Properties

Label 44.2.g.a.35.2
Level $44$
Weight $2$
Character 44.35
Analytic conductor $0.351$
Analytic rank $0$
Dimension $16$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [44,2,Mod(7,44)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(44, base_ring=CyclotomicField(10))
 
chi = DirichletCharacter(H, H._module([5, 7]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("44.7");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 44 = 2^{2} \cdot 11 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 44.g (of order \(10\), degree \(4\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(0.351341768894\)
Analytic rank: \(0\)
Dimension: \(16\)
Relative dimension: \(4\) over \(\Q(\zeta_{10})\)
Coefficient field: \(\mathbb{Q}[x]/(x^{16} - \cdots)\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{16} - 5 x^{15} + 13 x^{14} - 25 x^{13} + 35 x^{12} - 30 x^{11} - 2 x^{10} + 60 x^{9} - 116 x^{8} + \cdots + 256 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2, a_3]\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{10}]$

Embedding invariants

Embedding label 35.2
Root \(1.06665 - 0.928579i\) of defining polynomial
Character \(\chi\) \(=\) 44.35
Dual form 44.2.g.a.39.2

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-1.06665 - 0.928579i) q^{2} +(1.59814 + 2.19965i) q^{3} +(0.275480 + 1.98094i) q^{4} +(-0.720859 - 2.21858i) q^{5} +(0.337896 - 3.83025i) q^{6} +(-1.04462 - 0.758960i) q^{7} +(1.54562 - 2.36877i) q^{8} +(-1.35736 + 4.17752i) q^{9} +O(q^{10})\) \(q+(-1.06665 - 0.928579i) q^{2} +(1.59814 + 2.19965i) q^{3} +(0.275480 + 1.98094i) q^{4} +(-0.720859 - 2.21858i) q^{5} +(0.337896 - 3.83025i) q^{6} +(-1.04462 - 0.758960i) q^{7} +(1.54562 - 2.36877i) q^{8} +(-1.35736 + 4.17752i) q^{9} +(-1.29122 + 3.03582i) q^{10} +(-3.29387 - 0.387833i) q^{11} +(-3.91711 + 3.77177i) q^{12} +(-0.279141 - 0.0906984i) q^{13} +(0.409487 + 1.77956i) q^{14} +(3.72806 - 5.13123i) q^{15} +(-3.84822 + 1.09142i) q^{16} +(2.82281 - 0.917186i) q^{17} +(5.32698 - 3.19553i) q^{18} +(-1.38671 + 1.00751i) q^{19} +(4.19628 - 2.03915i) q^{20} -3.51072i q^{21} +(3.15327 + 3.47230i) q^{22} -0.525735i q^{23} +(7.68057 - 0.385808i) q^{24} +(-0.357358 + 0.259635i) q^{25} +(0.213525 + 0.355948i) q^{26} +(-3.60079 + 1.16997i) q^{27} +(1.21568 - 2.27840i) q^{28} +(-4.84416 + 6.66742i) q^{29} +(-8.74128 + 2.01142i) q^{30} +(4.22806 + 1.37378i) q^{31} +(5.11817 + 2.40922i) q^{32} +(-4.41097 - 7.86517i) q^{33} +(-3.86263 - 1.64289i) q^{34} +(-0.930788 + 2.86467i) q^{35} +(-8.64932 - 1.53802i) q^{36} +(4.22613 + 3.07046i) q^{37} +(2.41469 + 0.213018i) q^{38} +(-0.246601 - 0.758960i) q^{39} +(-6.36947 - 1.72152i) q^{40} +(3.28821 + 4.52583i) q^{41} +(-3.25998 + 3.74471i) q^{42} +3.49429 q^{43} +(-0.139124 - 6.63179i) q^{44} +10.2466 q^{45} +(-0.488187 + 0.560775i) q^{46} +(-4.50223 - 6.19679i) q^{47} +(-8.55073 - 6.72050i) q^{48} +(-1.64791 - 5.07175i) q^{49} +(0.622267 + 0.0548950i) q^{50} +(6.52872 + 4.74340i) q^{51} +(0.102770 - 0.577946i) q^{52} +(0.484791 - 1.49203i) q^{53} +(4.92719 + 2.09567i) q^{54} +(1.51398 + 7.58728i) q^{55} +(-3.41238 + 1.30140i) q^{56} +(-4.43232 - 1.44015i) q^{57} +(11.3582 - 2.61360i) q^{58} +(-8.27247 + 11.3861i) q^{59} +(11.1916 + 5.97149i) q^{60} +(-8.98451 + 2.91924i) q^{61} +(-3.23419 - 5.39143i) q^{62} +(4.58849 - 3.33373i) q^{63} +(-3.22214 - 7.32242i) q^{64} +0.684676i q^{65} +(-2.59848 + 12.4853i) q^{66} -10.4249i q^{67} +(2.59452 + 5.33914i) q^{68} +(1.15643 - 0.840198i) q^{69} +(3.65290 - 2.19129i) q^{70} +(3.41904 - 1.11091i) q^{71} +(7.79762 + 9.67211i) q^{72} +(2.51668 - 3.46391i) q^{73} +(-1.65663 - 7.19940i) q^{74} +(-1.14221 - 0.371128i) q^{75} +(-2.37782 - 2.46944i) q^{76} +(3.14649 + 2.90506i) q^{77} +(-0.441718 + 1.03853i) q^{78} +(3.04387 - 9.36807i) q^{79} +(5.19542 + 7.75081i) q^{80} +(2.33275 + 1.69484i) q^{81} +(0.695229 - 7.88083i) q^{82} +(-1.16185 - 3.57581i) q^{83} +(6.95451 - 0.967134i) q^{84} +(-4.06969 - 5.60145i) q^{85} +(-3.72718 - 3.24473i) q^{86} -22.4076 q^{87} +(-6.00975 + 7.20298i) q^{88} +0.598152 q^{89} +(-10.9295 - 9.51479i) q^{90} +(0.222760 + 0.306602i) q^{91} +(1.04145 - 0.144830i) q^{92} +(3.73519 + 11.4957i) q^{93} +(-0.951912 + 10.7905i) q^{94} +(3.23485 + 2.35026i) q^{95} +(2.88011 + 15.1084i) q^{96} +(-2.57295 + 7.91872i) q^{97} +(-2.95178 + 6.93999i) q^{98} +(6.09114 - 13.2338i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 16 q - 5 q^{2} - q^{4} - 6 q^{5} - 5 q^{6} - 5 q^{8} - 10 q^{9}+O(q^{10}) \) Copy content Toggle raw display \( 16 q - 5 q^{2} - q^{4} - 6 q^{5} - 5 q^{6} - 5 q^{8} - 10 q^{9} - 22 q^{12} - 10 q^{13} + 8 q^{14} + 23 q^{16} - 10 q^{17} + 20 q^{18} + 16 q^{20} + 17 q^{22} + 25 q^{24} + 6 q^{25} - 4 q^{26} + 20 q^{28} - 10 q^{29} - 12 q^{33} - 6 q^{34} - 30 q^{36} + 18 q^{37} - 38 q^{38} - 40 q^{40} + 10 q^{41} - 26 q^{42} - 28 q^{44} + 40 q^{45} - 30 q^{46} - 36 q^{48} + 6 q^{49} - 15 q^{50} - 10 q^{52} + 38 q^{53} - 12 q^{56} + 30 q^{58} + 52 q^{60} - 10 q^{61} + 70 q^{62} + 23 q^{64} + 36 q^{66} + 60 q^{68} - 16 q^{69} + 12 q^{70} + 45 q^{72} - 30 q^{73} + 40 q^{74} + 2 q^{77} + 4 q^{78} - 28 q^{80} - 4 q^{81} - 59 q^{82} - 10 q^{84} - 50 q^{85} - 39 q^{86} - 53 q^{88} - 36 q^{89} - 50 q^{90} + 36 q^{92} - 38 q^{93} - 30 q^{94} - 68 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/44\mathbb{Z}\right)^\times\).

\(n\) \(13\) \(23\)
\(\chi(n)\) \(e\left(\frac{1}{10}\right)\) \(-1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −1.06665 0.928579i −0.754235 0.656605i
\(3\) 1.59814 + 2.19965i 0.922686 + 1.26997i 0.962645 + 0.270767i \(0.0872771\pi\)
−0.0399594 + 0.999201i \(0.512723\pi\)
\(4\) 0.275480 + 1.98094i 0.137740 + 0.990468i
\(5\) −0.720859 2.21858i −0.322378 0.992177i −0.972610 0.232442i \(-0.925328\pi\)
0.650232 0.759735i \(-0.274672\pi\)
\(6\) 0.337896 3.83025i 0.137945 1.56369i
\(7\) −1.04462 0.758960i −0.394829 0.286860i 0.372602 0.927991i \(-0.378466\pi\)
−0.767431 + 0.641131i \(0.778466\pi\)
\(8\) 1.54562 2.36877i 0.546458 0.837487i
\(9\) −1.35736 + 4.17752i −0.452453 + 1.39251i
\(10\) −1.29122 + 3.03582i −0.408320 + 0.960010i
\(11\) −3.29387 0.387833i −0.993139 0.116936i
\(12\) −3.91711 + 3.77177i −1.13077 + 1.08882i
\(13\) −0.279141 0.0906984i −0.0774198 0.0251552i 0.270051 0.962846i \(-0.412959\pi\)
−0.347471 + 0.937691i \(0.612959\pi\)
\(14\) 0.409487 + 1.77956i 0.109440 + 0.475607i
\(15\) 3.72806 5.13123i 0.962580 1.32488i
\(16\) −3.84822 + 1.09142i −0.962055 + 0.272854i
\(17\) 2.82281 0.917186i 0.684631 0.222450i 0.0540095 0.998540i \(-0.482800\pi\)
0.630622 + 0.776090i \(0.282800\pi\)
\(18\) 5.32698 3.19553i 1.25558 0.753194i
\(19\) −1.38671 + 1.00751i −0.318134 + 0.231138i −0.735379 0.677656i \(-0.762996\pi\)
0.417245 + 0.908794i \(0.362996\pi\)
\(20\) 4.19628 2.03915i 0.938316 0.455968i
\(21\) 3.51072i 0.766102i
\(22\) 3.15327 + 3.47230i 0.672280 + 0.740297i
\(23\) 0.525735i 0.109623i −0.998497 0.0548117i \(-0.982544\pi\)
0.998497 0.0548117i \(-0.0174559\pi\)
\(24\) 7.68057 0.385808i 1.56779 0.0787527i
\(25\) −0.357358 + 0.259635i −0.0714715 + 0.0519271i
\(26\) 0.213525 + 0.355948i 0.0418756 + 0.0698071i
\(27\) −3.60079 + 1.16997i −0.692972 + 0.225160i
\(28\) 1.21568 2.27840i 0.229742 0.430578i
\(29\) −4.84416 + 6.66742i −0.899538 + 1.23811i 0.0710771 + 0.997471i \(0.477356\pi\)
−0.970615 + 0.240637i \(0.922644\pi\)
\(30\) −8.74128 + 2.01142i −1.59593 + 0.367234i
\(31\) 4.22806 + 1.37378i 0.759382 + 0.246738i 0.663013 0.748608i \(-0.269277\pi\)
0.0963686 + 0.995346i \(0.469277\pi\)
\(32\) 5.11817 + 2.40922i 0.904773 + 0.425894i
\(33\) −4.41097 7.86517i −0.767851 1.36915i
\(34\) −3.86263 1.64289i −0.662435 0.281753i
\(35\) −0.930788 + 2.86467i −0.157332 + 0.484218i
\(36\) −8.64932 1.53802i −1.44155 0.256336i
\(37\) 4.22613 + 3.07046i 0.694771 + 0.504781i 0.878225 0.478248i \(-0.158728\pi\)
−0.183454 + 0.983028i \(0.558728\pi\)
\(38\) 2.41469 + 0.213018i 0.391714 + 0.0345561i
\(39\) −0.246601 0.758960i −0.0394878 0.121531i
\(40\) −6.36947 1.72152i −1.00710 0.272196i
\(41\) 3.28821 + 4.52583i 0.513531 + 0.706815i 0.984510 0.175329i \(-0.0560990\pi\)
−0.470978 + 0.882145i \(0.656099\pi\)
\(42\) −3.25998 + 3.74471i −0.503026 + 0.577821i
\(43\) 3.49429 0.532874 0.266437 0.963852i \(-0.414154\pi\)
0.266437 + 0.963852i \(0.414154\pi\)
\(44\) −0.139124 6.63179i −0.0209737 0.999780i
\(45\) 10.2466 1.52747
\(46\) −0.488187 + 0.560775i −0.0719793 + 0.0826818i
\(47\) −4.50223 6.19679i −0.656718 0.903895i 0.342649 0.939463i \(-0.388676\pi\)
−0.999367 + 0.0355685i \(0.988676\pi\)
\(48\) −8.55073 6.72050i −1.23419 0.970020i
\(49\) −1.64791 5.07175i −0.235416 0.724535i
\(50\) 0.622267 + 0.0548950i 0.0880019 + 0.00776332i
\(51\) 6.52872 + 4.74340i 0.914204 + 0.664208i
\(52\) 0.102770 0.577946i 0.0142516 0.0801467i
\(53\) 0.484791 1.49203i 0.0665912 0.204947i −0.912224 0.409691i \(-0.865636\pi\)
0.978815 + 0.204745i \(0.0656364\pi\)
\(54\) 4.92719 + 2.09567i 0.670505 + 0.285185i
\(55\) 1.51398 + 7.58728i 0.204145 + 1.02307i
\(56\) −3.41238 + 1.30140i −0.455999 + 0.173907i
\(57\) −4.43232 1.44015i −0.587075 0.190752i
\(58\) 11.3582 2.61360i 1.49141 0.343183i
\(59\) −8.27247 + 11.3861i −1.07698 + 1.48234i −0.214185 + 0.976793i \(0.568710\pi\)
−0.862799 + 0.505548i \(0.831290\pi\)
\(60\) 11.1916 + 5.97149i 1.44484 + 0.770916i
\(61\) −8.98451 + 2.91924i −1.15035 + 0.373771i −0.821274 0.570533i \(-0.806737\pi\)
−0.329074 + 0.944304i \(0.606737\pi\)
\(62\) −3.23419 5.39143i −0.410743 0.684712i
\(63\) 4.58849 3.33373i 0.578096 0.420011i
\(64\) −3.22214 7.32242i −0.402767 0.915302i
\(65\) 0.684676i 0.0849236i
\(66\) −2.59848 + 12.4853i −0.319851 + 1.53684i
\(67\) 10.4249i 1.27361i −0.771026 0.636803i \(-0.780256\pi\)
0.771026 0.636803i \(-0.219744\pi\)
\(68\) 2.59452 + 5.33914i 0.314631 + 0.647466i
\(69\) 1.15643 0.840198i 0.139218 0.101148i
\(70\) 3.65290 2.19129i 0.436605 0.261909i
\(71\) 3.41904 1.11091i 0.405765 0.131841i −0.0990215 0.995085i \(-0.531571\pi\)
0.504786 + 0.863244i \(0.331571\pi\)
\(72\) 7.79762 + 9.67211i 0.918958 + 1.13987i
\(73\) 2.51668 3.46391i 0.294555 0.405420i −0.635932 0.771745i \(-0.719384\pi\)
0.930487 + 0.366325i \(0.119384\pi\)
\(74\) −1.65663 7.19940i −0.192579 0.836913i
\(75\) −1.14221 0.371128i −0.131891 0.0428541i
\(76\) −2.37782 2.46944i −0.272754 0.283265i
\(77\) 3.14649 + 2.90506i 0.358576 + 0.331062i
\(78\) −0.441718 + 1.03853i −0.0500147 + 0.117591i
\(79\) 3.04387 9.36807i 0.342462 1.05399i −0.620467 0.784233i \(-0.713057\pi\)
0.962929 0.269757i \(-0.0869433\pi\)
\(80\) 5.19542 + 7.75081i 0.580866 + 0.866567i
\(81\) 2.33275 + 1.69484i 0.259194 + 0.188316i
\(82\) 0.695229 7.88083i 0.0767752 0.870292i
\(83\) −1.16185 3.57581i −0.127530 0.392496i 0.866824 0.498615i \(-0.166158\pi\)
−0.994354 + 0.106118i \(0.966158\pi\)
\(84\) 6.95451 0.967134i 0.758800 0.105523i
\(85\) −4.06969 5.60145i −0.441420 0.607563i
\(86\) −3.72718 3.24473i −0.401912 0.349888i
\(87\) −22.4076 −2.40235
\(88\) −6.00975 + 7.20298i −0.640641 + 0.767840i
\(89\) 0.598152 0.0634039 0.0317020 0.999497i \(-0.489907\pi\)
0.0317020 + 0.999497i \(0.489907\pi\)
\(90\) −10.9295 9.51479i −1.15207 1.00295i
\(91\) 0.222760 + 0.306602i 0.0233515 + 0.0321406i
\(92\) 1.04145 0.144830i 0.108579 0.0150995i
\(93\) 3.73519 + 11.4957i 0.387321 + 1.19205i
\(94\) −0.951912 + 10.7905i −0.0981822 + 1.11295i
\(95\) 3.23485 + 2.35026i 0.331889 + 0.241131i
\(96\) 2.88011 + 15.1084i 0.293950 + 1.54200i
\(97\) −2.57295 + 7.91872i −0.261243 + 0.804024i 0.731292 + 0.682065i \(0.238918\pi\)
−0.992535 + 0.121960i \(0.961082\pi\)
\(98\) −2.95178 + 6.93999i −0.298175 + 0.701045i
\(99\) 6.09114 13.2338i 0.612182 1.33004i
\(100\) −0.612766 0.636378i −0.0612766 0.0636378i
\(101\) −7.30672 2.37410i −0.727046 0.236232i −0.0779707 0.996956i \(-0.524844\pi\)
−0.649075 + 0.760724i \(0.724844\pi\)
\(102\) −2.55924 11.1220i −0.253402 1.10124i
\(103\) 0.242398 0.333632i 0.0238841 0.0328737i −0.796908 0.604101i \(-0.793532\pi\)
0.820792 + 0.571227i \(0.193532\pi\)
\(104\) −0.646288 + 0.521036i −0.0633738 + 0.0510917i
\(105\) −7.78880 + 2.53073i −0.760109 + 0.246974i
\(106\) −1.90257 + 1.14131i −0.184794 + 0.110854i
\(107\) 4.18738 3.04231i 0.404809 0.294111i −0.366688 0.930344i \(-0.619508\pi\)
0.771497 + 0.636233i \(0.219508\pi\)
\(108\) −3.30958 6.81063i −0.318464 0.655353i
\(109\) 12.5948i 1.20636i −0.797604 0.603181i \(-0.793899\pi\)
0.797604 0.603181i \(-0.206101\pi\)
\(110\) 5.43050 9.49881i 0.517778 0.905676i
\(111\) 14.2030i 1.34809i
\(112\) 4.84827 + 1.78053i 0.458118 + 0.168244i
\(113\) 2.15258 1.56394i 0.202498 0.147123i −0.481915 0.876218i \(-0.660059\pi\)
0.684413 + 0.729095i \(0.260059\pi\)
\(114\) 3.39044 + 5.65189i 0.317543 + 0.529348i
\(115\) −1.16638 + 0.378981i −0.108766 + 0.0353402i
\(116\) −14.5422 7.75924i −1.35021 0.720427i
\(117\) 0.757788 1.04301i 0.0700575 0.0964259i
\(118\) 19.3967 4.46330i 1.78561 0.410880i
\(119\) −3.64487 1.18429i −0.334124 0.108564i
\(120\) −6.39255 16.7618i −0.583558 1.53014i
\(121\) 10.6992 + 2.55494i 0.972652 + 0.232267i
\(122\) 12.2941 + 5.22902i 1.11305 + 0.473413i
\(123\) −4.70022 + 14.4658i −0.423805 + 1.30434i
\(124\) −1.55662 + 8.75397i −0.139789 + 0.786130i
\(125\) −8.60254 6.25011i −0.769435 0.559027i
\(126\) −7.98995 0.704855i −0.711801 0.0627935i
\(127\) 6.16979 + 18.9887i 0.547481 + 1.68497i 0.715018 + 0.699107i \(0.246419\pi\)
−0.167537 + 0.985866i \(0.553581\pi\)
\(128\) −3.36256 + 10.8025i −0.297211 + 0.954812i
\(129\) 5.58436 + 7.68621i 0.491676 + 0.676733i
\(130\) 0.635776 0.730309i 0.0557613 0.0640523i
\(131\) 20.5136 1.79228 0.896139 0.443773i \(-0.146360\pi\)
0.896139 + 0.443773i \(0.146360\pi\)
\(132\) 14.3653 10.9045i 1.25034 0.949119i
\(133\) 2.21324 0.191913
\(134\) −9.68037 + 11.1197i −0.836256 + 0.960598i
\(135\) 5.19132 + 7.14524i 0.446798 + 0.614965i
\(136\) 2.19038 8.10420i 0.187823 0.694929i
\(137\) −1.93612 5.95875i −0.165414 0.509091i 0.833653 0.552289i \(-0.186245\pi\)
−0.999067 + 0.0431981i \(0.986245\pi\)
\(138\) −2.01370 0.177644i −0.171417 0.0151221i
\(139\) −10.9058 7.92352i −0.925017 0.672064i 0.0197506 0.999805i \(-0.493713\pi\)
−0.944768 + 0.327741i \(0.893713\pi\)
\(140\) −5.93115 1.05467i −0.501273 0.0891361i
\(141\) 6.43557 19.8067i 0.541973 1.66802i
\(142\) −4.67848 1.98989i −0.392609 0.166988i
\(143\) 0.884278 + 0.407009i 0.0739471 + 0.0340358i
\(144\) 0.663995 17.5575i 0.0553329 1.46312i
\(145\) 18.2841 + 5.94087i 1.51841 + 0.493363i
\(146\) −5.90093 + 1.35784i −0.488365 + 0.112376i
\(147\) 8.52247 11.7302i 0.702922 0.967489i
\(148\) −4.91817 + 9.21754i −0.404271 + 0.757677i
\(149\) 16.5960 5.39238i 1.35960 0.441761i 0.463690 0.885997i \(-0.346525\pi\)
0.895910 + 0.444237i \(0.146525\pi\)
\(150\) 0.873719 + 1.45650i 0.0713389 + 0.118923i
\(151\) −7.94818 + 5.77469i −0.646814 + 0.469938i −0.862184 0.506595i \(-0.830904\pi\)
0.215370 + 0.976532i \(0.430904\pi\)
\(152\) 0.243223 + 4.84202i 0.0197280 + 0.392740i
\(153\) 13.0373i 1.05400i
\(154\) −0.658628 6.02044i −0.0530737 0.485141i
\(155\) 10.3706i 0.832985i
\(156\) 1.43552 0.697580i 0.114934 0.0558511i
\(157\) −12.4622 + 9.05431i −0.994591 + 0.722613i −0.960922 0.276820i \(-0.910719\pi\)
−0.0336696 + 0.999433i \(0.510719\pi\)
\(158\) −11.9457 + 7.16596i −0.950351 + 0.570093i
\(159\) 4.05671 1.31811i 0.321718 0.104533i
\(160\) 1.65556 13.0918i 0.130883 1.03499i
\(161\) −0.399012 + 0.549193i −0.0314466 + 0.0432825i
\(162\) −0.914430 3.97394i −0.0718444 0.312223i
\(163\) −10.2403 3.32727i −0.802080 0.260612i −0.120840 0.992672i \(-0.538559\pi\)
−0.681240 + 0.732060i \(0.738559\pi\)
\(164\) −8.05954 + 7.76050i −0.629344 + 0.605994i
\(165\) −14.2698 + 15.4557i −1.11090 + 1.20323i
\(166\) −2.08114 + 4.89301i −0.161528 + 0.379771i
\(167\) −1.98451 + 6.10771i −0.153566 + 0.472629i −0.998013 0.0630114i \(-0.979930\pi\)
0.844446 + 0.535640i \(0.179930\pi\)
\(168\) −8.31609 5.42623i −0.641600 0.418642i
\(169\) −10.4475 7.59057i −0.803656 0.583890i
\(170\) −0.860459 + 9.75382i −0.0659942 + 0.748084i
\(171\) −2.32661 7.16056i −0.177920 0.547582i
\(172\) 0.962608 + 6.92197i 0.0733982 + 0.527795i
\(173\) −2.12650 2.92688i −0.161675 0.222527i 0.720492 0.693463i \(-0.243916\pi\)
−0.882167 + 0.470937i \(0.843916\pi\)
\(174\) 23.9011 + 20.8072i 1.81193 + 1.57739i
\(175\) 0.570356 0.0431148
\(176\) 13.0988 2.10252i 0.987362 0.158484i
\(177\) −38.2659 −2.87624
\(178\) −0.638018 0.555431i −0.0478214 0.0416313i
\(179\) 2.94347 + 4.05134i 0.220006 + 0.302812i 0.904726 0.425994i \(-0.140076\pi\)
−0.684720 + 0.728806i \(0.740076\pi\)
\(180\) 2.82274 + 20.2979i 0.210394 + 1.51291i
\(181\) 3.02897 + 9.32220i 0.225141 + 0.692914i 0.998277 + 0.0586734i \(0.0186871\pi\)
−0.773136 + 0.634240i \(0.781313\pi\)
\(182\) 0.0470983 0.533887i 0.00349116 0.0395743i
\(183\) −20.7798 15.0974i −1.53609 1.11603i
\(184\) −1.24535 0.812585i −0.0918081 0.0599046i
\(185\) 3.76561 11.5894i 0.276853 0.852066i
\(186\) 6.69057 15.7303i 0.490576 1.15340i
\(187\) −9.65368 + 1.92631i −0.705947 + 0.140866i
\(188\) 11.0352 10.6257i 0.804823 0.774961i
\(189\) 4.64941 + 1.51069i 0.338195 + 0.109886i
\(190\) −1.26805 5.51072i −0.0919941 0.399790i
\(191\) 6.87102 9.45715i 0.497170 0.684295i −0.484521 0.874780i \(-0.661006\pi\)
0.981690 + 0.190485i \(0.0610059\pi\)
\(192\) 10.9573 18.7898i 0.790777 1.35604i
\(193\) −1.09807 + 0.356784i −0.0790406 + 0.0256818i −0.348270 0.937394i \(-0.613231\pi\)
0.269230 + 0.963076i \(0.413231\pi\)
\(194\) 10.0976 6.05731i 0.724965 0.434890i
\(195\) −1.50605 + 1.09421i −0.107850 + 0.0783578i
\(196\) 9.59284 4.66157i 0.685203 0.332969i
\(197\) 15.6248i 1.11322i 0.830774 + 0.556610i \(0.187898\pi\)
−0.830774 + 0.556610i \(0.812102\pi\)
\(198\) −18.7857 + 8.45969i −1.33504 + 0.601204i
\(199\) 10.9684i 0.777526i 0.921338 + 0.388763i \(0.127098\pi\)
−0.921338 + 0.388763i \(0.872902\pi\)
\(200\) 0.0626788 + 1.24779i 0.00443206 + 0.0882324i
\(201\) 22.9312 16.6605i 1.61744 1.17514i
\(202\) 5.58917 + 9.31720i 0.393253 + 0.655556i
\(203\) 10.1206 3.28839i 0.710328 0.230799i
\(204\) −7.59783 + 14.2397i −0.531955 + 0.996979i
\(205\) 7.67056 10.5576i 0.535735 0.737376i
\(206\) −0.568357 + 0.130782i −0.0395993 + 0.00911204i
\(207\) 2.19627 + 0.713611i 0.152651 + 0.0495994i
\(208\) 1.17319 + 0.0443680i 0.0813458 + 0.00307637i
\(209\) 4.95840 2.78078i 0.342980 0.192351i
\(210\) 10.6579 + 4.53311i 0.735465 + 0.312815i
\(211\) 5.96517 18.3589i 0.410659 1.26388i −0.505417 0.862875i \(-0.668661\pi\)
0.916076 0.401004i \(-0.131339\pi\)
\(212\) 3.08917 + 0.549315i 0.212165 + 0.0377271i
\(213\) 7.90771 + 5.74529i 0.541827 + 0.393661i
\(214\) −7.29149 0.643239i −0.498436 0.0439709i
\(215\) −2.51889 7.75235i −0.171787 0.528706i
\(216\) −2.79406 + 10.3378i −0.190111 + 0.703395i
\(217\) −3.37407 4.64401i −0.229047 0.315256i
\(218\) −11.6953 + 13.4342i −0.792104 + 0.909881i
\(219\) 11.6414 0.786652
\(220\) −14.6128 + 5.08924i −0.985198 + 0.343117i
\(221\) −0.871148 −0.0585998
\(222\) 13.1886 15.1496i 0.885163 1.01678i
\(223\) −6.37102 8.76895i −0.426635 0.587212i 0.540542 0.841317i \(-0.318219\pi\)
−0.967177 + 0.254105i \(0.918219\pi\)
\(224\) −3.51804 6.40121i −0.235059 0.427699i
\(225\) −0.599570 1.84529i −0.0399713 0.123019i
\(226\) −3.74830 0.330666i −0.249333 0.0219956i
\(227\) 19.4139 + 14.1050i 1.28854 + 0.936181i 0.999775 0.0212179i \(-0.00675437\pi\)
0.288768 + 0.957399i \(0.406754\pi\)
\(228\) 1.63183 9.17688i 0.108070 0.607753i
\(229\) −7.59603 + 23.3782i −0.501960 + 1.54487i 0.303862 + 0.952716i \(0.401724\pi\)
−0.805822 + 0.592158i \(0.798276\pi\)
\(230\) 1.59604 + 0.678840i 0.105240 + 0.0447614i
\(231\) −1.36157 + 11.5639i −0.0895849 + 0.760846i
\(232\) 8.30636 + 21.7800i 0.545339 + 1.42992i
\(233\) −13.6046 4.42039i −0.891264 0.289589i −0.172637 0.984985i \(-0.555229\pi\)
−0.718627 + 0.695396i \(0.755229\pi\)
\(234\) −1.77681 + 0.408855i −0.116154 + 0.0267277i
\(235\) −10.5026 + 14.4556i −0.685113 + 0.942977i
\(236\) −24.8340 13.2506i −1.61656 0.862541i
\(237\) 25.4710 8.27602i 1.65452 0.537585i
\(238\) 2.78809 + 4.64777i 0.180725 + 0.301270i
\(239\) −15.9893 + 11.6169i −1.03426 + 0.751436i −0.969157 0.246442i \(-0.920738\pi\)
−0.0651055 + 0.997878i \(0.520738\pi\)
\(240\) −8.74607 + 23.8150i −0.564556 + 1.53725i
\(241\) 6.53055i 0.420669i 0.977629 + 0.210335i \(0.0674554\pi\)
−0.977629 + 0.210335i \(0.932545\pi\)
\(242\) −9.03979 12.6603i −0.581100 0.813832i
\(243\) 19.1981i 1.23156i
\(244\) −8.25789 16.9936i −0.528657 1.08790i
\(245\) −10.0641 + 7.31203i −0.642975 + 0.467148i
\(246\) 18.4461 11.0654i 1.17608 0.705504i
\(247\) 0.478467 0.155464i 0.0304442 0.00989191i
\(248\) 9.78913 7.89196i 0.621610 0.501140i
\(249\) 6.00873 8.27031i 0.380788 0.524109i
\(250\) 3.37217 + 14.6548i 0.213275 + 0.926852i
\(251\) −4.53708 1.47419i −0.286378 0.0930498i 0.162306 0.986741i \(-0.448107\pi\)
−0.448684 + 0.893691i \(0.648107\pi\)
\(252\) 7.86796 + 8.17114i 0.495635 + 0.514733i
\(253\) −0.203897 + 1.73170i −0.0128189 + 0.108871i
\(254\) 11.0515 25.9834i 0.693432 1.63034i
\(255\) 5.81729 17.9038i 0.364293 1.12118i
\(256\) 13.6176 8.40004i 0.851101 0.525002i
\(257\) 2.45693 + 1.78506i 0.153259 + 0.111349i 0.661772 0.749705i \(-0.269805\pi\)
−0.508513 + 0.861054i \(0.669805\pi\)
\(258\) 1.18071 13.3840i 0.0735076 0.833252i
\(259\) −2.08434 6.41493i −0.129514 0.398604i
\(260\) −1.35630 + 0.188615i −0.0841142 + 0.0116974i
\(261\) −21.2780 29.2866i −1.31707 1.81280i
\(262\) −21.8808 19.0485i −1.35180 1.17682i
\(263\) 14.1671 0.873580 0.436790 0.899564i \(-0.356115\pi\)
0.436790 + 0.899564i \(0.356115\pi\)
\(264\) −25.4484 1.70798i −1.56624 0.105119i
\(265\) −3.65966 −0.224811
\(266\) −2.36076 2.05517i −0.144747 0.126011i
\(267\) 0.955929 + 1.31572i 0.0585019 + 0.0805210i
\(268\) 20.6511 2.87186i 1.26147 0.175427i
\(269\) 0.309559 + 0.952724i 0.0188741 + 0.0580886i 0.960050 0.279829i \(-0.0902776\pi\)
−0.941176 + 0.337917i \(0.890278\pi\)
\(270\) 1.09761 12.4420i 0.0667982 0.757197i
\(271\) 14.3933 + 10.4573i 0.874330 + 0.635238i 0.931745 0.363113i \(-0.118286\pi\)
−0.0574157 + 0.998350i \(0.518286\pi\)
\(272\) −9.86176 + 6.61040i −0.597957 + 0.400814i
\(273\) −0.318417 + 0.979986i −0.0192714 + 0.0593114i
\(274\) −3.46802 + 8.15373i −0.209511 + 0.492585i
\(275\) 1.27778 0.716611i 0.0770533 0.0432133i
\(276\) 1.98295 + 2.05936i 0.119360 + 0.123959i
\(277\) 18.4378 + 5.99082i 1.10782 + 0.359953i 0.805108 0.593128i \(-0.202107\pi\)
0.302714 + 0.953081i \(0.402107\pi\)
\(278\) 4.27503 + 18.5785i 0.256399 + 1.11427i
\(279\) −11.4780 + 15.7981i −0.687169 + 0.945806i
\(280\) 5.34711 + 6.63251i 0.319551 + 0.396368i
\(281\) −13.9771 + 4.54142i −0.833802 + 0.270919i −0.694646 0.719352i \(-0.744439\pi\)
−0.139156 + 0.990270i \(0.544439\pi\)
\(282\) −25.2566 + 15.1508i −1.50401 + 0.902218i
\(283\) 2.02002 1.46763i 0.120078 0.0872415i −0.526126 0.850407i \(-0.676356\pi\)
0.646203 + 0.763165i \(0.276356\pi\)
\(284\) 3.14252 + 6.46686i 0.186474 + 0.383738i
\(285\) 10.8716i 0.643977i
\(286\) −0.565275 1.25526i −0.0334254 0.0742250i
\(287\) 7.22339i 0.426383i
\(288\) −17.0117 + 18.1111i −1.00243 + 1.06720i
\(289\) −6.62627 + 4.81427i −0.389781 + 0.283192i
\(290\) −13.9862 23.3151i −0.821296 1.36911i
\(291\) −21.5303 + 6.99563i −1.26213 + 0.410091i
\(292\) 7.55509 + 4.03114i 0.442128 + 0.235905i
\(293\) 4.41949 6.08290i 0.258189 0.355367i −0.660169 0.751117i \(-0.729515\pi\)
0.918358 + 0.395750i \(0.129515\pi\)
\(294\) −19.9829 + 4.59819i −1.16543 + 0.268172i
\(295\) 31.2242 + 10.1453i 1.81794 + 0.590685i
\(296\) 13.8052 5.26497i 0.802410 0.306020i
\(297\) 12.3143 2.45722i 0.714547 0.142582i
\(298\) −22.7094 9.65896i −1.31552 0.559529i
\(299\) −0.0476833 + 0.146754i −0.00275760 + 0.00848702i
\(300\) 0.420523 2.36489i 0.0242789 0.136537i
\(301\) −3.65020 2.65203i −0.210394 0.152860i
\(302\) 13.8402 + 1.22095i 0.796413 + 0.0702577i
\(303\) −6.45497 19.8664i −0.370828 1.14129i
\(304\) 4.23677 5.39059i 0.242995 0.309171i
\(305\) 12.9531 + 17.8285i 0.741694 + 1.02085i
\(306\) 12.1061 13.9062i 0.692062 0.794964i
\(307\) −25.7991 −1.47243 −0.736216 0.676747i \(-0.763389\pi\)
−0.736216 + 0.676747i \(0.763389\pi\)
\(308\) −4.88794 + 7.03329i −0.278516 + 0.400759i
\(309\) 1.12126 0.0637861
\(310\) −9.62990 + 11.0618i −0.546942 + 0.628266i
\(311\) −1.74241 2.39822i −0.0988030 0.135991i 0.756753 0.653701i \(-0.226785\pi\)
−0.855556 + 0.517710i \(0.826785\pi\)
\(312\) −2.17895 0.588920i −0.123359 0.0333411i
\(313\) 0.186644 + 0.574432i 0.0105498 + 0.0324688i 0.956193 0.292738i \(-0.0945662\pi\)
−0.945643 + 0.325206i \(0.894566\pi\)
\(314\) 21.7004 + 1.91436i 1.22463 + 0.108034i
\(315\) −10.7038 7.77677i −0.603091 0.438171i
\(316\) 19.3961 + 3.44900i 1.09111 + 0.194021i
\(317\) 7.09054 21.8224i 0.398244 1.22567i −0.528162 0.849144i \(-0.677119\pi\)
0.926406 0.376526i \(-0.122881\pi\)
\(318\) −5.55106 2.36102i −0.311288 0.132400i
\(319\) 18.5419 20.0829i 1.03815 1.12443i
\(320\) −13.9226 + 12.4270i −0.778299 + 0.694690i
\(321\) 13.3840 + 4.34874i 0.747024 + 0.242723i
\(322\) 0.935576 0.215282i 0.0521376 0.0119972i
\(323\) −2.99035 + 4.11587i −0.166388 + 0.229013i
\(324\) −2.71475 + 5.08792i −0.150819 + 0.282662i
\(325\) 0.123302 0.0400631i 0.00683954 0.00222230i
\(326\) 7.83315 + 13.0579i 0.433838 + 0.723212i
\(327\) 27.7041 20.1282i 1.53204 1.11309i
\(328\) 15.8029 0.793809i 0.872572 0.0438308i
\(329\) 9.89031i 0.545270i
\(330\) 29.5727 3.23522i 1.62793 0.178093i
\(331\) 4.43442i 0.243738i 0.992546 + 0.121869i \(0.0388887\pi\)
−0.992546 + 0.121869i \(0.961111\pi\)
\(332\) 6.76339 3.28662i 0.371189 0.180377i
\(333\) −18.5633 + 13.4870i −1.01726 + 0.739083i
\(334\) 7.78827 4.67200i 0.426155 0.255641i
\(335\) −23.1285 + 7.51490i −1.26364 + 0.410583i
\(336\) 3.83166 + 13.5100i 0.209034 + 0.737032i
\(337\) 10.4401 14.3696i 0.568711 0.782763i −0.423691 0.905807i \(-0.639266\pi\)
0.992401 + 0.123044i \(0.0392656\pi\)
\(338\) 4.09539 + 17.7978i 0.222760 + 0.968075i
\(339\) 6.88025 + 2.23553i 0.373684 + 0.121417i
\(340\) 9.97500 9.60490i 0.540971 0.520899i
\(341\) −13.3939 6.16483i −0.725320 0.333844i
\(342\) −4.16748 + 9.79825i −0.225351 + 0.529829i
\(343\) −4.92088 + 15.1449i −0.265703 + 0.817748i
\(344\) 5.40083 8.27717i 0.291193 0.446275i
\(345\) −2.69767 1.95997i −0.145238 0.105521i
\(346\) −0.449609 + 5.09659i −0.0241711 + 0.273994i
\(347\) −1.19913 3.69054i −0.0643726 0.198119i 0.913697 0.406396i \(-0.133214\pi\)
−0.978070 + 0.208277i \(0.933214\pi\)
\(348\) −6.17285 44.3881i −0.330900 2.37945i
\(349\) −11.5900 15.9522i −0.620396 0.853903i 0.376985 0.926219i \(-0.376961\pi\)
−0.997382 + 0.0723168i \(0.976961\pi\)
\(350\) −0.608369 0.529621i −0.0325187 0.0283094i
\(351\) 1.11124 0.0593137
\(352\) −15.9242 9.92065i −0.848764 0.528773i
\(353\) −1.59623 −0.0849587 −0.0424794 0.999097i \(-0.513526\pi\)
−0.0424794 + 0.999097i \(0.513526\pi\)
\(354\) 40.8163 + 35.5329i 2.16936 + 1.88855i
\(355\) −4.92929 6.78458i −0.261619 0.360088i
\(356\) 0.164779 + 1.18490i 0.00873327 + 0.0627996i
\(357\) −3.21998 9.91009i −0.170420 0.524497i
\(358\) 0.622342 7.05461i 0.0328918 0.372848i
\(359\) −12.4772 9.06523i −0.658522 0.478445i 0.207641 0.978205i \(-0.433421\pi\)
−0.866164 + 0.499760i \(0.833421\pi\)
\(360\) 15.8373 24.2718i 0.834700 1.27924i
\(361\) −4.96342 + 15.2758i −0.261233 + 0.803991i
\(362\) 5.42556 12.7562i 0.285161 0.670449i
\(363\) 11.4788 + 27.6176i 0.602480 + 1.44955i
\(364\) −0.545994 + 0.525735i −0.0286178 + 0.0275560i
\(365\) −9.49912 3.08645i −0.497207 0.161552i
\(366\) 8.14561 + 35.3993i 0.425778 + 1.85035i
\(367\) 6.20229 8.53673i 0.323757 0.445613i −0.615853 0.787861i \(-0.711188\pi\)
0.939610 + 0.342248i \(0.111188\pi\)
\(368\) 0.573797 + 2.02315i 0.0299112 + 0.105464i
\(369\) −23.3700 + 7.59337i −1.21659 + 0.395295i
\(370\) −14.7782 + 8.86511i −0.768283 + 0.460875i
\(371\) −1.63882 + 1.19067i −0.0850831 + 0.0618165i
\(372\) −21.7434 + 10.5660i −1.12734 + 0.547823i
\(373\) 37.4953i 1.94143i −0.240225 0.970717i \(-0.577221\pi\)
0.240225 0.970717i \(-0.422779\pi\)
\(374\) 12.0858 + 6.90951i 0.624943 + 0.357282i
\(375\) 28.9111i 1.49296i
\(376\) −21.6375 + 1.08689i −1.11587 + 0.0560520i
\(377\) 1.95693 1.42179i 0.100787 0.0732259i
\(378\) −3.55650 5.92872i −0.182927 0.304941i
\(379\) 20.2850 6.59100i 1.04197 0.338557i 0.262459 0.964943i \(-0.415467\pi\)
0.779513 + 0.626386i \(0.215467\pi\)
\(380\) −3.76458 + 7.05549i −0.193119 + 0.361939i
\(381\) −31.9082 + 43.9179i −1.63471 + 2.24998i
\(382\) −16.1107 + 3.70717i −0.824294 + 0.189675i
\(383\) −27.4201 8.90933i −1.40110 0.455245i −0.491554 0.870847i \(-0.663571\pi\)
−0.909547 + 0.415602i \(0.863571\pi\)
\(384\) −29.1355 + 9.86739i −1.48681 + 0.503543i
\(385\) 4.17691 9.07487i 0.212875 0.462498i
\(386\) 1.50255 + 0.639079i 0.0764780 + 0.0325283i
\(387\) −4.74300 + 14.5975i −0.241100 + 0.742031i
\(388\) −16.3953 2.91540i −0.832345 0.148007i
\(389\) 28.2179 + 20.5015i 1.43070 + 1.03947i 0.989885 + 0.141869i \(0.0453112\pi\)
0.440817 + 0.897597i \(0.354689\pi\)
\(390\) 2.62248 + 0.231349i 0.132795 + 0.0117148i
\(391\) −0.482197 1.48405i −0.0243858 0.0750516i
\(392\) −14.5608 3.93545i −0.735433 0.198770i
\(393\) 32.7835 + 45.1226i 1.65371 + 2.27614i
\(394\) 14.5088 16.6662i 0.730945 0.839629i
\(395\) −22.9780 −1.15615
\(396\) 27.8933 + 8.42052i 1.40169 + 0.423147i
\(397\) 16.9102 0.848698 0.424349 0.905499i \(-0.360503\pi\)
0.424349 + 0.905499i \(0.360503\pi\)
\(398\) 10.1850 11.6994i 0.510528 0.586437i
\(399\) 3.53707 + 4.86836i 0.177075 + 0.243723i
\(400\) 1.09182 1.38916i 0.0545910 0.0694581i
\(401\) 4.90100 + 15.0837i 0.244744 + 0.753246i 0.995678 + 0.0928687i \(0.0296037\pi\)
−0.750934 + 0.660377i \(0.770396\pi\)
\(402\) −39.9301 3.52254i −1.99153 0.175688i
\(403\) −1.05562 0.766956i −0.0525844 0.0382048i
\(404\) 2.69008 15.1282i 0.133837 0.752655i
\(405\) 2.07855 6.39712i 0.103284 0.317876i
\(406\) −13.8487 5.89024i −0.687298 0.292328i
\(407\) −12.7295 11.7527i −0.630977 0.582561i
\(408\) 21.3269 8.13357i 1.05584 0.402672i
\(409\) −26.3195 8.55173i −1.30142 0.422856i −0.425343 0.905032i \(-0.639846\pi\)
−0.876074 + 0.482176i \(0.839846\pi\)
\(410\) −17.9854 + 4.13855i −0.888235 + 0.204388i
\(411\) 10.0130 13.7817i 0.493904 0.679800i
\(412\) 0.727679 + 0.388265i 0.0358502 + 0.0191285i
\(413\) 17.2832 5.61564i 0.850449 0.276328i
\(414\) −1.68000 2.80058i −0.0825677 0.137641i
\(415\) −7.09568 + 5.15531i −0.348313 + 0.253064i
\(416\) −1.21018 1.13672i −0.0593339 0.0557324i
\(417\) 36.6518i 1.79485i
\(418\) −7.87105 1.63815i −0.384985 0.0801244i
\(419\) 22.9710i 1.12221i 0.827746 + 0.561103i \(0.189623\pi\)
−0.827746 + 0.561103i \(0.810377\pi\)
\(420\) −7.15889 14.7320i −0.349318 0.718846i
\(421\) 24.3592 17.6980i 1.18719 0.862546i 0.194229 0.980956i \(-0.437780\pi\)
0.992965 + 0.118410i \(0.0377796\pi\)
\(422\) −23.4104 + 14.0434i −1.13960 + 0.683621i
\(423\) 31.9983 10.3969i 1.55581 0.505514i
\(424\) −2.78498 3.45447i −0.135251 0.167764i
\(425\) −0.770618 + 1.06066i −0.0373804 + 0.0514498i
\(426\) −3.09979 13.4711i −0.150186 0.652679i
\(427\) 11.6010 + 3.76939i 0.561411 + 0.182413i
\(428\) 7.18017 + 7.45684i 0.347066 + 0.360440i
\(429\) 0.517923 + 2.59556i 0.0250055 + 0.125315i
\(430\) −4.51190 + 10.6080i −0.217583 + 0.511565i
\(431\) −3.14369 + 9.67528i −0.151426 + 0.466042i −0.997781 0.0665771i \(-0.978792\pi\)
0.846355 + 0.532619i \(0.178792\pi\)
\(432\) 12.5797 8.43226i 0.605241 0.405697i
\(433\) −22.2763 16.1847i −1.07053 0.777785i −0.0945224 0.995523i \(-0.530132\pi\)
−0.976007 + 0.217737i \(0.930132\pi\)
\(434\) −0.713383 + 8.08662i −0.0342435 + 0.388170i
\(435\) 16.1527 + 49.7130i 0.774464 + 2.38356i
\(436\) 24.9495 3.46962i 1.19486 0.166165i
\(437\) 0.529682 + 0.729044i 0.0253381 + 0.0348749i
\(438\) −12.4173 10.8100i −0.593321 0.516520i
\(439\) 11.5438 0.550957 0.275479 0.961307i \(-0.411164\pi\)
0.275479 + 0.961307i \(0.411164\pi\)
\(440\) 20.3125 + 8.14075i 0.968362 + 0.388095i
\(441\) 23.4241 1.11543
\(442\) 0.929210 + 0.808931i 0.0441980 + 0.0384769i
\(443\) 9.98691 + 13.7458i 0.474492 + 0.653083i 0.977435 0.211237i \(-0.0677492\pi\)
−0.502942 + 0.864320i \(0.667749\pi\)
\(444\) −28.1353 + 3.91265i −1.33524 + 0.185686i
\(445\) −0.431183 1.32704i −0.0204400 0.0629080i
\(446\) −1.34703 + 15.2694i −0.0637837 + 0.723027i
\(447\) 38.3841 + 27.8877i 1.81551 + 1.31904i
\(448\) −2.19152 + 10.0946i −0.103539 + 0.476926i
\(449\) 1.89015 5.81730i 0.0892019 0.274535i −0.896497 0.443049i \(-0.853897\pi\)
0.985699 + 0.168514i \(0.0538968\pi\)
\(450\) −1.07396 + 2.52502i −0.0506271 + 0.119031i
\(451\) −9.07566 16.1828i −0.427356 0.762017i
\(452\) 3.69107 + 3.83330i 0.173613 + 0.180303i
\(453\) −25.4046 8.25445i −1.19361 0.387828i
\(454\) −7.61016 33.0724i −0.357163 1.55216i
\(455\) 0.519642 0.715226i 0.0243612 0.0335303i
\(456\) −10.2620 + 8.27323i −0.480564 + 0.387429i
\(457\) −6.20446 + 2.01595i −0.290232 + 0.0943022i −0.450515 0.892769i \(-0.648760\pi\)
0.160282 + 0.987071i \(0.448760\pi\)
\(458\) 29.8108 17.8828i 1.39297 0.835608i
\(459\) −9.09126 + 6.60518i −0.424344 + 0.308304i
\(460\) −1.07205 2.20613i −0.0499848 0.102861i
\(461\) 19.0882i 0.889026i 0.895773 + 0.444513i \(0.146623\pi\)
−0.895773 + 0.444513i \(0.853377\pi\)
\(462\) 12.1903 11.0703i 0.567143 0.515035i
\(463\) 13.0359i 0.605829i −0.953018 0.302915i \(-0.902040\pi\)
0.953018 0.302915i \(-0.0979597\pi\)
\(464\) 11.3645 30.9447i 0.527582 1.43657i
\(465\) 22.8116 16.5736i 1.05786 0.768583i
\(466\) 10.4066 + 17.3479i 0.482077 + 0.803627i
\(467\) −14.4349 + 4.69019i −0.667969 + 0.217036i −0.623320 0.781967i \(-0.714217\pi\)
−0.0446484 + 0.999003i \(0.514217\pi\)
\(468\) 2.27488 + 1.21380i 0.105157 + 0.0561080i
\(469\) −7.91210 + 10.8901i −0.365347 + 0.502857i
\(470\) 24.6257 5.66653i 1.13590 0.261377i
\(471\) −39.8326 12.9424i −1.83539 0.596355i
\(472\) 14.1849 + 37.1941i 0.652914 + 1.71200i
\(473\) −11.5097 1.35520i −0.529219 0.0623122i
\(474\) −34.8535 14.8242i −1.60088 0.680899i
\(475\) 0.233968 0.720080i 0.0107352 0.0330395i
\(476\) 1.34191 7.54650i 0.0615065 0.345893i
\(477\) 5.57496 + 4.05045i 0.255260 + 0.185457i
\(478\) 27.8422 + 2.45618i 1.27347 + 0.112343i
\(479\) 8.09752 + 24.9216i 0.369985 + 1.13870i 0.946800 + 0.321822i \(0.104295\pi\)
−0.576815 + 0.816875i \(0.695705\pi\)
\(480\) 31.4431 17.2808i 1.43517 0.788757i
\(481\) −0.901199 1.24039i −0.0410911 0.0565571i
\(482\) 6.06413 6.96580i 0.276214 0.317283i
\(483\) −1.84571 −0.0839827
\(484\) −2.11377 + 21.8982i −0.0960804 + 0.995374i
\(485\) 19.4230 0.881954
\(486\) 17.8270 20.4776i 0.808647 0.928884i
\(487\) 16.0181 + 22.0471i 0.725851 + 0.999048i 0.999309 + 0.0371640i \(0.0118324\pi\)
−0.273458 + 0.961884i \(0.588168\pi\)
\(488\) −6.97159 + 25.7943i −0.315589 + 1.16765i
\(489\) −9.04656 27.8424i −0.409099 1.25908i
\(490\) 17.5247 + 1.54599i 0.791686 + 0.0698407i
\(491\) −17.3230 12.5859i −0.781778 0.567995i 0.123734 0.992315i \(-0.460513\pi\)
−0.905512 + 0.424320i \(0.860513\pi\)
\(492\) −29.9506 5.32580i −1.35028 0.240106i
\(493\) −7.55888 + 23.2638i −0.340435 + 1.04775i
\(494\) −0.654717 0.278470i −0.0294571 0.0125290i
\(495\) −33.7510 3.97397i −1.51699 0.178617i
\(496\) −17.7699 0.672029i −0.797891 0.0301750i
\(497\) −4.41473 1.43443i −0.198028 0.0643431i
\(498\) −14.0888 + 3.24193i −0.631336 + 0.145274i
\(499\) 18.1317 24.9561i 0.811685 1.11719i −0.179376 0.983781i \(-0.557408\pi\)
0.991061 0.133408i \(-0.0425920\pi\)
\(500\) 10.0112 18.7629i 0.447717 0.839101i
\(501\) −16.6063 + 5.39573i −0.741917 + 0.241063i
\(502\) 3.47057 + 5.78548i 0.154899 + 0.258219i
\(503\) 25.6773 18.6557i 1.14489 0.831815i 0.157101 0.987583i \(-0.449785\pi\)
0.987794 + 0.155768i \(0.0497852\pi\)
\(504\) −0.804800 16.0218i −0.0358486 0.713666i
\(505\) 17.9219i 0.797515i
\(506\) 1.82551 1.65779i 0.0811539 0.0736976i
\(507\) 35.1117i 1.55936i
\(508\) −35.9157 + 17.4530i −1.59350 + 0.774351i
\(509\) −5.41179 + 3.93190i −0.239873 + 0.174278i −0.701227 0.712938i \(-0.747364\pi\)
0.461354 + 0.887216i \(0.347364\pi\)
\(510\) −22.8301 + 13.6952i −1.01093 + 0.606436i
\(511\) −5.25794 + 1.70841i −0.232598 + 0.0755756i
\(512\) −22.3253 3.68515i −0.986649 0.162862i
\(513\) 3.81451 5.25022i 0.168415 0.231803i
\(514\) −0.963107 4.18549i −0.0424808 0.184614i
\(515\) −0.914922 0.297276i −0.0403163 0.0130995i
\(516\) −13.6875 + 13.1797i −0.602560 + 0.580202i
\(517\) 12.4265 + 22.1575i 0.546515 + 0.974488i
\(518\) −3.73351 + 8.77795i −0.164041 + 0.385681i
\(519\) 3.03967 9.35513i 0.133426 0.410645i
\(520\) 1.62184 + 1.05825i 0.0711224 + 0.0464072i
\(521\) −10.0067 7.27028i −0.438401 0.318517i 0.346598 0.938014i \(-0.387337\pi\)
−0.784999 + 0.619497i \(0.787337\pi\)
\(522\) −4.49883 + 50.9969i −0.196908 + 2.23207i
\(523\) 1.92840 + 5.93501i 0.0843231 + 0.259520i 0.984324 0.176367i \(-0.0564347\pi\)
−0.900001 + 0.435887i \(0.856435\pi\)
\(524\) 5.65108 + 40.6361i 0.246869 + 1.77519i
\(525\) 0.911507 + 1.25458i 0.0397814 + 0.0547545i
\(526\) −15.1113 13.1553i −0.658884 0.573597i
\(527\) 13.1950 0.574784
\(528\) 25.5586 + 25.4527i 1.11229 + 1.10769i
\(529\) 22.7236 0.987983
\(530\) 3.90357 + 3.39828i 0.169560 + 0.147612i
\(531\) −36.3368 50.0134i −1.57688 2.17039i
\(532\) 0.609705 + 4.38430i 0.0264341 + 0.190083i
\(533\) −0.507388 1.56158i −0.0219774 0.0676395i
\(534\) 0.202113 2.29107i 0.00874629 0.0991443i
\(535\) −9.76811 7.09695i −0.422312 0.306828i
\(536\) −24.6942 16.1129i −1.06663 0.695972i
\(537\) −4.20746 + 12.9492i −0.181565 + 0.558800i
\(538\) 0.554489 1.30367i 0.0239057 0.0562053i
\(539\) 3.46101 + 17.3448i 0.149076 + 0.747093i
\(540\) −12.7242 + 12.2521i −0.547561 + 0.527245i
\(541\) 24.6331 + 8.00377i 1.05906 + 0.344109i 0.786217 0.617950i \(-0.212037\pi\)
0.272841 + 0.962059i \(0.412037\pi\)
\(542\) −5.64212 24.5196i −0.242350 1.05321i
\(543\) −15.6649 + 21.5608i −0.672244 + 0.925264i
\(544\) 16.6573 + 2.10645i 0.714176 + 0.0903133i
\(545\) −27.9425 + 9.07907i −1.19693 + 0.388905i
\(546\) 1.24963 0.749625i 0.0534794 0.0320810i
\(547\) −13.5035 + 9.81087i −0.577368 + 0.419482i −0.837774 0.546017i \(-0.816143\pi\)
0.260406 + 0.965499i \(0.416143\pi\)
\(548\) 11.2705 5.47684i 0.481454 0.233959i
\(549\) 41.4954i 1.77098i
\(550\) −2.02838 0.422153i −0.0864903 0.0180006i
\(551\) 14.1263i 0.601801i
\(552\) −0.202833 4.03795i −0.00863314 0.171866i
\(553\) −10.2897 + 7.47589i −0.437562 + 0.317907i
\(554\) −14.1038 23.5111i −0.599211 0.998891i
\(555\) 31.5105 10.2384i 1.33755 0.434595i
\(556\) 12.6917 23.7865i 0.538246 1.00877i
\(557\) −10.9144 + 15.0224i −0.462460 + 0.636522i −0.975017 0.222132i \(-0.928698\pi\)
0.512557 + 0.858653i \(0.328698\pi\)
\(558\) 26.9127 6.19279i 1.13931 0.262162i
\(559\) −0.975400 0.316927i −0.0412550 0.0134046i
\(560\) 0.455325 12.0398i 0.0192410 0.508773i
\(561\) −19.6651 18.1562i −0.830262 0.766555i
\(562\) 19.1257 + 8.13471i 0.806769 + 0.343142i
\(563\) 7.00832 21.5694i 0.295366 0.909042i −0.687733 0.725964i \(-0.741394\pi\)
0.983098 0.183078i \(-0.0586061\pi\)
\(564\) 41.0086 + 7.29212i 1.72677 + 0.307054i
\(565\) −5.02144 3.64829i −0.211253 0.153485i
\(566\) −3.51746 0.310302i −0.147850 0.0130430i
\(567\) −1.15052 3.54093i −0.0483172 0.148705i
\(568\) 2.65302 9.81595i 0.111318 0.411868i
\(569\) 0.0874036 + 0.120301i 0.00366415 + 0.00504327i 0.810845 0.585261i \(-0.199008\pi\)
−0.807181 + 0.590304i \(0.799008\pi\)
\(570\) 10.0951 11.5962i 0.422838 0.485710i
\(571\) −22.0331 −0.922057 −0.461028 0.887385i \(-0.652519\pi\)
−0.461028 + 0.887385i \(0.652519\pi\)
\(572\) −0.562657 + 1.86382i −0.0235259 + 0.0779303i
\(573\) 31.7832 1.32776
\(574\) −6.70749 + 7.70482i −0.279965 + 0.321593i
\(575\) 0.136500 + 0.187876i 0.00569242 + 0.00783495i
\(576\) 34.9631 3.52140i 1.45680 0.146725i
\(577\) 1.21706 + 3.74573i 0.0506669 + 0.155937i 0.973189 0.230008i \(-0.0738754\pi\)
−0.922522 + 0.385945i \(0.873875\pi\)
\(578\) 11.5383 + 1.01789i 0.479932 + 0.0423385i
\(579\) −2.53966 1.84517i −0.105545 0.0766827i
\(580\) −6.73158 + 37.8563i −0.279514 + 1.57190i
\(581\) −1.50021 + 4.61716i −0.0622391 + 0.191552i
\(582\) 29.4613 + 12.5307i 1.22121 + 0.519416i
\(583\) −2.17550 + 4.72655i −0.0901000 + 0.195754i
\(584\) −4.31539 11.3153i −0.178572 0.468231i
\(585\) −2.86025 0.929350i −0.118257 0.0384239i
\(586\) −10.3625 + 2.38448i −0.428071 + 0.0985019i
\(587\) 11.1451 15.3399i 0.460006 0.633144i −0.514504 0.857488i \(-0.672024\pi\)
0.974510 + 0.224344i \(0.0720240\pi\)
\(588\) 25.5845 + 13.6510i 1.05509 + 0.562960i
\(589\) −7.24720 + 2.35476i −0.298616 + 0.0970261i
\(590\) −23.8845 39.8156i −0.983308 1.63918i
\(591\) −34.3690 + 24.9706i −1.41375 + 1.02715i
\(592\) −19.6142 7.20334i −0.806140 0.296056i
\(593\) 31.9983i 1.31401i −0.753885 0.657007i \(-0.771822\pi\)
0.753885 0.657007i \(-0.228178\pi\)
\(594\) −15.4167 8.81380i −0.632557 0.361635i
\(595\) 8.94012i 0.366509i
\(596\) 15.2538 + 31.3902i 0.624822 + 1.28579i
\(597\) −24.1265 + 17.5290i −0.987433 + 0.717412i
\(598\) 0.187134 0.112258i 0.00765249 0.00459055i
\(599\) −8.23336 + 2.67518i −0.336406 + 0.109305i −0.472349 0.881412i \(-0.656594\pi\)
0.135943 + 0.990717i \(0.456594\pi\)
\(600\) −2.64454 + 2.13202i −0.107963 + 0.0870393i
\(601\) −12.9491 + 17.8228i −0.528203 + 0.727009i −0.986855 0.161607i \(-0.948332\pi\)
0.458652 + 0.888616i \(0.348332\pi\)
\(602\) 1.43087 + 6.21829i 0.0583178 + 0.253439i
\(603\) 43.5503 + 14.1503i 1.77350 + 0.576246i
\(604\) −13.6289 14.1540i −0.554551 0.575919i
\(605\) −2.04426 25.5787i −0.0831110 1.03992i
\(606\) −11.5623 + 27.1844i −0.469687 + 1.10429i
\(607\) −13.2005 + 40.6268i −0.535790 + 1.64899i 0.206146 + 0.978521i \(0.433908\pi\)
−0.741936 + 0.670471i \(0.766092\pi\)
\(608\) −9.52474 + 1.81569i −0.386279 + 0.0736360i
\(609\) 23.4074 + 17.0065i 0.948517 + 0.689138i
\(610\) 2.73869 31.0447i 0.110886 1.25696i
\(611\) 0.694718 + 2.13812i 0.0281053 + 0.0864992i
\(612\) −25.8260 + 3.59151i −1.04396 + 0.145178i
\(613\) −5.74748 7.91073i −0.232139 0.319511i 0.677018 0.735967i \(-0.263272\pi\)
−0.909156 + 0.416456i \(0.863272\pi\)
\(614\) 27.5186 + 23.9565i 1.11056 + 0.966805i
\(615\) 35.4817 1.43076
\(616\) 11.7447 2.96321i 0.473207 0.119391i
\(617\) −22.4213 −0.902649 −0.451324 0.892360i \(-0.649048\pi\)
−0.451324 + 0.892360i \(0.649048\pi\)
\(618\) −1.19599 1.04118i −0.0481097 0.0418823i
\(619\) 11.3322 + 15.5975i 0.455481 + 0.626916i 0.973564 0.228414i \(-0.0733540\pi\)
−0.518083 + 0.855331i \(0.673354\pi\)
\(620\) 20.5435 2.85689i 0.825045 0.114735i
\(621\) 0.615093 + 1.89306i 0.0246828 + 0.0759660i
\(622\) −0.368399 + 4.17603i −0.0147715 + 0.167443i
\(623\) −0.624841 0.453973i −0.0250337 0.0181881i
\(624\) 1.77732 + 2.65150i 0.0711497 + 0.106145i
\(625\) −8.34762 + 25.6913i −0.333905 + 1.02765i
\(626\) 0.334322 0.786031i 0.0133622 0.0314161i
\(627\) 14.0409 + 6.46266i 0.560741 + 0.258094i
\(628\) −21.3691 22.1925i −0.852720 0.885579i
\(629\) 14.7457 + 4.79118i 0.587951 + 0.191037i
\(630\) 4.19585 + 18.2344i 0.167167 + 0.726476i
\(631\) −22.5021 + 30.9715i −0.895794 + 1.23296i 0.0759958 + 0.997108i \(0.475786\pi\)
−0.971790 + 0.235847i \(0.924214\pi\)
\(632\) −17.4861 21.6897i −0.695561 0.862768i
\(633\) 49.9163 16.2188i 1.98400 0.644639i
\(634\) −27.8270 + 16.6927i −1.10515 + 0.662954i
\(635\) 37.6803 27.3763i 1.49530 1.08640i
\(636\) 3.72863 + 7.67298i 0.147850 + 0.304253i
\(637\) 1.56519i 0.0620153i
\(638\) −38.4262 + 4.20377i −1.52131 + 0.166429i
\(639\) 15.7910i 0.624682i
\(640\) 26.3900 0.326965i 1.04316 0.0129244i
\(641\) 25.5946 18.5955i 1.01092 0.734480i 0.0465216 0.998917i \(-0.485186\pi\)
0.964403 + 0.264438i \(0.0851864\pi\)
\(642\) −10.2379 17.0667i −0.404058 0.673569i
\(643\) −14.1716 + 4.60464i −0.558874 + 0.181589i −0.574814 0.818284i \(-0.694926\pi\)
0.0159405 + 0.999873i \(0.494926\pi\)
\(644\) −1.19784 0.639126i −0.0472014 0.0251851i
\(645\) 13.0269 17.9300i 0.512934 0.705993i
\(646\) 7.01157 1.61341i 0.275867 0.0634786i
\(647\) 39.0933 + 12.7022i 1.53692 + 0.499374i 0.950523 0.310653i \(-0.100548\pi\)
0.586393 + 0.810027i \(0.300548\pi\)
\(648\) 7.62022 2.90617i 0.299351 0.114165i
\(649\) 31.6643 34.2959i 1.24293 1.34623i
\(650\) −0.168721 0.0717621i −0.00661780 0.00281474i
\(651\) 4.82296 14.8435i 0.189027 0.581764i
\(652\) 3.77011 21.2019i 0.147649 0.830332i
\(653\) −3.70761 2.69374i −0.145090 0.105414i 0.512872 0.858465i \(-0.328581\pi\)
−0.657962 + 0.753051i \(0.728581\pi\)
\(654\) −48.2412 4.25573i −1.88638 0.166412i
\(655\) −14.7874 45.5109i −0.577791 1.77826i
\(656\) −17.5933 13.8276i −0.686903 0.539876i
\(657\) 11.0545 + 15.2152i 0.431278 + 0.593603i
\(658\) 9.18394 10.5495i 0.358027 0.411262i
\(659\) −38.0732 −1.48312 −0.741560 0.670886i \(-0.765914\pi\)
−0.741560 + 0.670886i \(0.765914\pi\)
\(660\) −34.5479 24.0098i −1.34478 0.934580i
\(661\) −9.34038 −0.363299 −0.181649 0.983363i \(-0.558144\pi\)
−0.181649 + 0.983363i \(0.558144\pi\)
\(662\) 4.11771 4.72997i 0.160039 0.183835i
\(663\) −1.39222 1.91622i −0.0540692 0.0744198i
\(664\) −10.2661 2.77467i −0.398400 0.107678i
\(665\) −1.59544 4.91025i −0.0618684 0.190411i
\(666\) 32.3242 + 2.85157i 1.25254 + 0.110496i
\(667\) 3.50530 + 2.54675i 0.135726 + 0.0986104i
\(668\) −12.6457 2.24864i −0.489276 0.0870027i
\(669\) 9.10685 28.0280i 0.352091 1.08363i
\(670\) 31.6481 + 13.4609i 1.22267 + 0.520039i
\(671\) 30.7260 6.13113i 1.18616 0.236689i
\(672\) 8.45810 17.9685i 0.326278 0.693148i
\(673\) 13.4864 + 4.38199i 0.519862 + 0.168913i 0.557183 0.830390i \(-0.311882\pi\)
−0.0373208 + 0.999303i \(0.511882\pi\)
\(674\) −24.4793 + 5.63284i −0.942907 + 0.216969i
\(675\) 0.983004 1.35299i 0.0378358 0.0520766i
\(676\) 12.1584 22.7869i 0.467629 0.876421i
\(677\) −4.48196 + 1.45628i −0.172256 + 0.0559692i −0.393875 0.919164i \(-0.628866\pi\)
0.221619 + 0.975133i \(0.428866\pi\)
\(678\) −5.26295 8.77339i −0.202122 0.336940i
\(679\) 8.69775 6.31929i 0.333789 0.242512i
\(680\) −19.5587 + 0.982468i −0.750043 + 0.0376759i
\(681\) 65.2454i 2.50021i
\(682\) 8.56204 + 19.0130i 0.327857 + 0.728046i
\(683\) 18.0462i 0.690519i 0.938507 + 0.345260i \(0.112209\pi\)
−0.938507 + 0.345260i \(0.887791\pi\)
\(684\) 13.5437 6.58146i 0.517856 0.251648i
\(685\) −11.8243 + 8.59084i −0.451782 + 0.328239i
\(686\) 19.3121 11.5849i 0.737340 0.442313i
\(687\) −63.5633 + 20.6530i −2.42509 + 0.787960i
\(688\) −13.4468 + 3.81373i −0.512655 + 0.145397i
\(689\) −0.270650 + 0.372518i −0.0103109 + 0.0141918i
\(690\) 1.05748 + 4.59560i 0.0402575 + 0.174952i
\(691\) 1.27888 + 0.415533i 0.0486509 + 0.0158076i 0.333241 0.942842i \(-0.391858\pi\)
−0.284590 + 0.958649i \(0.591858\pi\)
\(692\) 5.21216 5.01877i 0.198137 0.190785i
\(693\) −16.4068 + 9.20132i −0.623244 + 0.349529i
\(694\) −2.14791 + 5.05000i −0.0815336 + 0.191695i
\(695\) −9.71740 + 29.9071i −0.368602 + 1.13444i
\(696\) −34.6336 + 53.0785i −1.31278 + 2.01193i
\(697\) 13.4330 + 9.75964i 0.508811 + 0.369673i
\(698\) −2.45048 + 27.7776i −0.0927519 + 1.05140i
\(699\) −12.0187 36.9896i −0.454587 1.39908i
\(700\) 0.157122 + 1.12984i 0.00593864 + 0.0427039i
\(701\) −9.79382 13.4800i −0.369907 0.509134i 0.582968 0.812495i \(-0.301891\pi\)
−0.952876 + 0.303361i \(0.901891\pi\)
\(702\) −1.18530 1.03188i −0.0447364 0.0389457i
\(703\) −8.95393 −0.337704
\(704\) 7.77344 + 25.3688i 0.292972 + 0.956121i
\(705\) −48.5817 −1.82969
\(706\) 1.70262 + 1.48223i 0.0640788 + 0.0557843i
\(707\) 5.83090 + 8.02554i 0.219293 + 0.301832i
\(708\) −10.5415 75.8024i −0.396174 2.84883i
\(709\) 7.43557 + 22.8843i 0.279249 + 0.859440i 0.988064 + 0.154045i \(0.0492301\pi\)
−0.708815 + 0.705394i \(0.750770\pi\)
\(710\) −1.04220 + 11.8140i −0.0391132 + 0.443372i
\(711\) 35.0036 + 25.4316i 1.31274 + 0.953761i
\(712\) 0.924513 1.41688i 0.0346476 0.0530999i
\(713\) 0.722245 2.22284i 0.0270483 0.0832460i
\(714\) −5.76771 + 13.5606i −0.215851 + 0.507493i
\(715\) 0.265540 2.25523i 0.00993063 0.0843410i
\(716\) −7.21459 + 6.94690i −0.269622 + 0.259618i
\(717\) −51.1063 16.6054i −1.90860 0.620141i
\(718\) 4.89103 + 21.2555i 0.182531 + 0.793249i
\(719\) 6.65923 9.16564i 0.248347 0.341821i −0.666584 0.745430i \(-0.732244\pi\)
0.914932 + 0.403609i \(0.132244\pi\)
\(720\) −39.4312 + 11.1833i −1.46951 + 0.416778i
\(721\) −0.506426 + 0.164548i −0.0188603 + 0.00612808i
\(722\) 19.4790 11.6850i 0.724935 0.434871i
\(723\) −14.3649 + 10.4367i −0.534237 + 0.388146i
\(724\) −17.6323 + 8.56828i −0.655298 + 0.318437i
\(725\) 3.64037i 0.135200i
\(726\) 13.4013 40.1172i 0.497368 1.48889i
\(727\) 0.700673i 0.0259865i −0.999916 0.0129933i \(-0.995864\pi\)
0.999916 0.0129933i \(-0.00413600\pi\)
\(728\) 1.07057 0.0537766i 0.0396780 0.00199309i
\(729\) −35.2308 + 25.5967i −1.30485 + 0.948026i
\(730\) 7.26621 + 12.1129i 0.268935 + 0.448317i
\(731\) 9.86371 3.20491i 0.364823 0.118538i
\(732\) 24.1826 45.3225i 0.893814 1.67517i
\(733\) 17.6206 24.2526i 0.650830 0.895790i −0.348305 0.937381i \(-0.613243\pi\)
0.999135 + 0.0415908i \(0.0132426\pi\)
\(734\) −14.5427 + 3.34637i −0.536781 + 0.123517i
\(735\) −32.1678 10.4519i −1.18653 0.385526i
\(736\) 1.26661 2.69080i 0.0466879 0.0991843i
\(737\) −4.04313 + 34.3383i −0.148930 + 1.26487i
\(738\) 31.9786 + 13.6014i 1.17715 + 0.500676i
\(739\) 13.4812 41.4910i 0.495915 1.52627i −0.319611 0.947549i \(-0.603552\pi\)
0.815526 0.578721i \(-0.196448\pi\)
\(740\) 23.9951 + 4.26680i 0.882078 + 0.156851i
\(741\) 1.10662 + 0.804008i 0.0406528 + 0.0295360i
\(742\) 2.85367 + 0.251745i 0.104762 + 0.00924183i
\(743\) −10.5703 32.5321i −0.387788 1.19349i −0.934438 0.356127i \(-0.884097\pi\)
0.546650 0.837361i \(-0.315903\pi\)
\(744\) 33.0039 + 8.92019i 1.20998 + 0.327030i
\(745\) −23.9268 32.9324i −0.876610 1.20655i
\(746\) −34.8174 + 39.9944i −1.27476 + 1.46430i
\(747\) 16.5151 0.604255
\(748\) −6.47531 18.5927i −0.236761 0.679815i
\(749\) −6.68321 −0.244199
\(750\) −26.8463 + 30.8380i −0.980287 + 1.12605i
\(751\) −0.851372 1.17181i −0.0310670 0.0427600i 0.793201 0.608960i \(-0.208413\pi\)
−0.824268 + 0.566200i \(0.808413\pi\)
\(752\) 24.0889 + 18.9328i 0.878431 + 0.690408i
\(753\) −4.00819 12.3359i −0.146067 0.449546i
\(754\) −3.40760 0.300611i −0.124097 0.0109476i
\(755\) 18.5411 + 13.4709i 0.674780 + 0.490257i
\(756\) −1.71175 + 9.62636i −0.0622558 + 0.350107i
\(757\) 9.41100 28.9641i 0.342049 1.05272i −0.621096 0.783734i \(-0.713312\pi\)
0.963145 0.268983i \(-0.0866875\pi\)
\(758\) −27.7573 11.8060i −1.00819 0.428812i
\(759\) −4.13500 + 2.31900i −0.150091 + 0.0841744i
\(760\) 10.5671 4.03002i 0.383308 0.146184i
\(761\) 22.8716 + 7.43142i 0.829094 + 0.269389i 0.692664 0.721261i \(-0.256437\pi\)
0.136430 + 0.990650i \(0.456437\pi\)
\(762\) 74.8162 17.2157i 2.71030 0.623658i
\(763\) −9.55895 + 13.1568i −0.346057 + 0.476307i
\(764\) 20.6268 + 11.0058i 0.746253 + 0.398176i
\(765\) 28.9242 9.39804i 1.04576 0.339787i
\(766\) 20.9746 + 34.9649i 0.757843 + 1.26333i
\(767\) 3.34188 2.42802i 0.120668 0.0876707i
\(768\) 40.2400 + 16.5295i 1.45203 + 0.596459i
\(769\) 14.6461i 0.528151i 0.964502 + 0.264076i \(0.0850669\pi\)
−0.964502 + 0.264076i \(0.914933\pi\)
\(770\) −12.8820 + 5.80111i −0.464236 + 0.209057i
\(771\) 8.25715i 0.297374i
\(772\) −1.00926 2.07691i −0.0363241 0.0747498i
\(773\) 21.4727 15.6009i 0.772320 0.561124i −0.130344 0.991469i \(-0.541608\pi\)
0.902664 + 0.430345i \(0.141608\pi\)
\(774\) 18.6140 11.1661i 0.669067 0.401358i
\(775\) −1.86761 + 0.606824i −0.0670866 + 0.0217977i
\(776\) 14.7808 + 18.3340i 0.530601 + 0.658153i
\(777\) 10.7795 14.8367i 0.386713 0.532265i
\(778\) −11.0613 48.0704i −0.396567 1.72341i
\(779\) −9.11960 2.96314i −0.326743 0.106165i
\(780\) −2.58244 2.68195i −0.0924662 0.0960293i
\(781\) −11.6927 + 2.33319i −0.418398 + 0.0834880i
\(782\) −0.863723 + 2.03072i −0.0308867 + 0.0726184i
\(783\) 9.64214 29.6755i 0.344582 1.06051i
\(784\) 11.8769 + 17.7186i 0.424176 + 0.632809i
\(785\) 29.0712 + 21.1214i 1.03759 + 0.753857i
\(786\) 6.93145 78.5721i 0.247237 2.80257i
\(787\) −6.33834 19.5074i −0.225937 0.695364i −0.998195 0.0600544i \(-0.980873\pi\)
0.772258 0.635309i \(-0.219127\pi\)
\(788\) −30.9517 + 4.30432i −1.10261 + 0.153335i
\(789\) 22.6410 + 31.1626i 0.806040 + 1.10942i
\(790\) 24.5094 + 21.3369i 0.872006 + 0.759132i
\(791\) −3.43560 −0.122156
\(792\) −21.9332 34.8828i −0.779362 1.23951i
\(793\) 2.77271 0.0984620
\(794\) −18.0372 15.7024i −0.640117 0.557259i
\(795\) −5.84864 8.04996i −0.207430 0.285503i
\(796\) −21.7276 + 3.02157i −0.770115 + 0.107097i
\(797\) −10.1514 31.2427i −0.359580 1.10667i −0.953306 0.302006i \(-0.902344\pi\)
0.593726 0.804667i \(-0.297656\pi\)
\(798\) 0.747847 8.47728i 0.0264735 0.300093i
\(799\) −18.3925 13.3630i −0.650682 0.472748i
\(800\) −2.45454 + 0.467906i −0.0867809 + 0.0165430i
\(801\) −0.811905 + 2.49879i −0.0286873 + 0.0882903i
\(802\) 8.77880 20.6400i 0.309990 0.728825i
\(803\) −9.63304 + 10.4336i −0.339942 + 0.368195i
\(804\) 39.3204 + 40.8356i 1.38672 + 1.44016i
\(805\) 1.50606 + 0.489348i 0.0530816 + 0.0172473i
\(806\) 0.413801 + 1.79830i 0.0145755 + 0.0633426i
\(807\) −1.60094 + 2.20350i −0.0563557 + 0.0775670i
\(808\) −16.9171 + 13.6385i −0.595141 + 0.479801i
\(809\) 17.7783 5.77654i 0.625053 0.203092i 0.0206708 0.999786i \(-0.493420\pi\)
0.604383 + 0.796694i \(0.293420\pi\)
\(810\) −8.15732 + 4.89339i −0.286619 + 0.171936i
\(811\) 22.1490 16.0922i 0.777758 0.565074i −0.126547 0.991961i \(-0.540390\pi\)
0.904305 + 0.426886i \(0.140390\pi\)
\(812\) 9.30211 + 19.1424i 0.326440 + 0.671767i
\(813\) 48.3724i 1.69650i
\(814\) 2.66455 + 24.3564i 0.0933925 + 0.853691i
\(815\) 25.1173i 0.879821i
\(816\) −30.3010 11.1281i −1.06075 0.389560i
\(817\) −4.84558 + 3.52052i −0.169525 + 0.123167i
\(818\) 20.1327 + 33.5615i 0.703925 + 1.17345i
\(819\) −1.58320 + 0.514413i −0.0553215 + 0.0179750i
\(820\) 23.0271 + 12.2865i 0.804140 + 0.429062i
\(821\) 5.06427 6.97036i 0.176744 0.243267i −0.711449 0.702738i \(-0.751961\pi\)
0.888193 + 0.459470i \(0.151961\pi\)
\(822\) −23.4777 + 5.40237i −0.818880 + 0.188429i
\(823\) 3.63990 + 1.18267i 0.126879 + 0.0412254i 0.371768 0.928326i \(-0.378752\pi\)
−0.244889 + 0.969551i \(0.578752\pi\)
\(824\) −0.415643 1.08985i −0.0144796 0.0379667i
\(825\) 3.61837 + 1.66543i 0.125975 + 0.0579830i
\(826\) −23.6496 10.0589i −0.822876 0.349993i
\(827\) 8.45284 26.0152i 0.293934 0.904636i −0.689643 0.724149i \(-0.742233\pi\)
0.983577 0.180487i \(-0.0577674\pi\)
\(828\) −0.808590 + 4.54726i −0.0281004 + 0.158028i
\(829\) −14.2443 10.3491i −0.494723 0.359438i 0.312274 0.949992i \(-0.398909\pi\)
−0.806998 + 0.590554i \(0.798909\pi\)
\(830\) 12.3557 + 1.08999i 0.428873 + 0.0378342i
\(831\) 16.2885 + 50.1309i 0.565043 + 1.73902i
\(832\) 0.235299 + 2.33623i 0.00815753 + 0.0809942i
\(833\) −9.30347 12.8051i −0.322346 0.443671i
\(834\) −34.0341 + 39.0946i −1.17850 + 1.35374i
\(835\) 14.9810 0.518438
\(836\) 6.87449 + 9.05622i 0.237759 + 0.313216i
\(837\) −16.8316 −0.581786
\(838\) 21.3304 24.5020i 0.736845 0.846406i
\(839\) 0.148971 + 0.205041i 0.00514306 + 0.00707881i 0.811581 0.584240i \(-0.198607\pi\)
−0.806438 + 0.591319i \(0.798607\pi\)
\(840\) −6.04377 + 22.3614i −0.208530 + 0.771542i
\(841\) −12.0270 37.0154i −0.414726 1.27639i
\(842\) −42.4167 3.74190i −1.46177 0.128954i
\(843\) −32.3268 23.4868i −1.11340 0.808929i
\(844\) 38.0111 + 6.75911i 1.30840 + 0.232658i
\(845\) −9.30907 + 28.6504i −0.320242 + 0.985603i
\(846\) −43.7853 18.6232i −1.50537 0.640278i
\(847\) −9.23746 10.7892i −0.317403 0.370721i
\(848\) −0.237151 + 6.27079i −0.00814381 + 0.215340i
\(849\) 6.45654 + 2.09786i 0.221588 + 0.0719983i
\(850\) 1.80689 0.415777i 0.0619758 0.0142610i
\(851\) 1.61425 2.22182i 0.0553358 0.0761632i
\(852\) −9.20263 + 17.2474i −0.315277 + 0.590886i
\(853\) −35.2985 + 11.4692i −1.20860 + 0.392697i −0.842917 0.538044i \(-0.819163\pi\)
−0.365680 + 0.930741i \(0.619163\pi\)
\(854\) −8.87400 14.7930i −0.303662 0.506208i
\(855\) −14.2091 + 10.3235i −0.485941 + 0.353057i
\(856\) −0.734447 14.6212i −0.0251029 0.499742i
\(857\) 20.9360i 0.715161i −0.933882 0.357580i \(-0.883602\pi\)
0.933882 0.357580i \(-0.116398\pi\)
\(858\) 1.85774 3.24948i 0.0634222 0.110935i
\(859\) 20.6926i 0.706022i 0.935619 + 0.353011i \(0.114842\pi\)
−0.935619 + 0.353011i \(0.885158\pi\)
\(860\) 14.6630 7.12538i 0.500005 0.242974i
\(861\) 15.8889 11.5440i 0.541493 0.393417i
\(862\) 12.3375 7.40097i 0.420216 0.252078i
\(863\) 35.9307 11.6746i 1.22309 0.397408i 0.374887 0.927071i \(-0.377682\pi\)
0.848208 + 0.529663i \(0.177682\pi\)
\(864\) −21.2482 2.68700i −0.722877 0.0914136i
\(865\) −4.96060 + 6.82768i −0.168666 + 0.232148i
\(866\) 8.73222 + 37.9487i 0.296733 + 1.28955i
\(867\) −21.1794 6.88161i −0.719290 0.233712i
\(868\) 8.27000 7.96315i 0.280702 0.270287i
\(869\) −13.6594 + 29.6767i −0.463362 + 1.00671i
\(870\) 28.9332 68.0254i 0.980926 2.30628i
\(871\) −0.945523 + 2.91002i −0.0320378 + 0.0986023i
\(872\) −29.8342 19.4667i −1.01031 0.659227i
\(873\) −29.5882 21.4971i −1.00141 0.727566i
\(874\) 0.111991 1.26949i 0.00378816 0.0429410i
\(875\) 4.24279 + 13.0580i 0.143433 + 0.441440i
\(876\) 3.20697 + 23.0609i 0.108354 + 0.779154i
\(877\) 6.81007 + 9.37325i 0.229960 + 0.316512i 0.908367 0.418173i \(-0.137330\pi\)
−0.678408 + 0.734686i \(0.737330\pi\)
\(878\) −12.3132 10.7194i −0.415551 0.361761i
\(879\) 20.4432 0.689532
\(880\) −14.1070 27.5451i −0.475548 0.928546i
\(881\) −24.6157 −0.829325 −0.414662 0.909975i \(-0.636100\pi\)
−0.414662 + 0.909975i \(0.636100\pi\)
\(882\) −24.9853 21.7511i −0.841299 0.732399i
\(883\) 23.0095 + 31.6699i 0.774333 + 1.06578i 0.995885 + 0.0906289i \(0.0288877\pi\)
−0.221552 + 0.975149i \(0.571112\pi\)
\(884\) −0.239984 1.72569i −0.00807154 0.0580412i
\(885\) 27.5843 + 84.8959i 0.927237 + 2.85374i
\(886\) 2.11154 23.9356i 0.0709387 0.804132i
\(887\) −38.4919 27.9660i −1.29243 0.939006i −0.292580 0.956241i \(-0.594514\pi\)
−0.999851 + 0.0172350i \(0.994514\pi\)
\(888\) 33.6437 + 21.9524i 1.12901 + 0.736675i
\(889\) 7.96657 24.5186i 0.267190 0.822326i
\(890\) −0.772346 + 1.81588i −0.0258891 + 0.0608684i
\(891\) −7.02646 6.48731i −0.235395 0.217333i
\(892\) 15.6157 15.0363i 0.522851 0.503451i
\(893\) 12.4866 + 4.05715i 0.417848 + 0.135767i
\(894\) −15.0464 65.3890i −0.503228 2.18694i
\(895\) 6.86639 9.45077i 0.229518 0.315904i
\(896\) 11.7112 8.73242i 0.391245 0.291730i
\(897\) −0.399012 + 0.129647i −0.0133226 + 0.00432879i
\(898\) −7.41795 + 4.44986i −0.247540 + 0.148494i
\(899\) −29.6410 + 21.5354i −0.988581 + 0.718246i
\(900\) 3.49022 1.69605i 0.116341 0.0565350i
\(901\) 4.65637i 0.155126i
\(902\) −5.34644 + 25.6888i −0.178017 + 0.855344i
\(903\) 12.2675i 0.408236i
\(904\) −0.377553 7.51623i −0.0125572 0.249986i
\(905\) 18.4986 13.4400i 0.614913 0.446760i
\(906\) 19.4329 + 32.3948i 0.645614 + 1.07624i
\(907\) 3.43208 1.11515i 0.113960 0.0370279i −0.251482 0.967862i \(-0.580918\pi\)
0.365442 + 0.930834i \(0.380918\pi\)
\(908\) −22.5930 + 42.3433i −0.749774 + 1.40521i
\(909\) 19.8357 27.3015i 0.657908 0.905532i
\(910\) −1.21842 + 0.280366i −0.0403902 + 0.00929405i
\(911\) 29.8894 + 9.71164i 0.990278 + 0.321761i 0.758974 0.651121i \(-0.225701\pi\)
0.231304 + 0.972881i \(0.425701\pi\)
\(912\) 18.6283 + 0.704495i 0.616846 + 0.0233282i
\(913\) 2.44017 + 12.2289i 0.0807579 + 0.404716i
\(914\) 8.48995 + 3.61102i 0.280823 + 0.119442i
\(915\) −18.5154 + 56.9847i −0.612102 + 1.88386i
\(916\) −48.4033 8.60703i −1.59929 0.284384i
\(917\) −21.4289 15.5690i −0.707643 0.514133i
\(918\) 15.8306 + 1.39654i 0.522488 + 0.0460927i
\(919\) 8.08812 + 24.8927i 0.266802 + 0.821133i 0.991273 + 0.131827i \(0.0420845\pi\)
−0.724470 + 0.689306i \(0.757916\pi\)
\(920\) −0.905064 + 3.34865i −0.0298391 + 0.110402i
\(921\) −41.2305 56.7489i −1.35859 1.86994i
\(922\) 17.7249 20.3604i 0.583739 0.670534i
\(923\) −1.05515 −0.0347307
\(924\) −23.2824 + 0.488426i −0.765933 + 0.0160680i
\(925\) −2.30744 −0.0758681
\(926\) −12.1049 + 13.9047i −0.397790 + 0.456938i
\(927\) 1.06473 + 1.46548i 0.0349704 + 0.0481326i
\(928\) −40.8565 + 22.4543i −1.34118 + 0.737099i
\(929\) 8.71671 + 26.8273i 0.285986 + 0.880175i 0.986101 + 0.166145i \(0.0531320\pi\)
−0.700115 + 0.714030i \(0.746868\pi\)
\(930\) −39.7219 3.50418i −1.30253 0.114906i
\(931\) 7.39499 + 5.37278i 0.242361 + 0.176086i
\(932\) 5.00872 28.1675i 0.164066 0.922657i
\(933\) 2.49063 7.66538i 0.0815397 0.250953i
\(934\) 19.7522 + 8.40119i 0.646312 + 0.274895i
\(935\) 11.2326 + 20.0288i 0.367346 + 0.655013i
\(936\) −1.29939 3.40711i −0.0424719 0.111365i
\(937\) 20.4298 + 6.63805i 0.667413 + 0.216856i 0.623076 0.782161i \(-0.285883\pi\)
0.0443365 + 0.999017i \(0.485883\pi\)
\(938\) 18.5517 4.26887i 0.605736 0.139384i
\(939\) −0.965265 + 1.32857i −0.0315002 + 0.0433563i
\(940\) −31.5288 16.8227i −1.02836 0.548697i
\(941\) 27.2146 8.84257i 0.887172 0.288260i 0.170240 0.985403i \(-0.445546\pi\)
0.716932 + 0.697143i \(0.245546\pi\)
\(942\) 30.4694 + 50.7928i 0.992746 + 1.65492i
\(943\) 2.37939 1.72873i 0.0774835 0.0562951i
\(944\) 19.4073 52.8449i 0.631655 1.71995i
\(945\) 11.4041i 0.370974i
\(946\) 11.0184 + 12.1332i 0.358241 + 0.394486i
\(947\) 0.894236i 0.0290588i 0.999894 + 0.0145294i \(0.00462501\pi\)
−0.999894 + 0.0145294i \(0.995375\pi\)
\(948\) 23.4110 + 48.1765i 0.760355 + 1.56470i
\(949\) −1.01668 + 0.738661i −0.0330028 + 0.0239779i
\(950\) −0.918213 + 0.550814i −0.0297908 + 0.0178708i
\(951\) 59.3333 19.2786i 1.92402 0.625150i
\(952\) −8.43888 + 6.80340i −0.273506 + 0.220499i
\(953\) −5.07423 + 6.98407i −0.164370 + 0.226236i −0.883255 0.468893i \(-0.844653\pi\)
0.718885 + 0.695129i \(0.244653\pi\)
\(954\) −2.18537 9.49720i −0.0707538 0.307483i
\(955\) −25.9344 8.42661i −0.839219 0.272679i
\(956\) −27.4171 28.4736i −0.886733 0.920902i
\(957\) 73.8078 + 8.69041i 2.38587 + 0.280921i
\(958\) 14.5045 34.1018i 0.468618 1.10178i
\(959\) −2.49995 + 7.69406i −0.0807277 + 0.248454i
\(960\) −49.5853 10.7649i −1.60036 0.347434i
\(961\) −9.09031 6.60449i −0.293236 0.213048i
\(962\) −0.190541 + 2.15990i −0.00614330 + 0.0696380i
\(963\) 7.02553 + 21.6224i 0.226395 + 0.696771i
\(964\) −12.9366 + 1.79904i −0.416660 + 0.0579431i
\(965\) 1.58310 + 2.17895i 0.0509619 + 0.0701430i
\(966\) 1.96872 + 1.71389i 0.0633427 + 0.0551435i
\(967\) 23.2776 0.748557 0.374278 0.927316i \(-0.377890\pi\)
0.374278 + 0.927316i \(0.377890\pi\)
\(968\) 22.5889 21.3949i 0.726034 0.687658i
\(969\) −13.8325 −0.444363
\(970\) −20.7175 18.0358i −0.665200 0.579095i
\(971\) −18.9657 26.1040i −0.608638 0.837718i 0.387827 0.921732i \(-0.373226\pi\)
−0.996465 + 0.0840143i \(0.973226\pi\)
\(972\) −38.0302 + 5.28870i −1.21982 + 0.169635i
\(973\) 5.37876 + 16.5541i 0.172435 + 0.530701i
\(974\) 3.38673 38.3906i 0.108518 1.23011i
\(975\) 0.285178 + 0.207194i 0.00913300 + 0.00663551i
\(976\) 31.3883 21.0397i 1.00471 0.673466i
\(977\) 2.86676 8.82297i 0.0917157 0.282272i −0.894668 0.446731i \(-0.852588\pi\)
0.986384 + 0.164459i \(0.0525880\pi\)
\(978\) −16.2044 + 38.0986i −0.518160 + 1.21826i
\(979\) −1.97023 0.231983i −0.0629689 0.00741420i
\(980\) −17.2571 17.9221i −0.551259 0.572501i
\(981\) 52.6150 + 17.0956i 1.67987 + 0.545822i
\(982\) 6.79057 + 29.5106i 0.216696 + 0.941721i
\(983\) 13.6886 18.8408i 0.436599 0.600927i −0.532853 0.846208i \(-0.678880\pi\)
0.969452 + 0.245281i \(0.0788801\pi\)
\(984\) 27.0014 + 33.4923i 0.860773 + 1.06770i
\(985\) 34.6648 11.2633i 1.10451 0.358877i
\(986\) 29.6650 17.7953i 0.944725 0.566718i
\(987\) −21.7552 + 15.8061i −0.692476 + 0.503113i
\(988\) 0.439772 + 0.904987i 0.0139910 + 0.0287915i
\(989\) 1.83707i 0.0584155i
\(990\) 32.3103 + 35.5793i 1.02689 + 1.13078i
\(991\) 42.4003i 1.34689i −0.739237 0.673446i \(-0.764814\pi\)
0.739237 0.673446i \(-0.235186\pi\)
\(992\) 18.3302 + 17.2176i 0.581984 + 0.546658i
\(993\) −9.75417 + 7.08682i −0.309539 + 0.224893i
\(994\) 3.37698 + 5.62946i 0.107111 + 0.178556i
\(995\) 24.3341 7.90664i 0.771444 0.250657i
\(996\) 18.0382 + 9.62461i 0.571564 + 0.304967i
\(997\) −2.61173 + 3.59473i −0.0827142 + 0.113846i −0.848369 0.529405i \(-0.822415\pi\)
0.765655 + 0.643252i \(0.222415\pi\)
\(998\) −42.5138 + 9.78270i −1.34575 + 0.309666i
\(999\) −18.8097 6.11165i −0.595113 0.193364i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 44.2.g.a.35.2 yes 16
3.2 odd 2 396.2.r.a.343.3 16
4.3 odd 2 inner 44.2.g.a.35.1 16
8.3 odd 2 704.2.u.c.255.4 16
8.5 even 2 704.2.u.c.255.1 16
11.2 odd 10 484.2.g.f.239.3 16
11.3 even 5 484.2.g.f.403.2 16
11.4 even 5 484.2.c.d.483.9 16
11.5 even 5 484.2.g.i.215.4 16
11.6 odd 10 inner 44.2.g.a.39.1 yes 16
11.7 odd 10 484.2.c.d.483.8 16
11.8 odd 10 484.2.g.j.403.3 16
11.9 even 5 484.2.g.j.239.2 16
11.10 odd 2 484.2.g.i.475.3 16
12.11 even 2 396.2.r.a.343.4 16
33.17 even 10 396.2.r.a.127.4 16
44.3 odd 10 484.2.g.f.403.3 16
44.7 even 10 484.2.c.d.483.10 16
44.15 odd 10 484.2.c.d.483.7 16
44.19 even 10 484.2.g.j.403.2 16
44.27 odd 10 484.2.g.i.215.3 16
44.31 odd 10 484.2.g.j.239.3 16
44.35 even 10 484.2.g.f.239.2 16
44.39 even 10 inner 44.2.g.a.39.2 yes 16
44.43 even 2 484.2.g.i.475.4 16
88.61 odd 10 704.2.u.c.127.4 16
88.83 even 10 704.2.u.c.127.1 16
132.83 odd 10 396.2.r.a.127.3 16
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
44.2.g.a.35.1 16 4.3 odd 2 inner
44.2.g.a.35.2 yes 16 1.1 even 1 trivial
44.2.g.a.39.1 yes 16 11.6 odd 10 inner
44.2.g.a.39.2 yes 16 44.39 even 10 inner
396.2.r.a.127.3 16 132.83 odd 10
396.2.r.a.127.4 16 33.17 even 10
396.2.r.a.343.3 16 3.2 odd 2
396.2.r.a.343.4 16 12.11 even 2
484.2.c.d.483.7 16 44.15 odd 10
484.2.c.d.483.8 16 11.7 odd 10
484.2.c.d.483.9 16 11.4 even 5
484.2.c.d.483.10 16 44.7 even 10
484.2.g.f.239.2 16 44.35 even 10
484.2.g.f.239.3 16 11.2 odd 10
484.2.g.f.403.2 16 11.3 even 5
484.2.g.f.403.3 16 44.3 odd 10
484.2.g.i.215.3 16 44.27 odd 10
484.2.g.i.215.4 16 11.5 even 5
484.2.g.i.475.3 16 11.10 odd 2
484.2.g.i.475.4 16 44.43 even 2
484.2.g.j.239.2 16 11.9 even 5
484.2.g.j.239.3 16 44.31 odd 10
484.2.g.j.403.2 16 44.19 even 10
484.2.g.j.403.3 16 11.8 odd 10
704.2.u.c.127.1 16 88.83 even 10
704.2.u.c.127.4 16 88.61 odd 10
704.2.u.c.255.1 16 8.5 even 2
704.2.u.c.255.4 16 8.3 odd 2