Properties

Label 704.4.e.g
Level $704$
Weight $4$
Character orbit 704.e
Analytic conductor $41.537$
Analytic rank $0$
Dimension $36$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [704,4,Mod(703,704)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(704, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([1, 0, 1]))
 
N = Newforms(chi, 4, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("704.703");
 
S:= CuspForms(chi, 4);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 704 = 2^{6} \cdot 11 \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 704.e (of order \(2\), degree \(1\), not minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(41.5373446440\)
Analytic rank: \(0\)
Dimension: \(36\)
Twist minimal: no (minimal twist has level 352)
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

$q$-expansion

The algebraic \(q\)-expansion of this newform has not been computed, but we have computed the trace expansion.

\(\operatorname{Tr}(f)(q) = \) \( 36 q - 364 q^{9} + 1236 q^{25} + 592 q^{33} - 984 q^{45} + 2372 q^{49} - 376 q^{53} + 2824 q^{69} + 2592 q^{77} + 6756 q^{81} + 512 q^{89} + 872 q^{93} + 3904 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field
 
gp: mfembed(f)
 
Label   \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
703.1 0 9.41697i 0 17.7991 0 30.3804 0 −61.6793 0
703.2 0 9.41697i 0 17.7991 0 30.3804 0 −61.6793 0
703.3 0 3.08315i 0 19.1950 0 20.3180 0 17.4942 0
703.4 0 3.08315i 0 19.1950 0 20.3180 0 17.4942 0
703.5 0 2.43252i 0 −17.0450 0 −13.3052 0 21.0829 0
703.6 0 2.43252i 0 −17.0450 0 −13.3052 0 21.0829 0
703.7 0 7.83879i 0 −16.0908 0 −7.53038 0 −34.4466 0
703.8 0 7.83879i 0 −16.0908 0 −7.53038 0 −34.4466 0
703.9 0 6.71366i 0 6.05508 0 15.0900 0 −18.0733 0
703.10 0 6.71366i 0 6.05508 0 15.0900 0 −18.0733 0
703.11 0 9.41697i 0 17.7991 0 −30.3804 0 −61.6793 0
703.12 0 9.41697i 0 17.7991 0 −30.3804 0 −61.6793 0
703.13 0 5.16105i 0 −0.643894 0 −13.2477 0 0.363555 0
703.14 0 5.16105i 0 −0.643894 0 −13.2477 0 0.363555 0
703.15 0 6.71366i 0 6.05508 0 −15.0900 0 −18.0733 0
703.16 0 6.71366i 0 6.05508 0 −15.0900 0 −18.0733 0
703.17 0 2.43252i 0 −17.0450 0 13.3052 0 21.0829 0
703.18 0 2.43252i 0 −17.0450 0 13.3052 0 21.0829 0
703.19 0 3.08315i 0 19.1950 0 −20.3180 0 17.4942 0
703.20 0 3.08315i 0 19.1950 0 −20.3180 0 17.4942 0
See all 36 embeddings
\(n\): e.g. 2-40 or 990-1000
Embeddings: e.g. 1-3 or 703.36
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
4.b odd 2 1 inner
11.b odd 2 1 inner
44.c even 2 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 704.4.e.g 36
4.b odd 2 1 inner 704.4.e.g 36
8.b even 2 1 352.4.e.a 36
8.d odd 2 1 352.4.e.a 36
11.b odd 2 1 inner 704.4.e.g 36
44.c even 2 1 inner 704.4.e.g 36
88.b odd 2 1 352.4.e.a 36
88.g even 2 1 352.4.e.a 36
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
352.4.e.a 36 8.b even 2 1
352.4.e.a 36 8.d odd 2 1
352.4.e.a 36 88.b odd 2 1
352.4.e.a 36 88.g even 2 1
704.4.e.g 36 1.a even 1 1 trivial
704.4.e.g 36 4.b odd 2 1 inner
704.4.e.g 36 11.b odd 2 1 inner
704.4.e.g 36 44.c even 2 1 inner

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on \(S_{4}^{\mathrm{new}}(704, [\chi])\):

\( T_{3}^{18} + 334 T_{3}^{16} + 44687 T_{3}^{14} + 3074352 T_{3}^{12} + 116680607 T_{3}^{10} + \cdots + 529087483456 \) Copy content Toggle raw display
\( T_{7}^{18} - 3680 T_{7}^{16} + 5338416 T_{7}^{14} - 3995877888 T_{7}^{12} + 1707146380032 T_{7}^{10} + \cdots - 38\!\cdots\!08 \) Copy content Toggle raw display