Properties

Label 700.5.o.c.649.15
Level $700$
Weight $5$
Character 700.649
Analytic conductor $72.359$
Analytic rank $0$
Dimension $44$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [700,5,Mod(549,700)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(700, base_ring=CyclotomicField(6))
 
chi = DirichletCharacter(H, H._module([0, 3, 1]))
 
N = Newforms(chi, 5, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("700.549");
 
S:= CuspForms(chi, 5);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 700 = 2^{2} \cdot 5^{2} \cdot 7 \)
Weight: \( k \) \(=\) \( 5 \)
Character orbit: \([\chi]\) \(=\) 700.o (of order \(6\), degree \(2\), not minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(72.3589741587\)
Analytic rank: \(0\)
Dimension: \(44\)
Relative dimension: \(22\) over \(\Q(\zeta_{6})\)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{6}]$

Embedding invariants

Embedding label 649.15
Character \(\chi\) \(=\) 700.649
Dual form 700.5.o.c.549.15

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(3.15197 + 5.45937i) q^{3} +(-32.2417 + 36.8981i) q^{7} +(20.6302 - 35.7325i) q^{9} +(14.1885 + 24.5752i) q^{11} +322.698 q^{13} +(-249.783 - 432.637i) q^{17} +(-160.504 - 92.6668i) q^{19} +(-303.066 - 59.7178i) q^{21} +(-349.914 - 202.023i) q^{23} +770.722 q^{27} -732.477 q^{29} +(-671.196 + 387.515i) q^{31} +(-89.4433 + 154.920i) q^{33} +(-630.104 - 363.791i) q^{37} +(1017.13 + 1761.73i) q^{39} -20.3416i q^{41} -1854.44i q^{43} +(-1893.08 + 3278.90i) q^{47} +(-321.943 - 2379.32i) q^{49} +(1574.62 - 2727.31i) q^{51} +(4690.29 - 2707.94i) q^{53} -1168.33i q^{57} +(4641.86 - 2679.98i) q^{59} +(-5830.99 - 3366.53i) q^{61} +(653.310 + 1913.29i) q^{63} +(5698.00 - 3289.74i) q^{67} -2547.08i q^{69} +3986.32 q^{71} +(-4398.75 - 7618.86i) q^{73} +(-1364.24 - 268.817i) q^{77} +(-2452.82 + 4248.41i) q^{79} +(758.248 + 1313.32i) q^{81} +4449.18 q^{83} +(-2308.75 - 3998.87i) q^{87} +(11675.4 + 6740.79i) q^{89} +(-10404.3 + 11906.9i) q^{91} +(-4231.18 - 2442.87i) q^{93} +7101.58 q^{97} +1170.84 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 44 q - 684 q^{9} - 300 q^{11} + 540 q^{19} - 190 q^{21} - 528 q^{29} - 2334 q^{31} - 852 q^{39} + 4092 q^{49} - 3902 q^{51} + 9414 q^{59} - 23598 q^{61} + 32820 q^{71} - 4890 q^{79} - 23710 q^{81} - 37764 q^{89}+ \cdots + 168180 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/700\mathbb{Z}\right)^\times\).

\(n\) \(101\) \(351\) \(477\)
\(\chi(n)\) \(e\left(\frac{5}{6}\right)\) \(1\) \(-1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 3.15197 + 5.45937i 0.350219 + 0.606597i 0.986288 0.165036i \(-0.0527739\pi\)
−0.636069 + 0.771632i \(0.719441\pi\)
\(4\) 0 0
\(5\) 0 0
\(6\) 0 0
\(7\) −32.2417 + 36.8981i −0.657994 + 0.753023i
\(8\) 0 0
\(9\) 20.6302 35.7325i 0.254693 0.441142i
\(10\) 0 0
\(11\) 14.1885 + 24.5752i 0.117260 + 0.203100i 0.918681 0.395000i \(-0.129256\pi\)
−0.801421 + 0.598101i \(0.795922\pi\)
\(12\) 0 0
\(13\) 322.698 1.90945 0.954727 0.297485i \(-0.0961478\pi\)
0.954727 + 0.297485i \(0.0961478\pi\)
\(14\) 0 0
\(15\) 0 0
\(16\) 0 0
\(17\) −249.783 432.637i −0.864301 1.49701i −0.867740 0.497018i \(-0.834428\pi\)
0.00343955 0.999994i \(-0.498905\pi\)
\(18\) 0 0
\(19\) −160.504 92.6668i −0.444608 0.256695i 0.260942 0.965354i \(-0.415967\pi\)
−0.705550 + 0.708660i \(0.749300\pi\)
\(20\) 0 0
\(21\) −303.066 59.7178i −0.687223 0.135414i
\(22\) 0 0
\(23\) −349.914 202.023i −0.661463 0.381896i 0.131371 0.991333i \(-0.458062\pi\)
−0.792834 + 0.609438i \(0.791395\pi\)
\(24\) 0 0
\(25\) 0 0
\(26\) 0 0
\(27\) 770.722 1.05723
\(28\) 0 0
\(29\) −732.477 −0.870960 −0.435480 0.900198i \(-0.643421\pi\)
−0.435480 + 0.900198i \(0.643421\pi\)
\(30\) 0 0
\(31\) −671.196 + 387.515i −0.698435 + 0.403242i −0.806764 0.590873i \(-0.798783\pi\)
0.108329 + 0.994115i \(0.465450\pi\)
\(32\) 0 0
\(33\) −89.4433 + 154.920i −0.0821334 + 0.142259i
\(34\) 0 0
\(35\) 0 0
\(36\) 0 0
\(37\) −630.104 363.791i −0.460266 0.265735i 0.251890 0.967756i \(-0.418948\pi\)
−0.712156 + 0.702021i \(0.752281\pi\)
\(38\) 0 0
\(39\) 1017.13 + 1761.73i 0.668727 + 1.15827i
\(40\) 0 0
\(41\) 20.3416i 0.0121009i −0.999982 0.00605044i \(-0.998074\pi\)
0.999982 0.00605044i \(-0.00192593\pi\)
\(42\) 0 0
\(43\) 1854.44i 1.00294i −0.865174 0.501472i \(-0.832792\pi\)
0.865174 0.501472i \(-0.167208\pi\)
\(44\) 0 0
\(45\) 0 0
\(46\) 0 0
\(47\) −1893.08 + 3278.90i −0.856983 + 1.48434i 0.0178095 + 0.999841i \(0.494331\pi\)
−0.874793 + 0.484497i \(0.839003\pi\)
\(48\) 0 0
\(49\) −321.943 2379.32i −0.134087 0.990970i
\(50\) 0 0
\(51\) 1574.62 2727.31i 0.605389 1.04856i
\(52\) 0 0
\(53\) 4690.29 2707.94i 1.66974 0.964023i 0.701959 0.712217i \(-0.252309\pi\)
0.967778 0.251806i \(-0.0810244\pi\)
\(54\) 0 0
\(55\) 0 0
\(56\) 0 0
\(57\) 1168.33i 0.359597i
\(58\) 0 0
\(59\) 4641.86 2679.98i 1.33348 0.769888i 0.347653 0.937623i \(-0.386979\pi\)
0.985832 + 0.167736i \(0.0536456\pi\)
\(60\) 0 0
\(61\) −5830.99 3366.53i −1.56705 0.904737i −0.996511 0.0834671i \(-0.973401\pi\)
−0.570540 0.821270i \(-0.693266\pi\)
\(62\) 0 0
\(63\) 653.310 + 1913.29i 0.164603 + 0.482059i
\(64\) 0 0
\(65\) 0 0
\(66\) 0 0
\(67\) 5698.00 3289.74i 1.26933 0.732845i 0.294465 0.955662i \(-0.404859\pi\)
0.974860 + 0.222817i \(0.0715253\pi\)
\(68\) 0 0
\(69\) 2547.08i 0.534988i
\(70\) 0 0
\(71\) 3986.32 0.790780 0.395390 0.918513i \(-0.370609\pi\)
0.395390 + 0.918513i \(0.370609\pi\)
\(72\) 0 0
\(73\) −4398.75 7618.86i −0.825436 1.42970i −0.901586 0.432601i \(-0.857596\pi\)
0.0761494 0.997096i \(-0.475737\pi\)
\(74\) 0 0
\(75\) 0 0
\(76\) 0 0
\(77\) −1364.24 268.817i −0.230096 0.0453394i
\(78\) 0 0
\(79\) −2452.82 + 4248.41i −0.393017 + 0.680725i −0.992846 0.119403i \(-0.961902\pi\)
0.599829 + 0.800128i \(0.295235\pi\)
\(80\) 0 0
\(81\) 758.248 + 1313.32i 0.115569 + 0.200171i
\(82\) 0 0
\(83\) 4449.18 0.645838 0.322919 0.946427i \(-0.395336\pi\)
0.322919 + 0.946427i \(0.395336\pi\)
\(84\) 0 0
\(85\) 0 0
\(86\) 0 0
\(87\) −2308.75 3998.87i −0.305027 0.528322i
\(88\) 0 0
\(89\) 11675.4 + 6740.79i 1.47398 + 0.851003i 0.999571 0.0293012i \(-0.00932819\pi\)
0.474410 + 0.880304i \(0.342662\pi\)
\(90\) 0 0
\(91\) −10404.3 + 11906.9i −1.25641 + 1.43786i
\(92\) 0 0
\(93\) −4231.18 2442.87i −0.489210 0.282446i
\(94\) 0 0
\(95\) 0 0
\(96\) 0 0
\(97\) 7101.58 0.754765 0.377382 0.926057i \(-0.376824\pi\)
0.377382 + 0.926057i \(0.376824\pi\)
\(98\) 0 0
\(99\) 1170.84 0.119462
\(100\) 0 0
\(101\) −3123.73 + 1803.48i −0.306218 + 0.176795i −0.645233 0.763986i \(-0.723240\pi\)
0.339015 + 0.940781i \(0.389906\pi\)
\(102\) 0 0
\(103\) 1024.57 1774.60i 0.0965752 0.167273i −0.813690 0.581299i \(-0.802545\pi\)
0.910265 + 0.414026i \(0.135878\pi\)
\(104\) 0 0
\(105\) 0 0
\(106\) 0 0
\(107\) −11753.6 6785.97i −1.02661 0.592713i −0.110598 0.993865i \(-0.535276\pi\)
−0.916011 + 0.401152i \(0.868610\pi\)
\(108\) 0 0
\(109\) 4084.63 + 7074.79i 0.343795 + 0.595471i 0.985134 0.171787i \(-0.0549541\pi\)
−0.641339 + 0.767258i \(0.721621\pi\)
\(110\) 0 0
\(111\) 4586.63i 0.372261i
\(112\) 0 0
\(113\) 3805.54i 0.298029i −0.988835 0.149015i \(-0.952390\pi\)
0.988835 0.149015i \(-0.0476101\pi\)
\(114\) 0 0
\(115\) 0 0
\(116\) 0 0
\(117\) 6657.31 11530.8i 0.486325 0.842340i
\(118\) 0 0
\(119\) 24016.9 + 4732.43i 1.69599 + 0.334188i
\(120\) 0 0
\(121\) 6917.87 11982.1i 0.472500 0.818394i
\(122\) 0 0
\(123\) 111.052 64.1160i 0.00734035 0.00423796i
\(124\) 0 0
\(125\) 0 0
\(126\) 0 0
\(127\) 29755.4i 1.84484i −0.386189 0.922420i \(-0.626209\pi\)
0.386189 0.922420i \(-0.373791\pi\)
\(128\) 0 0
\(129\) 10124.1 5845.15i 0.608383 0.351250i
\(130\) 0 0
\(131\) −5204.68 3004.92i −0.303285 0.175102i 0.340633 0.940196i \(-0.389359\pi\)
−0.643918 + 0.765095i \(0.722692\pi\)
\(132\) 0 0
\(133\) 8594.15 2934.54i 0.485847 0.165897i
\(134\) 0 0
\(135\) 0 0
\(136\) 0 0
\(137\) −2034.06 + 1174.37i −0.108373 + 0.0625694i −0.553207 0.833044i \(-0.686596\pi\)
0.444834 + 0.895613i \(0.353263\pi\)
\(138\) 0 0
\(139\) 8981.94i 0.464880i 0.972611 + 0.232440i \(0.0746709\pi\)
−0.972611 + 0.232440i \(0.925329\pi\)
\(140\) 0 0
\(141\) −23867.7 −1.20053
\(142\) 0 0
\(143\) 4578.59 + 7930.34i 0.223903 + 0.387811i
\(144\) 0 0
\(145\) 0 0
\(146\) 0 0
\(147\) 11974.8 9257.14i 0.554159 0.428393i
\(148\) 0 0
\(149\) 8669.18 15015.5i 0.390486 0.676342i −0.602028 0.798475i \(-0.705640\pi\)
0.992514 + 0.122133i \(0.0389736\pi\)
\(150\) 0 0
\(151\) 5355.10 + 9275.31i 0.234863 + 0.406794i 0.959233 0.282617i \(-0.0912026\pi\)
−0.724370 + 0.689411i \(0.757869\pi\)
\(152\) 0 0
\(153\) −20612.3 −0.880527
\(154\) 0 0
\(155\) 0 0
\(156\) 0 0
\(157\) 4606.75 + 7979.12i 0.186894 + 0.323710i 0.944213 0.329335i \(-0.106825\pi\)
−0.757319 + 0.653045i \(0.773491\pi\)
\(158\) 0 0
\(159\) 29567.3 + 17070.7i 1.16955 + 0.675238i
\(160\) 0 0
\(161\) 18736.1 6397.60i 0.722815 0.246811i
\(162\) 0 0
\(163\) −23594.3 13622.1i −0.888037 0.512708i −0.0147370 0.999891i \(-0.504691\pi\)
−0.873300 + 0.487183i \(0.838024\pi\)
\(164\) 0 0
\(165\) 0 0
\(166\) 0 0
\(167\) −4063.60 −0.145706 −0.0728531 0.997343i \(-0.523210\pi\)
−0.0728531 + 0.997343i \(0.523210\pi\)
\(168\) 0 0
\(169\) 75572.7 2.64601
\(170\) 0 0
\(171\) −6622.44 + 3823.46i −0.226478 + 0.130757i
\(172\) 0 0
\(173\) 22916.1 39691.8i 0.765681 1.32620i −0.174205 0.984709i \(-0.555736\pi\)
0.939886 0.341488i \(-0.110931\pi\)
\(174\) 0 0
\(175\) 0 0
\(176\) 0 0
\(177\) 29262.0 + 16894.4i 0.934023 + 0.539258i
\(178\) 0 0
\(179\) 10965.3 + 18992.5i 0.342228 + 0.592756i 0.984846 0.173431i \(-0.0554853\pi\)
−0.642618 + 0.766186i \(0.722152\pi\)
\(180\) 0 0
\(181\) 6943.49i 0.211944i −0.994369 0.105972i \(-0.966205\pi\)
0.994369 0.105972i \(-0.0337954\pi\)
\(182\) 0 0
\(183\) 42444.8i 1.26742i
\(184\) 0 0
\(185\) 0 0
\(186\) 0 0
\(187\) 7088.08 12276.9i 0.202696 0.351080i
\(188\) 0 0
\(189\) −24849.4 + 28438.2i −0.695652 + 0.796120i
\(190\) 0 0
\(191\) −28099.2 + 48669.2i −0.770242 + 1.33410i 0.167188 + 0.985925i \(0.446531\pi\)
−0.937430 + 0.348173i \(0.886802\pi\)
\(192\) 0 0
\(193\) −34678.4 + 20021.6i −0.930989 + 0.537507i −0.887124 0.461531i \(-0.847300\pi\)
−0.0438648 + 0.999037i \(0.513967\pi\)
\(194\) 0 0
\(195\) 0 0
\(196\) 0 0
\(197\) 46320.3i 1.19355i −0.802410 0.596773i \(-0.796449\pi\)
0.802410 0.596773i \(-0.203551\pi\)
\(198\) 0 0
\(199\) 14564.3 8408.71i 0.367776 0.212336i −0.304710 0.952445i \(-0.598560\pi\)
0.672487 + 0.740109i \(0.265226\pi\)
\(200\) 0 0
\(201\) 35919.9 + 20738.3i 0.889083 + 0.513312i
\(202\) 0 0
\(203\) 23616.3 27027.0i 0.573087 0.655853i
\(204\) 0 0
\(205\) 0 0
\(206\) 0 0
\(207\) −14437.6 + 8335.53i −0.336940 + 0.194533i
\(208\) 0 0
\(209\) 5259.20i 0.120400i
\(210\) 0 0
\(211\) 7624.96 0.171267 0.0856333 0.996327i \(-0.472709\pi\)
0.0856333 + 0.996327i \(0.472709\pi\)
\(212\) 0 0
\(213\) 12564.8 + 21762.8i 0.276946 + 0.479685i
\(214\) 0 0
\(215\) 0 0
\(216\) 0 0
\(217\) 7341.93 37260.0i 0.155916 0.791268i
\(218\) 0 0
\(219\) 27729.4 48028.8i 0.578167 1.00141i
\(220\) 0 0
\(221\) −80604.3 139611.i −1.65034 2.85847i
\(222\) 0 0
\(223\) 53858.4 1.08304 0.541519 0.840688i \(-0.317849\pi\)
0.541519 + 0.840688i \(0.317849\pi\)
\(224\) 0 0
\(225\) 0 0
\(226\) 0 0
\(227\) 563.521 + 976.047i 0.0109360 + 0.0189417i 0.871442 0.490499i \(-0.163186\pi\)
−0.860506 + 0.509441i \(0.829852\pi\)
\(228\) 0 0
\(229\) −21593.5 12467.0i −0.411768 0.237735i 0.279781 0.960064i \(-0.409738\pi\)
−0.691549 + 0.722329i \(0.743072\pi\)
\(230\) 0 0
\(231\) −2832.46 8295.19i −0.0530812 0.155454i
\(232\) 0 0
\(233\) 33282.2 + 19215.5i 0.613057 + 0.353948i 0.774161 0.632989i \(-0.218172\pi\)
−0.161104 + 0.986937i \(0.551506\pi\)
\(234\) 0 0
\(235\) 0 0
\(236\) 0 0
\(237\) −30924.8 −0.550568
\(238\) 0 0
\(239\) −71148.4 −1.24557 −0.622786 0.782392i \(-0.713999\pi\)
−0.622786 + 0.782392i \(0.713999\pi\)
\(240\) 0 0
\(241\) −52009.9 + 30027.9i −0.895472 + 0.517001i −0.875728 0.482804i \(-0.839618\pi\)
−0.0197436 + 0.999805i \(0.506285\pi\)
\(242\) 0 0
\(243\) 26434.3 45785.5i 0.447667 0.775382i
\(244\) 0 0
\(245\) 0 0
\(246\) 0 0
\(247\) −51794.1 29903.4i −0.848959 0.490147i
\(248\) 0 0
\(249\) 14023.7 + 24289.7i 0.226185 + 0.391763i
\(250\) 0 0
\(251\) 11274.6i 0.178958i −0.995989 0.0894792i \(-0.971480\pi\)
0.995989 0.0894792i \(-0.0285203\pi\)
\(252\) 0 0
\(253\) 11465.6i 0.179125i
\(254\) 0 0
\(255\) 0 0
\(256\) 0 0
\(257\) 33242.4 57577.5i 0.503299 0.871739i −0.496694 0.867926i \(-0.665453\pi\)
0.999993 0.00381315i \(-0.00121377\pi\)
\(258\) 0 0
\(259\) 33738.8 11520.4i 0.502956 0.171739i
\(260\) 0 0
\(261\) −15111.1 + 26173.2i −0.221828 + 0.384217i
\(262\) 0 0
\(263\) 48524.1 28015.4i 0.701530 0.405029i −0.106387 0.994325i \(-0.533928\pi\)
0.807917 + 0.589296i \(0.200595\pi\)
\(264\) 0 0
\(265\) 0 0
\(266\) 0 0
\(267\) 84987.1i 1.19215i
\(268\) 0 0
\(269\) 63570.6 36702.5i 0.878520 0.507214i 0.00834980 0.999965i \(-0.497342\pi\)
0.870170 + 0.492751i \(0.164009\pi\)
\(270\) 0 0
\(271\) −12291.4 7096.42i −0.167364 0.0966275i 0.413978 0.910287i \(-0.364139\pi\)
−0.581342 + 0.813659i \(0.697472\pi\)
\(272\) 0 0
\(273\) −97798.5 19270.8i −1.31222 0.258568i
\(274\) 0 0
\(275\) 0 0
\(276\) 0 0
\(277\) −85595.2 + 49418.4i −1.11555 + 0.644065i −0.940262 0.340452i \(-0.889420\pi\)
−0.175291 + 0.984517i \(0.556087\pi\)
\(278\) 0 0
\(279\) 31978.0i 0.410812i
\(280\) 0 0
\(281\) 58127.8 0.736158 0.368079 0.929795i \(-0.380016\pi\)
0.368079 + 0.929795i \(0.380016\pi\)
\(282\) 0 0
\(283\) 4444.83 + 7698.66i 0.0554986 + 0.0961263i 0.892440 0.451166i \(-0.148992\pi\)
−0.836941 + 0.547293i \(0.815659\pi\)
\(284\) 0 0
\(285\) 0 0
\(286\) 0 0
\(287\) 750.566 + 655.847i 0.00911224 + 0.00796231i
\(288\) 0 0
\(289\) −83022.4 + 143799.i −0.994031 + 1.72171i
\(290\) 0 0
\(291\) 22384.0 + 38770.2i 0.264333 + 0.457838i
\(292\) 0 0
\(293\) −74609.7 −0.869081 −0.434540 0.900652i \(-0.643089\pi\)
−0.434540 + 0.900652i \(0.643089\pi\)
\(294\) 0 0
\(295\) 0 0
\(296\) 0 0
\(297\) 10935.4 + 18940.6i 0.123971 + 0.214724i
\(298\) 0 0
\(299\) −112916. 65192.3i −1.26303 0.729212i
\(300\) 0 0
\(301\) 68425.5 + 59790.5i 0.755240 + 0.659932i
\(302\) 0 0
\(303\) −19691.8 11369.1i −0.214486 0.123834i
\(304\) 0 0
\(305\) 0 0
\(306\) 0 0
\(307\) 66333.5 0.703812 0.351906 0.936035i \(-0.385534\pi\)
0.351906 + 0.936035i \(0.385534\pi\)
\(308\) 0 0
\(309\) 12917.6 0.135290
\(310\) 0 0
\(311\) −91239.5 + 52677.1i −0.943327 + 0.544630i −0.891002 0.454000i \(-0.849997\pi\)
−0.0523251 + 0.998630i \(0.516663\pi\)
\(312\) 0 0
\(313\) 3135.62 5431.06i 0.0320063 0.0554365i −0.849579 0.527462i \(-0.823144\pi\)
0.881585 + 0.472026i \(0.156477\pi\)
\(314\) 0 0
\(315\) 0 0
\(316\) 0 0
\(317\) 95624.0 + 55208.6i 0.951587 + 0.549399i 0.893574 0.448917i \(-0.148190\pi\)
0.0580134 + 0.998316i \(0.481523\pi\)
\(318\) 0 0
\(319\) −10392.7 18000.7i −0.102129 0.176892i
\(320\) 0 0
\(321\) 85556.7i 0.830317i
\(322\) 0 0
\(323\) 92586.3i 0.887446i
\(324\) 0 0
\(325\) 0 0
\(326\) 0 0
\(327\) −25749.3 + 44599.0i −0.240807 + 0.417090i
\(328\) 0 0
\(329\) −59949.4 175568.i −0.553851 1.62201i
\(330\) 0 0
\(331\) 62929.9 108998.i 0.574382 0.994859i −0.421726 0.906723i \(-0.638576\pi\)
0.996108 0.0881359i \(-0.0280910\pi\)
\(332\) 0 0
\(333\) −25998.3 + 15010.1i −0.234453 + 0.135362i
\(334\) 0 0
\(335\) 0 0
\(336\) 0 0
\(337\) 36428.0i 0.320756i 0.987056 + 0.160378i \(0.0512714\pi\)
−0.987056 + 0.160378i \(0.948729\pi\)
\(338\) 0 0
\(339\) 20775.8 11994.9i 0.180784 0.104375i
\(340\) 0 0
\(341\) −19046.5 10996.5i −0.163797 0.0945683i
\(342\) 0 0
\(343\) 98172.3 + 64834.2i 0.834451 + 0.551082i
\(344\) 0 0
\(345\) 0 0
\(346\) 0 0
\(347\) 85231.1 49208.2i 0.707846 0.408675i −0.102417 0.994742i \(-0.532658\pi\)
0.810263 + 0.586066i \(0.199324\pi\)
\(348\) 0 0
\(349\) 87986.1i 0.722376i −0.932493 0.361188i \(-0.882371\pi\)
0.932493 0.361188i \(-0.117629\pi\)
\(350\) 0 0
\(351\) 248710. 2.01873
\(352\) 0 0
\(353\) 84730.1 + 146757.i 0.679968 + 1.17774i 0.974990 + 0.222248i \(0.0713396\pi\)
−0.295022 + 0.955490i \(0.595327\pi\)
\(354\) 0 0
\(355\) 0 0
\(356\) 0 0
\(357\) 49864.5 + 146034.i 0.391250 + 1.14582i
\(358\) 0 0
\(359\) −48155.7 + 83408.1i −0.373644 + 0.647171i −0.990123 0.140200i \(-0.955225\pi\)
0.616479 + 0.787372i \(0.288559\pi\)
\(360\) 0 0
\(361\) −47986.2 83114.6i −0.368216 0.637768i
\(362\) 0 0
\(363\) 87219.7 0.661914
\(364\) 0 0
\(365\) 0 0
\(366\) 0 0
\(367\) −4784.17 8286.43i −0.0355201 0.0615227i 0.847719 0.530446i \(-0.177975\pi\)
−0.883239 + 0.468923i \(0.844642\pi\)
\(368\) 0 0
\(369\) −726.855 419.650i −0.00533821 0.00308201i
\(370\) 0 0
\(371\) −51305.1 + 260372.i −0.372746 + 1.89167i
\(372\) 0 0
\(373\) −123404. 71247.2i −0.886974 0.512095i −0.0140223 0.999902i \(-0.504464\pi\)
−0.872951 + 0.487807i \(0.837797\pi\)
\(374\) 0 0
\(375\) 0 0
\(376\) 0 0
\(377\) −236369. −1.66306
\(378\) 0 0
\(379\) −203100. −1.41394 −0.706970 0.707243i \(-0.749939\pi\)
−0.706970 + 0.707243i \(0.749939\pi\)
\(380\) 0 0
\(381\) 162446. 93788.2i 1.11907 0.646097i
\(382\) 0 0
\(383\) −85906.7 + 148795.i −0.585638 + 1.01435i 0.409158 + 0.912464i \(0.365823\pi\)
−0.994796 + 0.101891i \(0.967511\pi\)
\(384\) 0 0
\(385\) 0 0
\(386\) 0 0
\(387\) −66263.9 38257.5i −0.442441 0.255443i
\(388\) 0 0
\(389\) 21093.4 + 36534.9i 0.139395 + 0.241440i 0.927268 0.374399i \(-0.122151\pi\)
−0.787873 + 0.615838i \(0.788818\pi\)
\(390\) 0 0
\(391\) 201847.i 1.32029i
\(392\) 0 0
\(393\) 37885.7i 0.245296i
\(394\) 0 0
\(395\) 0 0
\(396\) 0 0
\(397\) −123220. + 213423.i −0.781808 + 1.35413i 0.149080 + 0.988825i \(0.452369\pi\)
−0.930888 + 0.365305i \(0.880965\pi\)
\(398\) 0 0
\(399\) 43109.3 + 37669.0i 0.270785 + 0.236613i
\(400\) 0 0
\(401\) 48551.6 84093.8i 0.301936 0.522968i −0.674639 0.738148i \(-0.735701\pi\)
0.976574 + 0.215180i \(0.0690339\pi\)
\(402\) 0 0
\(403\) −216593. + 125050.i −1.33363 + 0.769971i
\(404\) 0 0
\(405\) 0 0
\(406\) 0 0
\(407\) 20646.5i 0.124640i
\(408\) 0 0
\(409\) −151468. + 87449.9i −0.905468 + 0.522772i −0.878970 0.476877i \(-0.841769\pi\)
−0.0264978 + 0.999649i \(0.508436\pi\)
\(410\) 0 0
\(411\) −12822.6 7403.13i −0.0759088 0.0438260i
\(412\) 0 0
\(413\) −50775.4 + 257683.i −0.297682 + 1.51073i
\(414\) 0 0
\(415\) 0 0
\(416\) 0 0
\(417\) −49035.8 + 28310.8i −0.281995 + 0.162810i
\(418\) 0 0
\(419\) 147615.i 0.840821i 0.907334 + 0.420411i \(0.138114\pi\)
−0.907334 + 0.420411i \(0.861886\pi\)
\(420\) 0 0
\(421\) −28665.0 −0.161729 −0.0808646 0.996725i \(-0.525768\pi\)
−0.0808646 + 0.996725i \(0.525768\pi\)
\(422\) 0 0
\(423\) 78109.0 + 135289.i 0.436536 + 0.756103i
\(424\) 0 0
\(425\) 0 0
\(426\) 0 0
\(427\) 312220. 106610.i 1.71240 0.584713i
\(428\) 0 0
\(429\) −28863.1 + 49992.4i −0.156830 + 0.271637i
\(430\) 0 0
\(431\) 112765. + 195314.i 0.607042 + 1.05143i 0.991725 + 0.128379i \(0.0409774\pi\)
−0.384683 + 0.923049i \(0.625689\pi\)
\(432\) 0 0
\(433\) −65473.0 −0.349210 −0.174605 0.984639i \(-0.555865\pi\)
−0.174605 + 0.984639i \(0.555865\pi\)
\(434\) 0 0
\(435\) 0 0
\(436\) 0 0
\(437\) 37441.6 + 64850.8i 0.196061 + 0.339588i
\(438\) 0 0
\(439\) −258048. 148984.i −1.33897 0.773057i −0.352319 0.935880i \(-0.614607\pi\)
−0.986655 + 0.162823i \(0.947940\pi\)
\(440\) 0 0
\(441\) −91660.7 37581.9i −0.471309 0.193242i
\(442\) 0 0
\(443\) −269244. 155448.i −1.37195 0.792095i −0.380776 0.924667i \(-0.624343\pi\)
−0.991173 + 0.132572i \(0.957677\pi\)
\(444\) 0 0
\(445\) 0 0
\(446\) 0 0
\(447\) 109300. 0.547023
\(448\) 0 0
\(449\) −217824. −1.08047 −0.540235 0.841514i \(-0.681665\pi\)
−0.540235 + 0.841514i \(0.681665\pi\)
\(450\) 0 0
\(451\) 499.897 288.616i 0.00245769 0.00141895i
\(452\) 0 0
\(453\) −33758.3 + 58471.0i −0.164507 + 0.284934i
\(454\) 0 0
\(455\) 0 0
\(456\) 0 0
\(457\) −172454. 99566.6i −0.825738 0.476740i 0.0266534 0.999645i \(-0.491515\pi\)
−0.852391 + 0.522905i \(0.824848\pi\)
\(458\) 0 0
\(459\) −192513. 333442.i −0.913766 1.58269i
\(460\) 0 0
\(461\) 71484.4i 0.336364i −0.985756 0.168182i \(-0.946210\pi\)
0.985756 0.168182i \(-0.0537896\pi\)
\(462\) 0 0
\(463\) 106595.i 0.497252i 0.968600 + 0.248626i \(0.0799790\pi\)
−0.968600 + 0.248626i \(0.920021\pi\)
\(464\) 0 0
\(465\) 0 0
\(466\) 0 0
\(467\) −47671.0 + 82568.7i −0.218585 + 0.378601i −0.954376 0.298609i \(-0.903478\pi\)
0.735790 + 0.677209i \(0.236811\pi\)
\(468\) 0 0
\(469\) −62328.0 + 316312.i −0.283360 + 1.43804i
\(470\) 0 0
\(471\) −29040.7 + 50299.9i −0.130908 + 0.226738i
\(472\) 0 0
\(473\) 45573.3 26311.7i 0.203698 0.117605i
\(474\) 0 0
\(475\) 0 0
\(476\) 0 0
\(477\) 223461.i 0.982121i
\(478\) 0 0
\(479\) 67483.3 38961.5i 0.294120 0.169811i −0.345678 0.938353i \(-0.612351\pi\)
0.639799 + 0.768543i \(0.279018\pi\)
\(480\) 0 0
\(481\) −203333. 117394.i −0.878856 0.507408i
\(482\) 0 0
\(483\) 93982.4 + 82122.2i 0.402858 + 0.352019i
\(484\) 0 0
\(485\) 0 0
\(486\) 0 0
\(487\) −205567. + 118684.i −0.866752 + 0.500419i −0.866267 0.499581i \(-0.833487\pi\)
−0.000484141 1.00000i \(0.500154\pi\)
\(488\) 0 0
\(489\) 171746.i 0.718241i
\(490\) 0 0
\(491\) 257204. 1.06688 0.533439 0.845838i \(-0.320899\pi\)
0.533439 + 0.845838i \(0.320899\pi\)
\(492\) 0 0
\(493\) 182960. + 316896.i 0.752771 + 1.30384i
\(494\) 0 0
\(495\) 0 0
\(496\) 0 0
\(497\) −128526. + 147088.i −0.520329 + 0.595476i
\(498\) 0 0
\(499\) 37144.5 64336.1i 0.149174 0.258377i −0.781748 0.623594i \(-0.785672\pi\)
0.930922 + 0.365217i \(0.119005\pi\)
\(500\) 0 0
\(501\) −12808.3 22184.7i −0.0510291 0.0883849i
\(502\) 0 0
\(503\) 344439. 1.36137 0.680685 0.732576i \(-0.261682\pi\)
0.680685 + 0.732576i \(0.261682\pi\)
\(504\) 0 0
\(505\) 0 0
\(506\) 0 0
\(507\) 238203. + 412580.i 0.926683 + 1.60506i
\(508\) 0 0
\(509\) −34030.4 19647.5i −0.131350 0.0758352i 0.432885 0.901449i \(-0.357496\pi\)
−0.564235 + 0.825614i \(0.690829\pi\)
\(510\) 0 0
\(511\) 422945. + 83339.5i 1.61973 + 0.319160i
\(512\) 0 0
\(513\) −123704. 71420.3i −0.470054 0.271386i
\(514\) 0 0
\(515\) 0 0
\(516\) 0 0
\(517\) −107439. −0.401960
\(518\) 0 0
\(519\) 288923. 1.07262
\(520\) 0 0
\(521\) −198381. + 114535.i −0.730844 + 0.421953i −0.818731 0.574178i \(-0.805322\pi\)
0.0878869 + 0.996130i \(0.471989\pi\)
\(522\) 0 0
\(523\) 264310. 457799.i 0.966298 1.67368i 0.260211 0.965552i \(-0.416208\pi\)
0.706087 0.708125i \(-0.250459\pi\)
\(524\) 0 0
\(525\) 0 0
\(526\) 0 0
\(527\) 335307. + 193589.i 1.20732 + 0.697044i
\(528\) 0 0
\(529\) −58294.1 100968.i −0.208311 0.360806i
\(530\) 0 0
\(531\) 221154.i 0.784341i
\(532\) 0 0
\(533\) 6564.18i 0.0231061i
\(534\) 0 0
\(535\) 0 0
\(536\) 0 0
\(537\) −69124.7 + 119727.i −0.239709 + 0.415188i
\(538\) 0 0
\(539\) 53904.2 41670.7i 0.185543 0.143434i
\(540\) 0 0
\(541\) 70992.7 122963.i 0.242560 0.420126i −0.718883 0.695131i \(-0.755346\pi\)
0.961443 + 0.275005i \(0.0886795\pi\)
\(542\) 0 0
\(543\) 37907.1 21885.7i 0.128565 0.0742268i
\(544\) 0 0
\(545\) 0 0
\(546\) 0 0
\(547\) 115290.i 0.385315i −0.981266 0.192658i \(-0.938289\pi\)
0.981266 0.192658i \(-0.0617107\pi\)
\(548\) 0 0
\(549\) −240589. + 138904.i −0.798235 + 0.460861i
\(550\) 0 0
\(551\) 117565. + 67876.3i 0.387236 + 0.223571i
\(552\) 0 0
\(553\) −77675.1 227480.i −0.253999 0.743864i
\(554\) 0 0
\(555\) 0 0
\(556\) 0 0
\(557\) −250583. + 144674.i −0.807683 + 0.466316i −0.846150 0.532944i \(-0.821086\pi\)
0.0384678 + 0.999260i \(0.487752\pi\)
\(558\) 0 0
\(559\) 598425.i 1.91508i
\(560\) 0 0
\(561\) 89365.6 0.283952
\(562\) 0 0
\(563\) 14137.7 + 24487.2i 0.0446027 + 0.0772542i 0.887465 0.460875i \(-0.152464\pi\)
−0.842862 + 0.538129i \(0.819131\pi\)
\(564\) 0 0
\(565\) 0 0
\(566\) 0 0
\(567\) −72906.4 14365.9i −0.226777 0.0446855i
\(568\) 0 0
\(569\) −233552. + 404525.i −0.721373 + 1.24945i 0.239076 + 0.971001i \(0.423155\pi\)
−0.960450 + 0.278454i \(0.910178\pi\)
\(570\) 0 0
\(571\) −215219. 372770.i −0.660098 1.14332i −0.980590 0.196071i \(-0.937182\pi\)
0.320492 0.947251i \(-0.396152\pi\)
\(572\) 0 0
\(573\) −354271. −1.07901
\(574\) 0 0
\(575\) 0 0
\(576\) 0 0
\(577\) −90598.5 156921.i −0.272126 0.471335i 0.697280 0.716799i \(-0.254393\pi\)
−0.969406 + 0.245463i \(0.921060\pi\)
\(578\) 0 0
\(579\) −218611. 126215.i −0.652100 0.376490i
\(580\) 0 0
\(581\) −143449. + 164166.i −0.424957 + 0.486331i
\(582\) 0 0
\(583\) 133096. + 76843.1i 0.391587 + 0.226083i
\(584\) 0 0
\(585\) 0 0
\(586\) 0 0
\(587\) 332481. 0.964919 0.482460 0.875918i \(-0.339743\pi\)
0.482460 + 0.875918i \(0.339743\pi\)
\(588\) 0 0
\(589\) 143639. 0.414040
\(590\) 0 0
\(591\) 252880. 146000.i 0.724001 0.418002i
\(592\) 0 0
\(593\) 171569. 297166.i 0.487898 0.845064i −0.512005 0.858982i \(-0.671097\pi\)
0.999903 + 0.0139186i \(0.00443057\pi\)
\(594\) 0 0
\(595\) 0 0
\(596\) 0 0
\(597\) 91812.5 + 53008.0i 0.257604 + 0.148728i
\(598\) 0 0
\(599\) 171088. + 296333.i 0.476832 + 0.825897i 0.999648 0.0265490i \(-0.00845181\pi\)
−0.522816 + 0.852446i \(0.675118\pi\)
\(600\) 0 0
\(601\) 227319.i 0.629341i −0.949201 0.314670i \(-0.898106\pi\)
0.949201 0.314670i \(-0.101894\pi\)
\(602\) 0 0
\(603\) 271472.i 0.746604i
\(604\) 0 0
\(605\) 0 0
\(606\) 0 0
\(607\) 186230. 322559.i 0.505442 0.875451i −0.494538 0.869156i \(-0.664663\pi\)
0.999980 0.00629550i \(-0.00200393\pi\)
\(608\) 0 0
\(609\) 221989. + 43741.9i 0.598544 + 0.117941i
\(610\) 0 0
\(611\) −610891. + 1.05809e6i −1.63637 + 2.83427i
\(612\) 0 0
\(613\) −217492. + 125569.i −0.578791 + 0.334165i −0.760653 0.649159i \(-0.775121\pi\)
0.181862 + 0.983324i \(0.441788\pi\)
\(614\) 0 0
\(615\) 0 0
\(616\) 0 0
\(617\) 297850.i 0.782398i 0.920306 + 0.391199i \(0.127940\pi\)
−0.920306 + 0.391199i \(0.872060\pi\)
\(618\) 0 0
\(619\) 308493. 178108.i 0.805126 0.464839i −0.0401347 0.999194i \(-0.512779\pi\)
0.845260 + 0.534355i \(0.179445\pi\)
\(620\) 0 0
\(621\) −269686. 155703.i −0.699319 0.403752i
\(622\) 0 0
\(623\) −625158. + 213465.i −1.61070 + 0.549986i
\(624\) 0 0
\(625\) 0 0
\(626\) 0 0
\(627\) 28711.9 16576.9i 0.0730344 0.0421664i
\(628\) 0 0
\(629\) 363475.i 0.918698i
\(630\) 0 0
\(631\) −714986. −1.79572 −0.897861 0.440279i \(-0.854879\pi\)
−0.897861 + 0.440279i \(0.854879\pi\)
\(632\) 0 0
\(633\) 24033.7 + 41627.5i 0.0599808 + 0.103890i
\(634\) 0 0
\(635\) 0 0
\(636\) 0 0
\(637\) −103890. 767800.i −0.256033 1.89221i
\(638\) 0 0
\(639\) 82238.5 142441.i 0.201407 0.348846i
\(640\) 0 0
\(641\) −219867. 380821.i −0.535111 0.926839i −0.999158 0.0410288i \(-0.986936\pi\)
0.464047 0.885811i \(-0.346397\pi\)
\(642\) 0 0
\(643\) 414727. 1.00309 0.501545 0.865131i \(-0.332765\pi\)
0.501545 + 0.865131i \(0.332765\pi\)
\(644\) 0 0
\(645\) 0 0
\(646\) 0 0
\(647\) −320219. 554636.i −0.764960 1.32495i −0.940268 0.340436i \(-0.889425\pi\)
0.175307 0.984514i \(-0.443908\pi\)
\(648\) 0 0
\(649\) 131722. + 76049.6i 0.312729 + 0.180554i
\(650\) 0 0
\(651\) 226558. 77360.2i 0.534586 0.182539i
\(652\) 0 0
\(653\) −149250. 86169.4i −0.350016 0.202082i 0.314676 0.949199i \(-0.398104\pi\)
−0.664692 + 0.747117i \(0.731437\pi\)
\(654\) 0 0
\(655\) 0 0
\(656\) 0 0
\(657\) −362988. −0.840933
\(658\) 0 0
\(659\) −349413. −0.804578 −0.402289 0.915513i \(-0.631785\pi\)
−0.402289 + 0.915513i \(0.631785\pi\)
\(660\) 0 0
\(661\) 534419. 308547.i 1.22315 0.706185i 0.257560 0.966262i \(-0.417081\pi\)
0.965588 + 0.260077i \(0.0837481\pi\)
\(662\) 0 0
\(663\) 508125. 880098.i 1.15596 2.00218i
\(664\) 0 0
\(665\) 0 0
\(666\) 0 0
\(667\) 256304. + 147977.i 0.576107 + 0.332616i
\(668\) 0 0
\(669\) 169760. + 294033.i 0.379300 + 0.656968i
\(670\) 0 0
\(671\) 191064.i 0.424358i
\(672\) 0 0
\(673\) 624802.i 1.37947i 0.724062 + 0.689735i \(0.242273\pi\)
−0.724062 + 0.689735i \(0.757727\pi\)
\(674\) 0 0
\(675\) 0 0
\(676\) 0 0
\(677\) −92525.5 + 160259.i −0.201876 + 0.349659i −0.949133 0.314876i \(-0.898037\pi\)
0.747257 + 0.664535i \(0.231370\pi\)
\(678\) 0 0
\(679\) −228967. + 262035.i −0.496631 + 0.568355i
\(680\) 0 0
\(681\) −3552.40 + 6152.94i −0.00765998 + 0.0132675i
\(682\) 0 0
\(683\) 620426. 358203.i 1.32999 0.767870i 0.344692 0.938716i \(-0.387983\pi\)
0.985298 + 0.170846i \(0.0546500\pi\)
\(684\) 0 0
\(685\) 0 0
\(686\) 0 0
\(687\) 157183.i 0.333037i
\(688\) 0 0
\(689\) 1.51355e6 873846.i 3.18828 1.84076i
\(690\) 0 0
\(691\) 550552. + 317861.i 1.15303 + 0.665704i 0.949625 0.313390i \(-0.101465\pi\)
0.203409 + 0.979094i \(0.434798\pi\)
\(692\) 0 0
\(693\) −37750.0 + 43201.9i −0.0786050 + 0.0899573i
\(694\) 0 0
\(695\) 0 0
\(696\) 0 0
\(697\) −8800.51 + 5080.98i −0.0181152 + 0.0104588i
\(698\) 0 0
\(699\) 242267.i 0.495838i
\(700\) 0 0
\(701\) −54574.0 −0.111058 −0.0555290 0.998457i \(-0.517685\pi\)
−0.0555290 + 0.998457i \(0.517685\pi\)
\(702\) 0 0
\(703\) 67422.6 + 116779.i 0.136425 + 0.236296i
\(704\) 0 0
\(705\) 0 0
\(706\) 0 0
\(707\) 34169.1 173407.i 0.0683589 0.346919i
\(708\) 0 0
\(709\) −170368. + 295086.i −0.338919 + 0.587024i −0.984230 0.176896i \(-0.943394\pi\)
0.645311 + 0.763920i \(0.276728\pi\)
\(710\) 0 0
\(711\) 101204. + 175291.i 0.200198 + 0.346752i
\(712\) 0 0
\(713\) 313148. 0.615985
\(714\) 0 0
\(715\) 0 0
\(716\) 0 0
\(717\) −224257. 388425.i −0.436223 0.755560i
\(718\) 0 0
\(719\) −200103. 115530.i −0.387076 0.223478i 0.293816 0.955862i \(-0.405075\pi\)
−0.680892 + 0.732383i \(0.738408\pi\)
\(720\) 0 0
\(721\) 32445.7 + 95020.7i 0.0624146 + 0.182788i
\(722\) 0 0
\(723\) −327867. 189294.i −0.627222 0.362127i
\(724\) 0 0
\(725\) 0 0
\(726\) 0 0
\(727\) −149550. −0.282955 −0.141477 0.989941i \(-0.545185\pi\)
−0.141477 + 0.989941i \(0.545185\pi\)
\(728\) 0 0
\(729\) 456116. 0.858264
\(730\) 0 0
\(731\) −802300. + 463208.i −1.50142 + 0.866845i
\(732\) 0 0
\(733\) 144720. 250662.i 0.269352 0.466532i −0.699342 0.714787i \(-0.746524\pi\)
0.968695 + 0.248255i \(0.0798571\pi\)
\(734\) 0 0
\(735\) 0 0
\(736\) 0 0
\(737\) 161692. + 93352.9i 0.297682 + 0.171867i
\(738\) 0 0
\(739\) 263530. + 456448.i 0.482550 + 0.835800i 0.999799 0.0200341i \(-0.00637747\pi\)
−0.517250 + 0.855835i \(0.673044\pi\)
\(740\) 0 0
\(741\) 377018.i 0.686634i
\(742\) 0 0
\(743\) 464605.i 0.841602i 0.907153 + 0.420801i \(0.138251\pi\)
−0.907153 + 0.420801i \(0.861749\pi\)
\(744\) 0 0
\(745\) 0 0
\(746\) 0 0
\(747\) 91787.3 158980.i 0.164491 0.284906i
\(748\) 0 0
\(749\) 629347. 214896.i 1.12183 0.383058i
\(750\) 0 0
\(751\) −165782. + 287143.i −0.293940 + 0.509119i −0.974738 0.223353i \(-0.928300\pi\)
0.680798 + 0.732471i \(0.261633\pi\)
\(752\) 0 0
\(753\) 61552.0 35537.1i 0.108556 0.0626746i
\(754\) 0 0
\(755\) 0 0
\(756\) 0 0
\(757\) 202873.i 0.354025i −0.984209 0.177012i \(-0.943357\pi\)
0.984209 0.177012i \(-0.0566432\pi\)
\(758\) 0 0
\(759\) 62594.9 36139.2i 0.108656 0.0627328i
\(760\) 0 0
\(761\) −611918. 353291.i −1.05663 0.610046i −0.132133 0.991232i \(-0.542183\pi\)
−0.924499 + 0.381186i \(0.875516\pi\)
\(762\) 0 0
\(763\) −392742. 77388.2i −0.674618 0.132931i
\(764\) 0 0
\(765\) 0 0
\(766\) 0 0
\(767\) 1.49792e6 864823.i 2.54623 1.47006i
\(768\) 0 0
\(769\) 367720.i 0.621820i 0.950439 + 0.310910i \(0.100634\pi\)
−0.950439 + 0.310910i \(0.899366\pi\)
\(770\) 0 0
\(771\) 419116. 0.705059
\(772\) 0 0
\(773\) 6593.12 + 11419.6i 0.0110340 + 0.0191114i 0.871490 0.490414i \(-0.163154\pi\)
−0.860456 + 0.509525i \(0.829821\pi\)
\(774\) 0 0
\(775\) 0 0
\(776\) 0 0
\(777\) 169238. + 147881.i 0.280321 + 0.244946i
\(778\) 0 0
\(779\) −1884.99 + 3264.90i −0.00310623 + 0.00538015i
\(780\) 0 0
\(781\) 56559.8 + 97964.5i 0.0927270 + 0.160608i
\(782\) 0 0
\(783\) −564536. −0.920806
\(784\) 0 0
\(785\) 0 0
\(786\) 0 0
\(787\) −244709. 423849.i −0.395094 0.684323i 0.598019 0.801482i \(-0.295955\pi\)
−0.993113 + 0.117159i \(0.962621\pi\)
\(788\) 0 0
\(789\) 305893. + 176608.i 0.491378 + 0.283697i
\(790\) 0 0
\(791\) 140417. + 122697.i 0.224423 + 0.196102i
\(792\) 0 0
\(793\) −1.88165e6 1.08637e6i −2.99221 1.72755i
\(794\) 0 0
\(795\) 0 0
\(796\) 0 0
\(797\) 720256. 1.13389 0.566944 0.823756i \(-0.308126\pi\)
0.566944 + 0.823756i \(0.308126\pi\)
\(798\) 0 0
\(799\) 1.89143e6 2.96276
\(800\) 0 0
\(801\) 481731. 278127.i 0.750826 0.433490i
\(802\) 0 0
\(803\) 124823. 216200.i 0.193581 0.335293i
\(804\) 0 0
\(805\) 0 0
\(806\) 0 0
\(807\) 400745. + 231370.i 0.615349 + 0.355272i
\(808\) 0 0
\(809\) 129195. + 223772.i 0.197400 + 0.341908i 0.947685 0.319208i \(-0.103417\pi\)
−0.750284 + 0.661115i \(0.770083\pi\)
\(810\) 0 0
\(811\) 553771.i 0.841954i 0.907071 + 0.420977i \(0.138313\pi\)
−0.907071 + 0.420977i \(0.861687\pi\)
\(812\) 0 0
\(813\) 89470.8i 0.135363i
\(814\) 0 0
\(815\) 0 0
\(816\) 0 0
\(817\) −171845. + 297645.i −0.257451 + 0.445917i
\(818\) 0 0
\(819\) 210822. + 617415.i 0.314302 + 0.920469i
\(820\) 0 0
\(821\) −168896. + 292536.i −0.250572 + 0.434003i −0.963683 0.267048i \(-0.913952\pi\)
0.713112 + 0.701050i \(0.247285\pi\)
\(822\) 0 0
\(823\) 820673. 473816.i 1.21163 0.699536i 0.248517 0.968628i \(-0.420057\pi\)
0.963114 + 0.269092i \(0.0867236\pi\)
\(824\) 0 0
\(825\) 0 0
\(826\) 0 0
\(827\) 163948.i 0.239715i −0.992791 0.119857i \(-0.961756\pi\)
0.992791 0.119857i \(-0.0382437\pi\)
\(828\) 0 0
\(829\) −394627. + 227838.i −0.574219 + 0.331525i −0.758833 0.651286i \(-0.774230\pi\)
0.184614 + 0.982811i \(0.440897\pi\)
\(830\) 0 0
\(831\) −539587. 311531.i −0.781375 0.451127i
\(832\) 0 0
\(833\) −948964. + 733597.i −1.36760 + 1.05723i
\(834\) 0 0
\(835\) 0 0
\(836\) 0 0
\(837\) −517306. + 298666.i −0.738408 + 0.426320i
\(838\) 0 0
\(839\) 1.16012e6i 1.64809i −0.566526 0.824044i \(-0.691713\pi\)
0.566526 0.824044i \(-0.308287\pi\)
\(840\) 0 0
\(841\) −170758. −0.241429
\(842\) 0 0
\(843\) 183217. + 317341.i 0.257816 + 0.446551i
\(844\) 0 0
\(845\) 0 0
\(846\) 0 0
\(847\) 219073. + 641580.i 0.305367 + 0.894302i
\(848\) 0 0
\(849\) −28019.9 + 48531.9i −0.0388733 + 0.0673305i
\(850\) 0 0
\(851\) 146988. + 254591.i 0.202966 + 0.351547i
\(852\) 0 0
\(853\) 937108. 1.28793 0.643964 0.765056i \(-0.277289\pi\)
0.643964 + 0.765056i \(0.277289\pi\)
\(854\) 0 0
\(855\) 0 0
\(856\) 0 0
\(857\) −335586. 581252.i −0.456922 0.791412i 0.541875 0.840459i \(-0.317715\pi\)
−0.998796 + 0.0490476i \(0.984381\pi\)
\(858\) 0 0
\(859\) −50992.8 29440.7i −0.0691071 0.0398990i 0.465048 0.885285i \(-0.346037\pi\)
−0.534155 + 0.845386i \(0.679370\pi\)
\(860\) 0 0
\(861\) −1214.75 + 6164.83i −0.00163863 + 0.00831601i
\(862\) 0 0
\(863\) 638608. + 368701.i 0.857458 + 0.495054i 0.863160 0.504930i \(-0.168482\pi\)
−0.00570214 + 0.999984i \(0.501815\pi\)
\(864\) 0 0
\(865\) 0 0
\(866\) 0 0
\(867\) −1.04674e6 −1.39251
\(868\) 0 0
\(869\) −139207. −0.184341
\(870\) 0 0
\(871\) 1.83873e6 1.06159e6i 2.42372 1.39933i
\(872\) 0 0
\(873\) 146507. 253757.i 0.192234 0.332959i
\(874\) 0 0
\(875\) 0 0
\(876\) 0 0
\(877\) −433203. 250110.i −0.563238 0.325186i 0.191206 0.981550i \(-0.438760\pi\)
−0.754444 + 0.656364i \(0.772093\pi\)
\(878\) 0 0
\(879\) −235168. 407322.i −0.304368 0.527182i
\(880\) 0 0
\(881\) 92648.1i 0.119367i 0.998217 + 0.0596836i \(0.0190092\pi\)
−0.998217 + 0.0596836i \(0.980991\pi\)
\(882\) 0 0
\(883\) 1.16488e6i 1.49403i −0.664810 0.747013i \(-0.731487\pi\)
0.664810 0.747013i \(-0.268513\pi\)
\(884\) 0 0
\(885\) 0 0
\(886\) 0 0
\(887\) −156053. + 270292.i −0.198347 + 0.343547i −0.947993 0.318292i \(-0.896891\pi\)
0.749646 + 0.661840i \(0.230224\pi\)
\(888\) 0 0
\(889\) 1.09792e6 + 959366.i 1.38921 + 1.21389i
\(890\) 0 0
\(891\) −21516.8 + 37268.1i −0.0271033 + 0.0469442i
\(892\) 0 0
\(893\) 607691. 350851.i 0.762044 0.439966i
\(894\) 0 0
\(895\) 0 0
\(896\) 0 0
\(897\) 821936.i 1.02154i
\(898\) 0 0
\(899\) 491636. 283846.i 0.608309 0.351207i
\(900\) 0 0
\(901\) −2.34311e6 1.35279e6i −2.88631 1.66641i
\(902\) 0 0
\(903\) −110743. + 562018.i −0.135813 + 0.689247i
\(904\) 0 0
\(905\) 0 0
\(906\) 0 0
\(907\) −461241. + 266298.i −0.560678 + 0.323708i −0.753418 0.657542i \(-0.771596\pi\)
0.192740 + 0.981250i \(0.438263\pi\)
\(908\) 0 0
\(909\) 148825.i 0.180114i
\(910\) 0 0
\(911\) −327869. −0.395060 −0.197530 0.980297i \(-0.563292\pi\)
−0.197530 + 0.980297i \(0.563292\pi\)
\(912\) 0 0
\(913\) 63127.0 + 109339.i 0.0757310 + 0.131170i
\(914\) 0 0
\(915\) 0 0
\(916\) 0 0
\(917\) 278684. 95159.0i 0.331416 0.113165i
\(918\) 0 0
\(919\) −504033. + 873011.i −0.596799 + 1.03369i 0.396491 + 0.918038i \(0.370228\pi\)
−0.993290 + 0.115648i \(0.963106\pi\)
\(920\) 0 0
\(921\) 209081. + 362140.i 0.246488 + 0.426930i
\(922\) 0 0
\(923\) 1.28638e6 1.50996
\(924\) 0 0
\(925\) 0 0
\(926\) 0 0
\(927\) −42274.0 73220.6i −0.0491941 0.0852067i
\(928\) 0 0
\(929\) −280859. 162154.i −0.325430 0.187887i 0.328380 0.944546i \(-0.393497\pi\)
−0.653810 + 0.756659i \(0.726831\pi\)
\(930\) 0 0
\(931\) −168811. + 411723.i −0.194761 + 0.475013i
\(932\) 0 0
\(933\) −575168. 332074.i −0.660742 0.381479i
\(934\) 0 0
\(935\) 0 0
\(936\) 0 0
\(937\) 651900. 0.742510 0.371255 0.928531i \(-0.378928\pi\)
0.371255 + 0.928531i \(0.378928\pi\)
\(938\) 0 0
\(939\) 39533.6 0.0448368
\(940\) 0 0
\(941\) 430681. 248654.i 0.486380 0.280812i −0.236691 0.971585i \(-0.576063\pi\)
0.723072 + 0.690773i \(0.242730\pi\)
\(942\) 0 0
\(943\) −4109.46 + 7117.80i −0.00462127 + 0.00800428i
\(944\) 0 0
\(945\) 0 0
\(946\) 0 0
\(947\) 18192.0 + 10503.2i 0.0202853 + 0.0117117i 0.510108 0.860110i \(-0.329605\pi\)
−0.489823 + 0.871822i \(0.662939\pi\)
\(948\) 0 0
\(949\) −1.41947e6 2.45859e6i −1.57613 2.72994i
\(950\) 0 0
\(951\) 696063.i 0.769640i
\(952\) 0 0
\(953\) 935565.i 1.03012i 0.857154 + 0.515060i \(0.172231\pi\)
−0.857154 + 0.515060i \(0.827769\pi\)
\(954\) 0 0
\(955\) 0 0
\(956\) 0 0
\(957\) 65515.2 113476.i 0.0715349 0.123902i
\(958\) 0 0
\(959\) 22249.7 112917.i 0.0241929 0.122778i
\(960\) 0 0
\(961\) −161424. + 279595.i −0.174792 + 0.302749i
\(962\) 0 0
\(963\) −484959. + 279991.i −0.522941 + 0.301920i
\(964\) 0 0
\(965\) 0 0
\(966\) 0 0
\(967\) 602673.i 0.644509i −0.946653 0.322255i \(-0.895559\pi\)
0.946653 0.322255i \(-0.104441\pi\)
\(968\) 0 0
\(969\) −505463. + 291829.i −0.538322 + 0.310800i
\(970\) 0 0
\(971\) −1.27656e6 737020.i −1.35395 0.781701i −0.365147 0.930950i \(-0.618981\pi\)
−0.988800 + 0.149249i \(0.952315\pi\)
\(972\) 0 0
\(973\) −331417. 289593.i −0.350065 0.305888i
\(974\) 0 0
\(975\) 0 0
\(976\) 0 0
\(977\) 586613. 338681.i 0.614558 0.354815i −0.160189 0.987086i \(-0.551211\pi\)
0.774747 + 0.632271i \(0.217877\pi\)
\(978\) 0 0
\(979\) 382566.i 0.399155i
\(980\) 0 0
\(981\) 337067. 0.350250
\(982\) 0 0
\(983\) 603535. + 1.04535e6i 0.624590 + 1.08182i 0.988620 + 0.150435i \(0.0480674\pi\)
−0.364030 + 0.931387i \(0.618599\pi\)
\(984\) 0 0
\(985\) 0 0
\(986\) 0 0
\(987\) 769535. 880672.i 0.789940 0.904024i
\(988\) 0 0
\(989\) −374640. + 648896.i −0.383020 + 0.663410i
\(990\) 0 0
\(991\) 747522. + 1.29475e6i 0.761161 + 1.31837i 0.942253 + 0.334903i \(0.108704\pi\)
−0.181092 + 0.983466i \(0.557963\pi\)
\(992\) 0 0
\(993\) 793412. 0.804638
\(994\) 0 0
\(995\) 0 0
\(996\) 0 0
\(997\) 139754. + 242061.i 0.140597 + 0.243520i 0.927721 0.373273i \(-0.121765\pi\)
−0.787125 + 0.616794i \(0.788431\pi\)
\(998\) 0 0
\(999\) −485635. 280381.i −0.486607 0.280943i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 700.5.o.c.649.15 44
5.2 odd 4 700.5.s.c.201.8 yes 22
5.3 odd 4 700.5.s.d.201.4 yes 22
5.4 even 2 inner 700.5.o.c.649.8 44
7.3 odd 6 inner 700.5.o.c.549.8 44
35.3 even 12 700.5.s.d.101.4 yes 22
35.17 even 12 700.5.s.c.101.8 22
35.24 odd 6 inner 700.5.o.c.549.15 44
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
700.5.o.c.549.8 44 7.3 odd 6 inner
700.5.o.c.549.15 44 35.24 odd 6 inner
700.5.o.c.649.8 44 5.4 even 2 inner
700.5.o.c.649.15 44 1.1 even 1 trivial
700.5.s.c.101.8 22 35.17 even 12
700.5.s.c.201.8 yes 22 5.2 odd 4
700.5.s.d.101.4 yes 22 35.3 even 12
700.5.s.d.201.4 yes 22 5.3 odd 4