Properties

Label 704.2.u.c.127.1
Level $704$
Weight $2$
Character 704.127
Analytic conductor $5.621$
Analytic rank $0$
Dimension $16$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [704,2,Mod(63,704)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(704, base_ring=CyclotomicField(10))
 
chi = DirichletCharacter(H, H._module([5, 0, 3]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("704.63");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 704 = 2^{6} \cdot 11 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 704.u (of order \(10\), degree \(4\), not minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(5.62146830230\)
Analytic rank: \(0\)
Dimension: \(16\)
Relative dimension: \(4\) over \(\Q(\zeta_{10})\)
Coefficient field: \(\mathbb{Q}[x]/(x^{16} - \cdots)\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{16} - 5 x^{15} + 13 x^{14} - 25 x^{13} + 35 x^{12} - 30 x^{11} - 2 x^{10} + 60 x^{9} - 116 x^{8} + \cdots + 256 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{7}]\)
Coefficient ring index: \( 2^{4} \)
Twist minimal: no (minimal twist has level 44)
Sato-Tate group: $\mathrm{SU}(2)[C_{10}]$

Embedding invariants

Embedding label 127.1
Root \(1.06665 + 0.928579i\) of defining polynomial
Character \(\chi\) \(=\) 704.127
Dual form 704.2.u.c.255.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-1.59814 + 2.19965i) q^{3} +(0.720859 - 2.21858i) q^{5} +(-1.04462 + 0.758960i) q^{7} +(-1.35736 - 4.17752i) q^{9} +O(q^{10})\) \(q+(-1.59814 + 2.19965i) q^{3} +(0.720859 - 2.21858i) q^{5} +(-1.04462 + 0.758960i) q^{7} +(-1.35736 - 4.17752i) q^{9} +(3.29387 - 0.387833i) q^{11} +(0.279141 - 0.0906984i) q^{13} +(3.72806 + 5.13123i) q^{15} +(2.82281 + 0.917186i) q^{17} +(1.38671 + 1.00751i) q^{19} -3.51072i q^{21} +0.525735i q^{23} +(-0.357358 - 0.259635i) q^{25} +(3.60079 + 1.16997i) q^{27} +(4.84416 + 6.66742i) q^{29} +(4.22806 - 1.37378i) q^{31} +(-4.41097 + 7.86517i) q^{33} +(0.930788 + 2.86467i) q^{35} +(-4.22613 + 3.07046i) q^{37} +(-0.246601 + 0.758960i) q^{39} +(3.28821 - 4.52583i) q^{41} -3.49429 q^{43} -10.2466 q^{45} +(-4.50223 + 6.19679i) q^{47} +(-1.64791 + 5.07175i) q^{49} +(-6.52872 + 4.74340i) q^{51} +(-0.484791 - 1.49203i) q^{53} +(1.51398 - 7.58728i) q^{55} +(-4.43232 + 1.44015i) q^{57} +(8.27247 + 11.3861i) q^{59} +(8.98451 + 2.91924i) q^{61} +(4.58849 + 3.33373i) q^{63} -0.684676i q^{65} -10.4249i q^{67} +(-1.15643 - 0.840198i) q^{69} +(3.41904 + 1.11091i) q^{71} +(2.51668 + 3.46391i) q^{73} +(1.14221 - 0.371128i) q^{75} +(-3.14649 + 2.90506i) q^{77} +(3.04387 + 9.36807i) q^{79} +(2.33275 - 1.69484i) q^{81} +(1.16185 - 3.57581i) q^{83} +(4.06969 - 5.60145i) q^{85} -22.4076 q^{87} +0.598152 q^{89} +(-0.222760 + 0.306602i) q^{91} +(-3.73519 + 11.4957i) q^{93} +(3.23485 - 2.35026i) q^{95} +(-2.57295 - 7.91872i) q^{97} +(-6.09114 - 13.2338i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 16 q + 6 q^{5} - 10 q^{9}+O(q^{10}) \) Copy content Toggle raw display \( 16 q + 6 q^{5} - 10 q^{9} + 10 q^{13} - 10 q^{17} + 6 q^{25} + 10 q^{29} - 12 q^{33} - 18 q^{37} + 10 q^{41} - 40 q^{45} + 6 q^{49} - 38 q^{53} + 10 q^{61} + 16 q^{69} - 30 q^{73} - 2 q^{77} - 4 q^{81} + 50 q^{85} - 36 q^{89} + 38 q^{93} - 68 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/704\mathbb{Z}\right)^\times\).

\(n\) \(133\) \(321\) \(639\)
\(\chi(n)\) \(1\) \(e\left(\frac{9}{10}\right)\) \(-1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) −1.59814 + 2.19965i −0.922686 + 1.26997i 0.0399594 + 0.999201i \(0.487277\pi\)
−0.962645 + 0.270767i \(0.912723\pi\)
\(4\) 0 0
\(5\) 0.720859 2.21858i 0.322378 0.992177i −0.650232 0.759735i \(-0.725328\pi\)
0.972610 0.232442i \(-0.0746716\pi\)
\(6\) 0 0
\(7\) −1.04462 + 0.758960i −0.394829 + 0.286860i −0.767431 0.641131i \(-0.778466\pi\)
0.372602 + 0.927991i \(0.378466\pi\)
\(8\) 0 0
\(9\) −1.35736 4.17752i −0.452453 1.39251i
\(10\) 0 0
\(11\) 3.29387 0.387833i 0.993139 0.116936i
\(12\) 0 0
\(13\) 0.279141 0.0906984i 0.0774198 0.0251552i −0.270051 0.962846i \(-0.587041\pi\)
0.347471 + 0.937691i \(0.387041\pi\)
\(14\) 0 0
\(15\) 3.72806 + 5.13123i 0.962580 + 1.32488i
\(16\) 0 0
\(17\) 2.82281 + 0.917186i 0.684631 + 0.222450i 0.630622 0.776090i \(-0.282800\pi\)
0.0540095 + 0.998540i \(0.482800\pi\)
\(18\) 0 0
\(19\) 1.38671 + 1.00751i 0.318134 + 0.231138i 0.735379 0.677656i \(-0.237004\pi\)
−0.417245 + 0.908794i \(0.637004\pi\)
\(20\) 0 0
\(21\) 3.51072i 0.766102i
\(22\) 0 0
\(23\) 0.525735i 0.109623i 0.998497 + 0.0548117i \(0.0174559\pi\)
−0.998497 + 0.0548117i \(0.982544\pi\)
\(24\) 0 0
\(25\) −0.357358 0.259635i −0.0714715 0.0519271i
\(26\) 0 0
\(27\) 3.60079 + 1.16997i 0.692972 + 0.225160i
\(28\) 0 0
\(29\) 4.84416 + 6.66742i 0.899538 + 1.23811i 0.970615 + 0.240637i \(0.0773564\pi\)
−0.0710771 + 0.997471i \(0.522644\pi\)
\(30\) 0 0
\(31\) 4.22806 1.37378i 0.759382 0.246738i 0.0963686 0.995346i \(-0.469277\pi\)
0.663013 + 0.748608i \(0.269277\pi\)
\(32\) 0 0
\(33\) −4.41097 + 7.86517i −0.767851 + 1.36915i
\(34\) 0 0
\(35\) 0.930788 + 2.86467i 0.157332 + 0.484218i
\(36\) 0 0
\(37\) −4.22613 + 3.07046i −0.694771 + 0.504781i −0.878225 0.478248i \(-0.841272\pi\)
0.183454 + 0.983028i \(0.441272\pi\)
\(38\) 0 0
\(39\) −0.246601 + 0.758960i −0.0394878 + 0.121531i
\(40\) 0 0
\(41\) 3.28821 4.52583i 0.513531 0.706815i −0.470978 0.882145i \(-0.656099\pi\)
0.984510 + 0.175329i \(0.0560990\pi\)
\(42\) 0 0
\(43\) −3.49429 −0.532874 −0.266437 0.963852i \(-0.585846\pi\)
−0.266437 + 0.963852i \(0.585846\pi\)
\(44\) 0 0
\(45\) −10.2466 −1.52747
\(46\) 0 0
\(47\) −4.50223 + 6.19679i −0.656718 + 0.903895i −0.999367 0.0355685i \(-0.988676\pi\)
0.342649 + 0.939463i \(0.388676\pi\)
\(48\) 0 0
\(49\) −1.64791 + 5.07175i −0.235416 + 0.724535i
\(50\) 0 0
\(51\) −6.52872 + 4.74340i −0.914204 + 0.664208i
\(52\) 0 0
\(53\) −0.484791 1.49203i −0.0665912 0.204947i 0.912224 0.409691i \(-0.134364\pi\)
−0.978815 + 0.204745i \(0.934364\pi\)
\(54\) 0 0
\(55\) 1.51398 7.58728i 0.204145 1.02307i
\(56\) 0 0
\(57\) −4.43232 + 1.44015i −0.587075 + 0.190752i
\(58\) 0 0
\(59\) 8.27247 + 11.3861i 1.07698 + 1.48234i 0.862799 + 0.505548i \(0.168710\pi\)
0.214185 + 0.976793i \(0.431290\pi\)
\(60\) 0 0
\(61\) 8.98451 + 2.91924i 1.15035 + 0.373771i 0.821274 0.570533i \(-0.193263\pi\)
0.329074 + 0.944304i \(0.393263\pi\)
\(62\) 0 0
\(63\) 4.58849 + 3.33373i 0.578096 + 0.420011i
\(64\) 0 0
\(65\) 0.684676i 0.0849236i
\(66\) 0 0
\(67\) 10.4249i 1.27361i −0.771026 0.636803i \(-0.780256\pi\)
0.771026 0.636803i \(-0.219744\pi\)
\(68\) 0 0
\(69\) −1.15643 0.840198i −0.139218 0.101148i
\(70\) 0 0
\(71\) 3.41904 + 1.11091i 0.405765 + 0.131841i 0.504786 0.863244i \(-0.331571\pi\)
−0.0990215 + 0.995085i \(0.531571\pi\)
\(72\) 0 0
\(73\) 2.51668 + 3.46391i 0.294555 + 0.405420i 0.930487 0.366325i \(-0.119384\pi\)
−0.635932 + 0.771745i \(0.719384\pi\)
\(74\) 0 0
\(75\) 1.14221 0.371128i 0.131891 0.0428541i
\(76\) 0 0
\(77\) −3.14649 + 2.90506i −0.358576 + 0.331062i
\(78\) 0 0
\(79\) 3.04387 + 9.36807i 0.342462 + 1.05399i 0.962929 + 0.269757i \(0.0869433\pi\)
−0.620467 + 0.784233i \(0.713057\pi\)
\(80\) 0 0
\(81\) 2.33275 1.69484i 0.259194 0.188316i
\(82\) 0 0
\(83\) 1.16185 3.57581i 0.127530 0.392496i −0.866824 0.498615i \(-0.833842\pi\)
0.994354 + 0.106118i \(0.0338423\pi\)
\(84\) 0 0
\(85\) 4.06969 5.60145i 0.441420 0.607563i
\(86\) 0 0
\(87\) −22.4076 −2.40235
\(88\) 0 0
\(89\) 0.598152 0.0634039 0.0317020 0.999497i \(-0.489907\pi\)
0.0317020 + 0.999497i \(0.489907\pi\)
\(90\) 0 0
\(91\) −0.222760 + 0.306602i −0.0233515 + 0.0321406i
\(92\) 0 0
\(93\) −3.73519 + 11.4957i −0.387321 + 1.19205i
\(94\) 0 0
\(95\) 3.23485 2.35026i 0.331889 0.241131i
\(96\) 0 0
\(97\) −2.57295 7.91872i −0.261243 0.804024i −0.992535 0.121960i \(-0.961082\pi\)
0.731292 0.682065i \(-0.238918\pi\)
\(98\) 0 0
\(99\) −6.09114 13.2338i −0.612182 1.33004i
\(100\) 0 0
\(101\) 7.30672 2.37410i 0.727046 0.236232i 0.0779707 0.996956i \(-0.475156\pi\)
0.649075 + 0.760724i \(0.275156\pi\)
\(102\) 0 0
\(103\) 0.242398 + 0.333632i 0.0238841 + 0.0328737i 0.820792 0.571227i \(-0.193532\pi\)
−0.796908 + 0.604101i \(0.793532\pi\)
\(104\) 0 0
\(105\) −7.78880 2.53073i −0.760109 0.246974i
\(106\) 0 0
\(107\) −4.18738 3.04231i −0.404809 0.294111i 0.366688 0.930344i \(-0.380492\pi\)
−0.771497 + 0.636233i \(0.780492\pi\)
\(108\) 0 0
\(109\) 12.5948i 1.20636i −0.797604 0.603181i \(-0.793899\pi\)
0.797604 0.603181i \(-0.206101\pi\)
\(110\) 0 0
\(111\) 14.2030i 1.34809i
\(112\) 0 0
\(113\) 2.15258 + 1.56394i 0.202498 + 0.147123i 0.684413 0.729095i \(-0.260059\pi\)
−0.481915 + 0.876218i \(0.660059\pi\)
\(114\) 0 0
\(115\) 1.16638 + 0.378981i 0.108766 + 0.0353402i
\(116\) 0 0
\(117\) −0.757788 1.04301i −0.0700575 0.0964259i
\(118\) 0 0
\(119\) −3.64487 + 1.18429i −0.334124 + 0.108564i
\(120\) 0 0
\(121\) 10.6992 2.55494i 0.972652 0.232267i
\(122\) 0 0
\(123\) 4.70022 + 14.4658i 0.423805 + 1.30434i
\(124\) 0 0
\(125\) 8.60254 6.25011i 0.769435 0.559027i
\(126\) 0 0
\(127\) 6.16979 18.9887i 0.547481 1.68497i −0.167537 0.985866i \(-0.553581\pi\)
0.715018 0.699107i \(-0.246419\pi\)
\(128\) 0 0
\(129\) 5.58436 7.68621i 0.491676 0.676733i
\(130\) 0 0
\(131\) −20.5136 −1.79228 −0.896139 0.443773i \(-0.853640\pi\)
−0.896139 + 0.443773i \(0.853640\pi\)
\(132\) 0 0
\(133\) −2.21324 −0.191913
\(134\) 0 0
\(135\) 5.19132 7.14524i 0.446798 0.614965i
\(136\) 0 0
\(137\) −1.93612 + 5.95875i −0.165414 + 0.509091i −0.999067 0.0431981i \(-0.986245\pi\)
0.833653 + 0.552289i \(0.186245\pi\)
\(138\) 0 0
\(139\) 10.9058 7.92352i 0.925017 0.672064i −0.0197506 0.999805i \(-0.506287\pi\)
0.944768 + 0.327741i \(0.106287\pi\)
\(140\) 0 0
\(141\) −6.43557 19.8067i −0.541973 1.66802i
\(142\) 0 0
\(143\) 0.884278 0.407009i 0.0739471 0.0340358i
\(144\) 0 0
\(145\) 18.2841 5.94087i 1.51841 0.493363i
\(146\) 0 0
\(147\) −8.52247 11.7302i −0.702922 0.967489i
\(148\) 0 0
\(149\) −16.5960 5.39238i −1.35960 0.441761i −0.463690 0.885997i \(-0.653475\pi\)
−0.895910 + 0.444237i \(0.853475\pi\)
\(150\) 0 0
\(151\) −7.94818 5.77469i −0.646814 0.469938i 0.215370 0.976532i \(-0.430904\pi\)
−0.862184 + 0.506595i \(0.830904\pi\)
\(152\) 0 0
\(153\) 13.0373i 1.05400i
\(154\) 0 0
\(155\) 10.3706i 0.832985i
\(156\) 0 0
\(157\) 12.4622 + 9.05431i 0.994591 + 0.722613i 0.960922 0.276820i \(-0.0892806\pi\)
0.0336696 + 0.999433i \(0.489281\pi\)
\(158\) 0 0
\(159\) 4.05671 + 1.31811i 0.321718 + 0.104533i
\(160\) 0 0
\(161\) −0.399012 0.549193i −0.0314466 0.0432825i
\(162\) 0 0
\(163\) 10.2403 3.32727i 0.802080 0.260612i 0.120840 0.992672i \(-0.461441\pi\)
0.681240 + 0.732060i \(0.261441\pi\)
\(164\) 0 0
\(165\) 14.2698 + 15.4557i 1.11090 + 1.20323i
\(166\) 0 0
\(167\) −1.98451 6.10771i −0.153566 0.472629i 0.844446 0.535640i \(-0.179930\pi\)
−0.998013 + 0.0630114i \(0.979930\pi\)
\(168\) 0 0
\(169\) −10.4475 + 7.59057i −0.803656 + 0.583890i
\(170\) 0 0
\(171\) 2.32661 7.16056i 0.177920 0.547582i
\(172\) 0 0
\(173\) 2.12650 2.92688i 0.161675 0.222527i −0.720492 0.693463i \(-0.756084\pi\)
0.882167 + 0.470937i \(0.156084\pi\)
\(174\) 0 0
\(175\) 0.570356 0.0431148
\(176\) 0 0
\(177\) −38.2659 −2.87624
\(178\) 0 0
\(179\) −2.94347 + 4.05134i −0.220006 + 0.302812i −0.904726 0.425994i \(-0.859924\pi\)
0.684720 + 0.728806i \(0.259924\pi\)
\(180\) 0 0
\(181\) −3.02897 + 9.32220i −0.225141 + 0.692914i 0.773136 + 0.634240i \(0.218687\pi\)
−0.998277 + 0.0586734i \(0.981313\pi\)
\(182\) 0 0
\(183\) −20.7798 + 15.0974i −1.53609 + 1.11603i
\(184\) 0 0
\(185\) 3.76561 + 11.5894i 0.276853 + 0.852066i
\(186\) 0 0
\(187\) 9.65368 + 1.92631i 0.705947 + 0.140866i
\(188\) 0 0
\(189\) −4.64941 + 1.51069i −0.338195 + 0.109886i
\(190\) 0 0
\(191\) 6.87102 + 9.45715i 0.497170 + 0.684295i 0.981690 0.190485i \(-0.0610059\pi\)
−0.484521 + 0.874780i \(0.661006\pi\)
\(192\) 0 0
\(193\) −1.09807 0.356784i −0.0790406 0.0256818i 0.269230 0.963076i \(-0.413231\pi\)
−0.348270 + 0.937394i \(0.613231\pi\)
\(194\) 0 0
\(195\) 1.50605 + 1.09421i 0.107850 + 0.0783578i
\(196\) 0 0
\(197\) 15.6248i 1.11322i 0.830774 + 0.556610i \(0.187898\pi\)
−0.830774 + 0.556610i \(0.812102\pi\)
\(198\) 0 0
\(199\) 10.9684i 0.777526i −0.921338 0.388763i \(-0.872902\pi\)
0.921338 0.388763i \(-0.127098\pi\)
\(200\) 0 0
\(201\) 22.9312 + 16.6605i 1.61744 + 1.17514i
\(202\) 0 0
\(203\) −10.1206 3.28839i −0.710328 0.230799i
\(204\) 0 0
\(205\) −7.67056 10.5576i −0.535735 0.737376i
\(206\) 0 0
\(207\) 2.19627 0.713611i 0.152651 0.0495994i
\(208\) 0 0
\(209\) 4.95840 + 2.78078i 0.342980 + 0.192351i
\(210\) 0 0
\(211\) −5.96517 18.3589i −0.410659 1.26388i −0.916076 0.401004i \(-0.868661\pi\)
0.505417 0.862875i \(-0.331339\pi\)
\(212\) 0 0
\(213\) −7.90771 + 5.74529i −0.541827 + 0.393661i
\(214\) 0 0
\(215\) −2.51889 + 7.75235i −0.171787 + 0.528706i
\(216\) 0 0
\(217\) −3.37407 + 4.64401i −0.229047 + 0.315256i
\(218\) 0 0
\(219\) −11.6414 −0.786652
\(220\) 0 0
\(221\) 0.871148 0.0585998
\(222\) 0 0
\(223\) −6.37102 + 8.76895i −0.426635 + 0.587212i −0.967177 0.254105i \(-0.918219\pi\)
0.540542 + 0.841317i \(0.318219\pi\)
\(224\) 0 0
\(225\) −0.599570 + 1.84529i −0.0399713 + 0.123019i
\(226\) 0 0
\(227\) −19.4139 + 14.1050i −1.28854 + 0.936181i −0.999775 0.0212179i \(-0.993246\pi\)
−0.288768 + 0.957399i \(0.593246\pi\)
\(228\) 0 0
\(229\) 7.59603 + 23.3782i 0.501960 + 1.54487i 0.805822 + 0.592158i \(0.201724\pi\)
−0.303862 + 0.952716i \(0.598276\pi\)
\(230\) 0 0
\(231\) −1.36157 11.5639i −0.0895849 0.760846i
\(232\) 0 0
\(233\) −13.6046 + 4.42039i −0.891264 + 0.289589i −0.718627 0.695396i \(-0.755229\pi\)
−0.172637 + 0.984985i \(0.555229\pi\)
\(234\) 0 0
\(235\) 10.5026 + 14.4556i 0.685113 + 0.942977i
\(236\) 0 0
\(237\) −25.4710 8.27602i −1.65452 0.537585i
\(238\) 0 0
\(239\) −15.9893 11.6169i −1.03426 0.751436i −0.0651055 0.997878i \(-0.520738\pi\)
−0.969157 + 0.246442i \(0.920738\pi\)
\(240\) 0 0
\(241\) 6.53055i 0.420669i −0.977629 0.210335i \(-0.932545\pi\)
0.977629 0.210335i \(-0.0674554\pi\)
\(242\) 0 0
\(243\) 19.1981i 1.23156i
\(244\) 0 0
\(245\) 10.0641 + 7.31203i 0.642975 + 0.467148i
\(246\) 0 0
\(247\) 0.478467 + 0.155464i 0.0304442 + 0.00989191i
\(248\) 0 0
\(249\) 6.00873 + 8.27031i 0.380788 + 0.524109i
\(250\) 0 0
\(251\) 4.53708 1.47419i 0.286378 0.0930498i −0.162306 0.986741i \(-0.551893\pi\)
0.448684 + 0.893691i \(0.351893\pi\)
\(252\) 0 0
\(253\) 0.203897 + 1.73170i 0.0128189 + 0.108871i
\(254\) 0 0
\(255\) 5.81729 + 17.9038i 0.364293 + 1.12118i
\(256\) 0 0
\(257\) 2.45693 1.78506i 0.153259 0.111349i −0.508513 0.861054i \(-0.669805\pi\)
0.661772 + 0.749705i \(0.269805\pi\)
\(258\) 0 0
\(259\) 2.08434 6.41493i 0.129514 0.398604i
\(260\) 0 0
\(261\) 21.2780 29.2866i 1.31707 1.81280i
\(262\) 0 0
\(263\) 14.1671 0.873580 0.436790 0.899564i \(-0.356115\pi\)
0.436790 + 0.899564i \(0.356115\pi\)
\(264\) 0 0
\(265\) −3.65966 −0.224811
\(266\) 0 0
\(267\) −0.955929 + 1.31572i −0.0585019 + 0.0805210i
\(268\) 0 0
\(269\) −0.309559 + 0.952724i −0.0188741 + 0.0580886i −0.960050 0.279829i \(-0.909722\pi\)
0.941176 + 0.337917i \(0.109722\pi\)
\(270\) 0 0
\(271\) 14.3933 10.4573i 0.874330 0.635238i −0.0574157 0.998350i \(-0.518286\pi\)
0.931745 + 0.363113i \(0.118286\pi\)
\(272\) 0 0
\(273\) −0.318417 0.979986i −0.0192714 0.0593114i
\(274\) 0 0
\(275\) −1.27778 0.716611i −0.0770533 0.0432133i
\(276\) 0 0
\(277\) −18.4378 + 5.99082i −1.10782 + 0.359953i −0.805108 0.593128i \(-0.797893\pi\)
−0.302714 + 0.953081i \(0.597893\pi\)
\(278\) 0 0
\(279\) −11.4780 15.7981i −0.687169 0.945806i
\(280\) 0 0
\(281\) −13.9771 4.54142i −0.833802 0.270919i −0.139156 0.990270i \(-0.544439\pi\)
−0.694646 + 0.719352i \(0.744439\pi\)
\(282\) 0 0
\(283\) −2.02002 1.46763i −0.120078 0.0872415i 0.526126 0.850407i \(-0.323644\pi\)
−0.646203 + 0.763165i \(0.723644\pi\)
\(284\) 0 0
\(285\) 10.8716i 0.643977i
\(286\) 0 0
\(287\) 7.22339i 0.426383i
\(288\) 0 0
\(289\) −6.62627 4.81427i −0.389781 0.283192i
\(290\) 0 0
\(291\) 21.5303 + 6.99563i 1.26213 + 0.410091i
\(292\) 0 0
\(293\) −4.41949 6.08290i −0.258189 0.355367i 0.660169 0.751117i \(-0.270485\pi\)
−0.918358 + 0.395750i \(0.870485\pi\)
\(294\) 0 0
\(295\) 31.2242 10.1453i 1.81794 0.590685i
\(296\) 0 0
\(297\) 12.3143 + 2.45722i 0.714547 + 0.142582i
\(298\) 0 0
\(299\) 0.0476833 + 0.146754i 0.00275760 + 0.00848702i
\(300\) 0 0
\(301\) 3.65020 2.65203i 0.210394 0.152860i
\(302\) 0 0
\(303\) −6.45497 + 19.8664i −0.370828 + 1.14129i
\(304\) 0 0
\(305\) 12.9531 17.8285i 0.741694 1.02085i
\(306\) 0 0
\(307\) 25.7991 1.47243 0.736216 0.676747i \(-0.236611\pi\)
0.736216 + 0.676747i \(0.236611\pi\)
\(308\) 0 0
\(309\) −1.12126 −0.0637861
\(310\) 0 0
\(311\) −1.74241 + 2.39822i −0.0988030 + 0.135991i −0.855556 0.517710i \(-0.826785\pi\)
0.756753 + 0.653701i \(0.226785\pi\)
\(312\) 0 0
\(313\) 0.186644 0.574432i 0.0105498 0.0324688i −0.945643 0.325206i \(-0.894566\pi\)
0.956193 + 0.292738i \(0.0945662\pi\)
\(314\) 0 0
\(315\) 10.7038 7.77677i 0.603091 0.438171i
\(316\) 0 0
\(317\) −7.09054 21.8224i −0.398244 1.22567i −0.926406 0.376526i \(-0.877119\pi\)
0.528162 0.849144i \(-0.322881\pi\)
\(318\) 0 0
\(319\) 18.5419 + 20.0829i 1.03815 + 1.12443i
\(320\) 0 0
\(321\) 13.3840 4.34874i 0.747024 0.242723i
\(322\) 0 0
\(323\) 2.99035 + 4.11587i 0.166388 + 0.229013i
\(324\) 0 0
\(325\) −0.123302 0.0400631i −0.00683954 0.00222230i
\(326\) 0 0
\(327\) 27.7041 + 20.1282i 1.53204 + 1.11309i
\(328\) 0 0
\(329\) 9.89031i 0.545270i
\(330\) 0 0
\(331\) 4.43442i 0.243738i 0.992546 + 0.121869i \(0.0388887\pi\)
−0.992546 + 0.121869i \(0.961111\pi\)
\(332\) 0 0
\(333\) 18.5633 + 13.4870i 1.01726 + 0.739083i
\(334\) 0 0
\(335\) −23.1285 7.51490i −1.26364 0.410583i
\(336\) 0 0
\(337\) 10.4401 + 14.3696i 0.568711 + 0.782763i 0.992401 0.123044i \(-0.0392656\pi\)
−0.423691 + 0.905807i \(0.639266\pi\)
\(338\) 0 0
\(339\) −6.88025 + 2.23553i −0.373684 + 0.121417i
\(340\) 0 0
\(341\) 13.3939 6.16483i 0.725320 0.333844i
\(342\) 0 0
\(343\) −4.92088 15.1449i −0.265703 0.817748i
\(344\) 0 0
\(345\) −2.69767 + 1.95997i −0.145238 + 0.105521i
\(346\) 0 0
\(347\) 1.19913 3.69054i 0.0643726 0.198119i −0.913697 0.406396i \(-0.866786\pi\)
0.978070 + 0.208277i \(0.0667855\pi\)
\(348\) 0 0
\(349\) 11.5900 15.9522i 0.620396 0.853903i −0.376985 0.926219i \(-0.623039\pi\)
0.997382 + 0.0723168i \(0.0230392\pi\)
\(350\) 0 0
\(351\) 1.11124 0.0593137
\(352\) 0 0
\(353\) −1.59623 −0.0849587 −0.0424794 0.999097i \(-0.513526\pi\)
−0.0424794 + 0.999097i \(0.513526\pi\)
\(354\) 0 0
\(355\) 4.92929 6.78458i 0.261619 0.360088i
\(356\) 0 0
\(357\) 3.21998 9.91009i 0.170420 0.524497i
\(358\) 0 0
\(359\) −12.4772 + 9.06523i −0.658522 + 0.478445i −0.866164 0.499760i \(-0.833421\pi\)
0.207641 + 0.978205i \(0.433421\pi\)
\(360\) 0 0
\(361\) −4.96342 15.2758i −0.261233 0.803991i
\(362\) 0 0
\(363\) −11.4788 + 27.6176i −0.602480 + 1.44955i
\(364\) 0 0
\(365\) 9.49912 3.08645i 0.497207 0.161552i
\(366\) 0 0
\(367\) 6.20229 + 8.53673i 0.323757 + 0.445613i 0.939610 0.342248i \(-0.111188\pi\)
−0.615853 + 0.787861i \(0.711188\pi\)
\(368\) 0 0
\(369\) −23.3700 7.59337i −1.21659 0.395295i
\(370\) 0 0
\(371\) 1.63882 + 1.19067i 0.0850831 + 0.0618165i
\(372\) 0 0
\(373\) 37.4953i 1.94143i −0.240225 0.970717i \(-0.577221\pi\)
0.240225 0.970717i \(-0.422779\pi\)
\(374\) 0 0
\(375\) 28.9111i 1.49296i
\(376\) 0 0
\(377\) 1.95693 + 1.42179i 0.100787 + 0.0732259i
\(378\) 0 0
\(379\) −20.2850 6.59100i −1.04197 0.338557i −0.262459 0.964943i \(-0.584533\pi\)
−0.779513 + 0.626386i \(0.784533\pi\)
\(380\) 0 0
\(381\) 31.9082 + 43.9179i 1.63471 + 2.24998i
\(382\) 0 0
\(383\) −27.4201 + 8.90933i −1.40110 + 0.455245i −0.909547 0.415602i \(-0.863571\pi\)
−0.491554 + 0.870847i \(0.663571\pi\)
\(384\) 0 0
\(385\) 4.17691 + 9.07487i 0.212875 + 0.462498i
\(386\) 0 0
\(387\) 4.74300 + 14.5975i 0.241100 + 0.742031i
\(388\) 0 0
\(389\) −28.2179 + 20.5015i −1.43070 + 1.03947i −0.440817 + 0.897597i \(0.645311\pi\)
−0.989885 + 0.141869i \(0.954689\pi\)
\(390\) 0 0
\(391\) −0.482197 + 1.48405i −0.0243858 + 0.0750516i
\(392\) 0 0
\(393\) 32.7835 45.1226i 1.65371 2.27614i
\(394\) 0 0
\(395\) 22.9780 1.15615
\(396\) 0 0
\(397\) −16.9102 −0.848698 −0.424349 0.905499i \(-0.639497\pi\)
−0.424349 + 0.905499i \(0.639497\pi\)
\(398\) 0 0
\(399\) 3.53707 4.86836i 0.177075 0.243723i
\(400\) 0 0
\(401\) 4.90100 15.0837i 0.244744 0.753246i −0.750934 0.660377i \(-0.770396\pi\)
0.995678 0.0928687i \(-0.0296037\pi\)
\(402\) 0 0
\(403\) 1.05562 0.766956i 0.0525844 0.0382048i
\(404\) 0 0
\(405\) −2.07855 6.39712i −0.103284 0.317876i
\(406\) 0 0
\(407\) −12.7295 + 11.7527i −0.630977 + 0.582561i
\(408\) 0 0
\(409\) −26.3195 + 8.55173i −1.30142 + 0.422856i −0.876074 0.482176i \(-0.839846\pi\)
−0.425343 + 0.905032i \(0.639846\pi\)
\(410\) 0 0
\(411\) −10.0130 13.7817i −0.493904 0.679800i
\(412\) 0 0
\(413\) −17.2832 5.61564i −0.850449 0.276328i
\(414\) 0 0
\(415\) −7.09568 5.15531i −0.348313 0.253064i
\(416\) 0 0
\(417\) 36.6518i 1.79485i
\(418\) 0 0
\(419\) 22.9710i 1.12221i 0.827746 + 0.561103i \(0.189623\pi\)
−0.827746 + 0.561103i \(0.810377\pi\)
\(420\) 0 0
\(421\) −24.3592 17.6980i −1.18719 0.862546i −0.194229 0.980956i \(-0.562220\pi\)
−0.992965 + 0.118410i \(0.962220\pi\)
\(422\) 0 0
\(423\) 31.9983 + 10.3969i 1.55581 + 0.505514i
\(424\) 0 0
\(425\) −0.770618 1.06066i −0.0373804 0.0514498i
\(426\) 0 0
\(427\) −11.6010 + 3.76939i −0.561411 + 0.182413i
\(428\) 0 0
\(429\) −0.517923 + 2.59556i −0.0250055 + 0.125315i
\(430\) 0 0
\(431\) −3.14369 9.67528i −0.151426 0.466042i 0.846355 0.532619i \(-0.178792\pi\)
−0.997781 + 0.0665771i \(0.978792\pi\)
\(432\) 0 0
\(433\) −22.2763 + 16.1847i −1.07053 + 0.777785i −0.976007 0.217737i \(-0.930132\pi\)
−0.0945224 + 0.995523i \(0.530132\pi\)
\(434\) 0 0
\(435\) −16.1527 + 49.7130i −0.774464 + 2.38356i
\(436\) 0 0
\(437\) −0.529682 + 0.729044i −0.0253381 + 0.0348749i
\(438\) 0 0
\(439\) 11.5438 0.550957 0.275479 0.961307i \(-0.411164\pi\)
0.275479 + 0.961307i \(0.411164\pi\)
\(440\) 0 0
\(441\) 23.4241 1.11543
\(442\) 0 0
\(443\) −9.98691 + 13.7458i −0.474492 + 0.653083i −0.977435 0.211237i \(-0.932251\pi\)
0.502942 + 0.864320i \(0.332251\pi\)
\(444\) 0 0
\(445\) 0.431183 1.32704i 0.0204400 0.0629080i
\(446\) 0 0
\(447\) 38.3841 27.8877i 1.81551 1.31904i
\(448\) 0 0
\(449\) 1.89015 + 5.81730i 0.0892019 + 0.274535i 0.985699 0.168514i \(-0.0538968\pi\)
−0.896497 + 0.443049i \(0.853897\pi\)
\(450\) 0 0
\(451\) 9.07566 16.1828i 0.427356 0.762017i
\(452\) 0 0
\(453\) 25.4046 8.25445i 1.19361 0.387828i
\(454\) 0 0
\(455\) 0.519642 + 0.715226i 0.0243612 + 0.0335303i
\(456\) 0 0
\(457\) −6.20446 2.01595i −0.290232 0.0943022i 0.160282 0.987071i \(-0.448760\pi\)
−0.450515 + 0.892769i \(0.648760\pi\)
\(458\) 0 0
\(459\) 9.09126 + 6.60518i 0.424344 + 0.308304i
\(460\) 0 0
\(461\) 19.0882i 0.889026i 0.895773 + 0.444513i \(0.146623\pi\)
−0.895773 + 0.444513i \(0.853377\pi\)
\(462\) 0 0
\(463\) 13.0359i 0.605829i 0.953018 + 0.302915i \(0.0979597\pi\)
−0.953018 + 0.302915i \(0.902040\pi\)
\(464\) 0 0
\(465\) 22.8116 + 16.5736i 1.05786 + 0.768583i
\(466\) 0 0
\(467\) 14.4349 + 4.69019i 0.667969 + 0.217036i 0.623320 0.781967i \(-0.285783\pi\)
0.0446484 + 0.999003i \(0.485783\pi\)
\(468\) 0 0
\(469\) 7.91210 + 10.8901i 0.365347 + 0.502857i
\(470\) 0 0
\(471\) −39.8326 + 12.9424i −1.83539 + 0.596355i
\(472\) 0 0
\(473\) −11.5097 + 1.35520i −0.529219 + 0.0623122i
\(474\) 0 0
\(475\) −0.233968 0.720080i −0.0107352 0.0330395i
\(476\) 0 0
\(477\) −5.57496 + 4.05045i −0.255260 + 0.185457i
\(478\) 0 0
\(479\) 8.09752 24.9216i 0.369985 1.13870i −0.576815 0.816875i \(-0.695705\pi\)
0.946800 0.321822i \(-0.104295\pi\)
\(480\) 0 0
\(481\) −0.901199 + 1.24039i −0.0410911 + 0.0565571i
\(482\) 0 0
\(483\) 1.84571 0.0839827
\(484\) 0 0
\(485\) −19.4230 −0.881954
\(486\) 0 0
\(487\) 16.0181 22.0471i 0.725851 0.999048i −0.273458 0.961884i \(-0.588168\pi\)
0.999309 0.0371640i \(-0.0118324\pi\)
\(488\) 0 0
\(489\) −9.04656 + 27.8424i −0.409099 + 1.25908i
\(490\) 0 0
\(491\) 17.3230 12.5859i 0.781778 0.567995i −0.123734 0.992315i \(-0.539487\pi\)
0.905512 + 0.424320i \(0.139487\pi\)
\(492\) 0 0
\(493\) 7.55888 + 23.2638i 0.340435 + 1.04775i
\(494\) 0 0
\(495\) −33.7510 + 3.97397i −1.51699 + 0.178617i
\(496\) 0 0
\(497\) −4.41473 + 1.43443i −0.198028 + 0.0643431i
\(498\) 0 0
\(499\) −18.1317 24.9561i −0.811685 1.11719i −0.991061 0.133408i \(-0.957408\pi\)
0.179376 0.983781i \(-0.442592\pi\)
\(500\) 0 0
\(501\) 16.6063 + 5.39573i 0.741917 + 0.241063i
\(502\) 0 0
\(503\) 25.6773 + 18.6557i 1.14489 + 0.831815i 0.987794 0.155768i \(-0.0497852\pi\)
0.157101 + 0.987583i \(0.449785\pi\)
\(504\) 0 0
\(505\) 17.9219i 0.797515i
\(506\) 0 0
\(507\) 35.1117i 1.55936i
\(508\) 0 0
\(509\) 5.41179 + 3.93190i 0.239873 + 0.174278i 0.701227 0.712938i \(-0.252636\pi\)
−0.461354 + 0.887216i \(0.652636\pi\)
\(510\) 0 0
\(511\) −5.25794 1.70841i −0.232598 0.0755756i
\(512\) 0 0
\(513\) 3.81451 + 5.25022i 0.168415 + 0.231803i
\(514\) 0 0
\(515\) 0.914922 0.297276i 0.0403163 0.0130995i
\(516\) 0 0
\(517\) −12.4265 + 22.1575i −0.546515 + 0.974488i
\(518\) 0 0
\(519\) 3.03967 + 9.35513i 0.133426 + 0.410645i
\(520\) 0 0
\(521\) −10.0067 + 7.27028i −0.438401 + 0.318517i −0.784999 0.619497i \(-0.787337\pi\)
0.346598 + 0.938014i \(0.387337\pi\)
\(522\) 0 0
\(523\) −1.92840 + 5.93501i −0.0843231 + 0.259520i −0.984324 0.176367i \(-0.943565\pi\)
0.900001 + 0.435887i \(0.143565\pi\)
\(524\) 0 0
\(525\) −0.911507 + 1.25458i −0.0397814 + 0.0547545i
\(526\) 0 0
\(527\) 13.1950 0.574784
\(528\) 0 0
\(529\) 22.7236 0.987983
\(530\) 0 0
\(531\) 36.3368 50.0134i 1.57688 2.17039i
\(532\) 0 0
\(533\) 0.507388 1.56158i 0.0219774 0.0676395i
\(534\) 0 0
\(535\) −9.76811 + 7.09695i −0.422312 + 0.306828i
\(536\) 0 0
\(537\) −4.20746 12.9492i −0.181565 0.558800i
\(538\) 0 0
\(539\) −3.46101 + 17.3448i −0.149076 + 0.747093i
\(540\) 0 0
\(541\) −24.6331 + 8.00377i −1.05906 + 0.344109i −0.786217 0.617950i \(-0.787963\pi\)
−0.272841 + 0.962059i \(0.587963\pi\)
\(542\) 0 0
\(543\) −15.6649 21.5608i −0.672244 0.925264i
\(544\) 0 0
\(545\) −27.9425 9.07907i −1.19693 0.388905i
\(546\) 0 0
\(547\) 13.5035 + 9.81087i 0.577368 + 0.419482i 0.837774 0.546017i \(-0.183857\pi\)
−0.260406 + 0.965499i \(0.583857\pi\)
\(548\) 0 0
\(549\) 41.4954i 1.77098i
\(550\) 0 0
\(551\) 14.1263i 0.601801i
\(552\) 0 0
\(553\) −10.2897 7.47589i −0.437562 0.317907i
\(554\) 0 0
\(555\) −31.5105 10.2384i −1.33755 0.434595i
\(556\) 0 0
\(557\) 10.9144 + 15.0224i 0.462460 + 0.636522i 0.975017 0.222132i \(-0.0713015\pi\)
−0.512557 + 0.858653i \(0.671302\pi\)
\(558\) 0 0
\(559\) −0.975400 + 0.316927i −0.0412550 + 0.0134046i
\(560\) 0 0
\(561\) −19.6651 + 18.1562i −0.830262 + 0.766555i
\(562\) 0 0
\(563\) −7.00832 21.5694i −0.295366 0.909042i −0.983098 0.183078i \(-0.941394\pi\)
0.687733 0.725964i \(-0.258606\pi\)
\(564\) 0 0
\(565\) 5.02144 3.64829i 0.211253 0.153485i
\(566\) 0 0
\(567\) −1.15052 + 3.54093i −0.0483172 + 0.148705i
\(568\) 0 0
\(569\) 0.0874036 0.120301i 0.00366415 0.00504327i −0.807181 0.590304i \(-0.799008\pi\)
0.810845 + 0.585261i \(0.199008\pi\)
\(570\) 0 0
\(571\) 22.0331 0.922057 0.461028 0.887385i \(-0.347481\pi\)
0.461028 + 0.887385i \(0.347481\pi\)
\(572\) 0 0
\(573\) −31.7832 −1.32776
\(574\) 0 0
\(575\) 0.136500 0.187876i 0.00569242 0.00783495i
\(576\) 0 0
\(577\) 1.21706 3.74573i 0.0506669 0.155937i −0.922522 0.385945i \(-0.873875\pi\)
0.973189 + 0.230008i \(0.0738754\pi\)
\(578\) 0 0
\(579\) 2.53966 1.84517i 0.105545 0.0766827i
\(580\) 0 0
\(581\) 1.50021 + 4.61716i 0.0622391 + 0.191552i
\(582\) 0 0
\(583\) −2.17550 4.72655i −0.0901000 0.195754i
\(584\) 0 0
\(585\) −2.86025 + 0.929350i −0.118257 + 0.0384239i
\(586\) 0 0
\(587\) −11.1451 15.3399i −0.460006 0.633144i 0.514504 0.857488i \(-0.327976\pi\)
−0.974510 + 0.224344i \(0.927976\pi\)
\(588\) 0 0
\(589\) 7.24720 + 2.35476i 0.298616 + 0.0970261i
\(590\) 0 0
\(591\) −34.3690 24.9706i −1.41375 1.02715i
\(592\) 0 0
\(593\) 31.9983i 1.31401i 0.753885 + 0.657007i \(0.228178\pi\)
−0.753885 + 0.657007i \(0.771822\pi\)
\(594\) 0 0
\(595\) 8.94012i 0.366509i
\(596\) 0 0
\(597\) 24.1265 + 17.5290i 0.987433 + 0.717412i
\(598\) 0 0
\(599\) −8.23336 2.67518i −0.336406 0.109305i 0.135943 0.990717i \(-0.456594\pi\)
−0.472349 + 0.881412i \(0.656594\pi\)
\(600\) 0 0
\(601\) −12.9491 17.8228i −0.528203 0.727009i 0.458652 0.888616i \(-0.348332\pi\)
−0.986855 + 0.161607i \(0.948332\pi\)
\(602\) 0 0
\(603\) −43.5503 + 14.1503i −1.77350 + 0.576246i
\(604\) 0 0
\(605\) 2.04426 25.5787i 0.0831110 1.03992i
\(606\) 0 0
\(607\) −13.2005 40.6268i −0.535790 1.64899i −0.741936 0.670471i \(-0.766092\pi\)
0.206146 0.978521i \(-0.433908\pi\)
\(608\) 0 0
\(609\) 23.4074 17.0065i 0.948517 0.689138i
\(610\) 0 0
\(611\) −0.694718 + 2.13812i −0.0281053 + 0.0864992i
\(612\) 0 0
\(613\) 5.74748 7.91073i 0.232139 0.319511i −0.677018 0.735967i \(-0.736728\pi\)
0.909156 + 0.416456i \(0.136728\pi\)
\(614\) 0 0
\(615\) 35.4817 1.43076
\(616\) 0 0
\(617\) −22.4213 −0.902649 −0.451324 0.892360i \(-0.649048\pi\)
−0.451324 + 0.892360i \(0.649048\pi\)
\(618\) 0 0
\(619\) −11.3322 + 15.5975i −0.455481 + 0.626916i −0.973564 0.228414i \(-0.926646\pi\)
0.518083 + 0.855331i \(0.326646\pi\)
\(620\) 0 0
\(621\) −0.615093 + 1.89306i −0.0246828 + 0.0759660i
\(622\) 0 0
\(623\) −0.624841 + 0.453973i −0.0250337 + 0.0181881i
\(624\) 0 0
\(625\) −8.34762 25.6913i −0.333905 1.02765i
\(626\) 0 0
\(627\) −14.0409 + 6.46266i −0.560741 + 0.258094i
\(628\) 0 0
\(629\) −14.7457 + 4.79118i −0.587951 + 0.191037i
\(630\) 0 0
\(631\) −22.5021 30.9715i −0.895794 1.23296i −0.971790 0.235847i \(-0.924214\pi\)
0.0759958 0.997108i \(-0.475786\pi\)
\(632\) 0 0
\(633\) 49.9163 + 16.2188i 1.98400 + 0.644639i
\(634\) 0 0
\(635\) −37.6803 27.3763i −1.49530 1.08640i
\(636\) 0 0
\(637\) 1.56519i 0.0620153i
\(638\) 0 0
\(639\) 15.7910i 0.624682i
\(640\) 0 0
\(641\) 25.5946 + 18.5955i 1.01092 + 0.734480i 0.964403 0.264438i \(-0.0851864\pi\)
0.0465216 + 0.998917i \(0.485186\pi\)
\(642\) 0 0
\(643\) 14.1716 + 4.60464i 0.558874 + 0.181589i 0.574814 0.818284i \(-0.305074\pi\)
−0.0159405 + 0.999873i \(0.505074\pi\)
\(644\) 0 0
\(645\) −13.0269 17.9300i −0.512934 0.705993i
\(646\) 0 0
\(647\) 39.0933 12.7022i 1.53692 0.499374i 0.586393 0.810027i \(-0.300548\pi\)
0.950523 + 0.310653i \(0.100548\pi\)
\(648\) 0 0
\(649\) 31.6643 + 34.2959i 1.24293 + 1.34623i
\(650\) 0 0
\(651\) −4.82296 14.8435i −0.189027 0.581764i
\(652\) 0 0
\(653\) 3.70761 2.69374i 0.145090 0.105414i −0.512872 0.858465i \(-0.671419\pi\)
0.657962 + 0.753051i \(0.271419\pi\)
\(654\) 0 0
\(655\) −14.7874 + 45.5109i −0.577791 + 1.77826i
\(656\) 0 0
\(657\) 11.0545 15.2152i 0.431278 0.593603i
\(658\) 0 0
\(659\) 38.0732 1.48312 0.741560 0.670886i \(-0.234086\pi\)
0.741560 + 0.670886i \(0.234086\pi\)
\(660\) 0 0
\(661\) 9.34038 0.363299 0.181649 0.983363i \(-0.441856\pi\)
0.181649 + 0.983363i \(0.441856\pi\)
\(662\) 0 0
\(663\) −1.39222 + 1.91622i −0.0540692 + 0.0744198i
\(664\) 0 0
\(665\) −1.59544 + 4.91025i −0.0618684 + 0.190411i
\(666\) 0 0
\(667\) −3.50530 + 2.54675i −0.135726 + 0.0986104i
\(668\) 0 0
\(669\) −9.10685 28.0280i −0.352091 1.08363i
\(670\) 0 0
\(671\) 30.7260 + 6.13113i 1.18616 + 0.236689i
\(672\) 0 0
\(673\) 13.4864 4.38199i 0.519862 0.168913i −0.0373208 0.999303i \(-0.511882\pi\)
0.557183 + 0.830390i \(0.311882\pi\)
\(674\) 0 0
\(675\) −0.983004 1.35299i −0.0378358 0.0520766i
\(676\) 0 0
\(677\) 4.48196 + 1.45628i 0.172256 + 0.0559692i 0.393875 0.919164i \(-0.371134\pi\)
−0.221619 + 0.975133i \(0.571134\pi\)
\(678\) 0 0
\(679\) 8.69775 + 6.31929i 0.333789 + 0.242512i
\(680\) 0 0
\(681\) 65.2454i 2.50021i
\(682\) 0 0
\(683\) 18.0462i 0.690519i 0.938507 + 0.345260i \(0.112209\pi\)
−0.938507 + 0.345260i \(0.887791\pi\)
\(684\) 0 0
\(685\) 11.8243 + 8.59084i 0.451782 + 0.328239i
\(686\) 0 0
\(687\) −63.5633 20.6530i −2.42509 0.787960i
\(688\) 0 0
\(689\) −0.270650 0.372518i −0.0103109 0.0141918i
\(690\) 0 0
\(691\) −1.27888 + 0.415533i −0.0486509 + 0.0158076i −0.333241 0.942842i \(-0.608142\pi\)
0.284590 + 0.958649i \(0.408142\pi\)
\(692\) 0 0
\(693\) 16.4068 + 9.20132i 0.623244 + 0.349529i
\(694\) 0 0
\(695\) −9.71740 29.9071i −0.368602 1.13444i
\(696\) 0 0
\(697\) 13.4330 9.75964i 0.508811 0.369673i
\(698\) 0 0
\(699\) 12.0187 36.9896i 0.454587 1.39908i
\(700\) 0 0
\(701\) 9.79382 13.4800i 0.369907 0.509134i −0.582968 0.812495i \(-0.698109\pi\)
0.952876 + 0.303361i \(0.0981088\pi\)
\(702\) 0 0
\(703\) −8.95393 −0.337704
\(704\) 0 0
\(705\) −48.5817 −1.82969
\(706\) 0 0
\(707\) −5.83090 + 8.02554i −0.219293 + 0.301832i
\(708\) 0 0
\(709\) −7.43557 + 22.8843i −0.279249 + 0.859440i 0.708815 + 0.705394i \(0.249230\pi\)
−0.988064 + 0.154045i \(0.950770\pi\)
\(710\) 0 0
\(711\) 35.0036 25.4316i 1.31274 0.953761i
\(712\) 0 0
\(713\) 0.722245 + 2.22284i 0.0270483 + 0.0832460i
\(714\) 0 0
\(715\) −0.265540 2.25523i −0.00993063 0.0843410i
\(716\) 0 0
\(717\) 51.1063 16.6054i 1.90860 0.620141i
\(718\) 0 0
\(719\) 6.65923 + 9.16564i 0.248347 + 0.341821i 0.914932 0.403609i \(-0.132244\pi\)
−0.666584 + 0.745430i \(0.732244\pi\)
\(720\) 0 0
\(721\) −0.506426 0.164548i −0.0188603 0.00612808i
\(722\) 0 0
\(723\) 14.3649 + 10.4367i 0.534237 + 0.388146i
\(724\) 0 0
\(725\) 3.64037i 0.135200i
\(726\) 0 0
\(727\) 0.700673i 0.0259865i 0.999916 + 0.0129933i \(0.00413600\pi\)
−0.999916 + 0.0129933i \(0.995864\pi\)
\(728\) 0 0
\(729\) −35.2308 25.5967i −1.30485 0.948026i
\(730\) 0 0
\(731\) −9.86371 3.20491i −0.364823 0.118538i
\(732\) 0 0
\(733\) −17.6206 24.2526i −0.650830 0.895790i 0.348305 0.937381i \(-0.386757\pi\)
−0.999135 + 0.0415908i \(0.986757\pi\)
\(734\) 0 0
\(735\) −32.1678 + 10.4519i −1.18653 + 0.385526i
\(736\) 0 0
\(737\) −4.04313 34.3383i −0.148930 1.26487i
\(738\) 0 0
\(739\) −13.4812 41.4910i −0.495915 1.52627i −0.815526 0.578721i \(-0.803552\pi\)
0.319611 0.947549i \(-0.396448\pi\)
\(740\) 0 0
\(741\) −1.10662 + 0.804008i −0.0406528 + 0.0295360i
\(742\) 0 0
\(743\) −10.5703 + 32.5321i −0.387788 + 1.19349i 0.546650 + 0.837361i \(0.315903\pi\)
−0.934438 + 0.356127i \(0.884097\pi\)
\(744\) 0 0
\(745\) −23.9268 + 32.9324i −0.876610 + 1.20655i
\(746\) 0 0
\(747\) −16.5151 −0.604255
\(748\) 0 0
\(749\) 6.68321 0.244199
\(750\) 0 0
\(751\) −0.851372 + 1.17181i −0.0310670 + 0.0427600i −0.824268 0.566200i \(-0.808413\pi\)
0.793201 + 0.608960i \(0.208413\pi\)
\(752\) 0 0
\(753\) −4.00819 + 12.3359i −0.146067 + 0.449546i
\(754\) 0 0
\(755\) −18.5411 + 13.4709i −0.674780 + 0.490257i
\(756\) 0 0
\(757\) −9.41100 28.9641i −0.342049 1.05272i −0.963145 0.268983i \(-0.913312\pi\)
0.621096 0.783734i \(-0.286688\pi\)
\(758\) 0 0
\(759\) −4.13500 2.31900i −0.150091 0.0841744i
\(760\) 0 0
\(761\) 22.8716 7.43142i 0.829094 0.269389i 0.136430 0.990650i \(-0.456437\pi\)
0.692664 + 0.721261i \(0.256437\pi\)
\(762\) 0 0
\(763\) 9.55895 + 13.1568i 0.346057 + 0.476307i
\(764\) 0 0
\(765\) −28.9242 9.39804i −1.04576 0.339787i
\(766\) 0 0
\(767\) 3.34188 + 2.42802i 0.120668 + 0.0876707i
\(768\) 0 0
\(769\) 14.6461i 0.528151i −0.964502 0.264076i \(-0.914933\pi\)
0.964502 0.264076i \(-0.0850669\pi\)
\(770\) 0 0
\(771\) 8.25715i 0.297374i
\(772\) 0 0
\(773\) −21.4727 15.6009i −0.772320 0.561124i 0.130344 0.991469i \(-0.458392\pi\)
−0.902664 + 0.430345i \(0.858392\pi\)
\(774\) 0 0
\(775\) −1.86761 0.606824i −0.0670866 0.0217977i
\(776\) 0 0
\(777\) 10.7795 + 14.8367i 0.386713 + 0.532265i
\(778\) 0 0
\(779\) 9.11960 2.96314i 0.326743 0.106165i
\(780\) 0 0
\(781\) 11.6927 + 2.33319i 0.418398 + 0.0834880i
\(782\) 0 0
\(783\) 9.64214 + 29.6755i 0.344582 + 1.06051i
\(784\) 0 0
\(785\) 29.0712 21.1214i 1.03759 0.753857i
\(786\) 0 0
\(787\) 6.33834 19.5074i 0.225937 0.695364i −0.772258 0.635309i \(-0.780873\pi\)
0.998195 0.0600544i \(-0.0191274\pi\)
\(788\) 0 0
\(789\) −22.6410 + 31.1626i −0.806040 + 1.10942i
\(790\) 0 0
\(791\) −3.43560 −0.122156
\(792\) 0 0
\(793\) 2.77271 0.0984620
\(794\) 0 0
\(795\) 5.84864 8.04996i 0.207430 0.285503i
\(796\) 0 0
\(797\) 10.1514 31.2427i 0.359580 1.10667i −0.593726 0.804667i \(-0.702344\pi\)
0.953306 0.302006i \(-0.0976564\pi\)
\(798\) 0 0
\(799\) −18.3925 + 13.3630i −0.650682 + 0.472748i
\(800\) 0 0
\(801\) −0.811905 2.49879i −0.0286873 0.0882903i
\(802\) 0 0
\(803\) 9.63304 + 10.4336i 0.339942 + 0.368195i
\(804\) 0 0
\(805\) −1.50606 + 0.489348i −0.0530816 + 0.0172473i
\(806\) 0 0
\(807\) −1.60094 2.20350i −0.0563557 0.0775670i
\(808\) 0 0
\(809\) 17.7783 + 5.77654i 0.625053 + 0.203092i 0.604383 0.796694i \(-0.293420\pi\)
0.0206708 + 0.999786i \(0.493420\pi\)
\(810\) 0 0
\(811\) −22.1490 16.0922i −0.777758 0.565074i 0.126547 0.991961i \(-0.459610\pi\)
−0.904305 + 0.426886i \(0.859610\pi\)
\(812\) 0 0
\(813\) 48.3724i 1.69650i
\(814\) 0 0
\(815\) 25.1173i 0.879821i
\(816\) 0 0
\(817\) −4.84558 3.52052i −0.169525 0.123167i
\(818\) 0 0
\(819\) 1.58320 + 0.514413i 0.0553215 + 0.0179750i
\(820\) 0 0
\(821\) −5.06427 6.97036i −0.176744 0.243267i 0.711449 0.702738i \(-0.248039\pi\)
−0.888193 + 0.459470i \(0.848039\pi\)
\(822\) 0 0
\(823\) 3.63990 1.18267i 0.126879 0.0412254i −0.244889 0.969551i \(-0.578752\pi\)
0.371768 + 0.928326i \(0.378752\pi\)
\(824\) 0 0
\(825\) 3.61837 1.66543i 0.125975 0.0579830i
\(826\) 0 0
\(827\) −8.45284 26.0152i −0.293934 0.904636i −0.983577 0.180487i \(-0.942233\pi\)
0.689643 0.724149i \(-0.257767\pi\)
\(828\) 0 0
\(829\) 14.2443 10.3491i 0.494723 0.359438i −0.312274 0.949992i \(-0.601091\pi\)
0.806998 + 0.590554i \(0.201091\pi\)
\(830\) 0 0
\(831\) 16.2885 50.1309i 0.565043 1.73902i
\(832\) 0 0
\(833\) −9.30347 + 12.8051i −0.322346 + 0.443671i
\(834\) 0 0
\(835\) −14.9810 −0.518438
\(836\) 0 0
\(837\) 16.8316 0.581786
\(838\) 0 0
\(839\) 0.148971 0.205041i 0.00514306 0.00707881i −0.806438 0.591319i \(-0.798607\pi\)
0.811581 + 0.584240i \(0.198607\pi\)
\(840\) 0 0
\(841\) −12.0270 + 37.0154i −0.414726 + 1.27639i
\(842\) 0 0
\(843\) 32.3268 23.4868i 1.11340 0.808929i
\(844\) 0 0
\(845\) 9.30907 + 28.6504i 0.320242 + 0.985603i
\(846\) 0 0
\(847\) −9.23746 + 10.7892i −0.317403 + 0.370721i
\(848\) 0 0
\(849\) 6.45654 2.09786i 0.221588 0.0719983i
\(850\) 0 0
\(851\) −1.61425 2.22182i −0.0553358 0.0761632i
\(852\) 0 0
\(853\) 35.2985 + 11.4692i 1.20860 + 0.392697i 0.842917 0.538044i \(-0.180837\pi\)
0.365680 + 0.930741i \(0.380837\pi\)
\(854\) 0 0
\(855\) −14.2091 10.3235i −0.485941 0.353057i
\(856\) 0 0
\(857\) 20.9360i 0.715161i 0.933882 + 0.357580i \(0.116398\pi\)
−0.933882 + 0.357580i \(0.883602\pi\)
\(858\) 0 0
\(859\) 20.6926i 0.706022i 0.935619 + 0.353011i \(0.114842\pi\)
−0.935619 + 0.353011i \(0.885158\pi\)
\(860\) 0 0
\(861\) −15.8889 11.5440i −0.541493 0.393417i
\(862\) 0 0
\(863\) 35.9307 + 11.6746i 1.22309 + 0.397408i 0.848208 0.529663i \(-0.177682\pi\)
0.374887 + 0.927071i \(0.377682\pi\)
\(864\) 0 0
\(865\) −4.96060 6.82768i −0.168666 0.232148i
\(866\) 0 0
\(867\) 21.1794 6.88161i 0.719290 0.233712i
\(868\) 0 0
\(869\) 13.6594 + 29.6767i 0.463362 + 1.00671i
\(870\) 0 0
\(871\) −0.945523 2.91002i −0.0320378 0.0986023i
\(872\) 0 0
\(873\) −29.5882 + 21.4971i −1.00141 + 0.727566i
\(874\) 0 0
\(875\) −4.24279 + 13.0580i −0.143433 + 0.441440i
\(876\) 0 0
\(877\) −6.81007 + 9.37325i −0.229960 + 0.316512i −0.908367 0.418173i \(-0.862670\pi\)
0.678408 + 0.734686i \(0.262670\pi\)
\(878\) 0 0
\(879\) 20.4432 0.689532
\(880\) 0 0
\(881\) −24.6157 −0.829325 −0.414662 0.909975i \(-0.636100\pi\)
−0.414662 + 0.909975i \(0.636100\pi\)
\(882\) 0 0
\(883\) −23.0095 + 31.6699i −0.774333 + 1.06578i 0.221552 + 0.975149i \(0.428888\pi\)
−0.995885 + 0.0906289i \(0.971112\pi\)
\(884\) 0 0
\(885\) −27.5843 + 84.8959i −0.927237 + 2.85374i
\(886\) 0 0
\(887\) −38.4919 + 27.9660i −1.29243 + 0.939006i −0.999851 0.0172350i \(-0.994514\pi\)
−0.292580 + 0.956241i \(0.594514\pi\)
\(888\) 0 0
\(889\) 7.96657 + 24.5186i 0.267190 + 0.822326i
\(890\) 0 0
\(891\) 7.02646 6.48731i 0.235395 0.217333i
\(892\) 0 0
\(893\) −12.4866 + 4.05715i −0.417848 + 0.135767i
\(894\) 0 0
\(895\) 6.86639 + 9.45077i 0.229518 + 0.315904i
\(896\) 0 0
\(897\) −0.399012 0.129647i −0.0133226 0.00432879i
\(898\) 0 0
\(899\) 29.6410 + 21.5354i 0.988581 + 0.718246i
\(900\) 0 0
\(901\) 4.65637i 0.155126i
\(902\) 0 0
\(903\) 12.2675i 0.408236i
\(904\) 0 0
\(905\) 18.4986 + 13.4400i 0.614913 + 0.446760i
\(906\) 0 0
\(907\) −3.43208 1.11515i −0.113960 0.0370279i 0.251482 0.967862i \(-0.419082\pi\)
−0.365442 + 0.930834i \(0.619082\pi\)
\(908\) 0 0
\(909\) −19.8357 27.3015i −0.657908 0.905532i
\(910\) 0 0
\(911\) 29.8894 9.71164i 0.990278 0.321761i 0.231304 0.972881i \(-0.425701\pi\)
0.758974 + 0.651121i \(0.225701\pi\)
\(912\) 0 0
\(913\) 2.44017 12.2289i 0.0807579 0.404716i
\(914\) 0 0
\(915\) 18.5154 + 56.9847i 0.612102 + 1.88386i
\(916\) 0 0
\(917\) 21.4289 15.5690i 0.707643 0.514133i
\(918\) 0 0
\(919\) 8.08812 24.8927i 0.266802 0.821133i −0.724470 0.689306i \(-0.757916\pi\)
0.991273 0.131827i \(-0.0420845\pi\)
\(920\) 0 0
\(921\) −41.2305 + 56.7489i −1.35859 + 1.86994i
\(922\) 0 0
\(923\) 1.05515 0.0347307
\(924\) 0 0
\(925\) 2.30744 0.0758681
\(926\) 0 0
\(927\) 1.06473 1.46548i 0.0349704 0.0481326i
\(928\) 0 0
\(929\) 8.71671 26.8273i 0.285986 0.880175i −0.700115 0.714030i \(-0.746868\pi\)
0.986101 0.166145i \(-0.0531320\pi\)
\(930\) 0 0
\(931\) −7.39499 + 5.37278i −0.242361 + 0.176086i
\(932\) 0 0
\(933\) −2.49063 7.66538i −0.0815397 0.250953i
\(934\) 0 0
\(935\) 11.2326 20.0288i 0.367346 0.655013i
\(936\) 0 0
\(937\) 20.4298 6.63805i 0.667413 0.216856i 0.0443365 0.999017i \(-0.485883\pi\)
0.623076 + 0.782161i \(0.285883\pi\)
\(938\) 0 0
\(939\) 0.965265 + 1.32857i 0.0315002 + 0.0433563i
\(940\) 0 0
\(941\) −27.2146 8.84257i −0.887172 0.288260i −0.170240 0.985403i \(-0.554454\pi\)
−0.716932 + 0.697143i \(0.754454\pi\)
\(942\) 0 0
\(943\) 2.37939 + 1.72873i 0.0774835 + 0.0562951i
\(944\) 0 0
\(945\) 11.4041i 0.370974i
\(946\) 0 0
\(947\) 0.894236i 0.0290588i 0.999894 + 0.0145294i \(0.00462501\pi\)
−0.999894 + 0.0145294i \(0.995375\pi\)
\(948\) 0 0
\(949\) 1.01668 + 0.738661i 0.0330028 + 0.0239779i
\(950\) 0 0
\(951\) 59.3333 + 19.2786i 1.92402 + 0.625150i
\(952\) 0 0
\(953\) −5.07423 6.98407i −0.164370 0.226236i 0.718885 0.695129i \(-0.244653\pi\)
−0.883255 + 0.468893i \(0.844653\pi\)
\(954\) 0 0
\(955\) 25.9344 8.42661i 0.839219 0.272679i
\(956\) 0 0
\(957\) −73.8078 + 8.69041i −2.38587 + 0.280921i
\(958\) 0 0
\(959\) −2.49995 7.69406i −0.0807277 0.248454i
\(960\) 0 0
\(961\) −9.09031 + 6.60449i −0.293236 + 0.213048i
\(962\) 0 0
\(963\) −7.02553 + 21.6224i −0.226395 + 0.696771i
\(964\) 0 0
\(965\) −1.58310 + 2.17895i −0.0509619 + 0.0701430i
\(966\) 0 0
\(967\) 23.2776 0.748557 0.374278 0.927316i \(-0.377890\pi\)
0.374278 + 0.927316i \(0.377890\pi\)
\(968\) 0 0
\(969\) −13.8325 −0.444363
\(970\) 0 0
\(971\) 18.9657 26.1040i 0.608638 0.837718i −0.387827 0.921732i \(-0.626774\pi\)
0.996465 + 0.0840143i \(0.0267742\pi\)
\(972\) 0 0
\(973\) −5.37876 + 16.5541i −0.172435 + 0.530701i
\(974\) 0 0
\(975\) 0.285178 0.207194i 0.00913300 0.00663551i
\(976\) 0 0
\(977\) 2.86676 + 8.82297i 0.0917157 + 0.282272i 0.986384 0.164459i \(-0.0525880\pi\)
−0.894668 + 0.446731i \(0.852588\pi\)
\(978\) 0 0
\(979\) 1.97023 0.231983i 0.0629689 0.00741420i
\(980\) 0 0
\(981\) −52.6150 + 17.0956i −1.67987 + 0.545822i
\(982\) 0 0
\(983\) 13.6886 + 18.8408i 0.436599 + 0.600927i 0.969452 0.245281i \(-0.0788801\pi\)
−0.532853 + 0.846208i \(0.678880\pi\)
\(984\) 0 0
\(985\) 34.6648 + 11.2633i 1.10451 + 0.358877i
\(986\) 0 0
\(987\) 21.7552 + 15.8061i 0.692476 + 0.503113i
\(988\) 0 0
\(989\) 1.83707i 0.0584155i
\(990\) 0 0
\(991\) 42.4003i 1.34689i 0.739237 + 0.673446i \(0.235186\pi\)
−0.739237 + 0.673446i \(0.764814\pi\)
\(992\) 0 0
\(993\) −9.75417 7.08682i −0.309539 0.224893i
\(994\) 0 0
\(995\) −24.3341 7.90664i −0.771444 0.250657i
\(996\) 0 0
\(997\) 2.61173 + 3.59473i 0.0827142 + 0.113846i 0.848369 0.529405i \(-0.177585\pi\)
−0.765655 + 0.643252i \(0.777585\pi\)
\(998\) 0 0
\(999\) −18.8097 + 6.11165i −0.595113 + 0.193364i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 704.2.u.c.127.1 16
4.3 odd 2 inner 704.2.u.c.127.4 16
8.3 odd 2 44.2.g.a.39.1 yes 16
8.5 even 2 44.2.g.a.39.2 yes 16
11.2 odd 10 inner 704.2.u.c.255.4 16
24.5 odd 2 396.2.r.a.127.3 16
24.11 even 2 396.2.r.a.127.4 16
44.35 even 10 inner 704.2.u.c.255.1 16
88.3 odd 10 484.2.c.d.483.8 16
88.5 even 10 484.2.g.j.403.2 16
88.13 odd 10 44.2.g.a.35.1 16
88.19 even 10 484.2.c.d.483.9 16
88.21 odd 2 484.2.g.i.215.3 16
88.27 odd 10 484.2.g.j.403.3 16
88.29 odd 10 484.2.g.j.239.3 16
88.35 even 10 44.2.g.a.35.2 yes 16
88.37 even 10 484.2.g.f.239.2 16
88.43 even 2 484.2.g.i.215.4 16
88.51 even 10 484.2.g.j.239.2 16
88.53 even 10 484.2.g.i.475.4 16
88.59 odd 10 484.2.g.f.239.3 16
88.61 odd 10 484.2.g.f.403.3 16
88.69 even 10 484.2.c.d.483.10 16
88.75 odd 10 484.2.g.i.475.3 16
88.83 even 10 484.2.g.f.403.2 16
88.85 odd 10 484.2.c.d.483.7 16
264.35 odd 10 396.2.r.a.343.3 16
264.101 even 10 396.2.r.a.343.4 16
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
44.2.g.a.35.1 16 88.13 odd 10
44.2.g.a.35.2 yes 16 88.35 even 10
44.2.g.a.39.1 yes 16 8.3 odd 2
44.2.g.a.39.2 yes 16 8.5 even 2
396.2.r.a.127.3 16 24.5 odd 2
396.2.r.a.127.4 16 24.11 even 2
396.2.r.a.343.3 16 264.35 odd 10
396.2.r.a.343.4 16 264.101 even 10
484.2.c.d.483.7 16 88.85 odd 10
484.2.c.d.483.8 16 88.3 odd 10
484.2.c.d.483.9 16 88.19 even 10
484.2.c.d.483.10 16 88.69 even 10
484.2.g.f.239.2 16 88.37 even 10
484.2.g.f.239.3 16 88.59 odd 10
484.2.g.f.403.2 16 88.83 even 10
484.2.g.f.403.3 16 88.61 odd 10
484.2.g.i.215.3 16 88.21 odd 2
484.2.g.i.215.4 16 88.43 even 2
484.2.g.i.475.3 16 88.75 odd 10
484.2.g.i.475.4 16 88.53 even 10
484.2.g.j.239.2 16 88.51 even 10
484.2.g.j.239.3 16 88.29 odd 10
484.2.g.j.403.2 16 88.5 even 10
484.2.g.j.403.3 16 88.27 odd 10
704.2.u.c.127.1 16 1.1 even 1 trivial
704.2.u.c.127.4 16 4.3 odd 2 inner
704.2.u.c.255.1 16 44.35 even 10 inner
704.2.u.c.255.4 16 11.2 odd 10 inner