 + 0.119064i \(0.962011\pi\)
\(468\) 8.81676 + 17.3507i 0.407555 + 0.802036i
\(469\) 0 0
\(470\) 19.6633 + 6.66674i 0.906999 + 0.307514i
\(471\) 14.0973i 0.649570i
\(472\) −21.5254 1.72958i −0.990785 0.0796104i
\(473\) 24.9726i 1.14824i
\(474\) −6.61985 + 10.7894i −0.304060 + 0.495573i
\(475\) 14.5428 6.96919i 0.667270 0.319768i
\(476\) 0 0
\(477\) 3.97974i 0.182220i
\(478\) 3.88733 + 2.38508i 0.177802 + 0.109091i
\(479\) −39.9567 −1.82567 −0.912834 0.408331i \(-0.866111\pi\)
−0.912834 + 0.408331i \(0.866111\pi\)
\(480\) −7.58047 + 5.33671i −0.346000 + 0.243586i
\(481\) 17.7005i 0.807074i
\(482\) −24.6955 15.1520i −1.12485 0.690153i
\(483\) 0 0
\(484\) −3.40763 6.70594i −0.154892 0.304816i
\(485\) −18.2099 + 4.13797i −0.826870 + 0.187895i
\(486\) −18.4136 11.2977i −0.835256 0.512473i
\(487\) −12.2249 −0.553964 −0.276982 0.960875i \(-0.589334\pi\)
−0.276982 + 0.960875i \(0.589334\pi\)
\(488\) −3.23948 + 40.3167i −0.146644 + 1.82505i
\(489\) 7.85613i 0.355266i
\(490\) 0 0
\(491\) 22.9515i 1.03579i 0.855445 + 0.517894i \(0.173284\pi\)
−0.855445 + 0.517894i \(0.826716\pi\)
\(492\) −0.216150 0.425366i −0.00974479 0.0191770i
\(493\) −7.34947 −0.331003
\(494\) 9.42503 15.3614i 0.424052 0.691142i
\(495\) 3.28327 + 14.4487i 0.147572 + 0.649420i
\(496\) −18.0047 + 24.6678i −0.808433 + 1.10762i
\(497\) 0 0
\(498\) −2.85209 + 4.64848i −0.127805 + 0.208303i
\(499\) 4.20745i 0.188351i −0.995556 0.0941756i \(-0.969978\pi\)
0.995556 0.0941756i \(-0.0300215\pi\)
\(500\) 20.3221 + 9.32807i 0.908831 + 0.417164i
\(501\) 9.69314 0.433058
\(502\) 11.2156 18.2797i 0.500576 0.815864i
\(503\) 43.1904i 1.92576i 0.269924 + 0.962882i \(0.413001\pi\)
−0.269924 + 0.962882i \(0.586999\pi\)
\(504\) 0 0
\(505\) −0.138416 0.609125i −0.00615942 0.0271057i
\(506\) 15.9319 + 9.77503i 0.708258 + 0.434553i
\(507\) 1.91420i 0.0850127i
\(508\) 1.55632 + 3.06273i 0.0690507 + 0.135886i
\(509\) 37.3582i 1.65587i −0.560821 0.827937i \(-0.689514\pi\)
0.560821 0.827937i \(-0.310486\pi\)
\(510\) 3.11464 + 1.05600i 0.137919 + 0.0467606i
\(511\) 0 0
\(512\) 21.9760 + 5.39037i 0.971211 + 0.238223i
\(513\) 12.9133i 0.570135i
\(514\) −3.49937 + 5.70346i −0.154351 + 0.251569i
\(515\) 6.63980 + 29.2198i 0.292585 + 1.28758i
\(516\) 12.1290 6.16335i 0.533950 0.271327i
\(517\) 17.6653 0.776921
\(518\) 0 0
\(519\) 8.24817i 0.362055i
\(520\) 24.7334 3.56785i 1.08463 0.156461i
\(521\) 16.1208i 0.706265i −0.935573 0.353132i \(-0.885117\pi\)
0.935573 0.353132i \(-0.114883\pi\)
\(522\) 9.43393 15.3759i 0.412912 0.672986i
\(523\) 15.9671i 0.698193i 0.937087 + 0.349097i \(0.113511\pi\)
−0.937087 + 0.349097i \(0.886489\pi\)
\(524\) −12.8145 25.2178i −0.559802 1.10165i
\(525\) 0 0
\(526\) −3.47635 + 5.66594i −0.151576 + 0.247047i
\(527\) 10.8341 0.471939
\(528\) −4.65016 + 6.37107i −0.202372 + 0.277265i
\(529\) 1.13161 0.0492004
\(530\) 4.83937 + 1.64077i 0.210209 + 0.0712704i
\(531\) −18.8036 −0.816007
\(532\) 0 0
\(533\) 1.28614i 0.0557090i
\(534\) 2.57200 4.19199i 0.111302 0.181405i
\(535\) −11.8377 + 2.68996i −0.511789 + 0.116297i
\(536\) 8.53296 + 0.685630i 0.368568 + 0.0296147i
\(537\) 0.590701 0.0254906
\(538\) 29.5822 + 18.1502i 1.27538 + 0.782511i
\(539\) 0 0
\(540\) −13.7684 + 11.4469i −0.592498 + 0.492596i
\(541\) −14.6337 −0.629153 −0.314576 0.949232i \(-0.601862\pi\)
−0.314576 + 0.949232i \(0.601862\pi\)
\(542\) −19.5186 + 31.8125i −0.838397 + 1.36646i
\(543\) −0.0488927 −0.00209818
\(544\) −3.05160 7.42451i −0.130836 0.318323i
\(545\) −19.4434 + 4.41826i −0.832864 + 0.189257i
\(546\) 0 0
\(547\) 16.5936 0.709493 0.354747 0.934963i \(-0.384567\pi\)
0.354747 + 0.934963i \(0.384567\pi\)
\(548\) 26.5151 13.4736i 1.13267 0.575566i
\(549\) 35.2189i 1.50311i
\(550\) 18.9232 + 1.96443i 0.806890 + 0.0837637i
\(551\) −16.7046 −0.711641
\(552\) −0.815602 + 10.1505i −0.0347143 + 0.432035i
\(553\) 0 0
\(554\) −29.0143 17.8018i −1.23270 0.756327i
\(555\) 7.15911 1.62681i 0.303887 0.0690544i
\(556\) −6.40350 12.6016i −0.271569 0.534427i
\(557\) 24.7755i 1.04977i 0.851173 + 0.524886i \(0.175892\pi\)
−0.851173 + 0.524886i \(0.824108\pi\)
\(558\) −13.9068 + 22.6661i −0.588723 + 0.959531i
\(559\) −36.6734 −1.55112
\(560\) 0 0
\(561\) 2.79817 0.118139
\(562\) 5.75822 9.38506i 0.242896 0.395885i
\(563\) 23.9524i 1.00947i −0.863273 0.504737i \(-0.831590\pi\)
0.863273 0.504737i \(-0.168410\pi\)
\(564\) 4.35990 + 8.57993i 0.183585 + 0.361280i
\(565\) −0.521055 2.29301i −0.0219210 0.0964675i
\(566\) 9.58371 + 5.88011i 0.402833 + 0.247159i
\(567\) 0 0
\(568\) −3.49068 + 43.4430i −0.146466 + 1.82283i
\(569\) 9.16157 0.384073 0.192036 0.981388i \(-0.438491\pi\)
0.192036 + 0.981388i \(0.438491\pi\)
\(570\) 7.07928 + 2.40020i 0.296518 + 0.100533i
\(571\) 24.7258i 1.03474i −0.855761 0.517372i \(-0.826910\pi\)
0.855761 0.517372i \(-0.173090\pi\)
\(572\) 18.9547 9.63184i 0.792536 0.402727i
\(573\) −12.7967 −0.534589
\(574\) 0 0
\(575\) 22.1499 10.6147i 0.923716 0.442662i
\(576\) 19.4500 + 3.14596i 0.810417 + 0.131082i
\(577\) 9.50367 0.395643 0.197822 0.980238i \(-0.436613\pi\)
0.197822 + 0.980238i \(0.436613\pi\)
\(578\) 11.0837 18.0648i 0.461020 0.751395i
\(579\) 12.6036 0.523786
\(580\) −14.8077 17.8109i −0.614857 0.739555i
\(581\) 0 0
\(582\) −7.37801 4.52679i −0.305828 0.187642i
\(583\) 4.34766 0.180062
\(584\) −4.00070 0.321459i −0.165550 0.0133021i
\(585\) 21.2186 4.82165i 0.877281 0.199351i
\(586\) 1.56422 2.54946i 0.0646175 0.105317i
\(587\) 14.2100i 0.586508i 0.956035 + 0.293254i \(0.0947382\pi\)
−0.956035 + 0.293254i \(0.905262\pi\)
\(588\) 0 0
\(589\) 24.6248 1.01465
\(590\) −7.75234 + 22.8652i −0.319159 + 0.941345i
\(591\) 8.75033 0.359940
\(592\) −14.4739 10.5643i −0.594874 0.434190i
\(593\) 17.7571 0.729196 0.364598 0.931165i \(-0.381206\pi\)
0.364598 + 0.931165i \(0.381206\pi\)
\(594\) −7.96695 + 12.9850i −0.326888 + 0.532779i
\(595\) 0 0
\(596\) −7.96020 15.6651i −0.326063 0.641666i
\(597\) 11.3749i 0.465545i
\(598\) 14.3551 23.3967i 0.587024 0.956763i
\(599\) 20.9621i 0.856488i −0.903663 0.428244i \(-0.859132\pi\)
0.903663 0.428244i \(-0.140868\pi\)
\(600\) 3.71624 + 9.67572i 0.151715 + 0.395010i
\(601\) 20.7196i 0.845169i 0.906324 + 0.422585i \(0.138877\pi\)
−0.906324 + 0.422585i \(0.861123\pi\)
\(602\) 0 0
\(603\) 7.45401 0.303551
\(604\) 0.535494 0.272111i 0.0217889 0.0110721i
\(605\) −8.20087 + 1.86354i −0.333413 + 0.0757636i
\(606\) 0.151422 0.246796i 0.00615110 0.0100254i
\(607\) 3.20526i 0.130097i 0.997882 + 0.0650487i \(0.0207203\pi\)
−0.997882 + 0.0650487i \(0.979280\pi\)
\(608\) −6.93600 16.8752i −0.281292 0.684380i
\(609\) 0 0
\(610\) 42.8262 + 14.5200i 1.73398 + 0.587899i
\(611\) 25.9424i 1.04952i
\(612\) −3.16643 6.23129i −0.127995 0.251885i
\(613\) 4.79556i 0.193691i −0.995299 0.0968454i \(-0.969125\pi\)
0.995299 0.0968454i \(-0.0308753\pi\)
\(614\) 22.4881 + 13.7976i 0.907547 + 0.556827i
\(615\) −0.520191 + 0.118207i −0.0209761 + 0.00476655i
\(616\) 0 0
\(617\) 8.95961i 0.360700i −0.983602 0.180350i \(-0.942277\pi\)
0.983602 0.180350i \(-0.0577231\pi\)
\(618\) −7.26372 + 11.8388i −0.292190 + 0.476226i
\(619\) 25.6693 1.03174 0.515868 0.856668i \(-0.327469\pi\)
0.515868 + 0.856668i \(0.327469\pi\)
\(620\) 21.8285 + 26.2555i 0.876653 + 1.05445i
\(621\) 19.6680i 0.789250i
\(622\) 6.05205 9.86394i 0.242665 0.395508i
\(623\) 0 0
\(624\) 9.35623 + 6.82898i 0.374549 + 0.273378i
\(625\) 15.6620 19.4860i 0.626478 0.779439i
\(626\) −17.2872 + 28.1756i −0.690937 + 1.12613i
\(627\) 6.35997 0.253993
\(628\) −17.4274 34.2958i −0.695429 1.36855i
\(629\) 6.35693i 0.253467i
\(630\) 0 0
\(631\) 1.75095i 0.0697043i −0.999392 0.0348521i \(-0.988904\pi\)
0.999392 0.0348521i \(-0.0110960\pi\)
\(632\) 2.76663 34.4319i 0.110051 1.36963i
\(633\) 10.3806 0.412591
\(634\) −31.5912 19.3828i −1.25465 0.769791i
\(635\) 3.74548 0.851112i 0.148635 0.0337753i
\(636\) 1.07302 + 2.11163i 0.0425482 + 0.0837315i
\(637\) 0 0
\(638\) −16.7974 10.3061i −0.665014 0.408021i
\(639\) 37.9499i 1.50127i
\(640\) 11.8443 22.3542i 0.468188 0.883629i
\(641\) −40.7774 −1.61061 −0.805306 0.592859i \(-0.797999\pi\)
−0.805306 + 0.592859i \(0.797999\pi\)
\(642\) −4.79621 2.94273i −0.189291 0.116140i
\(643\) 35.0077i 1.38057i 0.723538 + 0.690285i \(0.242515\pi\)
−0.723538 + 0.690285i \(0.757485\pi\)
\(644\) 0 0
\(645\) −3.37057 14.8329i −0.132716 0.584043i
\(646\) −3.38489 + 5.51687i −0.133177 + 0.217058i
\(647\) 24.2431i 0.953094i −0.879149 0.476547i \(-0.841888\pi\)
0.879149 0.476547i \(-0.158112\pi\)
\(648\) 12.5578 + 1.00903i 0.493319 + 0.0396385i
\(649\) 20.5419i 0.806341i
\(650\) 2.88486 27.7897i 0.113154 1.09000i
\(651\) 0 0
\(652\) 9.71192 + 19.1123i 0.380348 + 0.748495i
\(653\) 43.1911i 1.69020i 0.534608 + 0.845100i \(0.320459\pi\)
−0.534608 + 0.845100i \(0.679541\pi\)
\(654\) −7.87777 4.83343i −0.308045 0.189002i
\(655\) −30.8395 + 7.00788i −1.20500 + 0.273820i
\(656\) 1.05169 + 0.767617i 0.0410618 + 0.0299704i
\(657\) −3.49483 −0.136346
\(658\) 0 0
\(659\) 11.6398i 0.453422i −0.973962 0.226711i \(-0.927203\pi\)
0.973962 0.226711i \(-0.0727973\pi\)
\(660\) 5.63776 + 6.78114i 0.219449 + 0.263956i
\(661\) 17.0920i 0.664801i −0.943138 0.332400i \(-0.892141\pi\)
0.943138 0.332400i \(-0.107859\pi\)
\(662\) −23.5312 14.4377i −0.914568 0.561135i
\(663\) 4.10925i 0.159590i
\(664\) 1.19197 14.8346i 0.0462574 0.575693i
\(665\) 0 0
\(666\) −13.2994 8.15989i −0.515342 0.316189i
\(667\) −25.4426 −0.985140
\(668\) −23.5814 + 11.9829i −0.912391 + 0.463631i
\(669\) 2.22395 0.0859830
\(670\) 3.07314 9.06409i 0.118726 0.350176i
\(671\) 38.4748 1.48530
\(672\) 0 0
\(673\) 3.77972i 0.145697i 0.997343 + 0.0728487i \(0.0232090\pi\)
−0.997343 + 0.0728487i \(0.976791\pi\)
\(674\) −38.2742 23.4832i −1.47427 0.904540i
\(675\) 8.65128 + 18.0529i 0.332988 + 0.694855i
\(676\) −2.36638 4.65685i −0.0910146 0.179110i
\(677\) −27.7744 −1.06746 −0.533729 0.845655i \(-0.679210\pi\)
−0.533729 + 0.845655i \(0.679210\pi\)
\(678\) 0.570017 0.929044i 0.0218914 0.0356797i
\(679\) 0 0
\(680\) −8.88272 + 1.28135i −0.340637 + 0.0491376i
\(681\) 10.8300 0.415006
\(682\) 24.7615 + 15.1925i 0.948166 + 0.581750i
\(683\) −11.1730 −0.427525 −0.213762 0.976886i \(-0.568572\pi\)
−0.213762 + 0.976886i \(0.568572\pi\)
\(684\) −7.19700 14.1631i −0.275184 0.541541i
\(685\) −7.36837 32.4260i −0.281531 1.23893i
\(686\) 0 0
\(687\) 4.71324 0.179821
\(688\) −21.8880 + 29.9883i −0.834473 + 1.14329i
\(689\) 6.38475i 0.243240i
\(690\) 10.7823 + 3.65570i 0.410477 + 0.139170i
\(691\) −35.4114 −1.34711 −0.673556 0.739136i \(-0.735234\pi\)
−0.673556 + 0.739136i \(0.735234\pi\)
\(692\) 10.1966 + 20.0661i 0.387616 + 0.762797i
\(693\) 0 0
\(694\) −13.5966 + 22.1605i −0.516122 + 0.841202i
\(695\) −15.4108 + 3.50190i −0.584565 + 0.132835i
\(696\) 0.859910 10.7020i 0.0325948 0.405657i
\(697\) 0.461903i 0.0174958i
\(698\) −2.86153 1.75570i −0.108310 0.0664541i
\(699\) 12.8043 0.484304
\(700\) 0 0
\(701\) 2.24955 0.0849643 0.0424821 0.999097i \(-0.486473\pi\)
0.0424821 + 0.999097i \(0.486473\pi\)
\(702\) 19.0690 + 11.6999i 0.719715 + 0.441583i
\(703\) 14.4487i 0.544942i
\(704\) 3.43679 21.2481i 0.129529 0.800818i
\(705\) 10.4926 2.38431i 0.395175 0.0897983i
\(706\) 1.59321 2.59671i 0.0599614 0.0977283i
\(707\) 0 0
\(708\) −9.97707 + 5.06985i −0.374961 + 0.190537i
\(709\) −15.8920 −0.596837 −0.298418 0.954435i \(-0.596459\pi\)
−0.298418 + 0.954435i \(0.596459\pi\)
\(710\) 46.1471 + 15.6459i 1.73187 + 0.587182i
\(711\) 30.0782i 1.12802i
\(712\) −1.07492 + 13.3778i −0.0402842 + 0.501354i
\(713\) 37.5056 1.40460
\(714\) 0 0
\(715\) −5.26739 23.1802i −0.196989 0.866890i
\(716\) −1.43705 + 0.730237i −0.0537051 + 0.0272902i
\(717\) 2.36355 0.0882682
\(718\) −6.12437 3.75762i −0.228560 0.140233i
\(719\) 36.0284 1.34363 0.671817 0.740717i \(-0.265514\pi\)
0.671817 + 0.740717i \(0.265514\pi\)
\(720\) 8.72131 20.2284i 0.325024 0.753869i
\(721\) 0 0
\(722\) 6.35856 10.3635i 0.236641 0.385690i
\(723\) −15.0152 −0.558420
\(724\) 0.118946 0.0604422i 0.00442058 0.00224632i
\(725\) −23.3532 + 11.1913i −0.867317 + 0.415635i
\(726\) −3.32270 2.03865i −0.123317 0.0756613i
\(727\) 51.4779i 1.90921i −0.297878 0.954604i \(-0.596279\pi\)
0.297878 0.954604i \(-0.403721\pi\)
\(728\) 0 0
\(729\) 2.16686 0.0802541
\(730\) −1.44085 + 4.24972i −0.0533281 + 0.157289i
\(731\) 13.1708 0.487141
\(732\) 9.49577 + 18.6869i 0.350974 + 0.690689i
\(733\) −35.9435 −1.32760 −0.663801 0.747909i \(-0.731058\pi\)
−0.663801 + 0.747909i \(0.731058\pi\)
\(734\) 16.3277 + 10.0179i 0.602667 + 0.369768i
\(735\) 0 0
\(736\) −10.5641 25.7024i −0.389398 0.947401i
\(737\) 8.14311i 0.299955i
\(738\) 0.966354 + 0.592909i 0.0355720 + 0.0218253i
\(739\) 18.2331i 0.670714i −0.942091 0.335357i \(-0.891143\pi\)
0.942091 0.335357i \(-0.108857\pi\)
\(740\) −15.4055 + 12.8079i −0.566318 + 0.470830i
\(741\) 9.33993i 0.343111i
\(742\) 0 0
\(743\) −29.1171 −1.06820 −0.534102 0.845420i \(-0.679350\pi\)
−0.534102 + 0.845420i \(0.679350\pi\)
\(744\) −1.26762 + 15.7761i −0.0464731 + 0.578378i
\(745\) −19.1572 + 4.35322i −0.701865 + 0.159490i
\(746\) 8.59940 + 5.27618i 0.314846 + 0.193175i
\(747\) 12.9588i 0.474139i
\(748\) −6.80736 + 3.45916i −0.248902 + 0.126479i
\(749\) 0 0
\(750\) 11.5049 1.38728i 0.420100 0.0506564i
\(751\) 43.0360i 1.57041i −0.619239 0.785203i \(-0.712559\pi\)
0.619239 0.785203i \(-0.287441\pi\)
\(752\) −21.2134 15.4834i −0.773573 0.564621i
\(753\) 11.1143i 0.405028i
\(754\) −15.1350 + 24.6678i −0.551183 + 0.898347i
\(755\) −0.148810 0.654869i −0.00541576 0.0238331i
\(756\) 0 0
\(757\) 10.6531i 0.387193i −0.981081 0.193597i \(-0.937985\pi\)
0.981081 0.193597i \(-0.0620153\pi\)
\(758\) −19.5802 12.0135i −0.711186 0.436350i
\(759\) 9.68677 0.351608
\(760\) −20.1896 + 2.91239i −0.732352 + 0.105643i
\(761\) 14.2373i 0.516101i 0.966131 + 0.258050i \(0.0830800\pi\)
−0.966131 + 0.258050i \(0.916920\pi\)
\(762\) 1.51754 + 0.931088i 0.0549745 + 0.0337297i
\(763\) 0 0
\(764\) 31.1316 15.8195i 1.12630 0.572331i
\(765\) −7.62041 + 1.73164i −0.275516 + 0.0626075i
\(766\) 11.9181 + 7.31238i 0.430619 + 0.264207i
\(767\) 30.1668 1.08926
\(768\) 11.1683 3.57491i 0.403001 0.128999i
\(769\) 35.5770i 1.28294i 0.767149 + 0.641469i \(0.221675\pi\)
−0.767149 + 0.641469i \(0.778325\pi\)
\(770\) 0 0
\(771\) 3.46777i 0.124889i
\(772\) −30.6618 + 15.5808i −1.10354 + 0.560765i
\(773\) −11.8854 −0.427487 −0.213743 0.976890i \(-0.568566\pi\)
−0.213743 + 0.976890i \(0.568566\pi\)
\(774\) −16.9064 + 27.5549i −0.607686 + 0.990439i
\(775\) 34.4257 16.4974i 1.23661 0.592605i
\(776\) 23.5453 + 1.89188i 0.845226 + 0.0679145i
\(777\) 0 0
\(778\) 23.6388 38.5277i 0.847491 1.38129i
\(779\) 1.04986i 0.0376152i
\(780\) 9.95844 8.27932i 0.356569 0.296447i
\(781\) 41.4582 1.48349
\(782\) −5.15547 + 8.40265i −0.184359 + 0.300478i
\(783\) 20.7365i 0.741061i
\(784\) 0 0
\(785\) −41.9412 + 9.53058i −1.49694 + 0.340161i
\(786\) −12.4951 7.66638i −0.445685 0.273451i
\(787\) 46.3779i 1.65319i 0.562794 + 0.826597i \(0.309726\pi\)
−0.562794 + 0.826597i \(0.690274\pi\)
\(788\) −21.2877 + 10.8173i −0.758343 + 0.385352i
\(789\) 3.44496i 0.122644i
\(790\) −36.5751 12.4006i −1.30128 0.441194i
\(791\) 0 0
\(792\) 1.50111 18.6820i 0.0533398 0.663836i
\(793\) 56.5021i 2.00645i
\(794\) 12.9247 21.0654i 0.458681 0.747582i
\(795\) 2.58236 0.586808i 0.0915870 0.0208119i
\(796\) −14.0619 27.6728i −0.498412 0.980836i
\(797\) −9.09251 −0.322073 −0.161037 0.986948i \(-0.551484\pi\)
−0.161037 + 0.986948i \(0.551484\pi\)
\(798\) 0 0
\(799\) 9.31691i 0.329609i
\(800\) −21.0022 18.9449i −0.742539 0.669803i
\(801\) 11.6862i 0.412913i
\(802\) 12.8381 20.9242i 0.453328 0.738858i
\(803\) 3.81791i 0.134731i
\(804\) 3.95505 2.00976i 0.139484 0.0708788i
\(805\) 0 0
\(806\) 22.3109 36.3634i 0.785867 1.28085i
\(807\) 17.9863 0.633149
\(808\) −0.0632837 + 0.787593i −0.00222631 + 0.0277074i
\(809\) 17.3226 0.609029 0.304515 0.952508i \(-0.401506\pi\)
0.304515 + 0.952508i \(0.401506\pi\)
\(810\) 4.52270 13.3395i 0.158911 0.468702i
\(811\) 16.4459 0.577493 0.288746 0.957406i \(-0.406762\pi\)
0.288746 + 0.957406i \(0.406762\pi\)
\(812\) 0 0
\(813\) 19.3424i 0.678368i
\(814\) −8.91424 + 14.5289i −0.312444 + 0.509238i
\(815\) 23.3729 5.31119i 0.818717 0.186043i
\(816\) −3.36018 2.45255i −0.117630 0.0858564i
\(817\) 29.9360 1.04733
\(818\) 8.79934 + 5.39886i 0.307662 + 0.188767i
\(819\) 0 0
\(820\) 1.11939 0.930643i 0.0390906 0.0324995i
\(821\) 44.9053 1.56721 0.783603 0.621261i \(-0.213379\pi\)
0.783603 + 0.621261i \(0.213379\pi\)
\(822\) 8.06075 13.1378i 0.281151 0.458235i
\(823\) 23.7093 0.826453 0.413226 0.910628i \(-0.364402\pi\)
0.413226 + 0.910628i \(0.364402\pi\)
\(824\) 3.03572 37.7809i 0.105754 1.31616i
\(825\) 8.89130 4.26088i 0.309555 0.148345i
\(826\) 0 0
\(827\) −8.20536 −0.285328 −0.142664 0.989771i \(-0.545567\pi\)
−0.142664 + 0.989771i \(0.545567\pi\)
\(828\) −10.9616 21.5717i −0.380943 0.749667i
\(829\) 22.1180i 0.768190i 0.923293 + 0.384095i \(0.125487\pi\)
−0.923293 + 0.384095i \(0.874513\pi\)
\(830\) −15.7579 5.34266i −0.546966 0.185446i
\(831\) −17.6411 −0.611962
\(832\) −31.2039 5.04710i −1.08180 0.174977i
\(833\) 0 0
\(834\) −6.24391 3.83096i −0.216209 0.132655i
\(835\) 6.55311 + 28.8383i 0.226780 + 0.997989i
\(836\) −15.4725 + 7.86234i −0.535127 + 0.271925i
\(837\) 30.5682i 1.05659i
\(838\) 13.2591 21.6104i 0.458028 0.746518i
\(839\) −3.64977 −0.126004 −0.0630020 0.998013i \(-0.520067\pi\)
−0.0630020 + 0.998013i \(0.520067\pi\)
\(840\) 0 0
\(841\) −2.17525 −0.0750086
\(842\) −9.34348 + 15.2285i −0.321998 + 0.524809i
\(843\) 5.70623i 0.196533i
\(844\) −25.2538 + 12.8327i −0.869270 + 0.441720i
\(845\) −5.69498 + 1.29411i −0.195913 + 0.0445187i
\(846\) −19.4920 11.9594i −0.670150 0.411172i
\(847\) 0 0
\(848\) −5.22088 3.81065i −0.179286 0.130858i
\(849\) 5.82702 0.199983
\(850\) −1.03606 + 9.98034i −0.0355367 + 0.342323i
\(851\) 22.0066i 0.754375i
\(852\) 10.2321 + 20.1360i 0.350546 + 0.689847i
\(853\) 1.03474 0.0354290 0.0177145 0.999843i \(-0.494361\pi\)
0.0177145 + 0.999843i \(0.494361\pi\)
\(854\) 0 0
\(855\) −17.3205 + 3.93584i −0.592347 + 0.134603i
\(856\) 15.3060 + 1.22985i 0.523150 + 0.0420355i
\(857\) 48.5127 1.65716 0.828581 0.559870i \(-0.189149\pi\)
0.828581 + 0.559870i \(0.189149\pi\)
\(858\) 5.76235 9.39178i 0.196723 0.320630i
\(859\) 24.9348 0.850763 0.425382 0.905014i \(-0.360140\pi\)
0.425382 + 0.905014i \(0.360140\pi\)
\(860\) 26.5366 + 31.9184i 0.904891 + 1.08841i
\(861\) 0 0
\(862\) −39.3852 24.1649i −1.34147 0.823060i
\(863\) 5.96709 0.203122 0.101561 0.994829i \(-0.467616\pi\)
0.101561 + 0.994829i \(0.467616\pi\)
\(864\) 20.9482 8.61008i 0.712672 0.292921i
\(865\) 24.5393 5.57623i 0.834361 0.189598i
\(866\) 17.4456 28.4338i 0.592826 0.966218i
\(867\) 10.9836i 0.373023i
\(868\) 0 0
\(869\) −32.8588 −1.11466
\(870\) −11.3681 3.85430i −0.385415 0.130673i
\(871\) −11.9585 −0.405200
\(872\) 25.1401 + 2.02003i 0.851353 + 0.0684068i
\(873\) 20.5681 0.696124
\(874\) −11.7179 + 19.0984i −0.396363 + 0.646014i
\(875\) 0 0
\(876\) −1.85433 + 0.942281i −0.0626522 + 0.0318367i
\(877\) 33.8298i 1.14235i 0.820828 + 0.571175i \(0.193512\pi\)
−0.820828 + 0.571175i \(0.806488\pi\)
\(878\) 13.6009 22.1675i 0.459010 0.748118i
\(879\) 1.55010i 0.0522836i
\(880\) −22.0985 9.52757i −0.744939 0.321174i
\(881\) 20.9239i 0.704944i 0.935822 + 0.352472i \(0.114659\pi\)
−0.935822 + 0.352472i \(0.885341\pi\)
\(882\) 0 0
\(883\) −14.7876 −0.497642 −0.248821 0.968549i \(-0.580043\pi\)
−0.248821 + 0.968549i \(0.580043\pi\)
\(884\) 5.07994 + 9.99693i 0.170857 + 0.336233i
\(885\) 2.77257 + 12.2012i 0.0931988 + 0.410139i
\(886\) −2.50300 + 4.07952i −0.0840898 + 0.137054i
\(887\) 7.39916i 0.248439i −0.992255 0.124220i \(-0.960357\pi\)
0.992255 0.124220i \(-0.0396428\pi\)
\(888\) −9.25667 0.743780i −0.310633 0.0249596i
\(889\) 0 0
\(890\) 14.2105 + 4.81800i 0.476336 + 0.161500i
\(891\) 11.9841i 0.401483i
\(892\) −5.41041 + 2.74930i −0.181154 + 0.0920533i
\(893\) 21.1764i 0.708643i
\(894\) −7.76181 4.76228i −0.259594 0.159274i
\(895\) 0.399347 + 1.75740i 0.0133487 + 0.0587435i
\(896\) 0 0
\(897\) 14.2255i 0.474976i
\(898\) 8.80201 14.3460i 0.293727 0.478732i
\(899\) −39.5431 −1.31884
\(900\) −19.5501 14.9785i −0.651670 0.499285i
\(901\) 2.29301i 0.0763911i
\(902\) 0.647721 1.05569i 0.0215668 0.0351506i
\(903\) 0 0
\(904\) −0.238227 + 2.96484i −0.00792331 + 0.0986090i
\(905\) −0.0330542 0.145461i −0.00109876 0.00483530i
\(906\) 0.162793 0.265329i 0.00540845 0.00881498i
\(907\) 18.5122 0.614686 0.307343 0.951599i \(-0.400560\pi\)
0.307343 + 0.951599i \(0.400560\pi\)
\(908\) −26.3471 + 13.3883i −0.874358 + 0.444305i
\(909\) 0.688006i 0.0228197i
\(910\) 0 0
\(911\) 10.8437i 0.359267i 0.983734 + 0.179634i \(0.0574912\pi\)
−0.983734 + 0.179634i \(0.942509\pi\)
\(912\) −7.63737 5.57441i −0.252898 0.184587i
\(913\) −14.1568 −0.468522
\(914\) 25.3985 + 15.5833i 0.840107 + 0.515450i
\(915\) 22.8527 5.19298i 0.755488 0.171675i
\(916\) −11.4663 + 5.82661i −0.378858 + 0.192517i
\(917\) 0 0
\(918\) −6.84842 4.20187i −0.226032 0.138682i
\(919\) 16.1145i 0.531567i −0.964033 0.265784i \(-0.914369\pi\)
0.964033 0.265784i \(-0.0856307\pi\)
\(920\) −30.7504 + 4.43582i −1.01381 + 0.146245i
\(921\) 13.6731 0.450543
\(922\) 35.7656 + 21.9440i 1.17788 + 0.722689i
\(923\) 60.8834i 2.00400i
\(924\) 0 0
\(925\) 9.67993 + 20.1994i 0.318274 + 0.664152i
\(926\) 11.1293 18.1391i 0.365731 0.596088i
\(927\) 33.0037i 1.08398i
\(928\) 11.1380 + 27.0986i 0.365623 + 0.889557i
\(929\) 49.3541i 1.61925i 0.586944 + 0.809627i \(0.300331\pi\)
−0.586944 + 0.809627i \(0.699669\pi\)
\(930\) 16.7580 + 5.68173i 0.549517 + 0.186311i
\(931\) 0 0
\(932\) −31.1502 + 15.8290i −1.02036 + 0.518496i
\(933\) 5.99740i 0.196346i
\(934\) −6.20303 3.80589i −0.202969 0.124532i
\(935\) 1.89172 + 8.32489i 0.0618659 + 0.272253i
\(936\) −27.4354 2.20446i −0.896756 0.0720550i
\(937\) 31.3085 1.02280 0.511402 0.859342i \(-0.329126\pi\)
0.511402 + 0.859342i \(0.329126\pi\)
\(938\) 0 0
\(939\) 17.1311i 0.559054i
\(940\) −22.5788 + 18.7717i −0.736439 + 0.612266i
\(941\) 43.8200i 1.42849i −0.699896 0.714245i \(-0.746770\pi\)
0.699896 0.714245i \(-0.253230\pi\)
\(942\) −16.9931 10.4261i −0.553664 0.339702i
\(943\) 1.59903i 0.0520715i
\(944\) 18.0047 24.6678i 0.586002 0.802867i
\(945\) 0 0
\(946\) 30.1022 + 18.4693i 0.978708 + 0.600488i
\(947\) 14.6346 0.475560 0.237780 0.971319i \(-0.423580\pi\)
0.237780 + 0.971319i \(0.423580\pi\)
\(948\) −8.10971 15.9593i −0.263391 0.518334i
\(949\) 5.60679 0.182004
\(950\) −2.35488 + 22.6844i −0.0764022 + 0.735978i
\(951\) −19.2078 −0.622857
\(952\) 0 0
\(953\) 28.2044i 0.913630i −0.889562 0.456815i \(-0.848990\pi\)
0.889562 0.456815i \(-0.151010\pi\)
\(954\) −4.79723 2.94335i −0.155316 0.0952945i
\(955\) −8.65128 38.0716i −0.279949 1.23197i
\(956\) −5.75001 + 2.92187i −0.185969 + 0.0945000i
\(957\) −10.2130 −0.330140
\(958\) 29.5513 48.1643i 0.954759 1.55612i
\(959\) 0 0
\(960\) −0.826540 13.0845i −0.0266765 0.422301i
\(961\) 27.2916 0.880375
\(962\) 21.3364 + 13.0910i 0.687913 + 0.422071i
\(963\) 13.3707 0.430864
\(964\) 36.5287 18.5621i 1.17651 0.597844i
\(965\) 8.52071 + 37.4971i 0.274291 + 1.20707i
\(966\) 0 0
\(967\) −8.88824 −0.285827 −0.142913 0.989735i \(-0.545647\pi\)
−0.142913 + 0.989735i \(0.545647\pi\)
\(968\) 10.6036 + 0.852011i 0.340814 + 0.0273847i
\(969\) 3.35432i 0.107756i
\(970\) 8.47980 25.0108i 0.272270 0.803049i
\(971\) 8.74211 0.280548 0.140274 0.990113i \(-0.455202\pi\)
0.140274 + 0.990113i \(0.455202\pi\)
\(972\) 27.2367 13.8403i 0.873618 0.443929i
\(973\) 0 0
\(974\) 9.04134 14.7360i 0.289703 0.472173i
\(975\) −6.25731 13.0573i −0.200394 0.418168i
\(976\) −46.2024 33.7225i −1.47890 1.07943i
\(977\) 41.9813i 1.34310i −0.740959 0.671551i \(-0.765629\pi\)
0.740959 0.671551i \(-0.234371\pi\)
\(978\) 9.46986 + 5.81026i 0.302813 + 0.185792i
\(979\) 12.7666 0.408022
\(980\) 0 0
\(981\) 21.9613 0.701170
\(982\) −27.6661 16.9746i −0.882859 0.541680i
\(983\) 11.0047i 0.350996i 0.984480 + 0.175498i \(0.0561535\pi\)
−0.984480 + 0.175498i \(0.943846\pi\)
\(984\) 0.672602 + 0.0540441i 0.0214418 + 0.00172286i
\(985\) 5.91572 + 26.0333i 0.188490 + 0.829489i
\(986\) 5.43554 8.85913i 0.173103 0.282132i
\(987\) 0 0
\(988\) 11.5462 + 22.7221i 0.367334 + 0.722885i
\(989\) 45.5951 1.44984
\(990\) −19.8449 6.72831i −0.630711 0.213840i
\(991\) 36.5808i 1.16203i −0.813894 0.581013i \(-0.802656\pi\)
0.813894 0.581013i \(-0.197344\pi\)
\(992\) −16.4189 39.9469i −0.521299 1.26831i
\(993\) −14.3073 −0.454028
\(994\) 0 0
\(995\) −33.8418 + 7.69010i −1.07286 + 0.243792i
\(996\) −3.49398 6.87587i −0.110711 0.217870i
\(997\) −14.4641 −0.458082 −0.229041 0.973417i \(-0.573559\pi\)
−0.229041 + 0.973417i \(0.573559\pi\)
\(998\) 5.07171 + 3.11176i 0.160542 + 0.0985010i
\(999\) −17.9360 −0.567471
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 980.2.c.d.979.12 32
4.3 odd 2 inner 980.2.c.d.979.23 32
5.4 even 2 inner 980.2.c.d.979.21 32
7.2 even 3 140.2.s.b.59.16 yes 32
7.3 odd 6 140.2.s.b.19.6 yes 32
7.4 even 3 980.2.s.e.19.6 32
7.5 odd 6 980.2.s.e.619.16 32
7.6 odd 2 inner 980.2.c.d.979.11 32
20.19 odd 2 inner 980.2.c.d.979.10 32
28.3 even 6 140.2.s.b.19.1 32
28.11 odd 6 980.2.s.e.19.1 32
28.19 even 6 980.2.s.e.619.11 32
28.23 odd 6 140.2.s.b.59.11 yes 32
28.27 even 2 inner 980.2.c.d.979.24 32
35.2 odd 12 700.2.p.e.451.8 32
35.3 even 12 700.2.p.e.551.3 32
35.4 even 6 980.2.s.e.19.11 32
35.9 even 6 140.2.s.b.59.1 yes 32
35.17 even 12 700.2.p.e.551.14 32
35.19 odd 6 980.2.s.e.619.1 32
35.23 odd 12 700.2.p.e.451.9 32
35.24 odd 6 140.2.s.b.19.11 yes 32
35.34 odd 2 inner 980.2.c.d.979.22 32
140.3 odd 12 700.2.p.e.551.9 32
140.19 even 6 980.2.s.e.619.6 32
140.23 even 12 700.2.p.e.451.3 32
140.39 odd 6 980.2.s.e.19.16 32
140.59 even 6 140.2.s.b.19.16 yes 32
140.79 odd 6 140.2.s.b.59.6 yes 32
140.87 odd 12 700.2.p.e.551.8 32
140.107 even 12 700.2.p.e.451.14 32
140.139 even 2 inner 980.2.c.d.979.9 32
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
140.2.s.b.19.1 32 28.3 even 6
140.2.s.b.19.6 yes 32 7.3 odd 6
140.2.s.b.19.11 yes 32 35.24 odd 6
140.2.s.b.19.16 yes 32 140.59 even 6
140.2.s.b.59.1 yes 32 35.9 even 6
140.2.s.b.59.6 yes 32 140.79 odd 6
140.2.s.b.59.11 yes 32 28.23 odd 6
140.2.s.b.59.16 yes 32 7.2 even 3
700.2.p.e.451.3 32 140.23 even 12
700.2.p.e.451.8 32 35.2 odd 12
700.2.p.e.451.9 32 35.23 odd 12
700.2.p.e.451.14 32 140.107 even 12
700.2.p.e.551.3 32 35.3 even 12
700.2.p.e.551.8 32 140.87 odd 12
700.2.p.e.551.9 32 140.3 odd 12
700.2.p.e.551.14 32 35.17 even 12
980.2.c.d.979.9 32 140.139 even 2 inner
980.2.c.d.979.10 32 20.19 odd 2 inner
980.2.c.d.979.11 32 7.6 odd 2 inner
980.2.c.d.979.12 32 1.1 even 1 trivial
980.2.c.d.979.21 32 5.4 even 2 inner
980.2.c.d.979.22 32 35.34 odd 2 inner
980.2.c.d.979.23 32 4.3 odd 2 inner
980.2.c.d.979.24 32 28.27 even 2 inner
980.2.s.e.19.1 32 28.11 odd 6
980.2.s.e.19.6 32 7.4 even 3
980.2.s.e.19.11 32 35.4 even 6
980.2.s.e.19.16 32 140.39 odd 6
980.2.s.e.619.1 32 35.19 odd 6
980.2.s.e.619.6 32 140.19 even 6
980.2.s.e.619.11 32 28.19 even 6
980.2.s.e.619.16 32 7.5 odd 6