Properties

Label 704.2.m.f.641.1
Level $704$
Weight $2$
Character 704.641
Analytic conductor $5.621$
Analytic rank $0$
Dimension $4$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [704,2,Mod(257,704)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(704, base_ring=CyclotomicField(10))
 
chi = DirichletCharacter(H, H._module([0, 0, 2]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("704.257");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 704 = 2^{6} \cdot 11 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 704.m (of order \(5\), degree \(4\), not minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(5.62146830230\)
Analytic rank: \(0\)
Dimension: \(4\)
Coefficient field: \(\Q(\zeta_{10})\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{4} - x^{3} + x^{2} - x + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2, a_3]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 352)
Sato-Tate group: $\mathrm{SU}(2)[C_{5}]$

Embedding invariants

Embedding label 641.1
Root \(0.809017 + 0.587785i\) of defining polynomial
Character \(\chi\) \(=\) 704.641
Dual form 704.2.m.f.257.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(0.500000 + 1.53884i) q^{3} +(2.61803 + 1.90211i) q^{5} +(-1.38197 + 4.25325i) q^{7} +(0.309017 - 0.224514i) q^{9} +(3.30902 + 0.224514i) q^{11} +(1.00000 - 0.726543i) q^{13} +(-1.61803 + 4.97980i) q^{15} +(-1.50000 - 1.08981i) q^{17} +(-1.66312 - 5.11855i) q^{19} -7.23607 q^{21} -5.23607 q^{23} +(1.69098 + 5.20431i) q^{25} +(4.42705 + 3.21644i) q^{27} +(2.61803 - 8.05748i) q^{29} +(0.381966 - 0.277515i) q^{31} +(1.30902 + 5.20431i) q^{33} +(-11.7082 + 8.50651i) q^{35} +(-2.85410 + 8.78402i) q^{37} +(1.61803 + 1.17557i) q^{39} +(-2.26393 - 6.96767i) q^{41} +4.09017 q^{43} +1.23607 q^{45} +(-2.00000 - 6.15537i) q^{47} +(-10.5172 - 7.64121i) q^{49} +(0.927051 - 2.85317i) q^{51} +(5.23607 - 3.80423i) q^{53} +(8.23607 + 6.88191i) q^{55} +(7.04508 - 5.11855i) q^{57} +(-2.80902 + 8.64527i) q^{59} +(2.00000 + 1.45309i) q^{61} +(0.527864 + 1.62460i) q^{63} +4.00000 q^{65} -1.38197 q^{67} +(-2.61803 - 8.05748i) q^{69} +(3.00000 + 2.17963i) q^{71} +(-1.26393 + 3.88998i) q^{73} +(-7.16312 + 5.20431i) q^{75} +(-5.52786 + 13.7638i) q^{77} +(-4.85410 + 3.52671i) q^{79} +(-2.38197 + 7.33094i) q^{81} +(1.92705 + 1.40008i) q^{83} +(-1.85410 - 5.70634i) q^{85} +13.7082 q^{87} +6.38197 q^{89} +(1.70820 + 5.25731i) q^{91} +(0.618034 + 0.449028i) q^{93} +(5.38197 - 16.5640i) q^{95} +(-4.54508 + 3.30220i) q^{97} +(1.07295 - 0.673542i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 4 q + 2 q^{3} + 6 q^{5} - 10 q^{7} - q^{9} + 11 q^{11} + 4 q^{13} - 2 q^{15} - 6 q^{17} + 9 q^{19} - 20 q^{21} - 12 q^{23} + 9 q^{25} + 11 q^{27} + 6 q^{29} + 6 q^{31} + 3 q^{33} - 20 q^{35} + 2 q^{37}+ \cdots + 11 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/704\mathbb{Z}\right)^\times\).

\(n\) \(133\) \(321\) \(639\)
\(\chi(n)\) \(1\) \(e\left(\frac{4}{5}\right)\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 0.500000 + 1.53884i 0.288675 + 0.888451i 0.985273 + 0.170989i \(0.0546962\pi\)
−0.696598 + 0.717462i \(0.745304\pi\)
\(4\) 0 0
\(5\) 2.61803 + 1.90211i 1.17082 + 0.850651i 0.991107 0.133068i \(-0.0424829\pi\)
0.179714 + 0.983719i \(0.442483\pi\)
\(6\) 0 0
\(7\) −1.38197 + 4.25325i −0.522334 + 1.60758i 0.247194 + 0.968966i \(0.420491\pi\)
−0.769528 + 0.638613i \(0.779509\pi\)
\(8\) 0 0
\(9\) 0.309017 0.224514i 0.103006 0.0748380i
\(10\) 0 0
\(11\) 3.30902 + 0.224514i 0.997706 + 0.0676935i
\(12\) 0 0
\(13\) 1.00000 0.726543i 0.277350 0.201507i −0.440411 0.897796i \(-0.645167\pi\)
0.717761 + 0.696290i \(0.245167\pi\)
\(14\) 0 0
\(15\) −1.61803 + 4.97980i −0.417775 + 1.28578i
\(16\) 0 0
\(17\) −1.50000 1.08981i −0.363803 0.264319i 0.390833 0.920461i \(-0.372187\pi\)
−0.754637 + 0.656143i \(0.772187\pi\)
\(18\) 0 0
\(19\) −1.66312 5.11855i −0.381546 1.17428i −0.938955 0.344039i \(-0.888205\pi\)
0.557410 0.830238i \(-0.311795\pi\)
\(20\) 0 0
\(21\) −7.23607 −1.57904
\(22\) 0 0
\(23\) −5.23607 −1.09180 −0.545898 0.837852i \(-0.683811\pi\)
−0.545898 + 0.837852i \(0.683811\pi\)
\(24\) 0 0
\(25\) 1.69098 + 5.20431i 0.338197 + 1.04086i
\(26\) 0 0
\(27\) 4.42705 + 3.21644i 0.851986 + 0.619004i
\(28\) 0 0
\(29\) 2.61803 8.05748i 0.486157 1.49624i −0.344142 0.938918i \(-0.611830\pi\)
0.830299 0.557319i \(-0.188170\pi\)
\(30\) 0 0
\(31\) 0.381966 0.277515i 0.0686031 0.0498431i −0.552955 0.833211i \(-0.686500\pi\)
0.621558 + 0.783368i \(0.286500\pi\)
\(32\) 0 0
\(33\) 1.30902 + 5.20431i 0.227871 + 0.905954i
\(34\) 0 0
\(35\) −11.7082 + 8.50651i −1.97905 + 1.43786i
\(36\) 0 0
\(37\) −2.85410 + 8.78402i −0.469211 + 1.44408i 0.384396 + 0.923168i \(0.374410\pi\)
−0.853608 + 0.520916i \(0.825590\pi\)
\(38\) 0 0
\(39\) 1.61803 + 1.17557i 0.259093 + 0.188242i
\(40\) 0 0
\(41\) −2.26393 6.96767i −0.353567 1.08817i −0.956836 0.290629i \(-0.906135\pi\)
0.603269 0.797538i \(-0.293865\pi\)
\(42\) 0 0
\(43\) 4.09017 0.623745 0.311873 0.950124i \(-0.399044\pi\)
0.311873 + 0.950124i \(0.399044\pi\)
\(44\) 0 0
\(45\) 1.23607 0.184262
\(46\) 0 0
\(47\) −2.00000 6.15537i −0.291730 0.897853i −0.984300 0.176502i \(-0.943522\pi\)
0.692570 0.721350i \(-0.256478\pi\)
\(48\) 0 0
\(49\) −10.5172 7.64121i −1.50246 1.09160i
\(50\) 0 0
\(51\) 0.927051 2.85317i 0.129813 0.399524i
\(52\) 0 0
\(53\) 5.23607 3.80423i 0.719229 0.522551i −0.166909 0.985972i \(-0.553378\pi\)
0.886138 + 0.463422i \(0.153378\pi\)
\(54\) 0 0
\(55\) 8.23607 + 6.88191i 1.11055 + 0.927957i
\(56\) 0 0
\(57\) 7.04508 5.11855i 0.933144 0.677969i
\(58\) 0 0
\(59\) −2.80902 + 8.64527i −0.365703 + 1.12552i 0.583837 + 0.811871i \(0.301551\pi\)
−0.949540 + 0.313647i \(0.898449\pi\)
\(60\) 0 0
\(61\) 2.00000 + 1.45309i 0.256074 + 0.186048i 0.708414 0.705797i \(-0.249411\pi\)
−0.452341 + 0.891845i \(0.649411\pi\)
\(62\) 0 0
\(63\) 0.527864 + 1.62460i 0.0665046 + 0.204680i
\(64\) 0 0
\(65\) 4.00000 0.496139
\(66\) 0 0
\(67\) −1.38197 −0.168834 −0.0844170 0.996431i \(-0.526903\pi\)
−0.0844170 + 0.996431i \(0.526903\pi\)
\(68\) 0 0
\(69\) −2.61803 8.05748i −0.315174 0.970007i
\(70\) 0 0
\(71\) 3.00000 + 2.17963i 0.356034 + 0.258674i 0.751396 0.659851i \(-0.229381\pi\)
−0.395362 + 0.918526i \(0.629381\pi\)
\(72\) 0 0
\(73\) −1.26393 + 3.88998i −0.147932 + 0.455288i −0.997376 0.0723902i \(-0.976937\pi\)
0.849444 + 0.527678i \(0.176937\pi\)
\(74\) 0 0
\(75\) −7.16312 + 5.20431i −0.827126 + 0.600942i
\(76\) 0 0
\(77\) −5.52786 + 13.7638i −0.629959 + 1.56853i
\(78\) 0 0
\(79\) −4.85410 + 3.52671i −0.546129 + 0.396786i −0.826356 0.563148i \(-0.809590\pi\)
0.280227 + 0.959934i \(0.409590\pi\)
\(80\) 0 0
\(81\) −2.38197 + 7.33094i −0.264663 + 0.814549i
\(82\) 0 0
\(83\) 1.92705 + 1.40008i 0.211521 + 0.153679i 0.688502 0.725235i \(-0.258269\pi\)
−0.476980 + 0.878914i \(0.658269\pi\)
\(84\) 0 0
\(85\) −1.85410 5.70634i −0.201106 0.618939i
\(86\) 0 0
\(87\) 13.7082 1.46967
\(88\) 0 0
\(89\) 6.38197 0.676487 0.338244 0.941059i \(-0.390167\pi\)
0.338244 + 0.941059i \(0.390167\pi\)
\(90\) 0 0
\(91\) 1.70820 + 5.25731i 0.179068 + 0.551116i
\(92\) 0 0
\(93\) 0.618034 + 0.449028i 0.0640871 + 0.0465620i
\(94\) 0 0
\(95\) 5.38197 16.5640i 0.552178 1.69943i
\(96\) 0 0
\(97\) −4.54508 + 3.30220i −0.461483 + 0.335287i −0.794113 0.607770i \(-0.792064\pi\)
0.332629 + 0.943058i \(0.392064\pi\)
\(98\) 0 0
\(99\) 1.07295 0.673542i 0.107835 0.0676935i
\(100\) 0 0
\(101\) −1.85410 + 1.34708i −0.184490 + 0.134040i −0.676197 0.736721i \(-0.736373\pi\)
0.491707 + 0.870761i \(0.336373\pi\)
\(102\) 0 0
\(103\) 5.32624 16.3925i 0.524810 1.61520i −0.239882 0.970802i \(-0.577109\pi\)
0.764692 0.644396i \(-0.222891\pi\)
\(104\) 0 0
\(105\) −18.9443 13.7638i −1.84877 1.34321i
\(106\) 0 0
\(107\) −1.02786 3.16344i −0.0993674 0.305821i 0.889000 0.457907i \(-0.151401\pi\)
−0.988367 + 0.152086i \(0.951401\pi\)
\(108\) 0 0
\(109\) −2.94427 −0.282010 −0.141005 0.990009i \(-0.545033\pi\)
−0.141005 + 0.990009i \(0.545033\pi\)
\(110\) 0 0
\(111\) −14.9443 −1.41845
\(112\) 0 0
\(113\) 5.89919 + 18.1558i 0.554949 + 1.70796i 0.696078 + 0.717966i \(0.254927\pi\)
−0.141130 + 0.989991i \(0.545073\pi\)
\(114\) 0 0
\(115\) −13.7082 9.95959i −1.27830 0.928737i
\(116\) 0 0
\(117\) 0.145898 0.449028i 0.0134883 0.0415127i
\(118\) 0 0
\(119\) 6.70820 4.87380i 0.614940 0.446780i
\(120\) 0 0
\(121\) 10.8992 + 1.48584i 0.990835 + 0.135076i
\(122\) 0 0
\(123\) 9.59017 6.96767i 0.864717 0.628253i
\(124\) 0 0
\(125\) −0.472136 + 1.45309i −0.0422291 + 0.129968i
\(126\) 0 0
\(127\) −16.5623 12.0332i −1.46967 1.06778i −0.980710 0.195468i \(-0.937378\pi\)
−0.488957 0.872308i \(-0.662622\pi\)
\(128\) 0 0
\(129\) 2.04508 + 6.29412i 0.180060 + 0.554167i
\(130\) 0 0
\(131\) −1.09017 −0.0952486 −0.0476243 0.998865i \(-0.515165\pi\)
−0.0476243 + 0.998865i \(0.515165\pi\)
\(132\) 0 0
\(133\) 24.0689 2.08704
\(134\) 0 0
\(135\) 5.47214 + 16.8415i 0.470966 + 1.44949i
\(136\) 0 0
\(137\) 7.92705 + 5.75934i 0.677254 + 0.492054i 0.872445 0.488711i \(-0.162533\pi\)
−0.195192 + 0.980765i \(0.562533\pi\)
\(138\) 0 0
\(139\) 5.23607 16.1150i 0.444117 1.36685i −0.439331 0.898325i \(-0.644785\pi\)
0.883449 0.468528i \(-0.155215\pi\)
\(140\) 0 0
\(141\) 8.47214 6.15537i 0.713483 0.518375i
\(142\) 0 0
\(143\) 3.47214 2.17963i 0.290355 0.182270i
\(144\) 0 0
\(145\) 22.1803 16.1150i 1.84198 1.33827i
\(146\) 0 0
\(147\) 6.50000 20.0049i 0.536111 1.64998i
\(148\) 0 0
\(149\) −3.47214 2.52265i −0.284448 0.206664i 0.436407 0.899749i \(-0.356251\pi\)
−0.720855 + 0.693086i \(0.756251\pi\)
\(150\) 0 0
\(151\) −4.00000 12.3107i −0.325515 1.00183i −0.971207 0.238235i \(-0.923431\pi\)
0.645692 0.763598i \(-0.276569\pi\)
\(152\) 0 0
\(153\) −0.708204 −0.0572549
\(154\) 0 0
\(155\) 1.52786 0.122721
\(156\) 0 0
\(157\) −3.00000 9.23305i −0.239426 0.736878i −0.996503 0.0835524i \(-0.973373\pi\)
0.757077 0.653325i \(-0.226627\pi\)
\(158\) 0 0
\(159\) 8.47214 + 6.15537i 0.671884 + 0.488152i
\(160\) 0 0
\(161\) 7.23607 22.2703i 0.570282 1.75515i
\(162\) 0 0
\(163\) 17.0623 12.3965i 1.33642 0.970968i 0.336856 0.941556i \(-0.390637\pi\)
0.999567 0.0294118i \(-0.00936341\pi\)
\(164\) 0 0
\(165\) −6.47214 + 16.1150i −0.503855 + 1.25455i
\(166\) 0 0
\(167\) −10.2361 + 7.43694i −0.792091 + 0.575488i −0.908583 0.417704i \(-0.862835\pi\)
0.116492 + 0.993192i \(0.462835\pi\)
\(168\) 0 0
\(169\) −3.54508 + 10.9106i −0.272699 + 0.839281i
\(170\) 0 0
\(171\) −1.66312 1.20833i −0.127182 0.0924030i
\(172\) 0 0
\(173\) 2.76393 + 8.50651i 0.210138 + 0.646738i 0.999463 + 0.0327626i \(0.0104305\pi\)
−0.789325 + 0.613975i \(0.789569\pi\)
\(174\) 0 0
\(175\) −24.4721 −1.84992
\(176\) 0 0
\(177\) −14.7082 −1.10554
\(178\) 0 0
\(179\) −2.98936 9.20029i −0.223435 0.687662i −0.998447 0.0557154i \(-0.982256\pi\)
0.775012 0.631947i \(-0.217744\pi\)
\(180\) 0 0
\(181\) 0.618034 + 0.449028i 0.0459381 + 0.0333760i 0.610517 0.792003i \(-0.290962\pi\)
−0.564579 + 0.825379i \(0.690962\pi\)
\(182\) 0 0
\(183\) −1.23607 + 3.80423i −0.0913728 + 0.281216i
\(184\) 0 0
\(185\) −24.1803 + 17.5680i −1.77777 + 1.29163i
\(186\) 0 0
\(187\) −4.71885 3.94298i −0.345076 0.288339i
\(188\) 0 0
\(189\) −19.7984 + 14.3844i −1.44012 + 1.04631i
\(190\) 0 0
\(191\) 1.76393 5.42882i 0.127634 0.392816i −0.866738 0.498764i \(-0.833788\pi\)
0.994372 + 0.105948i \(0.0337876\pi\)
\(192\) 0 0
\(193\) −14.0902 10.2371i −1.01423 0.736883i −0.0491400 0.998792i \(-0.515648\pi\)
−0.965093 + 0.261909i \(0.915648\pi\)
\(194\) 0 0
\(195\) 2.00000 + 6.15537i 0.143223 + 0.440795i
\(196\) 0 0
\(197\) 8.00000 0.569976 0.284988 0.958531i \(-0.408010\pi\)
0.284988 + 0.958531i \(0.408010\pi\)
\(198\) 0 0
\(199\) 22.3607 1.58511 0.792553 0.609803i \(-0.208751\pi\)
0.792553 + 0.609803i \(0.208751\pi\)
\(200\) 0 0
\(201\) −0.690983 2.12663i −0.0487382 0.150001i
\(202\) 0 0
\(203\) 30.6525 + 22.2703i 2.15138 + 1.56307i
\(204\) 0 0
\(205\) 7.32624 22.5478i 0.511687 1.57481i
\(206\) 0 0
\(207\) −1.61803 + 1.17557i −0.112461 + 0.0817078i
\(208\) 0 0
\(209\) −4.35410 17.3108i −0.301180 1.19741i
\(210\) 0 0
\(211\) −0.0729490 + 0.0530006i −0.00502202 + 0.00364871i −0.590293 0.807189i \(-0.700988\pi\)
0.585271 + 0.810837i \(0.300988\pi\)
\(212\) 0 0
\(213\) −1.85410 + 5.70634i −0.127041 + 0.390992i
\(214\) 0 0
\(215\) 10.7082 + 7.77997i 0.730293 + 0.530589i
\(216\) 0 0
\(217\) 0.652476 + 2.00811i 0.0442929 + 0.136320i
\(218\) 0 0
\(219\) −6.61803 −0.447205
\(220\) 0 0
\(221\) −2.29180 −0.154163
\(222\) 0 0
\(223\) −0.708204 2.17963i −0.0474248 0.145959i 0.924540 0.381085i \(-0.124450\pi\)
−0.971965 + 0.235127i \(0.924450\pi\)
\(224\) 0 0
\(225\) 1.69098 + 1.22857i 0.112732 + 0.0819047i
\(226\) 0 0
\(227\) −7.37132 + 22.6866i −0.489252 + 1.50576i 0.336475 + 0.941692i \(0.390765\pi\)
−0.825727 + 0.564070i \(0.809235\pi\)
\(228\) 0 0
\(229\) −13.0902 + 9.51057i −0.865023 + 0.628476i −0.929247 0.369460i \(-0.879543\pi\)
0.0642240 + 0.997936i \(0.479543\pi\)
\(230\) 0 0
\(231\) −23.9443 1.62460i −1.57542 0.106891i
\(232\) 0 0
\(233\) −6.39919 + 4.64928i −0.419225 + 0.304585i −0.777326 0.629098i \(-0.783424\pi\)
0.358101 + 0.933683i \(0.383424\pi\)
\(234\) 0 0
\(235\) 6.47214 19.9192i 0.422196 1.29938i
\(236\) 0 0
\(237\) −7.85410 5.70634i −0.510179 0.370667i
\(238\) 0 0
\(239\) 4.41641 + 13.5923i 0.285674 + 0.879213i 0.986196 + 0.165583i \(0.0529505\pi\)
−0.700522 + 0.713631i \(0.747050\pi\)
\(240\) 0 0
\(241\) 28.3262 1.82465 0.912327 0.409463i \(-0.134284\pi\)
0.912327 + 0.409463i \(0.134284\pi\)
\(242\) 0 0
\(243\) 3.94427 0.253025
\(244\) 0 0
\(245\) −13.0000 40.0099i −0.830540 2.55614i
\(246\) 0 0
\(247\) −5.38197 3.91023i −0.342446 0.248802i
\(248\) 0 0
\(249\) −1.19098 + 3.66547i −0.0754755 + 0.232290i
\(250\) 0 0
\(251\) 3.23607 2.35114i 0.204259 0.148403i −0.480953 0.876746i \(-0.659709\pi\)
0.685212 + 0.728343i \(0.259709\pi\)
\(252\) 0 0
\(253\) −17.3262 1.17557i −1.08929 0.0739075i
\(254\) 0 0
\(255\) 7.85410 5.70634i 0.491843 0.357345i
\(256\) 0 0
\(257\) −5.73607 + 17.6538i −0.357806 + 1.10121i 0.596558 + 0.802570i \(0.296534\pi\)
−0.954365 + 0.298644i \(0.903466\pi\)
\(258\) 0 0
\(259\) −33.4164 24.2784i −2.07639 1.50859i
\(260\) 0 0
\(261\) −1.00000 3.07768i −0.0618984 0.190504i
\(262\) 0 0
\(263\) −0.180340 −0.0111202 −0.00556012 0.999985i \(-0.501770\pi\)
−0.00556012 + 0.999985i \(0.501770\pi\)
\(264\) 0 0
\(265\) 20.9443 1.28660
\(266\) 0 0
\(267\) 3.19098 + 9.82084i 0.195285 + 0.601025i
\(268\) 0 0
\(269\) 11.4721 + 8.33499i 0.699468 + 0.508194i 0.879759 0.475420i \(-0.157704\pi\)
−0.180291 + 0.983613i \(0.557704\pi\)
\(270\) 0 0
\(271\) −2.61803 + 8.05748i −0.159034 + 0.489457i −0.998547 0.0538825i \(-0.982840\pi\)
0.839513 + 0.543340i \(0.182840\pi\)
\(272\) 0 0
\(273\) −7.23607 + 5.25731i −0.437947 + 0.318187i
\(274\) 0 0
\(275\) 4.42705 + 17.6008i 0.266961 + 1.06137i
\(276\) 0 0
\(277\) 8.23607 5.98385i 0.494857 0.359535i −0.312192 0.950019i \(-0.601063\pi\)
0.807049 + 0.590484i \(0.201063\pi\)
\(278\) 0 0
\(279\) 0.0557281 0.171513i 0.00333635 0.0102682i
\(280\) 0 0
\(281\) −19.6353 14.2658i −1.17134 0.851029i −0.180172 0.983635i \(-0.557666\pi\)
−0.991169 + 0.132606i \(0.957666\pi\)
\(282\) 0 0
\(283\) 2.76393 + 8.50651i 0.164299 + 0.505659i 0.998984 0.0450679i \(-0.0143504\pi\)
−0.834685 + 0.550727i \(0.814350\pi\)
\(284\) 0 0
\(285\) 28.1803 1.66926
\(286\) 0 0
\(287\) 32.7639 1.93399
\(288\) 0 0
\(289\) −4.19098 12.8985i −0.246528 0.758736i
\(290\) 0 0
\(291\) −7.35410 5.34307i −0.431105 0.313216i
\(292\) 0 0
\(293\) −4.18034 + 12.8658i −0.244218 + 0.751626i 0.751546 + 0.659681i \(0.229308\pi\)
−0.995764 + 0.0919452i \(0.970692\pi\)
\(294\) 0 0
\(295\) −23.7984 + 17.2905i −1.38559 + 1.00669i
\(296\) 0 0
\(297\) 13.9271 + 11.6372i 0.808129 + 0.675258i
\(298\) 0 0
\(299\) −5.23607 + 3.80423i −0.302810 + 0.220004i
\(300\) 0 0
\(301\) −5.65248 + 17.3965i −0.325803 + 1.00272i
\(302\) 0 0
\(303\) −3.00000 2.17963i −0.172345 0.125216i
\(304\) 0 0
\(305\) 2.47214 + 7.60845i 0.141554 + 0.435659i
\(306\) 0 0
\(307\) −4.85410 −0.277038 −0.138519 0.990360i \(-0.544234\pi\)
−0.138519 + 0.990360i \(0.544234\pi\)
\(308\) 0 0
\(309\) 27.8885 1.58652
\(310\) 0 0
\(311\) −2.70820 8.33499i −0.153568 0.472634i 0.844445 0.535643i \(-0.179931\pi\)
−0.998013 + 0.0630083i \(0.979931\pi\)
\(312\) 0 0
\(313\) −12.4443 9.04129i −0.703392 0.511044i 0.177643 0.984095i \(-0.443153\pi\)
−0.881035 + 0.473051i \(0.843153\pi\)
\(314\) 0 0
\(315\) −1.70820 + 5.25731i −0.0962464 + 0.296216i
\(316\) 0 0
\(317\) −1.47214 + 1.06957i −0.0826834 + 0.0600730i −0.628359 0.777923i \(-0.716273\pi\)
0.545676 + 0.837997i \(0.316273\pi\)
\(318\) 0 0
\(319\) 10.4721 26.0746i 0.586327 1.45989i
\(320\) 0 0
\(321\) 4.35410 3.16344i 0.243022 0.176566i
\(322\) 0 0
\(323\) −3.08359 + 9.49032i −0.171576 + 0.528056i
\(324\) 0 0
\(325\) 5.47214 + 3.97574i 0.303539 + 0.220534i
\(326\) 0 0
\(327\) −1.47214 4.53077i −0.0814093 0.250552i
\(328\) 0 0
\(329\) 28.9443 1.59575
\(330\) 0 0
\(331\) −29.7984 −1.63787 −0.818933 0.573889i \(-0.805434\pi\)
−0.818933 + 0.573889i \(0.805434\pi\)
\(332\) 0 0
\(333\) 1.09017 + 3.35520i 0.0597409 + 0.183864i
\(334\) 0 0
\(335\) −3.61803 2.62866i −0.197674 0.143619i
\(336\) 0 0
\(337\) −6.75329 + 20.7845i −0.367875 + 1.13220i 0.580286 + 0.814413i \(0.302941\pi\)
−0.948161 + 0.317790i \(0.897059\pi\)
\(338\) 0 0
\(339\) −24.9894 + 18.1558i −1.35724 + 0.986089i
\(340\) 0 0
\(341\) 1.32624 0.832544i 0.0718198 0.0450848i
\(342\) 0 0
\(343\) 21.7082 15.7719i 1.17213 0.851604i
\(344\) 0 0
\(345\) 8.47214 26.0746i 0.456124 1.40381i
\(346\) 0 0
\(347\) 11.5902 + 8.42075i 0.622193 + 0.452050i 0.853687 0.520787i \(-0.174361\pi\)
−0.231494 + 0.972836i \(0.574361\pi\)
\(348\) 0 0
\(349\) 6.41641 + 19.7477i 0.343462 + 1.05707i 0.962402 + 0.271630i \(0.0875627\pi\)
−0.618939 + 0.785439i \(0.712437\pi\)
\(350\) 0 0
\(351\) 6.76393 0.361032
\(352\) 0 0
\(353\) 26.5066 1.41080 0.705401 0.708808i \(-0.250767\pi\)
0.705401 + 0.708808i \(0.250767\pi\)
\(354\) 0 0
\(355\) 3.70820 + 11.4127i 0.196811 + 0.605722i
\(356\) 0 0
\(357\) 10.8541 + 7.88597i 0.574460 + 0.417370i
\(358\) 0 0
\(359\) −1.76393 + 5.42882i −0.0930968 + 0.286522i −0.986753 0.162230i \(-0.948131\pi\)
0.893656 + 0.448752i \(0.148131\pi\)
\(360\) 0 0
\(361\) −8.06231 + 5.85761i −0.424332 + 0.308295i
\(362\) 0 0
\(363\) 3.16312 + 17.5150i 0.166021 + 0.919301i
\(364\) 0 0
\(365\) −10.7082 + 7.77997i −0.560493 + 0.407222i
\(366\) 0 0
\(367\) −6.38197 + 19.6417i −0.333136 + 1.02529i 0.634497 + 0.772925i \(0.281207\pi\)
−0.967633 + 0.252362i \(0.918793\pi\)
\(368\) 0 0
\(369\) −2.26393 1.64484i −0.117856 0.0856271i
\(370\) 0 0
\(371\) 8.94427 + 27.5276i 0.464363 + 1.42916i
\(372\) 0 0
\(373\) −16.6525 −0.862233 −0.431116 0.902296i \(-0.641880\pi\)
−0.431116 + 0.902296i \(0.641880\pi\)
\(374\) 0 0
\(375\) −2.47214 −0.127661
\(376\) 0 0
\(377\) −3.23607 9.95959i −0.166666 0.512945i
\(378\) 0 0
\(379\) −0.836881 0.608030i −0.0429877 0.0312324i 0.566084 0.824348i \(-0.308458\pi\)
−0.609072 + 0.793115i \(0.708458\pi\)
\(380\) 0 0
\(381\) 10.2361 31.5034i 0.524410 1.61397i
\(382\) 0 0
\(383\) 6.00000 4.35926i 0.306586 0.222748i −0.423844 0.905735i \(-0.639320\pi\)
0.730430 + 0.682987i \(0.239320\pi\)
\(384\) 0 0
\(385\) −40.6525 + 25.5195i −2.07184 + 1.30060i
\(386\) 0 0
\(387\) 1.26393 0.918300i 0.0642493 0.0466798i
\(388\) 0 0
\(389\) 1.18034 3.63271i 0.0598456 0.184186i −0.916664 0.399658i \(-0.869129\pi\)
0.976510 + 0.215472i \(0.0691290\pi\)
\(390\) 0 0
\(391\) 7.85410 + 5.70634i 0.397199 + 0.288582i
\(392\) 0 0
\(393\) −0.545085 1.67760i −0.0274959 0.0846237i
\(394\) 0 0
\(395\) −19.4164 −0.976946
\(396\) 0 0
\(397\) −8.76393 −0.439849 −0.219925 0.975517i \(-0.570581\pi\)
−0.219925 + 0.975517i \(0.570581\pi\)
\(398\) 0 0
\(399\) 12.0344 + 37.0382i 0.602476 + 1.85423i
\(400\) 0 0
\(401\) −10.2533 7.44945i −0.512025 0.372008i 0.301566 0.953445i \(-0.402491\pi\)
−0.813591 + 0.581437i \(0.802491\pi\)
\(402\) 0 0
\(403\) 0.180340 0.555029i 0.00898337 0.0276480i
\(404\) 0 0
\(405\) −20.1803 + 14.6619i −1.00277 + 0.728554i
\(406\) 0 0
\(407\) −11.4164 + 28.4257i −0.565890 + 1.40901i
\(408\) 0 0
\(409\) −10.0902 + 7.33094i −0.498927 + 0.362492i −0.808607 0.588349i \(-0.799778\pi\)
0.309680 + 0.950841i \(0.399778\pi\)
\(410\) 0 0
\(411\) −4.89919 + 15.0781i −0.241659 + 0.743750i
\(412\) 0 0
\(413\) −32.8885 23.8949i −1.61834 1.17579i
\(414\) 0 0
\(415\) 2.38197 + 7.33094i 0.116926 + 0.359862i
\(416\) 0 0
\(417\) 27.4164 1.34259
\(418\) 0 0
\(419\) 26.3820 1.28884 0.644422 0.764670i \(-0.277098\pi\)
0.644422 + 0.764670i \(0.277098\pi\)
\(420\) 0 0
\(421\) −6.65248 20.4742i −0.324222 0.997852i −0.971791 0.235845i \(-0.924214\pi\)
0.647569 0.762007i \(-0.275786\pi\)
\(422\) 0 0
\(423\) −2.00000 1.45309i −0.0972433 0.0706514i
\(424\) 0 0
\(425\) 3.13525 9.64932i 0.152082 0.468061i
\(426\) 0 0
\(427\) −8.94427 + 6.49839i −0.432844 + 0.314479i
\(428\) 0 0
\(429\) 5.09017 + 4.25325i 0.245756 + 0.205349i
\(430\) 0 0
\(431\) −24.1803 + 17.5680i −1.16473 + 0.846223i −0.990368 0.138459i \(-0.955785\pi\)
−0.174358 + 0.984682i \(0.555785\pi\)
\(432\) 0 0
\(433\) 1.33688 4.11450i 0.0642464 0.197730i −0.913781 0.406208i \(-0.866851\pi\)
0.978027 + 0.208478i \(0.0668509\pi\)
\(434\) 0 0
\(435\) 35.8885 + 26.0746i 1.72072 + 1.25018i
\(436\) 0 0
\(437\) 8.70820 + 26.8011i 0.416570 + 1.28207i
\(438\) 0 0
\(439\) −6.00000 −0.286364 −0.143182 0.989696i \(-0.545733\pi\)
−0.143182 + 0.989696i \(0.545733\pi\)
\(440\) 0 0
\(441\) −4.96556 −0.236455
\(442\) 0 0
\(443\) −10.7361 33.0422i −0.510086 1.56988i −0.792049 0.610458i \(-0.790985\pi\)
0.281963 0.959425i \(-0.409015\pi\)
\(444\) 0 0
\(445\) 16.7082 + 12.1392i 0.792045 + 0.575454i
\(446\) 0 0
\(447\) 2.14590 6.60440i 0.101497 0.312377i
\(448\) 0 0
\(449\) −9.50000 + 6.90215i −0.448333 + 0.325733i −0.788937 0.614474i \(-0.789368\pi\)
0.340604 + 0.940207i \(0.389368\pi\)
\(450\) 0 0
\(451\) −5.92705 23.5644i −0.279094 1.10960i
\(452\) 0 0
\(453\) 16.9443 12.3107i 0.796111 0.578409i
\(454\) 0 0
\(455\) −5.52786 + 17.0130i −0.259150 + 0.797582i
\(456\) 0 0
\(457\) −7.78115 5.65334i −0.363987 0.264452i 0.390726 0.920507i \(-0.372224\pi\)
−0.754713 + 0.656055i \(0.772224\pi\)
\(458\) 0 0
\(459\) −3.13525 9.64932i −0.146341 0.450392i
\(460\) 0 0
\(461\) 30.6525 1.42763 0.713814 0.700335i \(-0.246966\pi\)
0.713814 + 0.700335i \(0.246966\pi\)
\(462\) 0 0
\(463\) −25.5279 −1.18638 −0.593190 0.805062i \(-0.702132\pi\)
−0.593190 + 0.805062i \(0.702132\pi\)
\(464\) 0 0
\(465\) 0.763932 + 2.35114i 0.0354265 + 0.109032i
\(466\) 0 0
\(467\) −20.6525 15.0049i −0.955683 0.694344i −0.00353857 0.999994i \(-0.501126\pi\)
−0.952144 + 0.305650i \(0.901126\pi\)
\(468\) 0 0
\(469\) 1.90983 5.87785i 0.0881878 0.271414i
\(470\) 0 0
\(471\) 12.7082 9.23305i 0.585563 0.425437i
\(472\) 0 0
\(473\) 13.5344 + 0.918300i 0.622314 + 0.0422235i
\(474\) 0 0
\(475\) 23.8262 17.3108i 1.09322 0.794273i
\(476\) 0 0
\(477\) 0.763932 2.35114i 0.0349780 0.107651i
\(478\) 0 0
\(479\) 31.8885 + 23.1684i 1.45702 + 1.05859i 0.984125 + 0.177474i \(0.0567925\pi\)
0.472899 + 0.881117i \(0.343207\pi\)
\(480\) 0 0
\(481\) 3.52786 + 10.8576i 0.160857 + 0.495066i
\(482\) 0 0
\(483\) 37.8885 1.72399
\(484\) 0 0
\(485\) −18.1803 −0.825527
\(486\) 0 0
\(487\) −10.2361 31.5034i −0.463841 1.42755i −0.860435 0.509560i \(-0.829808\pi\)
0.396594 0.917994i \(-0.370192\pi\)
\(488\) 0 0
\(489\) 27.6074 + 20.0579i 1.24845 + 0.907052i
\(490\) 0 0
\(491\) −2.55573 + 7.86572i −0.115338 + 0.354975i −0.992017 0.126101i \(-0.959754\pi\)
0.876679 + 0.481076i \(0.159754\pi\)
\(492\) 0 0
\(493\) −12.7082 + 9.23305i −0.572349 + 0.415836i
\(494\) 0 0
\(495\) 4.09017 + 0.277515i 0.183839 + 0.0124734i
\(496\) 0 0
\(497\) −13.4164 + 9.74759i −0.601808 + 0.437239i
\(498\) 0 0
\(499\) −12.8607 + 39.5811i −0.575723 + 1.77189i 0.0579807 + 0.998318i \(0.481534\pi\)
−0.633704 + 0.773576i \(0.718466\pi\)
\(500\) 0 0
\(501\) −16.5623 12.0332i −0.739949 0.537605i
\(502\) 0 0
\(503\) −3.18034 9.78808i −0.141804 0.436429i 0.854782 0.518987i \(-0.173691\pi\)
−0.996586 + 0.0825585i \(0.973691\pi\)
\(504\) 0 0
\(505\) −7.41641 −0.330026
\(506\) 0 0
\(507\) −18.5623 −0.824381
\(508\) 0 0
\(509\) 4.09017 + 12.5882i 0.181294 + 0.557964i 0.999865 0.0164407i \(-0.00523347\pi\)
−0.818571 + 0.574405i \(0.805233\pi\)
\(510\) 0 0
\(511\) −14.7984 10.7516i −0.654642 0.475625i
\(512\) 0 0
\(513\) 9.10081 28.0094i 0.401811 1.23665i
\(514\) 0 0
\(515\) 45.1246 32.7849i 1.98843 1.44468i
\(516\) 0 0
\(517\) −5.23607 20.8172i −0.230282 0.915541i
\(518\) 0 0
\(519\) −11.7082 + 8.50651i −0.513933 + 0.373394i
\(520\) 0 0
\(521\) −3.13525 + 9.64932i −0.137358 + 0.422744i −0.995949 0.0899161i \(-0.971340\pi\)
0.858591 + 0.512661i \(0.171340\pi\)
\(522\) 0 0
\(523\) 20.0623 + 14.5761i 0.877263 + 0.637369i 0.932526 0.361103i \(-0.117600\pi\)
−0.0552627 + 0.998472i \(0.517600\pi\)
\(524\) 0 0
\(525\) −12.2361 37.6587i −0.534026 1.64356i
\(526\) 0 0
\(527\) −0.875388 −0.0381325
\(528\) 0 0
\(529\) 4.41641 0.192018
\(530\) 0 0
\(531\) 1.07295 + 3.30220i 0.0465620 + 0.143303i
\(532\) 0 0
\(533\) −7.32624 5.32282i −0.317335 0.230557i
\(534\) 0 0
\(535\) 3.32624 10.2371i 0.143806 0.442589i
\(536\) 0 0
\(537\) 12.6631 9.20029i 0.546454 0.397022i
\(538\) 0 0
\(539\) −33.0861 27.6462i −1.42512 1.19080i
\(540\) 0 0
\(541\) 19.9443 14.4904i 0.857471 0.622989i −0.0697246 0.997566i \(-0.522212\pi\)
0.927196 + 0.374577i \(0.122212\pi\)
\(542\) 0 0
\(543\) −0.381966 + 1.17557i −0.0163917 + 0.0504486i
\(544\) 0 0
\(545\) −7.70820 5.60034i −0.330183 0.239892i
\(546\) 0 0
\(547\) −6.33688 19.5029i −0.270945 0.833884i −0.990264 0.139204i \(-0.955546\pi\)
0.719318 0.694681i \(-0.244454\pi\)
\(548\) 0 0
\(549\) 0.944272 0.0403005
\(550\) 0 0
\(551\) −45.5967 −1.94249
\(552\) 0 0
\(553\) −8.29180 25.5195i −0.352603 1.08520i
\(554\) 0 0
\(555\) −39.1246 28.4257i −1.66075 1.20660i
\(556\) 0 0
\(557\) −0.0557281 + 0.171513i −0.00236127 + 0.00726726i −0.952230 0.305381i \(-0.901216\pi\)
0.949869 + 0.312648i \(0.101216\pi\)
\(558\) 0 0
\(559\) 4.09017 2.97168i 0.172996 0.125689i
\(560\) 0 0
\(561\) 3.70820 9.23305i 0.156560 0.389820i
\(562\) 0 0
\(563\) 14.1074 10.2496i 0.594556 0.431970i −0.249387 0.968404i \(-0.580229\pi\)
0.843942 + 0.536434i \(0.180229\pi\)
\(564\) 0 0
\(565\) −19.0902 + 58.7535i −0.803129 + 2.47178i
\(566\) 0 0
\(567\) −27.8885 20.2622i −1.17121 0.850933i
\(568\) 0 0
\(569\) −4.19098 12.8985i −0.175695 0.540734i 0.823969 0.566634i \(-0.191755\pi\)
−0.999665 + 0.0259003i \(0.991755\pi\)
\(570\) 0 0
\(571\) 22.4721 0.940430 0.470215 0.882552i \(-0.344176\pi\)
0.470215 + 0.882552i \(0.344176\pi\)
\(572\) 0 0
\(573\) 9.23607 0.385842
\(574\) 0 0
\(575\) −8.85410 27.2501i −0.369242 1.13641i
\(576\) 0 0
\(577\) −27.4443 19.9394i −1.14252 0.830089i −0.155052 0.987906i \(-0.549554\pi\)
−0.987468 + 0.157817i \(0.949554\pi\)
\(578\) 0 0
\(579\) 8.70820 26.8011i 0.361901 1.11382i
\(580\) 0 0
\(581\) −8.61803 + 6.26137i −0.357536 + 0.259765i
\(582\) 0 0
\(583\) 18.1803 11.4127i 0.752953 0.472665i
\(584\) 0 0
\(585\) 1.23607 0.898056i 0.0511051 0.0371300i
\(586\) 0 0
\(587\) −0.607391 + 1.86936i −0.0250697 + 0.0771566i −0.962809 0.270184i \(-0.912915\pi\)
0.937739 + 0.347341i \(0.112915\pi\)
\(588\) 0 0
\(589\) −2.05573 1.49357i −0.0847048 0.0615416i
\(590\) 0 0
\(591\) 4.00000 + 12.3107i 0.164538 + 0.506396i
\(592\) 0 0
\(593\) −34.7984 −1.42900 −0.714499 0.699636i \(-0.753345\pi\)
−0.714499 + 0.699636i \(0.753345\pi\)
\(594\) 0 0
\(595\) 26.8328 1.10004
\(596\) 0 0
\(597\) 11.1803 + 34.4095i 0.457581 + 1.40829i
\(598\) 0 0
\(599\) 10.3820 + 7.54294i 0.424196 + 0.308196i 0.779324 0.626621i \(-0.215563\pi\)
−0.355128 + 0.934818i \(0.615563\pi\)
\(600\) 0 0
\(601\) 1.02786 3.16344i 0.0419274 0.129039i −0.927902 0.372825i \(-0.878389\pi\)
0.969829 + 0.243785i \(0.0783892\pi\)
\(602\) 0 0
\(603\) −0.427051 + 0.310271i −0.0173909 + 0.0126352i
\(604\) 0 0
\(605\) 25.7082 + 24.6215i 1.04519 + 1.00101i
\(606\) 0 0
\(607\) 16.4164 11.9272i 0.666321 0.484111i −0.202470 0.979288i \(-0.564897\pi\)
0.868792 + 0.495178i \(0.164897\pi\)
\(608\) 0 0
\(609\) −18.9443 + 58.3045i −0.767661 + 2.36262i
\(610\) 0 0
\(611\) −6.47214 4.70228i −0.261835 0.190234i
\(612\) 0 0
\(613\) −2.09017 6.43288i −0.0844212 0.259822i 0.899931 0.436031i \(-0.143616\pi\)
−0.984353 + 0.176210i \(0.943616\pi\)
\(614\) 0 0
\(615\) 38.3607 1.54685
\(616\) 0 0
\(617\) −4.90983 −0.197662 −0.0988312 0.995104i \(-0.531510\pi\)
−0.0988312 + 0.995104i \(0.531510\pi\)
\(618\) 0 0
\(619\) −4.89919 15.0781i −0.196915 0.606042i −0.999949 0.0101086i \(-0.996782\pi\)
0.803034 0.595933i \(-0.203218\pi\)
\(620\) 0 0
\(621\) −23.1803 16.8415i −0.930195 0.675826i
\(622\) 0 0
\(623\) −8.81966 + 27.1441i −0.353352 + 1.08751i
\(624\) 0 0
\(625\) 18.1353 13.1760i 0.725410 0.527041i
\(626\) 0 0
\(627\) 24.4615 15.3557i 0.976898 0.613246i
\(628\) 0 0
\(629\) 13.8541 10.0656i 0.552399 0.401342i
\(630\) 0 0
\(631\) 1.90983 5.87785i 0.0760291 0.233994i −0.905818 0.423667i \(-0.860743\pi\)
0.981847 + 0.189673i \(0.0607428\pi\)
\(632\) 0 0
\(633\) −0.118034 0.0857567i −0.00469143 0.00340852i
\(634\) 0 0
\(635\) −20.4721 63.0068i −0.812412 2.50035i
\(636\) 0 0
\(637\) −16.0689 −0.636672
\(638\) 0 0
\(639\) 1.41641 0.0560322
\(640\) 0 0
\(641\) −10.1525 31.2461i −0.400999 1.23415i −0.924190 0.381932i \(-0.875259\pi\)
0.523192 0.852215i \(-0.324741\pi\)
\(642\) 0 0
\(643\) 28.7254 + 20.8702i 1.13282 + 0.823042i 0.986103 0.166136i \(-0.0531292\pi\)
0.146717 + 0.989178i \(0.453129\pi\)
\(644\) 0 0
\(645\) −6.61803 + 20.3682i −0.260585 + 0.801998i
\(646\) 0 0
\(647\) −19.0344 + 13.8293i −0.748321 + 0.543687i −0.895306 0.445452i \(-0.853043\pi\)
0.146985 + 0.989139i \(0.453043\pi\)
\(648\) 0 0
\(649\) −11.2361 + 27.9767i −0.441054 + 1.09818i
\(650\) 0 0
\(651\) −2.76393 + 2.00811i −0.108327 + 0.0787042i
\(652\) 0 0
\(653\) 13.9098 42.8101i 0.544334 1.67529i −0.178235 0.983988i \(-0.557039\pi\)
0.722569 0.691299i \(-0.242961\pi\)
\(654\) 0 0
\(655\) −2.85410 2.07363i −0.111519 0.0810233i
\(656\) 0 0
\(657\) 0.482779 + 1.48584i 0.0188350 + 0.0579682i
\(658\) 0 0
\(659\) −11.4934 −0.447720 −0.223860 0.974621i \(-0.571866\pi\)
−0.223860 + 0.974621i \(0.571866\pi\)
\(660\) 0 0
\(661\) 21.4164 0.833002 0.416501 0.909135i \(-0.363256\pi\)
0.416501 + 0.909135i \(0.363256\pi\)
\(662\) 0 0
\(663\) −1.14590 3.52671i −0.0445030 0.136966i
\(664\) 0 0
\(665\) 63.0132 + 45.7817i 2.44355 + 1.77534i
\(666\) 0 0
\(667\) −13.7082 + 42.1895i −0.530784 + 1.63358i
\(668\) 0 0
\(669\) 3.00000 2.17963i 0.115987 0.0842693i
\(670\) 0 0
\(671\) 6.29180 + 5.25731i 0.242892 + 0.202956i
\(672\) 0 0
\(673\) 35.9164 26.0948i 1.38448 1.00588i 0.388030 0.921647i \(-0.373156\pi\)
0.996446 0.0842337i \(-0.0268442\pi\)
\(674\) 0 0
\(675\) −9.25329 + 28.4787i −0.356159 + 1.09615i
\(676\) 0 0
\(677\) −10.0902 7.33094i −0.387797 0.281751i 0.376755 0.926313i \(-0.377040\pi\)
−0.764552 + 0.644562i \(0.777040\pi\)
\(678\) 0 0
\(679\) −7.76393 23.8949i −0.297952 0.917003i
\(680\) 0 0
\(681\) −38.5967 −1.47903
\(682\) 0 0
\(683\) 27.4164 1.04906 0.524530 0.851392i \(-0.324241\pi\)
0.524530 + 0.851392i \(0.324241\pi\)
\(684\) 0 0
\(685\) 9.79837 + 30.1563i 0.374377 + 1.15221i
\(686\) 0 0
\(687\) −21.1803 15.3884i −0.808080 0.587105i
\(688\) 0 0
\(689\) 2.47214 7.60845i 0.0941809 0.289859i
\(690\) 0 0
\(691\) −31.5344 + 22.9111i −1.19963 + 0.871580i −0.994248 0.107103i \(-0.965843\pi\)
−0.205379 + 0.978683i \(0.565843\pi\)
\(692\) 0 0
\(693\) 1.38197 + 5.49434i 0.0524965 + 0.208713i
\(694\) 0 0
\(695\) 44.3607 32.2299i 1.68270 1.22255i
\(696\) 0 0
\(697\) −4.19756 + 12.9188i −0.158994 + 0.489333i
\(698\) 0 0
\(699\) −10.3541 7.52270i −0.391628 0.284534i
\(700\) 0 0
\(701\) −2.11146 6.49839i −0.0797486 0.245441i 0.903231 0.429154i \(-0.141188\pi\)
−0.982980 + 0.183713i \(0.941188\pi\)
\(702\) 0 0
\(703\) 49.7082 1.87478
\(704\) 0 0
\(705\) 33.8885 1.27632
\(706\) 0 0
\(707\) −3.16718 9.74759i −0.119114 0.366596i
\(708\) 0 0
\(709\) −42.4508 30.8423i −1.59428 1.15831i −0.897496 0.441023i \(-0.854616\pi\)
−0.696779 0.717285i \(-0.745384\pi\)
\(710\) 0 0
\(711\) −0.708204 + 2.17963i −0.0265597 + 0.0817424i
\(712\) 0 0
\(713\) −2.00000 + 1.45309i −0.0749006 + 0.0544185i
\(714\) 0 0
\(715\) 13.2361 + 0.898056i 0.495001 + 0.0335854i
\(716\) 0 0
\(717\) −18.7082 + 13.5923i −0.698671 + 0.507614i
\(718\) 0 0
\(719\) −3.70820 + 11.4127i −0.138293 + 0.425621i −0.996088 0.0883709i \(-0.971834\pi\)
0.857795 + 0.513992i \(0.171834\pi\)
\(720\) 0 0
\(721\) 62.3607 + 45.3077i 2.32243 + 1.68735i
\(722\) 0 0
\(723\) 14.1631 + 43.5896i 0.526732 + 1.62111i
\(724\) 0 0
\(725\) 46.3607 1.72179
\(726\) 0 0
\(727\) 6.87539 0.254994 0.127497 0.991839i \(-0.459306\pi\)
0.127497 + 0.991839i \(0.459306\pi\)
\(728\) 0 0
\(729\) 9.11803 + 28.0624i 0.337705 + 1.03935i
\(730\) 0 0
\(731\) −6.13525 4.45752i −0.226921 0.164867i
\(732\) 0 0
\(733\) −3.20163 + 9.85359i −0.118255 + 0.363951i −0.992612 0.121332i \(-0.961283\pi\)
0.874357 + 0.485283i \(0.161283\pi\)
\(734\) 0 0
\(735\) 55.0689 40.0099i 2.03125 1.47579i
\(736\) 0 0
\(737\) −4.57295 0.310271i −0.168447 0.0114290i
\(738\) 0 0
\(739\) −20.5344 + 14.9191i −0.755372 + 0.548810i −0.897487 0.441040i \(-0.854610\pi\)
0.142116 + 0.989850i \(0.454610\pi\)
\(740\) 0 0
\(741\) 3.32624 10.2371i 0.122192 0.376070i
\(742\) 0 0
\(743\) −2.61803 1.90211i −0.0960464 0.0697818i 0.538726 0.842481i \(-0.318906\pi\)
−0.634772 + 0.772700i \(0.718906\pi\)
\(744\) 0 0
\(745\) −4.29180 13.2088i −0.157239 0.483933i
\(746\) 0 0
\(747\) 0.909830 0.0332889
\(748\) 0 0
\(749\) 14.8754 0.543535
\(750\) 0 0
\(751\) −10.6180 32.6789i −0.387458 1.19247i −0.934682 0.355486i \(-0.884315\pi\)
0.547224 0.836986i \(-0.315685\pi\)
\(752\) 0 0
\(753\) 5.23607 + 3.80423i 0.190813 + 0.138634i
\(754\) 0 0
\(755\) 12.9443 39.8384i 0.471090 1.44987i
\(756\) 0 0
\(757\) 27.7426 20.1562i 1.00832 0.732590i 0.0444668 0.999011i \(-0.485841\pi\)
0.963857 + 0.266421i \(0.0858411\pi\)
\(758\) 0 0
\(759\) −6.85410 27.2501i −0.248788 0.989117i
\(760\) 0 0
\(761\) −31.3885 + 22.8051i −1.13783 + 0.826685i −0.986816 0.161846i \(-0.948255\pi\)
−0.151018 + 0.988531i \(0.548255\pi\)
\(762\) 0 0
\(763\) 4.06888 12.5227i 0.147303 0.453353i
\(764\) 0 0
\(765\) −1.85410 1.34708i −0.0670352 0.0487039i
\(766\) 0 0
\(767\) 3.47214 + 10.6861i 0.125372 + 0.385854i
\(768\) 0 0
\(769\) −18.5836 −0.670141 −0.335071 0.942193i \(-0.608760\pi\)
−0.335071 + 0.942193i \(0.608760\pi\)
\(770\) 0 0
\(771\) −30.0344 −1.08166
\(772\) 0 0
\(773\) 7.67376 + 23.6174i 0.276006 + 0.849459i 0.988951 + 0.148240i \(0.0473607\pi\)
−0.712945 + 0.701220i \(0.752639\pi\)
\(774\) 0 0
\(775\) 2.09017 + 1.51860i 0.0750811 + 0.0545496i
\(776\) 0 0
\(777\) 20.6525 63.5618i 0.740903 2.28027i
\(778\) 0 0
\(779\) −31.8992 + 23.1761i −1.14291 + 0.830371i
\(780\) 0 0
\(781\) 9.43769 + 7.88597i 0.337707 + 0.282182i
\(782\) 0 0
\(783\) 37.5066 27.2501i 1.34038 0.973840i
\(784\) 0 0
\(785\) 9.70820 29.8788i 0.346501 1.06642i
\(786\) 0 0
\(787\) 1.17376 + 0.852788i 0.0418401 + 0.0303986i 0.608509 0.793547i \(-0.291768\pi\)
−0.566669 + 0.823946i \(0.691768\pi\)
\(788\) 0 0
\(789\) −0.0901699 0.277515i −0.00321014 0.00987978i
\(790\) 0 0
\(791\) −85.3738 −3.03554
\(792\) 0 0
\(793\) 3.05573 0.108512
\(794\) 0 0
\(795\) 10.4721 + 32.2299i 0.371408 + 1.14308i
\(796\) 0 0
\(797\) −21.5623 15.6659i −0.763776 0.554916i 0.136290 0.990669i \(-0.456482\pi\)
−0.900066 + 0.435753i \(0.856482\pi\)
\(798\) 0 0
\(799\) −3.70820 + 11.4127i −0.131187 + 0.403752i
\(800\) 0 0
\(801\) 1.97214 1.43284i 0.0696820 0.0506269i
\(802\) 0 0
\(803\) −5.05573 + 12.5882i −0.178413 + 0.444230i
\(804\) 0 0
\(805\) 61.3050 44.5407i 2.16072 1.56985i
\(806\) 0 0
\(807\) −7.09017 + 21.8213i −0.249586 + 0.768146i
\(808\) 0 0
\(809\) −17.6803 12.8455i −0.621608 0.451624i 0.231875 0.972746i \(-0.425514\pi\)
−0.853483 + 0.521121i \(0.825514\pi\)
\(810\) 0 0
\(811\) −6.44427 19.8334i −0.226289 0.696446i −0.998158 0.0606646i \(-0.980678\pi\)
0.771869 0.635781i \(-0.219322\pi\)
\(812\) 0 0
\(813\) −13.7082 −0.480768
\(814\) 0 0
\(815\) 68.2492 2.39067
\(816\) 0 0
\(817\) −6.80244 20.9358i −0.237987 0.732449i
\(818\) 0 0
\(819\) 1.70820 + 1.24108i 0.0596895 + 0.0433669i
\(820\) 0 0
\(821\) −9.43769 + 29.0462i −0.329378 + 1.01372i 0.640048 + 0.768335i \(0.278915\pi\)
−0.969426 + 0.245386i \(0.921085\pi\)
\(822\) 0 0
\(823\) −2.32624 + 1.69011i −0.0810876 + 0.0589136i −0.627590 0.778544i \(-0.715959\pi\)
0.546503 + 0.837457i \(0.315959\pi\)
\(824\) 0 0
\(825\) −24.8713 + 15.6129i −0.865908 + 0.543573i
\(826\) 0 0
\(827\) −22.5344 + 16.3722i −0.783599 + 0.569318i −0.906057 0.423155i \(-0.860922\pi\)
0.122458 + 0.992474i \(0.460922\pi\)
\(828\) 0 0
\(829\) −0.875388 + 2.69417i −0.0304035 + 0.0935723i −0.965107 0.261857i \(-0.915665\pi\)
0.934703 + 0.355429i \(0.115665\pi\)
\(830\) 0 0
\(831\) 13.3262 + 9.68208i 0.462282 + 0.335868i
\(832\) 0 0
\(833\) 7.44834 + 22.9236i 0.258070 + 0.794257i
\(834\) 0 0
\(835\) −40.9443 −1.41693
\(836\) 0 0
\(837\) 2.58359 0.0893020
\(838\) 0 0
\(839\) −7.85410 24.1724i −0.271154 0.834525i −0.990211 0.139575i \(-0.955426\pi\)
0.719058 0.694950i \(-0.244574\pi\)
\(840\) 0 0
\(841\) −34.6074 25.1437i −1.19336 0.867026i
\(842\) 0 0
\(843\) 12.1353 37.3485i 0.417960 1.28635i
\(844\) 0 0
\(845\) −30.0344 + 21.8213i −1.03322 + 0.750676i
\(846\) 0 0
\(847\) −21.3820 + 44.3036i −0.734693 + 1.52229i
\(848\) 0 0
\(849\) −11.7082 + 8.50651i −0.401825 + 0.291943i
\(850\) 0 0
\(851\) 14.9443 45.9937i 0.512283 1.57665i
\(852\) 0 0
\(853\) −13.2361 9.61657i −0.453194 0.329265i 0.337661 0.941268i \(-0.390364\pi\)
−0.790856 + 0.612003i \(0.790364\pi\)
\(854\) 0 0
\(855\) −2.05573 6.32688i −0.0703044 0.216375i
\(856\) 0 0
\(857\) −10.7426 −0.366962 −0.183481 0.983023i \(-0.558737\pi\)
−0.183481 + 0.983023i \(0.558737\pi\)
\(858\) 0 0
\(859\) 44.5066 1.51854 0.759272 0.650773i \(-0.225555\pi\)
0.759272 + 0.650773i \(0.225555\pi\)
\(860\) 0 0
\(861\) 16.3820 + 50.4185i 0.558296 + 1.71826i
\(862\) 0 0
\(863\) −1.76393 1.28157i −0.0600449 0.0436252i 0.557358 0.830272i \(-0.311815\pi\)
−0.617403 + 0.786647i \(0.711815\pi\)
\(864\) 0 0
\(865\) −8.94427 + 27.5276i −0.304114 + 0.935968i
\(866\) 0 0
\(867\) 17.7533 12.8985i 0.602933 0.438057i
\(868\) 0 0
\(869\) −16.8541 + 10.5801i −0.571736 + 0.358906i
\(870\) 0 0
\(871\) −1.38197 + 1.00406i −0.0468261 + 0.0340212i
\(872\) 0 0
\(873\) −0.663119 + 2.04087i −0.0224432 + 0.0690730i
\(874\) 0 0
\(875\) −5.52786 4.01623i −0.186876 0.135773i
\(876\) 0 0
\(877\) −3.87539 11.9272i −0.130863 0.402754i 0.864061 0.503387i \(-0.167913\pi\)
−0.994924 + 0.100634i \(0.967913\pi\)
\(878\) 0 0
\(879\) −21.8885 −0.738282
\(880\) 0 0
\(881\) −29.6180 −0.997857 −0.498928 0.866643i \(-0.666273\pi\)
−0.498928 + 0.866643i \(0.666273\pi\)
\(882\) 0 0
\(883\) −6.86068 21.1150i −0.230880 0.710576i −0.997641 0.0686437i \(-0.978133\pi\)
0.766761 0.641933i \(-0.221867\pi\)
\(884\) 0 0
\(885\) −38.5066 27.9767i −1.29438 0.940425i
\(886\) 0 0
\(887\) 2.61803 8.05748i 0.0879050 0.270544i −0.897435 0.441147i \(-0.854572\pi\)
0.985340 + 0.170603i \(0.0545717\pi\)
\(888\) 0 0
\(889\) 74.0689 53.8142i 2.48419 1.80487i
\(890\) 0 0
\(891\) −9.52786 + 23.7234i −0.319195 + 0.794764i
\(892\) 0 0
\(893\) −28.1803 + 20.4742i −0.943019 + 0.685143i
\(894\) 0 0
\(895\) 9.67376 29.7728i 0.323358 0.995194i
\(896\) 0 0
\(897\) −8.47214 6.15537i −0.282876 0.205522i
\(898\) 0 0
\(899\) −1.23607 3.80423i −0.0412252 0.126878i
\(900\) 0 0
\(901\) −12.0000 −0.399778
\(902\) 0 0
\(903\) −29.5967 −0.984918
\(904\) 0 0
\(905\) 0.763932 + 2.35114i 0.0253940 + 0.0781546i
\(906\) 0 0
\(907\) −3.11803 2.26538i −0.103533 0.0752209i 0.534814 0.844970i \(-0.320382\pi\)
−0.638347 + 0.769749i \(0.720382\pi\)
\(908\) 0 0
\(909\) −0.270510 + 0.832544i −0.00897224 + 0.0276137i
\(910\) 0 0
\(911\) −23.9443 + 17.3965i −0.793309 + 0.576373i −0.908944 0.416919i \(-0.863110\pi\)
0.115635 + 0.993292i \(0.463110\pi\)
\(912\) 0 0
\(913\) 6.06231 + 5.06555i 0.200633 + 0.167645i
\(914\) 0 0
\(915\) −10.4721 + 7.60845i −0.346198 + 0.251528i
\(916\) 0 0
\(917\) 1.50658 4.63677i 0.0497516 0.153120i
\(918\) 0 0
\(919\) 35.1246 + 25.5195i 1.15865 + 0.841811i 0.989607 0.143797i \(-0.0459311\pi\)
0.169047 + 0.985608i \(0.445931\pi\)
\(920\) 0 0
\(921\) −2.42705 7.46969i −0.0799740 0.246135i
\(922\) 0 0
\(923\) 4.58359 0.150871
\(924\) 0 0
\(925\) −50.5410 −1.66178
\(926\) 0 0
\(927\) −2.03444 6.26137i −0.0668198 0.205650i
\(928\) 0 0
\(929\) 22.2082 + 16.1352i 0.728628 + 0.529379i 0.889129 0.457657i \(-0.151311\pi\)
−0.160501 + 0.987036i \(0.551311\pi\)
\(930\) 0 0
\(931\) −21.6205 + 66.5412i −0.708585 + 2.18080i
\(932\) 0 0
\(933\) 11.4721 8.33499i 0.375581 0.272875i
\(934\) 0 0
\(935\) −4.85410 19.2986i −0.158746 0.631133i
\(936\) 0 0
\(937\) −35.1525 + 25.5398i −1.14838 + 0.834348i −0.988265 0.152750i \(-0.951187\pi\)
−0.160117 + 0.987098i \(0.551187\pi\)
\(938\) 0 0
\(939\) 7.69098 23.6704i 0.250986 0.772455i
\(940\) 0 0
\(941\) −24.7984 18.0171i −0.808404 0.587340i 0.104964 0.994476i \(-0.466527\pi\)
−0.913367 + 0.407136i \(0.866527\pi\)
\(942\) 0 0
\(943\) 11.8541 + 36.4832i 0.386023 + 1.18806i
\(944\) 0 0
\(945\) −79.1935 −2.57616
\(946\) 0 0
\(947\) −24.7984 −0.805839 −0.402919 0.915235i \(-0.632005\pi\)
−0.402919 + 0.915235i \(0.632005\pi\)
\(948\) 0 0
\(949\) 1.56231 + 4.80828i 0.0507146 + 0.156083i
\(950\) 0 0
\(951\) −2.38197 1.73060i −0.0772405 0.0561185i
\(952\) 0 0
\(953\) 1.44427 4.44501i 0.0467846 0.143988i −0.924935 0.380124i \(-0.875881\pi\)
0.971720 + 0.236136i \(0.0758812\pi\)
\(954\) 0 0
\(955\) 14.9443 10.8576i 0.483585 0.351345i
\(956\) 0 0
\(957\) 45.3607 + 3.07768i 1.46630 + 0.0994874i
\(958\) 0 0
\(959\) −35.4508 + 25.7565i −1.14477 + 0.831722i
\(960\) 0 0
\(961\) −9.51064 + 29.2707i −0.306795 + 0.944218i
\(962\) 0 0
\(963\) −1.02786 0.746787i −0.0331225 0.0240649i
\(964\) 0 0
\(965\) −17.4164 53.6022i −0.560654 1.72552i
\(966\) 0 0
\(967\) 10.3607 0.333177 0.166589 0.986027i \(-0.446725\pi\)
0.166589 + 0.986027i \(0.446725\pi\)
\(968\) 0 0
\(969\) −16.1459 −0.518681
\(970\) 0 0
\(971\) 11.0557 + 34.0260i 0.354795 + 1.09195i 0.956128 + 0.292949i \(0.0946365\pi\)
−0.601333 + 0.798999i \(0.705363\pi\)
\(972\) 0 0
\(973\) 61.3050 + 44.5407i 1.96535 + 1.42791i
\(974\) 0 0
\(975\) −3.38197 + 10.4086i −0.108310 + 0.333343i
\(976\) 0 0
\(977\) 19.0344 13.8293i 0.608966 0.442440i −0.240084 0.970752i \(-0.577175\pi\)
0.849050 + 0.528313i \(0.177175\pi\)
\(978\) 0 0
\(979\) 21.1180 + 1.43284i 0.674935 + 0.0457938i
\(980\) 0 0
\(981\) −0.909830 + 0.661030i −0.0290486 + 0.0211051i
\(982\) 0 0
\(983\) 8.21478 25.2825i 0.262011 0.806386i −0.730356 0.683067i \(-0.760646\pi\)
0.992367 0.123320i \(-0.0393541\pi\)
\(984\) 0 0
\(985\) 20.9443 + 15.2169i 0.667340 + 0.484851i
\(986\) 0 0
\(987\) 14.4721 + 44.5407i 0.460653 + 1.41774i
\(988\) 0 0
\(989\) −21.4164 −0.681002
\(990\) 0 0
\(991\) −11.7082 −0.371923 −0.185962 0.982557i \(-0.559540\pi\)
−0.185962 + 0.982557i \(0.559540\pi\)
\(992\) 0 0
\(993\) −14.8992 45.8550i −0.472811 1.45516i
\(994\) 0 0
\(995\) 58.5410 + 42.5325i 1.85588 + 1.34837i
\(996\) 0 0
\(997\) 8.38197 25.7970i 0.265460 0.817000i −0.726128 0.687560i \(-0.758682\pi\)
0.991587 0.129441i \(-0.0413181\pi\)
\(998\) 0 0
\(999\) −40.8885 + 29.7073i −1.29366 + 0.939896i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 704.2.m.f.641.1 4
4.3 odd 2 704.2.m.c.641.1 4
8.3 odd 2 352.2.m.b.289.1 yes 4
8.5 even 2 352.2.m.a.289.1 yes 4
11.2 odd 10 7744.2.a.co.1.2 2
11.4 even 5 inner 704.2.m.f.257.1 4
11.9 even 5 7744.2.a.cp.1.2 2
44.15 odd 10 704.2.m.c.257.1 4
44.31 odd 10 7744.2.a.ca.1.1 2
44.35 even 10 7744.2.a.bz.1.1 2
88.13 odd 10 3872.2.a.o.1.1 2
88.35 even 10 3872.2.a.z.1.2 2
88.37 even 10 352.2.m.a.257.1 4
88.53 even 10 3872.2.a.n.1.1 2
88.59 odd 10 352.2.m.b.257.1 yes 4
88.75 odd 10 3872.2.a.y.1.2 2
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
352.2.m.a.257.1 4 88.37 even 10
352.2.m.a.289.1 yes 4 8.5 even 2
352.2.m.b.257.1 yes 4 88.59 odd 10
352.2.m.b.289.1 yes 4 8.3 odd 2
704.2.m.c.257.1 4 44.15 odd 10
704.2.m.c.641.1 4 4.3 odd 2
704.2.m.f.257.1 4 11.4 even 5 inner
704.2.m.f.641.1 4 1.1 even 1 trivial
3872.2.a.n.1.1 2 88.53 even 10
3872.2.a.o.1.1 2 88.13 odd 10
3872.2.a.y.1.2 2 88.75 odd 10
3872.2.a.z.1.2 2 88.35 even 10
7744.2.a.bz.1.1 2 44.35 even 10
7744.2.a.ca.1.1 2 44.31 odd 10
7744.2.a.co.1.2 2 11.2 odd 10
7744.2.a.cp.1.2 2 11.9 even 5