Newspace parameters
comment: Compute space of new eigenforms
[N,k,chi] = [704,4,Mod(703,704)]
mf = mfinit([N,k,chi],0)
lf = mfeigenbasis(mf)
from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(704, base_ring=CyclotomicField(2))
chi = DirichletCharacter(H, H._module([1, 0, 1]))
N = Newforms(chi, 4, names="a")
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
chi := DirichletCharacter("704.703");
S:= CuspForms(chi, 4);
N := Newforms(S);
Level: | \( N \) | \(=\) | \( 704 = 2^{6} \cdot 11 \) |
Weight: | \( k \) | \(=\) | \( 4 \) |
Character orbit: | \([\chi]\) | \(=\) | 704.e (of order \(2\), degree \(1\), not minimal) |
Newform invariants
comment: select newform
sage: f = N[0] # Warning: the index may be different
gp: f = lf[1] \\ Warning: the index may be different
Self dual: | no |
Analytic conductor: | \(41.5373446440\) |
Analytic rank: | \(0\) |
Dimension: | \(36\) |
Twist minimal: | no (minimal twist has level 352) |
Sato-Tate group: | $\mathrm{SU}(2)[C_{2}]$ |
$q$-expansion
The algebraic \(q\)-expansion of this newform has not been computed, but we have computed the trace expansion.
Embeddings
For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.
For more information on an embedded modular form you can click on its label.
comment: embeddings in the coefficient field
gp: mfembed(f)
Label | \( a_{2} \) | \( a_{3} \) | \( a_{4} \) | \( a_{5} \) | \( a_{6} \) | \( a_{7} \) | \( a_{8} \) | \( a_{9} \) | \( a_{10} \) | ||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
703.1 | 0 | − | 9.41697i | 0 | 17.7991 | 0 | 30.3804 | 0 | −61.6793 | 0 | |||||||||||||||||
703.2 | 0 | 9.41697i | 0 | 17.7991 | 0 | 30.3804 | 0 | −61.6793 | 0 | ||||||||||||||||||
703.3 | 0 | − | 3.08315i | 0 | 19.1950 | 0 | 20.3180 | 0 | 17.4942 | 0 | |||||||||||||||||
703.4 | 0 | 3.08315i | 0 | 19.1950 | 0 | 20.3180 | 0 | 17.4942 | 0 | ||||||||||||||||||
703.5 | 0 | − | 2.43252i | 0 | −17.0450 | 0 | −13.3052 | 0 | 21.0829 | 0 | |||||||||||||||||
703.6 | 0 | 2.43252i | 0 | −17.0450 | 0 | −13.3052 | 0 | 21.0829 | 0 | ||||||||||||||||||
703.7 | 0 | − | 7.83879i | 0 | −16.0908 | 0 | −7.53038 | 0 | −34.4466 | 0 | |||||||||||||||||
703.8 | 0 | 7.83879i | 0 | −16.0908 | 0 | −7.53038 | 0 | −34.4466 | 0 | ||||||||||||||||||
703.9 | 0 | − | 6.71366i | 0 | 6.05508 | 0 | 15.0900 | 0 | −18.0733 | 0 | |||||||||||||||||
703.10 | 0 | 6.71366i | 0 | 6.05508 | 0 | 15.0900 | 0 | −18.0733 | 0 | ||||||||||||||||||
703.11 | 0 | − | 9.41697i | 0 | 17.7991 | 0 | −30.3804 | 0 | −61.6793 | 0 | |||||||||||||||||
703.12 | 0 | 9.41697i | 0 | 17.7991 | 0 | −30.3804 | 0 | −61.6793 | 0 | ||||||||||||||||||
703.13 | 0 | − | 5.16105i | 0 | −0.643894 | 0 | −13.2477 | 0 | 0.363555 | 0 | |||||||||||||||||
703.14 | 0 | 5.16105i | 0 | −0.643894 | 0 | −13.2477 | 0 | 0.363555 | 0 | ||||||||||||||||||
703.15 | 0 | − | 6.71366i | 0 | 6.05508 | 0 | −15.0900 | 0 | −18.0733 | 0 | |||||||||||||||||
703.16 | 0 | 6.71366i | 0 | 6.05508 | 0 | −15.0900 | 0 | −18.0733 | 0 | ||||||||||||||||||
703.17 | 0 | − | 2.43252i | 0 | −17.0450 | 0 | 13.3052 | 0 | 21.0829 | 0 | |||||||||||||||||
703.18 | 0 | 2.43252i | 0 | −17.0450 | 0 | 13.3052 | 0 | 21.0829 | 0 | ||||||||||||||||||
703.19 | 0 | − | 3.08315i | 0 | 19.1950 | 0 | −20.3180 | 0 | 17.4942 | 0 | |||||||||||||||||
703.20 | 0 | 3.08315i | 0 | 19.1950 | 0 | −20.3180 | 0 | 17.4942 | 0 | ||||||||||||||||||
See all 36 embeddings |
Inner twists
Char | Parity | Ord | Mult | Type |
---|---|---|---|---|
1.a | even | 1 | 1 | trivial |
4.b | odd | 2 | 1 | inner |
11.b | odd | 2 | 1 | inner |
44.c | even | 2 | 1 | inner |
Twists
By twisting character orbit | |||||||
---|---|---|---|---|---|---|---|
Char | Parity | Ord | Mult | Type | Twist | Min | Dim |
1.a | even | 1 | 1 | trivial | 704.4.e.g | 36 | |
4.b | odd | 2 | 1 | inner | 704.4.e.g | 36 | |
8.b | even | 2 | 1 | 352.4.e.a | ✓ | 36 | |
8.d | odd | 2 | 1 | 352.4.e.a | ✓ | 36 | |
11.b | odd | 2 | 1 | inner | 704.4.e.g | 36 | |
44.c | even | 2 | 1 | inner | 704.4.e.g | 36 | |
88.b | odd | 2 | 1 | 352.4.e.a | ✓ | 36 | |
88.g | even | 2 | 1 | 352.4.e.a | ✓ | 36 |
By twisted newform orbit | |||||||
---|---|---|---|---|---|---|---|
Twist | Min | Dim | Char | Parity | Ord | Mult | Type |
352.4.e.a | ✓ | 36 | 8.b | even | 2 | 1 | |
352.4.e.a | ✓ | 36 | 8.d | odd | 2 | 1 | |
352.4.e.a | ✓ | 36 | 88.b | odd | 2 | 1 | |
352.4.e.a | ✓ | 36 | 88.g | even | 2 | 1 | |
704.4.e.g | 36 | 1.a | even | 1 | 1 | trivial | |
704.4.e.g | 36 | 4.b | odd | 2 | 1 | inner | |
704.4.e.g | 36 | 11.b | odd | 2 | 1 | inner | |
704.4.e.g | 36 | 44.c | even | 2 | 1 | inner |
Hecke kernels
This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on \(S_{4}^{\mathrm{new}}(704, [\chi])\):
\( T_{3}^{18} + 334 T_{3}^{16} + 44687 T_{3}^{14} + 3074352 T_{3}^{12} + 116680607 T_{3}^{10} + \cdots + 529087483456 \) |
\( T_{7}^{18} - 3680 T_{7}^{16} + 5338416 T_{7}^{14} - 3995877888 T_{7}^{12} + 1707146380032 T_{7}^{10} + \cdots - 38\!\cdots\!08 \) |