Properties

Label 700.5.s.d.201.4
Level $700$
Weight $5$
Character 700.201
Analytic conductor $72.359$
Analytic rank $0$
Dimension $22$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [700,5,Mod(101,700)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(700, base_ring=CyclotomicField(6))
 
chi = DirichletCharacter(H, H._module([0, 0, 1]))
 
N = Newforms(chi, 5, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("700.101");
 
S:= CuspForms(chi, 5);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 700 = 2^{2} \cdot 5^{2} \cdot 7 \)
Weight: \( k \) \(=\) \( 5 \)
Character orbit: \([\chi]\) \(=\) 700.s (of order \(6\), degree \(2\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(72.3589741587\)
Analytic rank: \(0\)
Dimension: \(22\)
Relative dimension: \(11\) over \(\Q(\zeta_{6})\)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{6}]$

Embedding invariants

Embedding label 201.4
Character \(\chi\) \(=\) 700.201
Dual form 700.5.s.d.101.4

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-5.45937 + 3.15197i) q^{3} +(36.8981 + 32.2417i) q^{7} +(-20.6302 + 35.7325i) q^{9} +(14.1885 + 24.5752i) q^{11} +322.698i q^{13} +(-432.637 + 249.783i) q^{17} +(160.504 + 92.6668i) q^{19} +(-303.066 - 59.7178i) q^{21} +(202.023 - 349.914i) q^{23} -770.722i q^{27} +732.477 q^{29} +(-671.196 + 387.515i) q^{31} +(-154.920 - 89.4433i) q^{33} +(-363.791 + 630.104i) q^{37} +(-1017.13 - 1761.73i) q^{39} -20.3416i q^{41} +1854.44 q^{43} +(3278.90 + 1893.08i) q^{47} +(321.943 + 2379.32i) q^{49} +(1574.62 - 2727.31i) q^{51} +(2707.94 + 4690.29i) q^{53} -1168.33 q^{57} +(-4641.86 + 2679.98i) q^{59} +(-5830.99 - 3366.53i) q^{61} +(-1913.29 + 653.310i) q^{63} +(-3289.74 - 5698.00i) q^{67} +2547.08i q^{69} +3986.32 q^{71} +(7618.86 - 4398.75i) q^{73} +(-268.817 + 1364.24i) q^{77} +(2452.82 - 4248.41i) q^{79} +(758.248 + 1313.32i) q^{81} +4449.18i q^{83} +(-3998.87 + 2308.75i) q^{87} +(-11675.4 - 6740.79i) q^{89} +(-10404.3 + 11906.9i) q^{91} +(2442.87 - 4231.18i) q^{93} -7101.58i q^{97} -1170.84 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 22 q + 9 q^{3} + 66 q^{7} + 342 q^{9} - 150 q^{11} - 432 q^{17} - 270 q^{19} - 95 q^{21} + 333 q^{23} + 264 q^{29} - 1167 q^{31} + 192 q^{33} + 930 q^{37} + 426 q^{39} + 4162 q^{43} - 6822 q^{47} - 2046 q^{49}+ \cdots - 84090 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/700\mathbb{Z}\right)^\times\).

\(n\) \(101\) \(351\) \(477\)
\(\chi(n)\) \(e\left(\frac{5}{6}\right)\) \(1\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) −5.45937 + 3.15197i −0.606597 + 0.350219i −0.771632 0.636069i \(-0.780559\pi\)
0.165036 + 0.986288i \(0.447226\pi\)
\(4\) 0 0
\(5\) 0 0
\(6\) 0 0
\(7\) 36.8981 + 32.2417i 0.753023 + 0.657994i
\(8\) 0 0
\(9\) −20.6302 + 35.7325i −0.254693 + 0.441142i
\(10\) 0 0
\(11\) 14.1885 + 24.5752i 0.117260 + 0.203100i 0.918681 0.395000i \(-0.129256\pi\)
−0.801421 + 0.598101i \(0.795922\pi\)
\(12\) 0 0
\(13\) 322.698i 1.90945i 0.297485 + 0.954727i \(0.403852\pi\)
−0.297485 + 0.954727i \(0.596148\pi\)
\(14\) 0 0
\(15\) 0 0
\(16\) 0 0
\(17\) −432.637 + 249.783i −1.49701 + 0.864301i −0.999994 0.00343955i \(-0.998905\pi\)
−0.497018 + 0.867740i \(0.665572\pi\)
\(18\) 0 0
\(19\) 160.504 + 92.6668i 0.444608 + 0.256695i 0.705550 0.708660i \(-0.250700\pi\)
−0.260942 + 0.965354i \(0.584033\pi\)
\(20\) 0 0
\(21\) −303.066 59.7178i −0.687223 0.135414i
\(22\) 0 0
\(23\) 202.023 349.914i 0.381896 0.661463i −0.609438 0.792834i \(-0.708605\pi\)
0.991333 + 0.131371i \(0.0419380\pi\)
\(24\) 0 0
\(25\) 0 0
\(26\) 0 0
\(27\) 770.722i 1.05723i
\(28\) 0 0
\(29\) 732.477 0.870960 0.435480 0.900198i \(-0.356579\pi\)
0.435480 + 0.900198i \(0.356579\pi\)
\(30\) 0 0
\(31\) −671.196 + 387.515i −0.698435 + 0.403242i −0.806764 0.590873i \(-0.798783\pi\)
0.108329 + 0.994115i \(0.465450\pi\)
\(32\) 0 0
\(33\) −154.920 89.4433i −0.142259 0.0821334i
\(34\) 0 0
\(35\) 0 0
\(36\) 0 0
\(37\) −363.791 + 630.104i −0.265735 + 0.460266i −0.967756 0.251890i \(-0.918948\pi\)
0.702021 + 0.712156i \(0.252281\pi\)
\(38\) 0 0
\(39\) −1017.13 1761.73i −0.668727 1.15827i
\(40\) 0 0
\(41\) 20.3416i 0.0121009i −0.999982 0.00605044i \(-0.998074\pi\)
0.999982 0.00605044i \(-0.00192593\pi\)
\(42\) 0 0
\(43\) 1854.44 1.00294 0.501472 0.865174i \(-0.332792\pi\)
0.501472 + 0.865174i \(0.332792\pi\)
\(44\) 0 0
\(45\) 0 0
\(46\) 0 0
\(47\) 3278.90 + 1893.08i 1.48434 + 0.856983i 0.999841 0.0178095i \(-0.00566923\pi\)
0.484497 + 0.874793i \(0.339003\pi\)
\(48\) 0 0
\(49\) 321.943 + 2379.32i 0.134087 + 0.990970i
\(50\) 0 0
\(51\) 1574.62 2727.31i 0.605389 1.04856i
\(52\) 0 0
\(53\) 2707.94 + 4690.29i 0.964023 + 1.66974i 0.712217 + 0.701959i \(0.247691\pi\)
0.251806 + 0.967778i \(0.418976\pi\)
\(54\) 0 0
\(55\) 0 0
\(56\) 0 0
\(57\) −1168.33 −0.359597
\(58\) 0 0
\(59\) −4641.86 + 2679.98i −1.33348 + 0.769888i −0.985832 0.167736i \(-0.946354\pi\)
−0.347653 + 0.937623i \(0.613021\pi\)
\(60\) 0 0
\(61\) −5830.99 3366.53i −1.56705 0.904737i −0.996511 0.0834671i \(-0.973401\pi\)
−0.570540 0.821270i \(-0.693266\pi\)
\(62\) 0 0
\(63\) −1913.29 + 653.310i −0.482059 + 0.164603i
\(64\) 0 0
\(65\) 0 0
\(66\) 0 0
\(67\) −3289.74 5698.00i −0.732845 1.26933i −0.955662 0.294465i \(-0.904859\pi\)
0.222817 0.974860i \(-0.428475\pi\)
\(68\) 0 0
\(69\) 2547.08i 0.534988i
\(70\) 0 0
\(71\) 3986.32 0.790780 0.395390 0.918513i \(-0.370609\pi\)
0.395390 + 0.918513i \(0.370609\pi\)
\(72\) 0 0
\(73\) 7618.86 4398.75i 1.42970 0.825436i 0.432601 0.901586i \(-0.357596\pi\)
0.997096 + 0.0761494i \(0.0242626\pi\)
\(74\) 0 0
\(75\) 0 0
\(76\) 0 0
\(77\) −268.817 + 1364.24i −0.0453394 + 0.230096i
\(78\) 0 0
\(79\) 2452.82 4248.41i 0.393017 0.680725i −0.599829 0.800128i \(-0.704765\pi\)
0.992846 + 0.119403i \(0.0380981\pi\)
\(80\) 0 0
\(81\) 758.248 + 1313.32i 0.115569 + 0.200171i
\(82\) 0 0
\(83\) 4449.18i 0.645838i 0.946427 + 0.322919i \(0.104664\pi\)
−0.946427 + 0.322919i \(0.895336\pi\)
\(84\) 0 0
\(85\) 0 0
\(86\) 0 0
\(87\) −3998.87 + 2308.75i −0.528322 + 0.305027i
\(88\) 0 0
\(89\) −11675.4 6740.79i −1.47398 0.851003i −0.474410 0.880304i \(-0.657338\pi\)
−0.999571 + 0.0293012i \(0.990672\pi\)
\(90\) 0 0
\(91\) −10404.3 + 11906.9i −1.25641 + 1.43786i
\(92\) 0 0
\(93\) 2442.87 4231.18i 0.282446 0.489210i
\(94\) 0 0
\(95\) 0 0
\(96\) 0 0
\(97\) 7101.58i 0.754765i −0.926057 0.377382i \(-0.876824\pi\)
0.926057 0.377382i \(-0.123176\pi\)
\(98\) 0 0
\(99\) −1170.84 −0.119462
\(100\) 0 0
\(101\) −3123.73 + 1803.48i −0.306218 + 0.176795i −0.645233 0.763986i \(-0.723240\pi\)
0.339015 + 0.940781i \(0.389906\pi\)
\(102\) 0 0
\(103\) 1774.60 + 1024.57i 0.167273 + 0.0965752i 0.581299 0.813690i \(-0.302545\pi\)
−0.414026 + 0.910265i \(0.635878\pi\)
\(104\) 0 0
\(105\) 0 0
\(106\) 0 0
\(107\) −6785.97 + 11753.6i −0.592713 + 1.02661i 0.401152 + 0.916011i \(0.368610\pi\)
−0.993865 + 0.110598i \(0.964724\pi\)
\(108\) 0 0
\(109\) −4084.63 7074.79i −0.343795 0.595471i 0.641339 0.767258i \(-0.278379\pi\)
−0.985134 + 0.171787i \(0.945046\pi\)
\(110\) 0 0
\(111\) 4586.63i 0.372261i
\(112\) 0 0
\(113\) 3805.54 0.298029 0.149015 0.988835i \(-0.452390\pi\)
0.149015 + 0.988835i \(0.452390\pi\)
\(114\) 0 0
\(115\) 0 0
\(116\) 0 0
\(117\) −11530.8 6657.31i −0.842340 0.486325i
\(118\) 0 0
\(119\) −24016.9 4732.43i −1.69599 0.334188i
\(120\) 0 0
\(121\) 6917.87 11982.1i 0.472500 0.818394i
\(122\) 0 0
\(123\) 64.1160 + 111.052i 0.00423796 + 0.00734035i
\(124\) 0 0
\(125\) 0 0
\(126\) 0 0
\(127\) −29755.4 −1.84484 −0.922420 0.386189i \(-0.873791\pi\)
−0.922420 + 0.386189i \(0.873791\pi\)
\(128\) 0 0
\(129\) −10124.1 + 5845.15i −0.608383 + 0.351250i
\(130\) 0 0
\(131\) −5204.68 3004.92i −0.303285 0.175102i 0.340633 0.940196i \(-0.389359\pi\)
−0.643918 + 0.765095i \(0.722692\pi\)
\(132\) 0 0
\(133\) 2934.54 + 8594.15i 0.165897 + 0.485847i
\(134\) 0 0
\(135\) 0 0
\(136\) 0 0
\(137\) 1174.37 + 2034.06i 0.0625694 + 0.108373i 0.895613 0.444834i \(-0.146737\pi\)
−0.833044 + 0.553207i \(0.813404\pi\)
\(138\) 0 0
\(139\) 8981.94i 0.464880i −0.972611 0.232440i \(-0.925329\pi\)
0.972611 0.232440i \(-0.0746709\pi\)
\(140\) 0 0
\(141\) −23867.7 −1.20053
\(142\) 0 0
\(143\) −7930.34 + 4578.59i −0.387811 + 0.223903i
\(144\) 0 0
\(145\) 0 0
\(146\) 0 0
\(147\) −9257.14 11974.8i −0.428393 0.554159i
\(148\) 0 0
\(149\) −8669.18 + 15015.5i −0.390486 + 0.676342i −0.992514 0.122133i \(-0.961026\pi\)
0.602028 + 0.798475i \(0.294360\pi\)
\(150\) 0 0
\(151\) 5355.10 + 9275.31i 0.234863 + 0.406794i 0.959233 0.282617i \(-0.0912026\pi\)
−0.724370 + 0.689411i \(0.757869\pi\)
\(152\) 0 0
\(153\) 20612.3i 0.880527i
\(154\) 0 0
\(155\) 0 0
\(156\) 0 0
\(157\) 7979.12 4606.75i 0.323710 0.186894i −0.329335 0.944213i \(-0.606825\pi\)
0.653045 + 0.757319i \(0.273491\pi\)
\(158\) 0 0
\(159\) −29567.3 17070.7i −1.16955 0.675238i
\(160\) 0 0
\(161\) 18736.1 6397.60i 0.722815 0.246811i
\(162\) 0 0
\(163\) 13622.1 23594.3i 0.512708 0.888037i −0.487183 0.873300i \(-0.661976\pi\)
0.999891 0.0147370i \(-0.00469111\pi\)
\(164\) 0 0
\(165\) 0 0
\(166\) 0 0
\(167\) 4063.60i 0.145706i 0.997343 + 0.0728531i \(0.0232104\pi\)
−0.997343 + 0.0728531i \(0.976790\pi\)
\(168\) 0 0
\(169\) −75572.7 −2.64601
\(170\) 0 0
\(171\) −6622.44 + 3823.46i −0.226478 + 0.130757i
\(172\) 0 0
\(173\) 39691.8 + 22916.1i 1.32620 + 0.765681i 0.984709 0.174205i \(-0.0557357\pi\)
0.341488 + 0.939886i \(0.389069\pi\)
\(174\) 0 0
\(175\) 0 0
\(176\) 0 0
\(177\) 16894.4 29262.0i 0.539258 0.934023i
\(178\) 0 0
\(179\) −10965.3 18992.5i −0.342228 0.592756i 0.642618 0.766186i \(-0.277848\pi\)
−0.984846 + 0.173431i \(0.944515\pi\)
\(180\) 0 0
\(181\) 6943.49i 0.211944i −0.994369 0.105972i \(-0.966205\pi\)
0.994369 0.105972i \(-0.0337954\pi\)
\(182\) 0 0
\(183\) 42444.8 1.26742
\(184\) 0 0
\(185\) 0 0
\(186\) 0 0
\(187\) −12276.9 7088.08i −0.351080 0.202696i
\(188\) 0 0
\(189\) 24849.4 28438.2i 0.695652 0.796120i
\(190\) 0 0
\(191\) −28099.2 + 48669.2i −0.770242 + 1.33410i 0.167188 + 0.985925i \(0.446531\pi\)
−0.937430 + 0.348173i \(0.886802\pi\)
\(192\) 0 0
\(193\) −20021.6 34678.4i −0.537507 0.930989i −0.999037 0.0438648i \(-0.986033\pi\)
0.461531 0.887124i \(-0.347300\pi\)
\(194\) 0 0
\(195\) 0 0
\(196\) 0 0
\(197\) −46320.3 −1.19355 −0.596773 0.802410i \(-0.703551\pi\)
−0.596773 + 0.802410i \(0.703551\pi\)
\(198\) 0 0
\(199\) −14564.3 + 8408.71i −0.367776 + 0.212336i −0.672487 0.740109i \(-0.734774\pi\)
0.304710 + 0.952445i \(0.401440\pi\)
\(200\) 0 0
\(201\) 35919.9 + 20738.3i 0.889083 + 0.513312i
\(202\) 0 0
\(203\) 27027.0 + 23616.3i 0.655853 + 0.573087i
\(204\) 0 0
\(205\) 0 0
\(206\) 0 0
\(207\) 8335.53 + 14437.6i 0.194533 + 0.336940i
\(208\) 0 0
\(209\) 5259.20i 0.120400i
\(210\) 0 0
\(211\) 7624.96 0.171267 0.0856333 0.996327i \(-0.472709\pi\)
0.0856333 + 0.996327i \(0.472709\pi\)
\(212\) 0 0
\(213\) −21762.8 + 12564.8i −0.479685 + 0.276946i
\(214\) 0 0
\(215\) 0 0
\(216\) 0 0
\(217\) −37260.0 7341.93i −0.791268 0.155916i
\(218\) 0 0
\(219\) −27729.4 + 48028.8i −0.578167 + 1.00141i
\(220\) 0 0
\(221\) −80604.3 139611.i −1.65034 2.85847i
\(222\) 0 0
\(223\) 53858.4i 1.08304i 0.840688 + 0.541519i \(0.182151\pi\)
−0.840688 + 0.541519i \(0.817849\pi\)
\(224\) 0 0
\(225\) 0 0
\(226\) 0 0
\(227\) 976.047 563.521i 0.0189417 0.0109360i −0.490499 0.871442i \(-0.663186\pi\)
0.509441 + 0.860506i \(0.329852\pi\)
\(228\) 0 0
\(229\) 21593.5 + 12467.0i 0.411768 + 0.237735i 0.691549 0.722329i \(-0.256928\pi\)
−0.279781 + 0.960064i \(0.590262\pi\)
\(230\) 0 0
\(231\) −2832.46 8295.19i −0.0530812 0.155454i
\(232\) 0 0
\(233\) −19215.5 + 33282.2i −0.353948 + 0.613057i −0.986937 0.161104i \(-0.948494\pi\)
0.632989 + 0.774161i \(0.281828\pi\)
\(234\) 0 0
\(235\) 0 0
\(236\) 0 0
\(237\) 30924.8i 0.550568i
\(238\) 0 0
\(239\) 71148.4 1.24557 0.622786 0.782392i \(-0.286001\pi\)
0.622786 + 0.782392i \(0.286001\pi\)
\(240\) 0 0
\(241\) −52009.9 + 30027.9i −0.895472 + 0.517001i −0.875728 0.482804i \(-0.839618\pi\)
−0.0197436 + 0.999805i \(0.506285\pi\)
\(242\) 0 0
\(243\) 45785.5 + 26434.3i 0.775382 + 0.447667i
\(244\) 0 0
\(245\) 0 0
\(246\) 0 0
\(247\) −29903.4 + 51794.1i −0.490147 + 0.848959i
\(248\) 0 0
\(249\) −14023.7 24289.7i −0.226185 0.391763i
\(250\) 0 0
\(251\) 11274.6i 0.178958i −0.995989 0.0894792i \(-0.971480\pi\)
0.995989 0.0894792i \(-0.0285203\pi\)
\(252\) 0 0
\(253\) 11465.6 0.179125
\(254\) 0 0
\(255\) 0 0
\(256\) 0 0
\(257\) −57577.5 33242.4i −0.871739 0.503299i −0.00381315 0.999993i \(-0.501214\pi\)
−0.867926 + 0.496694i \(0.834547\pi\)
\(258\) 0 0
\(259\) −33738.8 + 11520.4i −0.502956 + 0.171739i
\(260\) 0 0
\(261\) −15111.1 + 26173.2i −0.221828 + 0.384217i
\(262\) 0 0
\(263\) 28015.4 + 48524.1i 0.405029 + 0.701530i 0.994325 0.106387i \(-0.0339283\pi\)
−0.589296 + 0.807917i \(0.700595\pi\)
\(264\) 0 0
\(265\) 0 0
\(266\) 0 0
\(267\) 84987.1 1.19215
\(268\) 0 0
\(269\) −63570.6 + 36702.5i −0.878520 + 0.507214i −0.870170 0.492751i \(-0.835991\pi\)
−0.00834980 + 0.999965i \(0.502658\pi\)
\(270\) 0 0
\(271\) −12291.4 7096.42i −0.167364 0.0966275i 0.413978 0.910287i \(-0.364139\pi\)
−0.581342 + 0.813659i \(0.697472\pi\)
\(272\) 0 0
\(273\) 19270.8 97798.5i 0.258568 1.31222i
\(274\) 0 0
\(275\) 0 0
\(276\) 0 0
\(277\) 49418.4 + 85595.2i 0.644065 + 1.11555i 0.984517 + 0.175291i \(0.0560865\pi\)
−0.340452 + 0.940262i \(0.610580\pi\)
\(278\) 0 0
\(279\) 31978.0i 0.410812i
\(280\) 0 0
\(281\) 58127.8 0.736158 0.368079 0.929795i \(-0.380016\pi\)
0.368079 + 0.929795i \(0.380016\pi\)
\(282\) 0 0
\(283\) −7698.66 + 4444.83i −0.0961263 + 0.0554986i −0.547293 0.836941i \(-0.684341\pi\)
0.451166 + 0.892440i \(0.351008\pi\)
\(284\) 0 0
\(285\) 0 0
\(286\) 0 0
\(287\) 655.847 750.566i 0.00796231 0.00911224i
\(288\) 0 0
\(289\) 83022.4 143799.i 0.994031 1.72171i
\(290\) 0 0
\(291\) 22384.0 + 38770.2i 0.264333 + 0.457838i
\(292\) 0 0
\(293\) 74609.7i 0.869081i −0.900652 0.434540i \(-0.856911\pi\)
0.900652 0.434540i \(-0.143089\pi\)
\(294\) 0 0
\(295\) 0 0
\(296\) 0 0
\(297\) 18940.6 10935.4i 0.214724 0.123971i
\(298\) 0 0
\(299\) 112916. + 65192.3i 1.26303 + 0.729212i
\(300\) 0 0
\(301\) 68425.5 + 59790.5i 0.755240 + 0.659932i
\(302\) 0 0
\(303\) 11369.1 19691.8i 0.123834 0.214486i
\(304\) 0 0
\(305\) 0 0
\(306\) 0 0
\(307\) 66333.5i 0.703812i −0.936035 0.351906i \(-0.885534\pi\)
0.936035 0.351906i \(-0.114466\pi\)
\(308\) 0 0
\(309\) −12917.6 −0.135290
\(310\) 0 0
\(311\) −91239.5 + 52677.1i −0.943327 + 0.544630i −0.891002 0.454000i \(-0.849997\pi\)
−0.0523251 + 0.998630i \(0.516663\pi\)
\(312\) 0 0
\(313\) 5431.06 + 3135.62i 0.0554365 + 0.0320063i 0.527462 0.849579i \(-0.323144\pi\)
−0.472026 + 0.881585i \(0.656477\pi\)
\(314\) 0 0
\(315\) 0 0
\(316\) 0 0
\(317\) 55208.6 95624.0i 0.549399 0.951587i −0.448917 0.893574i \(-0.648190\pi\)
0.998316 0.0580134i \(-0.0184766\pi\)
\(318\) 0 0
\(319\) 10392.7 + 18000.7i 0.102129 + 0.176892i
\(320\) 0 0
\(321\) 85556.7i 0.830317i
\(322\) 0 0
\(323\) −92586.3 −0.887446
\(324\) 0 0
\(325\) 0 0
\(326\) 0 0
\(327\) 44599.0 + 25749.3i 0.417090 + 0.240807i
\(328\) 0 0
\(329\) 59949.4 + 175568.i 0.553851 + 1.62201i
\(330\) 0 0
\(331\) 62929.9 108998.i 0.574382 0.994859i −0.421726 0.906723i \(-0.638576\pi\)
0.996108 0.0881359i \(-0.0280910\pi\)
\(332\) 0 0
\(333\) −15010.1 25998.3i −0.135362 0.234453i
\(334\) 0 0
\(335\) 0 0
\(336\) 0 0
\(337\) 36428.0 0.320756 0.160378 0.987056i \(-0.448729\pi\)
0.160378 + 0.987056i \(0.448729\pi\)
\(338\) 0 0
\(339\) −20775.8 + 11994.9i −0.180784 + 0.104375i
\(340\) 0 0
\(341\) −19046.5 10996.5i −0.163797 0.0945683i
\(342\) 0 0
\(343\) −64834.2 + 98172.3i −0.551082 + 0.834451i
\(344\) 0 0
\(345\) 0 0
\(346\) 0 0
\(347\) −49208.2 85231.1i −0.408675 0.707846i 0.586066 0.810263i \(-0.300676\pi\)
−0.994742 + 0.102417i \(0.967342\pi\)
\(348\) 0 0
\(349\) 87986.1i 0.722376i 0.932493 + 0.361188i \(0.117629\pi\)
−0.932493 + 0.361188i \(0.882371\pi\)
\(350\) 0 0
\(351\) 248710. 2.01873
\(352\) 0 0
\(353\) −146757. + 84730.1i −1.17774 + 0.679968i −0.955490 0.295022i \(-0.904673\pi\)
−0.222248 + 0.974990i \(0.571340\pi\)
\(354\) 0 0
\(355\) 0 0
\(356\) 0 0
\(357\) 146034. 49864.5i 1.14582 0.391250i
\(358\) 0 0
\(359\) 48155.7 83408.1i 0.373644 0.647171i −0.616479 0.787372i \(-0.711441\pi\)
0.990123 + 0.140200i \(0.0447747\pi\)
\(360\) 0 0
\(361\) −47986.2 83114.6i −0.368216 0.637768i
\(362\) 0 0
\(363\) 87219.7i 0.661914i
\(364\) 0 0
\(365\) 0 0
\(366\) 0 0
\(367\) −8286.43 + 4784.17i −0.0615227 + 0.0355201i −0.530446 0.847719i \(-0.677975\pi\)
0.468923 + 0.883239i \(0.344642\pi\)
\(368\) 0 0
\(369\) 726.855 + 419.650i 0.00533821 + 0.00308201i
\(370\) 0 0
\(371\) −51305.1 + 260372.i −0.372746 + 1.89167i
\(372\) 0 0
\(373\) 71247.2 123404.i 0.512095 0.886974i −0.487807 0.872951i \(-0.662203\pi\)
0.999902 0.0140223i \(-0.00446359\pi\)
\(374\) 0 0
\(375\) 0 0
\(376\) 0 0
\(377\) 236369.i 1.66306i
\(378\) 0 0
\(379\) 203100. 1.41394 0.706970 0.707243i \(-0.250061\pi\)
0.706970 + 0.707243i \(0.250061\pi\)
\(380\) 0 0
\(381\) 162446. 93788.2i 1.11907 0.646097i
\(382\) 0 0
\(383\) −148795. 85906.7i −1.01435 0.585638i −0.101891 0.994796i \(-0.532489\pi\)
−0.912464 + 0.409158i \(0.865823\pi\)
\(384\) 0 0
\(385\) 0 0
\(386\) 0 0
\(387\) −38257.5 + 66263.9i −0.255443 + 0.442441i
\(388\) 0 0
\(389\) −21093.4 36534.9i −0.139395 0.241440i 0.787873 0.615838i \(-0.211182\pi\)
−0.927268 + 0.374399i \(0.877849\pi\)
\(390\) 0 0
\(391\) 201847.i 1.32029i
\(392\) 0 0
\(393\) 37885.7 0.245296
\(394\) 0 0
\(395\) 0 0
\(396\) 0 0
\(397\) 213423. + 123220.i 1.35413 + 0.781808i 0.988825 0.149080i \(-0.0476313\pi\)
0.365305 + 0.930888i \(0.380965\pi\)
\(398\) 0 0
\(399\) −43109.3 37669.0i −0.270785 0.236613i
\(400\) 0 0
\(401\) 48551.6 84093.8i 0.301936 0.522968i −0.674639 0.738148i \(-0.735701\pi\)
0.976574 + 0.215180i \(0.0690339\pi\)
\(402\) 0 0
\(403\) −125050. 216593.i −0.769971 1.33363i
\(404\) 0 0
\(405\) 0 0
\(406\) 0 0
\(407\) −20646.5 −0.124640
\(408\) 0 0
\(409\) 151468. 87449.9i 0.905468 0.522772i 0.0264978 0.999649i \(-0.491564\pi\)
0.878970 + 0.476877i \(0.158231\pi\)
\(410\) 0 0
\(411\) −12822.6 7403.13i −0.0759088 0.0438260i
\(412\) 0 0
\(413\) −257683. 50775.4i −1.51073 0.297682i
\(414\) 0 0
\(415\) 0 0
\(416\) 0 0
\(417\) 28310.8 + 49035.8i 0.162810 + 0.281995i
\(418\) 0 0
\(419\) 147615.i 0.840821i −0.907334 0.420411i \(-0.861886\pi\)
0.907334 0.420411i \(-0.138114\pi\)
\(420\) 0 0
\(421\) −28665.0 −0.161729 −0.0808646 0.996725i \(-0.525768\pi\)
−0.0808646 + 0.996725i \(0.525768\pi\)
\(422\) 0 0
\(423\) −135289. + 78109.0i −0.756103 + 0.436536i
\(424\) 0 0
\(425\) 0 0
\(426\) 0 0
\(427\) −106610. 312220.i −0.584713 1.71240i
\(428\) 0 0
\(429\) 28863.1 49992.4i 0.156830 0.271637i
\(430\) 0 0
\(431\) 112765. + 195314.i 0.607042 + 1.05143i 0.991725 + 0.128379i \(0.0409774\pi\)
−0.384683 + 0.923049i \(0.625689\pi\)
\(432\) 0 0
\(433\) 65473.0i 0.349210i −0.984639 0.174605i \(-0.944135\pi\)
0.984639 0.174605i \(-0.0558648\pi\)
\(434\) 0 0
\(435\) 0 0
\(436\) 0 0
\(437\) 64850.8 37441.6i 0.339588 0.196061i
\(438\) 0 0
\(439\) 258048. + 148984.i 1.33897 + 0.773057i 0.986655 0.162823i \(-0.0520599\pi\)
0.352319 + 0.935880i \(0.385393\pi\)
\(440\) 0 0
\(441\) −91660.7 37581.9i −0.471309 0.193242i
\(442\) 0 0
\(443\) 155448. 269244.i 0.792095 1.37195i −0.132572 0.991173i \(-0.542323\pi\)
0.924667 0.380776i \(-0.124343\pi\)
\(444\) 0 0
\(445\) 0 0
\(446\) 0 0
\(447\) 109300.i 0.547023i
\(448\) 0 0
\(449\) 217824. 1.08047 0.540235 0.841514i \(-0.318335\pi\)
0.540235 + 0.841514i \(0.318335\pi\)
\(450\) 0 0
\(451\) 499.897 288.616i 0.00245769 0.00141895i
\(452\) 0 0
\(453\) −58471.0 33758.3i −0.284934 0.164507i
\(454\) 0 0
\(455\) 0 0
\(456\) 0 0
\(457\) −99566.6 + 172454.i −0.476740 + 0.825738i −0.999645 0.0266534i \(-0.991515\pi\)
0.522905 + 0.852391i \(0.324848\pi\)
\(458\) 0 0
\(459\) 192513. + 333442.i 0.913766 + 1.58269i
\(460\) 0 0
\(461\) 71484.4i 0.336364i −0.985756 0.168182i \(-0.946210\pi\)
0.985756 0.168182i \(-0.0537896\pi\)
\(462\) 0 0
\(463\) −106595. −0.497252 −0.248626 0.968600i \(-0.579979\pi\)
−0.248626 + 0.968600i \(0.579979\pi\)
\(464\) 0 0
\(465\) 0 0
\(466\) 0 0
\(467\) 82568.7 + 47671.0i 0.378601 + 0.218585i 0.677209 0.735790i \(-0.263189\pi\)
−0.298609 + 0.954376i \(0.596522\pi\)
\(468\) 0 0
\(469\) 62328.0 316312.i 0.283360 1.43804i
\(470\) 0 0
\(471\) −29040.7 + 50299.9i −0.130908 + 0.226738i
\(472\) 0 0
\(473\) 26311.7 + 45573.3i 0.117605 + 0.203698i
\(474\) 0 0
\(475\) 0 0
\(476\) 0 0
\(477\) −223461. −0.982121
\(478\) 0 0
\(479\) −67483.3 + 38961.5i −0.294120 + 0.169811i −0.639799 0.768543i \(-0.720982\pi\)
0.345678 + 0.938353i \(0.387649\pi\)
\(480\) 0 0
\(481\) −203333. 117394.i −0.878856 0.507408i
\(482\) 0 0
\(483\) −82122.2 + 93982.4i −0.352019 + 0.402858i
\(484\) 0 0
\(485\) 0 0
\(486\) 0 0
\(487\) 118684. + 205567.i 0.500419 + 0.866752i 1.00000 0.000484141i \(0.000154107\pi\)
−0.499581 + 0.866267i \(0.666513\pi\)
\(488\) 0 0
\(489\) 171746.i 0.718241i
\(490\) 0 0
\(491\) 257204. 1.06688 0.533439 0.845838i \(-0.320899\pi\)
0.533439 + 0.845838i \(0.320899\pi\)
\(492\) 0 0
\(493\) −316896. + 182960.i −1.30384 + 0.752771i
\(494\) 0 0
\(495\) 0 0
\(496\) 0 0
\(497\) 147088. + 128526.i 0.595476 + 0.520329i
\(498\) 0 0
\(499\) −37144.5 + 64336.1i −0.149174 + 0.258377i −0.930922 0.365217i \(-0.880995\pi\)
0.781748 + 0.623594i \(0.214328\pi\)
\(500\) 0 0
\(501\) −12808.3 22184.7i −0.0510291 0.0883849i
\(502\) 0 0
\(503\) 344439.i 1.36137i 0.732576 + 0.680685i \(0.238318\pi\)
−0.732576 + 0.680685i \(0.761682\pi\)
\(504\) 0 0
\(505\) 0 0
\(506\) 0 0
\(507\) 412580. 238203.i 1.60506 0.926683i
\(508\) 0 0
\(509\) 34030.4 + 19647.5i 0.131350 + 0.0758352i 0.564235 0.825614i \(-0.309171\pi\)
−0.432885 + 0.901449i \(0.642504\pi\)
\(510\) 0 0
\(511\) 422945. + 83339.5i 1.61973 + 0.319160i
\(512\) 0 0
\(513\) 71420.3 123704.i 0.271386 0.470054i
\(514\) 0 0
\(515\) 0 0
\(516\) 0 0
\(517\) 107439.i 0.401960i
\(518\) 0 0
\(519\) −288923. −1.07262
\(520\) 0 0
\(521\) −198381. + 114535.i −0.730844 + 0.421953i −0.818731 0.574178i \(-0.805322\pi\)
0.0878869 + 0.996130i \(0.471989\pi\)
\(522\) 0 0
\(523\) 457799. + 264310.i 1.67368 + 0.966298i 0.965552 + 0.260211i \(0.0837921\pi\)
0.708125 + 0.706087i \(0.249541\pi\)
\(524\) 0 0
\(525\) 0 0
\(526\) 0 0
\(527\) 193589. 335307.i 0.697044 1.20732i
\(528\) 0 0
\(529\) 58294.1 + 100968.i 0.208311 + 0.360806i
\(530\) 0 0
\(531\) 221154.i 0.784341i
\(532\) 0 0
\(533\) 6564.18 0.0231061
\(534\) 0 0
\(535\) 0 0
\(536\) 0 0
\(537\) 119727. + 69124.7i 0.415188 + 0.239709i
\(538\) 0 0
\(539\) −53904.2 + 41670.7i −0.185543 + 0.143434i
\(540\) 0 0
\(541\) 70992.7 122963.i 0.242560 0.420126i −0.718883 0.695131i \(-0.755346\pi\)
0.961443 + 0.275005i \(0.0886795\pi\)
\(542\) 0 0
\(543\) 21885.7 + 37907.1i 0.0742268 + 0.128565i
\(544\) 0 0
\(545\) 0 0
\(546\) 0 0
\(547\) −115290. −0.385315 −0.192658 0.981266i \(-0.561711\pi\)
−0.192658 + 0.981266i \(0.561711\pi\)
\(548\) 0 0
\(549\) 240589. 138904.i 0.798235 0.460861i
\(550\) 0 0
\(551\) 117565. + 67876.3i 0.387236 + 0.223571i
\(552\) 0 0
\(553\) 227480. 77675.1i 0.743864 0.253999i
\(554\) 0 0
\(555\) 0 0
\(556\) 0 0
\(557\) 144674. + 250583.i 0.466316 + 0.807683i 0.999260 0.0384678i \(-0.0122477\pi\)
−0.532944 + 0.846150i \(0.678914\pi\)
\(558\) 0 0
\(559\) 598425.i 1.91508i
\(560\) 0 0
\(561\) 89365.6 0.283952
\(562\) 0 0
\(563\) −24487.2 + 14137.7i −0.0772542 + 0.0446027i −0.538129 0.842862i \(-0.680869\pi\)
0.460875 + 0.887465i \(0.347536\pi\)
\(564\) 0 0
\(565\) 0 0
\(566\) 0 0
\(567\) −14365.9 + 72906.4i −0.0446855 + 0.226777i
\(568\) 0 0
\(569\) 233552. 404525.i 0.721373 1.24945i −0.239076 0.971001i \(-0.576845\pi\)
0.960450 0.278454i \(-0.0898220\pi\)
\(570\) 0 0
\(571\) −215219. 372770.i −0.660098 1.14332i −0.980590 0.196071i \(-0.937182\pi\)
0.320492 0.947251i \(-0.396152\pi\)
\(572\) 0 0
\(573\) 354271.i 1.07901i
\(574\) 0 0
\(575\) 0 0
\(576\) 0 0
\(577\) −156921. + 90598.5i −0.471335 + 0.272126i −0.716799 0.697280i \(-0.754393\pi\)
0.245463 + 0.969406i \(0.421060\pi\)
\(578\) 0 0
\(579\) 218611. + 126215.i 0.652100 + 0.376490i
\(580\) 0 0
\(581\) −143449. + 164166.i −0.424957 + 0.486331i
\(582\) 0 0
\(583\) −76843.1 + 133096.i −0.226083 + 0.391587i
\(584\) 0 0
\(585\) 0 0
\(586\) 0 0
\(587\) 332481.i 0.964919i −0.875918 0.482460i \(-0.839743\pi\)
0.875918 0.482460i \(-0.160257\pi\)
\(588\) 0 0
\(589\) −143639. −0.414040
\(590\) 0 0
\(591\) 252880. 146000.i 0.724001 0.418002i
\(592\) 0 0
\(593\) 297166. + 171569.i 0.845064 + 0.487898i 0.858982 0.512005i \(-0.171097\pi\)
−0.0139186 + 0.999903i \(0.504431\pi\)
\(594\) 0 0
\(595\) 0 0
\(596\) 0 0
\(597\) 53008.0 91812.5i 0.148728 0.257604i
\(598\) 0 0
\(599\) −171088. 296333.i −0.476832 0.825897i 0.522816 0.852446i \(-0.324882\pi\)
−0.999648 + 0.0265490i \(0.991548\pi\)
\(600\) 0 0
\(601\) 227319.i 0.629341i −0.949201 0.314670i \(-0.898106\pi\)
0.949201 0.314670i \(-0.101894\pi\)
\(602\) 0 0
\(603\) 271472. 0.746604
\(604\) 0 0
\(605\) 0 0
\(606\) 0 0
\(607\) −322559. 186230.i −0.875451 0.505442i −0.00629550 0.999980i \(-0.502004\pi\)
−0.869156 + 0.494538i \(0.835337\pi\)
\(608\) 0 0
\(609\) −221989. 43741.9i −0.598544 0.117941i
\(610\) 0 0
\(611\) −610891. + 1.05809e6i −1.63637 + 2.83427i
\(612\) 0 0
\(613\) −125569. 217492.i −0.334165 0.578791i 0.649159 0.760653i \(-0.275121\pi\)
−0.983324 + 0.181862i \(0.941788\pi\)
\(614\) 0 0
\(615\) 0 0
\(616\) 0 0
\(617\) 297850. 0.782398 0.391199 0.920306i \(-0.372060\pi\)
0.391199 + 0.920306i \(0.372060\pi\)
\(618\) 0 0
\(619\) −308493. + 178108.i −0.805126 + 0.464839i −0.845260 0.534355i \(-0.820555\pi\)
0.0401347 + 0.999194i \(0.487221\pi\)
\(620\) 0 0
\(621\) −269686. 155703.i −0.699319 0.403752i
\(622\) 0 0
\(623\) −213465. 625158.i −0.549986 1.61070i
\(624\) 0 0
\(625\) 0 0
\(626\) 0 0
\(627\) −16576.9 28711.9i −0.0421664 0.0730344i
\(628\) 0 0
\(629\) 363475.i 0.918698i
\(630\) 0 0
\(631\) −714986. −1.79572 −0.897861 0.440279i \(-0.854879\pi\)
−0.897861 + 0.440279i \(0.854879\pi\)
\(632\) 0 0
\(633\) −41627.5 + 24033.7i −0.103890 + 0.0599808i
\(634\) 0 0
\(635\) 0 0
\(636\) 0 0
\(637\) −767800. + 103890.i −1.89221 + 0.256033i
\(638\) 0 0
\(639\) −82238.5 + 142441.i −0.201407 + 0.348846i
\(640\) 0 0
\(641\) −219867. 380821.i −0.535111 0.926839i −0.999158 0.0410288i \(-0.986936\pi\)
0.464047 0.885811i \(-0.346397\pi\)
\(642\) 0 0
\(643\) 414727.i 1.00309i 0.865131 + 0.501545i \(0.167235\pi\)
−0.865131 + 0.501545i \(0.832765\pi\)
\(644\) 0 0
\(645\) 0 0
\(646\) 0 0
\(647\) −554636. + 320219.i −1.32495 + 0.764960i −0.984514 0.175307i \(-0.943908\pi\)
−0.340436 + 0.940268i \(0.610575\pi\)
\(648\) 0 0
\(649\) −131722. 76049.6i −0.312729 0.180554i
\(650\) 0 0
\(651\) 226558. 77360.2i 0.534586 0.182539i
\(652\) 0 0
\(653\) 86169.4 149250.i 0.202082 0.350016i −0.747117 0.664692i \(-0.768563\pi\)
0.949199 + 0.314676i \(0.101896\pi\)
\(654\) 0 0
\(655\) 0 0
\(656\) 0 0
\(657\) 362988.i 0.840933i
\(658\) 0 0
\(659\) 349413. 0.804578 0.402289 0.915513i \(-0.368215\pi\)
0.402289 + 0.915513i \(0.368215\pi\)
\(660\) 0 0
\(661\) 534419. 308547.i 1.22315 0.706185i 0.257560 0.966262i \(-0.417081\pi\)
0.965588 + 0.260077i \(0.0837481\pi\)
\(662\) 0 0
\(663\) 880098. + 508125.i 2.00218 + 1.15596i
\(664\) 0 0
\(665\) 0 0
\(666\) 0 0
\(667\) 147977. 256304.i 0.332616 0.576107i
\(668\) 0 0
\(669\) −169760. 294033.i −0.379300 0.656968i
\(670\) 0 0
\(671\) 191064.i 0.424358i
\(672\) 0 0
\(673\) −624802. −1.37947 −0.689735 0.724062i \(-0.742273\pi\)
−0.689735 + 0.724062i \(0.742273\pi\)
\(674\) 0 0
\(675\) 0 0
\(676\) 0 0
\(677\) 160259. + 92525.5i 0.349659 + 0.201876i 0.664535 0.747257i \(-0.268630\pi\)
−0.314876 + 0.949133i \(0.601963\pi\)
\(678\) 0 0
\(679\) 228967. 262035.i 0.496631 0.568355i
\(680\) 0 0
\(681\) −3552.40 + 6152.94i −0.00765998 + 0.0132675i
\(682\) 0 0
\(683\) 358203. + 620426.i 0.767870 + 1.32999i 0.938716 + 0.344692i \(0.112017\pi\)
−0.170846 + 0.985298i \(0.554650\pi\)
\(684\) 0 0
\(685\) 0 0
\(686\) 0 0
\(687\) −157183. −0.333037
\(688\) 0 0
\(689\) −1.51355e6 + 873846.i −3.18828 + 1.84076i
\(690\) 0 0
\(691\) 550552. + 317861.i 1.15303 + 0.665704i 0.949625 0.313390i \(-0.101465\pi\)
0.203409 + 0.979094i \(0.434798\pi\)
\(692\) 0 0
\(693\) −43201.9 37750.0i −0.0899573 0.0786050i
\(694\) 0 0
\(695\) 0 0
\(696\) 0 0
\(697\) 5080.98 + 8800.51i 0.0104588 + 0.0181152i
\(698\) 0 0
\(699\) 242267.i 0.495838i
\(700\) 0 0
\(701\) −54574.0 −0.111058 −0.0555290 0.998457i \(-0.517685\pi\)
−0.0555290 + 0.998457i \(0.517685\pi\)
\(702\) 0 0
\(703\) −116779. + 67422.6i −0.236296 + 0.136425i
\(704\) 0 0
\(705\) 0 0
\(706\) 0 0
\(707\) −173407. 34169.1i −0.346919 0.0683589i
\(708\) 0 0
\(709\) 170368. 295086.i 0.338919 0.587024i −0.645311 0.763920i \(-0.723272\pi\)
0.984230 + 0.176896i \(0.0566055\pi\)
\(710\) 0 0
\(711\) 101204. + 175291.i 0.200198 + 0.346752i
\(712\) 0 0
\(713\) 313148.i 0.615985i
\(714\) 0 0
\(715\) 0 0
\(716\) 0 0
\(717\) −388425. + 224257.i −0.755560 + 0.436223i
\(718\) 0 0
\(719\) 200103. + 115530.i 0.387076 + 0.223478i 0.680892 0.732383i \(-0.261592\pi\)
−0.293816 + 0.955862i \(0.594925\pi\)
\(720\) 0 0
\(721\) 32445.7 + 95020.7i 0.0624146 + 0.182788i
\(722\) 0 0
\(723\) 189294. 327867.i 0.362127 0.627222i
\(724\) 0 0
\(725\) 0 0
\(726\) 0 0
\(727\) 149550.i 0.282955i 0.989941 + 0.141477i \(0.0451853\pi\)
−0.989941 + 0.141477i \(0.954815\pi\)
\(728\) 0 0
\(729\) −456116. −0.858264
\(730\) 0 0
\(731\) −802300. + 463208.i −1.50142 + 0.866845i
\(732\) 0 0
\(733\) 250662. + 144720.i 0.466532 + 0.269352i 0.714787 0.699342i \(-0.246524\pi\)
−0.248255 + 0.968695i \(0.579857\pi\)
\(734\) 0 0
\(735\) 0 0
\(736\) 0 0
\(737\) 93352.9 161692.i 0.171867 0.297682i
\(738\) 0 0
\(739\) −263530. 456448.i −0.482550 0.835800i 0.517250 0.855835i \(-0.326956\pi\)
−0.999799 + 0.0200341i \(0.993623\pi\)
\(740\) 0 0
\(741\) 377018.i 0.686634i
\(742\) 0 0
\(743\) −464605. −0.841602 −0.420801 0.907153i \(-0.638251\pi\)
−0.420801 + 0.907153i \(0.638251\pi\)
\(744\) 0 0
\(745\) 0 0
\(746\) 0 0
\(747\) −158980. 91787.3i −0.284906 0.164491i
\(748\) 0 0
\(749\) −629347. + 214896.i −1.12183 + 0.383058i
\(750\) 0 0
\(751\) −165782. + 287143.i −0.293940 + 0.509119i −0.974738 0.223353i \(-0.928300\pi\)
0.680798 + 0.732471i \(0.261633\pi\)
\(752\) 0 0
\(753\) 35537.1 + 61552.0i 0.0626746 + 0.108556i
\(754\) 0 0
\(755\) 0 0
\(756\) 0 0
\(757\) −202873. −0.354025 −0.177012 0.984209i \(-0.556643\pi\)
−0.177012 + 0.984209i \(0.556643\pi\)
\(758\) 0 0
\(759\) −62594.9 + 36139.2i −0.108656 + 0.0627328i
\(760\) 0 0
\(761\) −611918. 353291.i −1.05663 0.610046i −0.132133 0.991232i \(-0.542183\pi\)
−0.924499 + 0.381186i \(0.875516\pi\)
\(762\) 0 0
\(763\) 77388.2 392742.i 0.132931 0.674618i
\(764\) 0 0
\(765\) 0 0
\(766\) 0 0
\(767\) −864823. 1.49792e6i −1.47006 2.54623i
\(768\) 0 0
\(769\) 367720.i 0.621820i −0.950439 0.310910i \(-0.899366\pi\)
0.950439 0.310910i \(-0.100634\pi\)
\(770\) 0 0
\(771\) 419116. 0.705059
\(772\) 0 0
\(773\) −11419.6 + 6593.12i −0.0191114 + 0.0110340i −0.509525 0.860456i \(-0.670179\pi\)
0.490414 + 0.871490i \(0.336846\pi\)
\(774\) 0 0
\(775\) 0 0
\(776\) 0 0
\(777\) 147881. 169238.i 0.244946 0.280321i
\(778\) 0 0
\(779\) 1884.99 3264.90i 0.00310623 0.00538015i
\(780\) 0 0
\(781\) 56559.8 + 97964.5i 0.0927270 + 0.160608i
\(782\) 0 0
\(783\) 564536.i 0.920806i
\(784\) 0 0
\(785\) 0 0
\(786\) 0 0
\(787\) −423849. + 244709.i −0.684323 + 0.395094i −0.801482 0.598019i \(-0.795955\pi\)
0.117159 + 0.993113i \(0.462621\pi\)
\(788\) 0 0
\(789\) −305893. 176608.i −0.491378 0.283697i
\(790\) 0 0
\(791\) 140417. + 122697.i 0.224423 + 0.196102i
\(792\) 0 0
\(793\) 1.08637e6 1.88165e6i 1.72755 2.99221i
\(794\) 0 0
\(795\) 0 0
\(796\) 0 0
\(797\) 720256.i 1.13389i −0.823756 0.566944i \(-0.808126\pi\)
0.823756 0.566944i \(-0.191874\pi\)
\(798\) 0 0
\(799\) −1.89143e6 −2.96276
\(800\) 0 0
\(801\) 481731. 278127.i 0.750826 0.433490i
\(802\) 0 0
\(803\) 216200. + 124823.i 0.335293 + 0.193581i
\(804\) 0 0
\(805\) 0 0
\(806\) 0 0
\(807\) 231370. 400745.i 0.355272 0.615349i
\(808\) 0 0
\(809\) −129195. 223772.i −0.197400 0.341908i 0.750284 0.661115i \(-0.229917\pi\)
−0.947685 + 0.319208i \(0.896583\pi\)
\(810\) 0 0
\(811\) 553771.i 0.841954i 0.907071 + 0.420977i \(0.138313\pi\)
−0.907071 + 0.420977i \(0.861687\pi\)
\(812\) 0 0
\(813\) 89470.8 0.135363
\(814\) 0 0
\(815\) 0 0
\(816\) 0 0
\(817\) 297645. + 171845.i 0.445917 + 0.257451i
\(818\) 0 0
\(819\) −210822. 617415.i −0.314302 0.920469i
\(820\) 0 0
\(821\) −168896. + 292536.i −0.250572 + 0.434003i −0.963683 0.267048i \(-0.913952\pi\)
0.713112 + 0.701050i \(0.247285\pi\)
\(822\) 0 0
\(823\) 473816. + 820673.i 0.699536 + 1.21163i 0.968628 + 0.248517i \(0.0799431\pi\)
−0.269092 + 0.963114i \(0.586724\pi\)
\(824\) 0 0
\(825\) 0 0
\(826\) 0 0
\(827\) −163948. −0.239715 −0.119857 0.992791i \(-0.538244\pi\)
−0.119857 + 0.992791i \(0.538244\pi\)
\(828\) 0 0
\(829\) 394627. 227838.i 0.574219 0.331525i −0.184614 0.982811i \(-0.559103\pi\)
0.758833 + 0.651286i \(0.225770\pi\)
\(830\) 0 0
\(831\) −539587. 311531.i −0.781375 0.451127i
\(832\) 0 0
\(833\) −733597. 948964.i −1.05723 1.36760i
\(834\) 0 0
\(835\) 0 0
\(836\) 0 0
\(837\) 298666. + 517306.i 0.426320 + 0.738408i
\(838\) 0 0
\(839\) 1.16012e6i 1.64809i 0.566526 + 0.824044i \(0.308287\pi\)
−0.566526 + 0.824044i \(0.691713\pi\)
\(840\) 0 0
\(841\) −170758. −0.241429
\(842\) 0 0
\(843\) −317341. + 183217.i −0.446551 + 0.257816i
\(844\) 0 0
\(845\) 0 0
\(846\) 0 0
\(847\) 641580. 219073.i 0.894302 0.305367i
\(848\) 0 0
\(849\) 28019.9 48531.9i 0.0388733 0.0673305i
\(850\) 0 0
\(851\) 146988. + 254591.i 0.202966 + 0.351547i
\(852\) 0 0
\(853\) 937108.i 1.28793i 0.765056 + 0.643964i \(0.222711\pi\)
−0.765056 + 0.643964i \(0.777289\pi\)
\(854\) 0 0
\(855\) 0 0
\(856\) 0 0
\(857\) −581252. + 335586.i −0.791412 + 0.456922i −0.840459 0.541875i \(-0.817715\pi\)
0.0490476 + 0.998796i \(0.484381\pi\)
\(858\) 0 0
\(859\) 50992.8 + 29440.7i 0.0691071 + 0.0398990i 0.534155 0.845386i \(-0.320630\pi\)
−0.465048 + 0.885285i \(0.653963\pi\)
\(860\) 0 0
\(861\) −1214.75 + 6164.83i −0.00163863 + 0.00831601i
\(862\) 0 0
\(863\) −368701. + 638608.i −0.495054 + 0.857458i −0.999984 0.00570214i \(-0.998185\pi\)
0.504930 + 0.863160i \(0.331518\pi\)
\(864\) 0 0
\(865\) 0 0
\(866\) 0 0
\(867\) 1.04674e6i 1.39251i
\(868\) 0 0
\(869\) 139207. 0.184341
\(870\) 0 0
\(871\) 1.83873e6 1.06159e6i 2.42372 1.39933i
\(872\) 0 0
\(873\) 253757. + 146507.i 0.332959 + 0.192234i
\(874\) 0 0
\(875\) 0 0
\(876\) 0 0
\(877\) −250110. + 433203.i −0.325186 + 0.563238i −0.981550 0.191206i \(-0.938760\pi\)
0.656364 + 0.754444i \(0.272093\pi\)
\(878\) 0 0
\(879\) 235168. + 407322.i 0.304368 + 0.527182i
\(880\) 0 0
\(881\) 92648.1i 0.119367i 0.998217 + 0.0596836i \(0.0190092\pi\)
−0.998217 + 0.0596836i \(0.980991\pi\)
\(882\) 0 0
\(883\) 1.16488e6 1.49403 0.747013 0.664810i \(-0.231487\pi\)
0.747013 + 0.664810i \(0.231487\pi\)
\(884\) 0 0
\(885\) 0 0
\(886\) 0 0
\(887\) 270292. + 156053.i 0.343547 + 0.198347i 0.661840 0.749646i \(-0.269776\pi\)
−0.318292 + 0.947993i \(0.603109\pi\)
\(888\) 0 0
\(889\) −1.09792e6 959366.i −1.38921 1.21389i
\(890\) 0 0
\(891\) −21516.8 + 37268.1i −0.0271033 + 0.0469442i
\(892\) 0 0
\(893\) 350851. + 607691.i 0.439966 + 0.762044i
\(894\) 0 0
\(895\) 0 0
\(896\) 0 0
\(897\) −821936. −1.02154
\(898\) 0 0
\(899\) −491636. + 283846.i −0.608309 + 0.351207i
\(900\) 0 0
\(901\) −2.34311e6 1.35279e6i −2.88631 1.66641i
\(902\) 0 0
\(903\) −562018. 110743.i −0.689247 0.135813i
\(904\) 0 0
\(905\) 0 0
\(906\) 0 0
\(907\) 266298. + 461241.i 0.323708 + 0.560678i 0.981250 0.192740i \(-0.0617373\pi\)
−0.657542 + 0.753418i \(0.728404\pi\)
\(908\) 0 0
\(909\) 148825.i 0.180114i
\(910\) 0 0
\(911\) −327869. −0.395060 −0.197530 0.980297i \(-0.563292\pi\)
−0.197530 + 0.980297i \(0.563292\pi\)
\(912\) 0 0
\(913\) −109339. + 63127.0i −0.131170 + 0.0757310i
\(914\) 0 0
\(915\) 0 0
\(916\) 0 0
\(917\) −95159.0 278684.i −0.113165 0.331416i
\(918\) 0 0
\(919\) 504033. 873011.i 0.596799 1.03369i −0.396491 0.918038i \(-0.629772\pi\)
0.993290 0.115648i \(-0.0368943\pi\)
\(920\) 0 0
\(921\) 209081. + 362140.i 0.246488 + 0.426930i
\(922\) 0 0
\(923\) 1.28638e6i 1.50996i
\(924\) 0 0
\(925\) 0 0
\(926\) 0 0
\(927\) −73220.6 + 42274.0i −0.0852067 + 0.0491941i
\(928\) 0 0
\(929\) 280859. + 162154.i 0.325430 + 0.187887i 0.653810 0.756659i \(-0.273169\pi\)
−0.328380 + 0.944546i \(0.606503\pi\)
\(930\) 0 0
\(931\) −168811. + 411723.i −0.194761 + 0.475013i
\(932\) 0 0
\(933\) 332074. 575168.i 0.381479 0.660742i
\(934\) 0 0
\(935\) 0 0
\(936\) 0 0
\(937\) 651900.i 0.742510i −0.928531 0.371255i \(-0.878928\pi\)
0.928531 0.371255i \(-0.121072\pi\)
\(938\) 0 0
\(939\) −39533.6 −0.0448368
\(940\) 0 0
\(941\) 430681. 248654.i 0.486380 0.280812i −0.236691 0.971585i \(-0.576063\pi\)
0.723072 + 0.690773i \(0.242730\pi\)
\(942\) 0 0
\(943\) −7117.80 4109.46i −0.00800428 0.00462127i
\(944\) 0 0
\(945\) 0 0
\(946\) 0 0
\(947\) 10503.2 18192.0i 0.0117117 0.0202853i −0.860110 0.510108i \(-0.829605\pi\)
0.871822 + 0.489823i \(0.162939\pi\)
\(948\) 0 0
\(949\) 1.41947e6 + 2.45859e6i 1.57613 + 2.72994i
\(950\) 0 0
\(951\) 696063.i 0.769640i
\(952\) 0 0
\(953\) −935565. −1.03012 −0.515060 0.857154i \(-0.672231\pi\)
−0.515060 + 0.857154i \(0.672231\pi\)
\(954\) 0 0
\(955\) 0 0
\(956\) 0 0
\(957\) −113476. 65515.2i −0.123902 0.0715349i
\(958\) 0 0
\(959\) −22249.7 + 112917.i −0.0241929 + 0.122778i
\(960\) 0 0
\(961\) −161424. + 279595.i −0.174792 + 0.302749i
\(962\) 0 0
\(963\) −279991. 484959.i −0.301920 0.522941i
\(964\) 0 0
\(965\) 0 0
\(966\) 0 0
\(967\) −602673. −0.644509 −0.322255 0.946653i \(-0.604441\pi\)
−0.322255 + 0.946653i \(0.604441\pi\)
\(968\) 0 0
\(969\) 505463. 291829.i 0.538322 0.310800i
\(970\) 0 0
\(971\) −1.27656e6 737020.i −1.35395 0.781701i −0.365147 0.930950i \(-0.618981\pi\)
−0.988800 + 0.149249i \(0.952315\pi\)
\(972\) 0 0
\(973\) 289593. 331417.i 0.305888 0.350065i
\(974\) 0 0
\(975\) 0 0
\(976\) 0 0
\(977\) −338681. 586613.i −0.354815 0.614558i 0.632271 0.774747i \(-0.282123\pi\)
−0.987086 + 0.160189i \(0.948789\pi\)
\(978\) 0 0
\(979\) 382566.i 0.399155i
\(980\) 0 0
\(981\) 337067. 0.350250
\(982\) 0 0
\(983\) −1.04535e6 + 603535.i −1.08182 + 0.624590i −0.931387 0.364030i \(-0.881401\pi\)
−0.150435 + 0.988620i \(0.548067\pi\)
\(984\) 0 0
\(985\) 0 0
\(986\) 0 0
\(987\) −880672. 769535.i −0.904024 0.789940i
\(988\) 0 0
\(989\) 374640. 648896.i 0.383020 0.663410i
\(990\) 0 0
\(991\) 747522. + 1.29475e6i 0.761161 + 1.31837i 0.942253 + 0.334903i \(0.108704\pi\)
−0.181092 + 0.983466i \(0.557963\pi\)
\(992\) 0 0
\(993\) 793412.i 0.804638i
\(994\) 0 0
\(995\) 0 0
\(996\) 0 0
\(997\) 242061. 139754.i 0.243520 0.140597i −0.373273 0.927721i \(-0.621765\pi\)
0.616794 + 0.787125i \(0.288431\pi\)
\(998\) 0 0
\(999\) 485635. + 280381.i 0.486607 + 0.280943i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 700.5.s.d.201.4 yes 22
5.2 odd 4 700.5.o.c.649.15 44
5.3 odd 4 700.5.o.c.649.8 44
5.4 even 2 700.5.s.c.201.8 yes 22
7.3 odd 6 inner 700.5.s.d.101.4 yes 22
35.3 even 12 700.5.o.c.549.15 44
35.17 even 12 700.5.o.c.549.8 44
35.24 odd 6 700.5.s.c.101.8 22
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
700.5.o.c.549.8 44 35.17 even 12
700.5.o.c.549.15 44 35.3 even 12
700.5.o.c.649.8 44 5.3 odd 4
700.5.o.c.649.15 44 5.2 odd 4
700.5.s.c.101.8 22 35.24 odd 6
700.5.s.c.201.8 yes 22 5.4 even 2
700.5.s.d.101.4 yes 22 7.3 odd 6 inner
700.5.s.d.201.4 yes 22 1.1 even 1 trivial