Properties

Label 704.4.e.g.703.19
Level $704$
Weight $4$
Character 704.703
Analytic conductor $41.537$
Analytic rank $0$
Dimension $36$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [704,4,Mod(703,704)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(704, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([1, 0, 1]))
 
N = Newforms(chi, 4, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("704.703");
 
S:= CuspForms(chi, 4);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 704 = 2^{6} \cdot 11 \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 704.e (of order \(2\), degree \(1\), not minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(41.5373446440\)
Analytic rank: \(0\)
Dimension: \(36\)
Twist minimal: no (minimal twist has level 352)
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

Embedding invariants

Embedding label 703.19
Character \(\chi\) \(=\) 704.703
Dual form 704.4.e.g.703.20

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-3.08315i q^{3} +19.1950 q^{5} -20.3180 q^{7} +17.4942 q^{9} +(27.3461 + 24.1493i) q^{11} +42.7879i q^{13} -59.1812i q^{15} +92.2301i q^{17} -89.6650 q^{19} +62.6434i q^{21} +31.4531i q^{23} +243.449 q^{25} -137.182i q^{27} +226.048i q^{29} +300.966i q^{31} +(74.4559 - 84.3123i) q^{33} -390.004 q^{35} -291.432 q^{37} +131.921 q^{39} -297.331i q^{41} +43.4091 q^{43} +335.801 q^{45} +226.344i q^{47} +69.8206 q^{49} +284.359 q^{51} -63.5040 q^{53} +(524.910 + 463.547i) q^{55} +276.451i q^{57} +12.9192i q^{59} +173.175i q^{61} -355.447 q^{63} +821.315i q^{65} +155.683i q^{67} +96.9748 q^{69} -912.204i q^{71} -849.892i q^{73} -750.591i q^{75} +(-555.619 - 490.665i) q^{77} +419.424 q^{79} +49.3895 q^{81} -1354.67 q^{83} +1770.36i q^{85} +696.940 q^{87} +759.067 q^{89} -869.364i q^{91} +927.923 q^{93} -1721.12 q^{95} +1812.03 q^{97} +(478.398 + 422.472i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 36 q - 364 q^{9} + 1236 q^{25} + 592 q^{33} - 984 q^{45} + 2372 q^{49} - 376 q^{53} + 2824 q^{69} + 2592 q^{77} + 6756 q^{81} + 512 q^{89} + 872 q^{93} + 3904 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/704\mathbb{Z}\right)^\times\).

\(n\) \(133\) \(321\) \(639\)
\(\chi(n)\) \(1\) \(-1\) \(-1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 3.08315i 0.593353i −0.954978 0.296676i \(-0.904122\pi\)
0.954978 0.296676i \(-0.0958782\pi\)
\(4\) 0 0
\(5\) 19.1950 1.71686 0.858428 0.512934i \(-0.171441\pi\)
0.858428 + 0.512934i \(0.171441\pi\)
\(6\) 0 0
\(7\) −20.3180 −1.09707 −0.548534 0.836128i \(-0.684814\pi\)
−0.548534 + 0.836128i \(0.684814\pi\)
\(8\) 0 0
\(9\) 17.4942 0.647933
\(10\) 0 0
\(11\) 27.3461 + 24.1493i 0.749561 + 0.661935i
\(12\) 0 0
\(13\) 42.7879i 0.912863i 0.889758 + 0.456432i \(0.150873\pi\)
−0.889758 + 0.456432i \(0.849127\pi\)
\(14\) 0 0
\(15\) 59.1812i 1.01870i
\(16\) 0 0
\(17\) 92.2301i 1.31583i 0.753093 + 0.657914i \(0.228561\pi\)
−0.753093 + 0.657914i \(0.771439\pi\)
\(18\) 0 0
\(19\) −89.6650 −1.08266 −0.541331 0.840810i \(-0.682079\pi\)
−0.541331 + 0.840810i \(0.682079\pi\)
\(20\) 0 0
\(21\) 62.6434i 0.650948i
\(22\) 0 0
\(23\) 31.4531i 0.285149i 0.989784 + 0.142575i \(0.0455381\pi\)
−0.989784 + 0.142575i \(0.954462\pi\)
\(24\) 0 0
\(25\) 243.449 1.94759
\(26\) 0 0
\(27\) 137.182i 0.977805i
\(28\) 0 0
\(29\) 226.048i 1.44745i 0.690088 + 0.723725i \(0.257572\pi\)
−0.690088 + 0.723725i \(0.742428\pi\)
\(30\) 0 0
\(31\) 300.966i 1.74371i 0.489763 + 0.871856i \(0.337083\pi\)
−0.489763 + 0.871856i \(0.662917\pi\)
\(32\) 0 0
\(33\) 74.4559 84.3123i 0.392761 0.444754i
\(34\) 0 0
\(35\) −390.004 −1.88351
\(36\) 0 0
\(37\) −291.432 −1.29489 −0.647447 0.762111i \(-0.724163\pi\)
−0.647447 + 0.762111i \(0.724163\pi\)
\(38\) 0 0
\(39\) 131.921 0.541650
\(40\) 0 0
\(41\) 297.331i 1.13257i −0.824209 0.566285i \(-0.808380\pi\)
0.824209 0.566285i \(-0.191620\pi\)
\(42\) 0 0
\(43\) 43.4091 0.153950 0.0769748 0.997033i \(-0.475474\pi\)
0.0769748 + 0.997033i \(0.475474\pi\)
\(44\) 0 0
\(45\) 335.801 1.11241
\(46\) 0 0
\(47\) 226.344i 0.702461i 0.936289 + 0.351231i \(0.114237\pi\)
−0.936289 + 0.351231i \(0.885763\pi\)
\(48\) 0 0
\(49\) 69.8206 0.203559
\(50\) 0 0
\(51\) 284.359 0.780750
\(52\) 0 0
\(53\) −63.5040 −0.164584 −0.0822919 0.996608i \(-0.526224\pi\)
−0.0822919 + 0.996608i \(0.526224\pi\)
\(54\) 0 0
\(55\) 524.910 + 463.547i 1.28689 + 1.13645i
\(56\) 0 0
\(57\) 276.451i 0.642400i
\(58\) 0 0
\(59\) 12.9192i 0.0285073i 0.999898 + 0.0142537i \(0.00453724\pi\)
−0.999898 + 0.0142537i \(0.995463\pi\)
\(60\) 0 0
\(61\) 173.175i 0.363488i 0.983346 + 0.181744i \(0.0581742\pi\)
−0.983346 + 0.181744i \(0.941826\pi\)
\(62\) 0 0
\(63\) −355.447 −0.710826
\(64\) 0 0
\(65\) 821.315i 1.56726i
\(66\) 0 0
\(67\) 155.683i 0.283877i 0.989876 + 0.141938i \(0.0453334\pi\)
−0.989876 + 0.141938i \(0.954667\pi\)
\(68\) 0 0
\(69\) 96.9748 0.169194
\(70\) 0 0
\(71\) 912.204i 1.52477i −0.647123 0.762385i \(-0.724028\pi\)
0.647123 0.762385i \(-0.275972\pi\)
\(72\) 0 0
\(73\) 849.892i 1.36263i −0.731988 0.681317i \(-0.761407\pi\)
0.731988 0.681317i \(-0.238593\pi\)
\(74\) 0 0
\(75\) 750.591i 1.15561i
\(76\) 0 0
\(77\) −555.619 490.665i −0.822320 0.726188i
\(78\) 0 0
\(79\) 419.424 0.597327 0.298664 0.954358i \(-0.403459\pi\)
0.298664 + 0.954358i \(0.403459\pi\)
\(80\) 0 0
\(81\) 49.3895 0.0677497
\(82\) 0 0
\(83\) −1354.67 −1.79150 −0.895752 0.444555i \(-0.853362\pi\)
−0.895752 + 0.444555i \(0.853362\pi\)
\(84\) 0 0
\(85\) 1770.36i 2.25909i
\(86\) 0 0
\(87\) 696.940 0.858849
\(88\) 0 0
\(89\) 759.067 0.904055 0.452027 0.892004i \(-0.350701\pi\)
0.452027 + 0.892004i \(0.350701\pi\)
\(90\) 0 0
\(91\) 869.364i 1.00147i
\(92\) 0 0
\(93\) 927.923 1.03464
\(94\) 0 0
\(95\) −1721.12 −1.85877
\(96\) 0 0
\(97\) 1812.03 1.89674 0.948372 0.317161i \(-0.102730\pi\)
0.948372 + 0.317161i \(0.102730\pi\)
\(98\) 0 0
\(99\) 478.398 + 422.472i 0.485665 + 0.428890i
\(100\) 0 0
\(101\) 446.439i 0.439825i −0.975520 0.219912i \(-0.929423\pi\)
0.975520 0.219912i \(-0.0705772\pi\)
\(102\) 0 0
\(103\) 572.642i 0.547806i 0.961757 + 0.273903i \(0.0883148\pi\)
−0.961757 + 0.273903i \(0.911685\pi\)
\(104\) 0 0
\(105\) 1202.44i 1.11758i
\(106\) 0 0
\(107\) 1080.96 0.976636 0.488318 0.872666i \(-0.337611\pi\)
0.488318 + 0.872666i \(0.337611\pi\)
\(108\) 0 0
\(109\) 1959.95i 1.72228i 0.508365 + 0.861142i \(0.330250\pi\)
−0.508365 + 0.861142i \(0.669750\pi\)
\(110\) 0 0
\(111\) 898.527i 0.768328i
\(112\) 0 0
\(113\) −322.085 −0.268135 −0.134067 0.990972i \(-0.542804\pi\)
−0.134067 + 0.990972i \(0.542804\pi\)
\(114\) 0 0
\(115\) 603.744i 0.489560i
\(116\) 0 0
\(117\) 748.539i 0.591474i
\(118\) 0 0
\(119\) 1873.93i 1.44355i
\(120\) 0 0
\(121\) 164.623 + 1320.78i 0.123684 + 0.992322i
\(122\) 0 0
\(123\) −916.718 −0.672013
\(124\) 0 0
\(125\) 2273.64 1.62688
\(126\) 0 0
\(127\) 1824.58 1.27485 0.637423 0.770514i \(-0.280000\pi\)
0.637423 + 0.770514i \(0.280000\pi\)
\(128\) 0 0
\(129\) 133.837i 0.0913463i
\(130\) 0 0
\(131\) 2596.42 1.73168 0.865842 0.500317i \(-0.166783\pi\)
0.865842 + 0.500317i \(0.166783\pi\)
\(132\) 0 0
\(133\) 1821.81 1.18775
\(134\) 0 0
\(135\) 2633.22i 1.67875i
\(136\) 0 0
\(137\) −340.359 −0.212254 −0.106127 0.994353i \(-0.533845\pi\)
−0.106127 + 0.994353i \(0.533845\pi\)
\(138\) 0 0
\(139\) 1472.75 0.898686 0.449343 0.893359i \(-0.351658\pi\)
0.449343 + 0.893359i \(0.351658\pi\)
\(140\) 0 0
\(141\) 697.853 0.416807
\(142\) 0 0
\(143\) −1033.30 + 1170.08i −0.604256 + 0.684247i
\(144\) 0 0
\(145\) 4339.00i 2.48506i
\(146\) 0 0
\(147\) 215.267i 0.120782i
\(148\) 0 0
\(149\) 2312.02i 1.27119i −0.772021 0.635597i \(-0.780754\pi\)
0.772021 0.635597i \(-0.219246\pi\)
\(150\) 0 0
\(151\) 200.926 0.108286 0.0541429 0.998533i \(-0.482757\pi\)
0.0541429 + 0.998533i \(0.482757\pi\)
\(152\) 0 0
\(153\) 1613.49i 0.852569i
\(154\) 0 0
\(155\) 5777.05i 2.99370i
\(156\) 0 0
\(157\) −320.265 −0.162802 −0.0814011 0.996681i \(-0.525939\pi\)
−0.0814011 + 0.996681i \(0.525939\pi\)
\(158\) 0 0
\(159\) 195.792i 0.0976562i
\(160\) 0 0
\(161\) 639.065i 0.312828i
\(162\) 0 0
\(163\) 829.888i 0.398784i −0.979920 0.199392i \(-0.936103\pi\)
0.979920 0.199392i \(-0.0638967\pi\)
\(164\) 0 0
\(165\) 1429.18 1618.38i 0.674314 0.763578i
\(166\) 0 0
\(167\) 122.431 0.0567306 0.0283653 0.999598i \(-0.490970\pi\)
0.0283653 + 0.999598i \(0.490970\pi\)
\(168\) 0 0
\(169\) 366.197 0.166680
\(170\) 0 0
\(171\) −1568.62 −0.701492
\(172\) 0 0
\(173\) 1701.79i 0.747889i 0.927451 + 0.373945i \(0.121995\pi\)
−0.927451 + 0.373945i \(0.878005\pi\)
\(174\) 0 0
\(175\) −4946.40 −2.13664
\(176\) 0 0
\(177\) 39.8318 0.0169149
\(178\) 0 0
\(179\) 2653.51i 1.10800i −0.832516 0.554002i \(-0.813100\pi\)
0.832516 0.554002i \(-0.186900\pi\)
\(180\) 0 0
\(181\) 658.860 0.270567 0.135284 0.990807i \(-0.456805\pi\)
0.135284 + 0.990807i \(0.456805\pi\)
\(182\) 0 0
\(183\) 533.924 0.215676
\(184\) 0 0
\(185\) −5594.04 −2.22315
\(186\) 0 0
\(187\) −2227.29 + 2522.14i −0.870993 + 0.986294i
\(188\) 0 0
\(189\) 2787.27i 1.07272i
\(190\) 0 0
\(191\) 1840.05i 0.697076i −0.937295 0.348538i \(-0.886678\pi\)
0.937295 0.348538i \(-0.113322\pi\)
\(192\) 0 0
\(193\) 2162.04i 0.806356i −0.915122 0.403178i \(-0.867906\pi\)
0.915122 0.403178i \(-0.132094\pi\)
\(194\) 0 0
\(195\) 2532.24 0.929935
\(196\) 0 0
\(197\) 2078.87i 0.751845i −0.926651 0.375923i \(-0.877326\pi\)
0.926651 0.375923i \(-0.122674\pi\)
\(198\) 0 0
\(199\) 4059.29i 1.44601i 0.690844 + 0.723004i \(0.257239\pi\)
−0.690844 + 0.723004i \(0.742761\pi\)
\(200\) 0 0
\(201\) 479.995 0.168439
\(202\) 0 0
\(203\) 4592.84i 1.58795i
\(204\) 0 0
\(205\) 5707.29i 1.94446i
\(206\) 0 0
\(207\) 550.247i 0.184758i
\(208\) 0 0
\(209\) −2451.99 2165.35i −0.811521 0.716652i
\(210\) 0 0
\(211\) −1057.19 −0.344928 −0.172464 0.985016i \(-0.555173\pi\)
−0.172464 + 0.985016i \(0.555173\pi\)
\(212\) 0 0
\(213\) −2812.46 −0.904727
\(214\) 0 0
\(215\) 833.240 0.264309
\(216\) 0 0
\(217\) 6115.02i 1.91297i
\(218\) 0 0
\(219\) −2620.34 −0.808522
\(220\) 0 0
\(221\) −3946.33 −1.20117
\(222\) 0 0
\(223\) 3910.29i 1.17423i −0.809505 0.587113i \(-0.800264\pi\)
0.809505 0.587113i \(-0.199736\pi\)
\(224\) 0 0
\(225\) 4258.95 1.26191
\(226\) 0 0
\(227\) −1826.02 −0.533907 −0.266954 0.963709i \(-0.586017\pi\)
−0.266954 + 0.963709i \(0.586017\pi\)
\(228\) 0 0
\(229\) −3776.33 −1.08972 −0.544862 0.838526i \(-0.683418\pi\)
−0.544862 + 0.838526i \(0.683418\pi\)
\(230\) 0 0
\(231\) −1512.79 + 1713.06i −0.430886 + 0.487925i
\(232\) 0 0
\(233\) 629.948i 0.177121i −0.996071 0.0885607i \(-0.971773\pi\)
0.996071 0.0885607i \(-0.0282267\pi\)
\(234\) 0 0
\(235\) 4344.68i 1.20602i
\(236\) 0 0
\(237\) 1293.15i 0.354426i
\(238\) 0 0
\(239\) −1858.77 −0.503069 −0.251535 0.967848i \(-0.580935\pi\)
−0.251535 + 0.967848i \(0.580935\pi\)
\(240\) 0 0
\(241\) 76.5266i 0.0204544i −0.999948 0.0102272i \(-0.996745\pi\)
0.999948 0.0102272i \(-0.00325548\pi\)
\(242\) 0 0
\(243\) 3856.20i 1.01800i
\(244\) 0 0
\(245\) 1340.21 0.349481
\(246\) 0 0
\(247\) 3836.58i 0.988322i
\(248\) 0 0
\(249\) 4176.66i 1.06299i
\(250\) 0 0
\(251\) 3895.72i 0.979663i 0.871817 + 0.489831i \(0.162942\pi\)
−0.871817 + 0.489831i \(0.837058\pi\)
\(252\) 0 0
\(253\) −759.571 + 860.122i −0.188750 + 0.213737i
\(254\) 0 0
\(255\) 5458.29 1.34044
\(256\) 0 0
\(257\) 1153.23 0.279908 0.139954 0.990158i \(-0.455305\pi\)
0.139954 + 0.990158i \(0.455305\pi\)
\(258\) 0 0
\(259\) 5921.30 1.42059
\(260\) 0 0
\(261\) 3954.53i 0.937851i
\(262\) 0 0
\(263\) −3055.93 −0.716489 −0.358245 0.933628i \(-0.616625\pi\)
−0.358245 + 0.933628i \(0.616625\pi\)
\(264\) 0 0
\(265\) −1218.96 −0.282567
\(266\) 0 0
\(267\) 2340.32i 0.536423i
\(268\) 0 0
\(269\) 725.783 0.164505 0.0822524 0.996612i \(-0.473789\pi\)
0.0822524 + 0.996612i \(0.473789\pi\)
\(270\) 0 0
\(271\) 5876.46 1.31723 0.658615 0.752480i \(-0.271142\pi\)
0.658615 + 0.752480i \(0.271142\pi\)
\(272\) 0 0
\(273\) −2680.38 −0.594227
\(274\) 0 0
\(275\) 6657.40 + 5879.13i 1.45984 + 1.28918i
\(276\) 0 0
\(277\) 4022.34i 0.872487i −0.899829 0.436244i \(-0.856309\pi\)
0.899829 0.436244i \(-0.143691\pi\)
\(278\) 0 0
\(279\) 5265.15i 1.12981i
\(280\) 0 0
\(281\) 3390.84i 0.719859i −0.932979 0.359930i \(-0.882801\pi\)
0.932979 0.359930i \(-0.117199\pi\)
\(282\) 0 0
\(283\) −6948.19 −1.45946 −0.729729 0.683736i \(-0.760354\pi\)
−0.729729 + 0.683736i \(0.760354\pi\)
\(284\) 0 0
\(285\) 5306.48i 1.10291i
\(286\) 0 0
\(287\) 6041.18i 1.24251i
\(288\) 0 0
\(289\) −3593.40 −0.731406
\(290\) 0 0
\(291\) 5586.77i 1.12544i
\(292\) 0 0
\(293\) 5267.68i 1.05031i −0.851006 0.525156i \(-0.824007\pi\)
0.851006 0.525156i \(-0.175993\pi\)
\(294\) 0 0
\(295\) 247.984i 0.0489430i
\(296\) 0 0
\(297\) 3312.86 3751.41i 0.647244 0.732925i
\(298\) 0 0
\(299\) −1345.81 −0.260302
\(300\) 0 0
\(301\) −881.986 −0.168893
\(302\) 0 0
\(303\) −1376.44 −0.260971
\(304\) 0 0
\(305\) 3324.10i 0.624056i
\(306\) 0 0
\(307\) 1644.72 0.305762 0.152881 0.988245i \(-0.451145\pi\)
0.152881 + 0.988245i \(0.451145\pi\)
\(308\) 0 0
\(309\) 1765.54 0.325042
\(310\) 0 0
\(311\) 6181.97i 1.12716i −0.826061 0.563581i \(-0.809423\pi\)
0.826061 0.563581i \(-0.190577\pi\)
\(312\) 0 0
\(313\) 5778.02 1.04343 0.521714 0.853120i \(-0.325293\pi\)
0.521714 + 0.853120i \(0.325293\pi\)
\(314\) 0 0
\(315\) −6822.81 −1.22039
\(316\) 0 0
\(317\) −1817.51 −0.322023 −0.161011 0.986953i \(-0.551476\pi\)
−0.161011 + 0.986953i \(0.551476\pi\)
\(318\) 0 0
\(319\) −5458.90 + 6181.54i −0.958119 + 1.08495i
\(320\) 0 0
\(321\) 3332.75i 0.579490i
\(322\) 0 0
\(323\) 8269.82i 1.42460i
\(324\) 0 0
\(325\) 10416.7i 1.77789i
\(326\) 0 0
\(327\) 6042.81 1.02192
\(328\) 0 0
\(329\) 4598.86i 0.770648i
\(330\) 0 0
\(331\) 2004.29i 0.332828i −0.986056 0.166414i \(-0.946781\pi\)
0.986056 0.166414i \(-0.0532187\pi\)
\(332\) 0 0
\(333\) −5098.36 −0.839004
\(334\) 0 0
\(335\) 2988.34i 0.487375i
\(336\) 0 0
\(337\) 2087.92i 0.337497i −0.985659 0.168749i \(-0.946027\pi\)
0.985659 0.168749i \(-0.0539726\pi\)
\(338\) 0 0
\(339\) 993.037i 0.159098i
\(340\) 0 0
\(341\) −7268.11 + 8230.25i −1.15422 + 1.30702i
\(342\) 0 0
\(343\) 5550.46 0.873751
\(344\) 0 0
\(345\) 1861.43 0.290482
\(346\) 0 0
\(347\) −7344.94 −1.13630 −0.568151 0.822924i \(-0.692341\pi\)
−0.568151 + 0.822924i \(0.692341\pi\)
\(348\) 0 0
\(349\) 5535.38i 0.849003i −0.905427 0.424501i \(-0.860449\pi\)
0.905427 0.424501i \(-0.139551\pi\)
\(350\) 0 0
\(351\) 5869.74 0.892602
\(352\) 0 0
\(353\) 4595.47 0.692896 0.346448 0.938069i \(-0.387388\pi\)
0.346448 + 0.938069i \(0.387388\pi\)
\(354\) 0 0
\(355\) 17509.8i 2.61781i
\(356\) 0 0
\(357\) −5777.61 −0.856536
\(358\) 0 0
\(359\) 11954.3 1.75745 0.878725 0.477328i \(-0.158395\pi\)
0.878725 + 0.477328i \(0.158395\pi\)
\(360\) 0 0
\(361\) 1180.82 0.172156
\(362\) 0 0
\(363\) 4072.16 507.557i 0.588797 0.0733880i
\(364\) 0 0
\(365\) 16313.7i 2.33945i
\(366\) 0 0
\(367\) 36.1633i 0.00514362i 0.999997 + 0.00257181i \(0.000818633\pi\)
−0.999997 + 0.00257181i \(0.999181\pi\)
\(368\) 0 0
\(369\) 5201.57i 0.733829i
\(370\) 0 0
\(371\) 1290.27 0.180560
\(372\) 0 0
\(373\) 8053.88i 1.11800i −0.829168 0.559000i \(-0.811185\pi\)
0.829168 0.559000i \(-0.188815\pi\)
\(374\) 0 0
\(375\) 7009.97i 0.965316i
\(376\) 0 0
\(377\) −9672.12 −1.32132
\(378\) 0 0
\(379\) 10639.5i 1.44200i 0.692938 + 0.720998i \(0.256316\pi\)
−0.692938 + 0.720998i \(0.743684\pi\)
\(380\) 0 0
\(381\) 5625.46i 0.756433i
\(382\) 0 0
\(383\) 6677.81i 0.890914i 0.895303 + 0.445457i \(0.146959\pi\)
−0.895303 + 0.445457i \(0.853041\pi\)
\(384\) 0 0
\(385\) −10665.1 9418.33i −1.41180 1.24676i
\(386\) 0 0
\(387\) 759.407 0.0997490
\(388\) 0 0
\(389\) 3002.22 0.391308 0.195654 0.980673i \(-0.437317\pi\)
0.195654 + 0.980673i \(0.437317\pi\)
\(390\) 0 0
\(391\) −2900.93 −0.375208
\(392\) 0 0
\(393\) 8005.17i 1.02750i
\(394\) 0 0
\(395\) 8050.85 1.02553
\(396\) 0 0
\(397\) −5728.92 −0.724248 −0.362124 0.932130i \(-0.617948\pi\)
−0.362124 + 0.932130i \(0.617948\pi\)
\(398\) 0 0
\(399\) 5616.92i 0.704757i
\(400\) 0 0
\(401\) −8272.92 −1.03025 −0.515124 0.857115i \(-0.672254\pi\)
−0.515124 + 0.857115i \(0.672254\pi\)
\(402\) 0 0
\(403\) −12877.7 −1.59177
\(404\) 0 0
\(405\) 948.034 0.116317
\(406\) 0 0
\(407\) −7969.53 7037.87i −0.970602 0.857135i
\(408\) 0 0
\(409\) 2161.72i 0.261345i 0.991426 + 0.130673i \(0.0417137\pi\)
−0.991426 + 0.130673i \(0.958286\pi\)
\(410\) 0 0
\(411\) 1049.38i 0.125942i
\(412\) 0 0
\(413\) 262.492i 0.0312745i
\(414\) 0 0
\(415\) −26003.0 −3.07575
\(416\) 0 0
\(417\) 4540.72i 0.533237i
\(418\) 0 0
\(419\) 15653.3i 1.82509i 0.408975 + 0.912545i \(0.365886\pi\)
−0.408975 + 0.912545i \(0.634114\pi\)
\(420\) 0 0
\(421\) −13627.3 −1.57756 −0.788782 0.614672i \(-0.789288\pi\)
−0.788782 + 0.614672i \(0.789288\pi\)
\(422\) 0 0
\(423\) 3959.71i 0.455148i
\(424\) 0 0
\(425\) 22453.4i 2.56270i
\(426\) 0 0
\(427\) 3518.56i 0.398771i
\(428\) 0 0
\(429\) 3607.54 + 3185.81i 0.406000 + 0.358537i
\(430\) 0 0
\(431\) −1499.14 −0.167544 −0.0837718 0.996485i \(-0.526697\pi\)
−0.0837718 + 0.996485i \(0.526697\pi\)
\(432\) 0 0
\(433\) −16133.2 −1.79055 −0.895277 0.445510i \(-0.853022\pi\)
−0.895277 + 0.445510i \(0.853022\pi\)
\(434\) 0 0
\(435\) 13377.8 1.47452
\(436\) 0 0
\(437\) 2820.25i 0.308720i
\(438\) 0 0
\(439\) 13311.3 1.44719 0.723593 0.690227i \(-0.242489\pi\)
0.723593 + 0.690227i \(0.242489\pi\)
\(440\) 0 0
\(441\) 1221.45 0.131892
\(442\) 0 0
\(443\) 8498.88i 0.911499i 0.890108 + 0.455749i \(0.150629\pi\)
−0.890108 + 0.455749i \(0.849371\pi\)
\(444\) 0 0
\(445\) 14570.3 1.55213
\(446\) 0 0
\(447\) −7128.30 −0.754266
\(448\) 0 0
\(449\) 1143.89 0.120230 0.0601152 0.998191i \(-0.480853\pi\)
0.0601152 + 0.998191i \(0.480853\pi\)
\(450\) 0 0
\(451\) 7180.35 8130.87i 0.749688 0.848930i
\(452\) 0 0
\(453\) 619.486i 0.0642516i
\(454\) 0 0
\(455\) 16687.5i 1.71939i
\(456\) 0 0
\(457\) 415.516i 0.0425318i 0.999774 + 0.0212659i \(0.00676966\pi\)
−0.999774 + 0.0212659i \(0.993230\pi\)
\(458\) 0 0
\(459\) 12652.3 1.28662
\(460\) 0 0
\(461\) 2496.11i 0.252181i 0.992019 + 0.126090i \(0.0402430\pi\)
−0.992019 + 0.126090i \(0.959757\pi\)
\(462\) 0 0
\(463\) 1159.10i 0.116346i 0.998307 + 0.0581729i \(0.0185275\pi\)
−0.998307 + 0.0581729i \(0.981473\pi\)
\(464\) 0 0
\(465\) 17811.5 1.77632
\(466\) 0 0
\(467\) 11650.9i 1.15447i 0.816577 + 0.577236i \(0.195869\pi\)
−0.816577 + 0.577236i \(0.804131\pi\)
\(468\) 0 0
\(469\) 3163.17i 0.311432i
\(470\) 0 0
\(471\) 987.426i 0.0965991i
\(472\) 0 0
\(473\) 1187.07 + 1048.30i 0.115395 + 0.101905i
\(474\) 0 0
\(475\) −21828.9 −2.10859
\(476\) 0 0
\(477\) −1110.95 −0.106639
\(478\) 0 0
\(479\) −13319.4 −1.27052 −0.635258 0.772300i \(-0.719106\pi\)
−0.635258 + 0.772300i \(0.719106\pi\)
\(480\) 0 0
\(481\) 12469.7i 1.18206i
\(482\) 0 0
\(483\) −1970.33 −0.185617
\(484\) 0 0
\(485\) 34782.0 3.25644
\(486\) 0 0
\(487\) 699.293i 0.0650678i −0.999471 0.0325339i \(-0.989642\pi\)
0.999471 0.0325339i \(-0.0103577\pi\)
\(488\) 0 0
\(489\) −2558.67 −0.236620
\(490\) 0 0
\(491\) 5152.60 0.473592 0.236796 0.971559i \(-0.423903\pi\)
0.236796 + 0.971559i \(0.423903\pi\)
\(492\) 0 0
\(493\) −20848.4 −1.90460
\(494\) 0 0
\(495\) 9182.87 + 8109.37i 0.833817 + 0.736342i
\(496\) 0 0
\(497\) 18534.2i 1.67278i
\(498\) 0 0
\(499\) 622.541i 0.0558492i 0.999610 + 0.0279246i \(0.00888984\pi\)
−0.999610 + 0.0279246i \(0.991110\pi\)
\(500\) 0 0
\(501\) 377.474i 0.0336612i
\(502\) 0 0
\(503\) 7478.46 0.662918 0.331459 0.943470i \(-0.392459\pi\)
0.331459 + 0.943470i \(0.392459\pi\)
\(504\) 0 0
\(505\) 8569.41i 0.755116i
\(506\) 0 0
\(507\) 1129.04i 0.0989002i
\(508\) 0 0
\(509\) 18238.5 1.58822 0.794111 0.607772i \(-0.207937\pi\)
0.794111 + 0.607772i \(0.207937\pi\)
\(510\) 0 0
\(511\) 17268.1i 1.49490i
\(512\) 0 0
\(513\) 12300.5i 1.05863i
\(514\) 0 0
\(515\) 10991.9i 0.940505i
\(516\) 0 0
\(517\) −5466.05 + 6189.64i −0.464984 + 0.526538i
\(518\) 0 0
\(519\) 5246.88 0.443762
\(520\) 0 0
\(521\) 19257.2 1.61933 0.809667 0.586890i \(-0.199648\pi\)
0.809667 + 0.586890i \(0.199648\pi\)
\(522\) 0 0
\(523\) −8373.24 −0.700069 −0.350035 0.936737i \(-0.613830\pi\)
−0.350035 + 0.936737i \(0.613830\pi\)
\(524\) 0 0
\(525\) 15250.5i 1.26778i
\(526\) 0 0
\(527\) −27758.1 −2.29443
\(528\) 0 0
\(529\) 11177.7 0.918690
\(530\) 0 0
\(531\) 226.010i 0.0184708i
\(532\) 0 0
\(533\) 12722.2 1.03388
\(534\) 0 0
\(535\) 20749.0 1.67674
\(536\) 0 0
\(537\) −8181.17 −0.657437
\(538\) 0 0
\(539\) 1909.32 + 1686.12i 0.152580 + 0.134743i
\(540\) 0 0
\(541\) 5729.06i 0.455289i −0.973744 0.227645i \(-0.926898\pi\)
0.973744 0.227645i \(-0.0731024\pi\)
\(542\) 0 0
\(543\) 2031.36i 0.160542i
\(544\) 0 0
\(545\) 37621.3i 2.95691i
\(546\) 0 0
\(547\) 21986.8 1.71863 0.859313 0.511450i \(-0.170891\pi\)
0.859313 + 0.511450i \(0.170891\pi\)
\(548\) 0 0
\(549\) 3029.55i 0.235516i
\(550\) 0 0
\(551\) 20268.6i 1.56710i
\(552\) 0 0
\(553\) −8521.85 −0.655309
\(554\) 0 0
\(555\) 17247.3i 1.31911i
\(556\) 0 0
\(557\) 19691.1i 1.49792i 0.662617 + 0.748958i \(0.269446\pi\)
−0.662617 + 0.748958i \(0.730554\pi\)
\(558\) 0 0
\(559\) 1857.38i 0.140535i
\(560\) 0 0
\(561\) 7776.13 + 6867.08i 0.585220 + 0.516806i
\(562\) 0 0
\(563\) −8495.34 −0.635943 −0.317971 0.948100i \(-0.603002\pi\)
−0.317971 + 0.948100i \(0.603002\pi\)
\(564\) 0 0
\(565\) −6182.44 −0.460349
\(566\) 0 0
\(567\) −1003.50 −0.0743261
\(568\) 0 0
\(569\) 20364.8i 1.50042i 0.661200 + 0.750210i \(0.270048\pi\)
−0.661200 + 0.750210i \(0.729952\pi\)
\(570\) 0 0
\(571\) 956.631 0.0701117 0.0350559 0.999385i \(-0.488839\pi\)
0.0350559 + 0.999385i \(0.488839\pi\)
\(572\) 0 0
\(573\) −5673.16 −0.413612
\(574\) 0 0
\(575\) 7657.25i 0.555355i
\(576\) 0 0
\(577\) −296.808 −0.0214147 −0.0107073 0.999943i \(-0.503408\pi\)
−0.0107073 + 0.999943i \(0.503408\pi\)
\(578\) 0 0
\(579\) −6665.88 −0.478454
\(580\) 0 0
\(581\) 27524.2 1.96540
\(582\) 0 0
\(583\) −1736.59 1533.58i −0.123366 0.108944i
\(584\) 0 0
\(585\) 14368.2i 1.01548i
\(586\) 0 0
\(587\) 19249.0i 1.35347i −0.736225 0.676737i \(-0.763393\pi\)
0.736225 0.676737i \(-0.236607\pi\)
\(588\) 0 0
\(589\) 26986.1i 1.88785i
\(590\) 0 0
\(591\) −6409.48 −0.446109
\(592\) 0 0
\(593\) 25489.7i 1.76516i −0.470166 0.882578i \(-0.655806\pi\)
0.470166 0.882578i \(-0.344194\pi\)
\(594\) 0 0
\(595\) 35970.2i 2.47837i
\(596\) 0 0
\(597\) 12515.4 0.857992
\(598\) 0 0
\(599\) 4642.87i 0.316699i −0.987383 0.158349i \(-0.949383\pi\)
0.987383 0.158349i \(-0.0506172\pi\)
\(600\) 0 0
\(601\) 7278.12i 0.493978i −0.969018 0.246989i \(-0.920559\pi\)
0.969018 0.246989i \(-0.0794411\pi\)
\(602\) 0 0
\(603\) 2723.55i 0.183933i
\(604\) 0 0
\(605\) 3159.94 + 25352.4i 0.212347 + 1.70367i
\(606\) 0 0
\(607\) 6122.64 0.409407 0.204704 0.978824i \(-0.434377\pi\)
0.204704 + 0.978824i \(0.434377\pi\)
\(608\) 0 0
\(609\) −14160.4 −0.942215
\(610\) 0 0
\(611\) −9684.79 −0.641251
\(612\) 0 0
\(613\) 24978.5i 1.64579i 0.568192 + 0.822896i \(0.307643\pi\)
−0.568192 + 0.822896i \(0.692357\pi\)
\(614\) 0 0
\(615\) −17596.4 −1.15375
\(616\) 0 0
\(617\) −18385.9 −1.19966 −0.599828 0.800129i \(-0.704764\pi\)
−0.599828 + 0.800129i \(0.704764\pi\)
\(618\) 0 0
\(619\) 8889.98i 0.577251i 0.957442 + 0.288625i \(0.0931982\pi\)
−0.957442 + 0.288625i \(0.906802\pi\)
\(620\) 0 0
\(621\) 4314.81 0.278820
\(622\) 0 0
\(623\) −15422.7 −0.991810
\(624\) 0 0
\(625\) 13211.4 0.845530
\(626\) 0 0
\(627\) −6676.09 + 7559.86i −0.425227 + 0.481518i
\(628\) 0 0
\(629\) 26878.8i 1.70386i
\(630\) 0 0
\(631\) 28313.1i 1.78625i −0.449807 0.893126i \(-0.648507\pi\)
0.449807 0.893126i \(-0.351493\pi\)
\(632\) 0 0
\(633\) 3259.46i 0.204664i
\(634\) 0 0
\(635\) 35022.9 2.18873
\(636\) 0 0
\(637\) 2987.48i 0.185821i
\(638\) 0 0
\(639\) 15958.3i 0.987949i
\(640\) 0 0
\(641\) 8638.10 0.532269 0.266134 0.963936i \(-0.414253\pi\)
0.266134 + 0.963936i \(0.414253\pi\)
\(642\) 0 0
\(643\) 22129.9i 1.35726i 0.734480 + 0.678630i \(0.237426\pi\)
−0.734480 + 0.678630i \(0.762574\pi\)
\(644\) 0 0
\(645\) 2569.00i 0.156829i
\(646\) 0 0
\(647\) 23922.1i 1.45359i 0.686854 + 0.726796i \(0.258991\pi\)
−0.686854 + 0.726796i \(0.741009\pi\)
\(648\) 0 0
\(649\) −311.989 + 353.290i −0.0188700 + 0.0213680i
\(650\) 0 0
\(651\) −18853.5 −1.13507
\(652\) 0 0
\(653\) 21734.4 1.30250 0.651251 0.758862i \(-0.274244\pi\)
0.651251 + 0.758862i \(0.274244\pi\)
\(654\) 0 0
\(655\) 49838.4 2.97305
\(656\) 0 0
\(657\) 14868.2i 0.882895i
\(658\) 0 0
\(659\) 13202.5 0.780422 0.390211 0.920725i \(-0.372402\pi\)
0.390211 + 0.920725i \(0.372402\pi\)
\(660\) 0 0
\(661\) −18389.0 −1.08207 −0.541036 0.840999i \(-0.681968\pi\)
−0.541036 + 0.840999i \(0.681968\pi\)
\(662\) 0 0
\(663\) 12167.1i 0.712718i
\(664\) 0 0
\(665\) 34969.8 2.03920
\(666\) 0 0
\(667\) −7109.92 −0.412740
\(668\) 0 0
\(669\) −12056.0 −0.696730
\(670\) 0 0
\(671\) −4182.05 + 4735.66i −0.240605 + 0.272456i
\(672\) 0 0
\(673\) 577.342i 0.0330682i 0.999863 + 0.0165341i \(0.00526321\pi\)
−0.999863 + 0.0165341i \(0.994737\pi\)
\(674\) 0 0
\(675\) 33396.9i 1.90437i
\(676\) 0 0
\(677\) 7296.39i 0.414214i −0.978318 0.207107i \(-0.933595\pi\)
0.978318 0.207107i \(-0.0664049\pi\)
\(678\) 0 0
\(679\) −36816.9 −2.08086
\(680\) 0 0
\(681\) 5629.88i 0.316795i
\(682\) 0 0
\(683\) 27059.0i 1.51593i −0.652293 0.757967i \(-0.726193\pi\)
0.652293 0.757967i \(-0.273807\pi\)
\(684\) 0 0
\(685\) −6533.20 −0.364410
\(686\) 0 0
\(687\) 11643.0i 0.646590i
\(688\) 0 0
\(689\) 2717.20i 0.150243i
\(690\) 0 0
\(691\) 2339.57i 0.128801i −0.997924 0.0644005i \(-0.979486\pi\)
0.997924 0.0644005i \(-0.0205135\pi\)
\(692\) 0 0
\(693\) −9720.09 8583.79i −0.532808 0.470521i
\(694\) 0 0
\(695\) 28269.5 1.54291
\(696\) 0 0
\(697\) 27422.9 1.49027
\(698\) 0 0
\(699\) −1942.23 −0.105095
\(700\) 0 0
\(701\) 12256.2i 0.660358i 0.943918 + 0.330179i \(0.107109\pi\)
−0.943918 + 0.330179i \(0.892891\pi\)
\(702\) 0 0
\(703\) 26131.2 1.40193
\(704\) 0 0
\(705\) 13395.3 0.715598
\(706\) 0 0
\(707\) 9070.74i 0.482518i
\(708\) 0 0
\(709\) −26312.8 −1.39379 −0.696896 0.717172i \(-0.745436\pi\)
−0.696896 + 0.717172i \(0.745436\pi\)
\(710\) 0 0
\(711\) 7337.48 0.387028
\(712\) 0 0
\(713\) −9466.32 −0.497218
\(714\) 0 0
\(715\) −19834.2 + 22459.8i −1.03742 + 1.17475i
\(716\) 0 0
\(717\) 5730.86i 0.298498i
\(718\) 0 0
\(719\) 25795.2i 1.33797i −0.743276 0.668985i \(-0.766729\pi\)
0.743276 0.668985i \(-0.233271\pi\)
\(720\) 0 0
\(721\) 11634.9i 0.600981i
\(722\) 0 0
\(723\) −235.943 −0.0121367
\(724\) 0 0
\(725\) 55031.2i 2.81905i
\(726\) 0 0
\(727\) 7230.20i 0.368849i 0.982847 + 0.184425i \(0.0590421\pi\)
−0.982847 + 0.184425i \(0.940958\pi\)
\(728\) 0 0
\(729\) −10555.7 −0.536286
\(730\) 0 0
\(731\) 4003.63i 0.202571i
\(732\) 0 0
\(733\) 391.505i 0.0197279i −0.999951 0.00986397i \(-0.996860\pi\)
0.999951 0.00986397i \(-0.00313985\pi\)
\(734\) 0 0
\(735\) 4132.07i 0.207365i
\(736\) 0 0
\(737\) −3759.64 + 4257.33i −0.187908 + 0.212783i
\(738\) 0 0
\(739\) 8067.58 0.401584 0.200792 0.979634i \(-0.435648\pi\)
0.200792 + 0.979634i \(0.435648\pi\)
\(740\) 0 0
\(741\) −11828.7 −0.586423
\(742\) 0 0
\(743\) 5919.90 0.292302 0.146151 0.989262i \(-0.453312\pi\)
0.146151 + 0.989262i \(0.453312\pi\)
\(744\) 0 0
\(745\) 44379.3i 2.18246i
\(746\) 0 0
\(747\) −23698.9 −1.16077
\(748\) 0 0
\(749\) −21962.9 −1.07144
\(750\) 0 0
\(751\) 23795.9i 1.15622i 0.815958 + 0.578112i \(0.196210\pi\)
−0.815958 + 0.578112i \(0.803790\pi\)
\(752\) 0 0
\(753\) 12011.1 0.581285
\(754\) 0 0
\(755\) 3856.79 0.185911
\(756\) 0 0
\(757\) 8772.63 0.421198 0.210599 0.977573i \(-0.432459\pi\)
0.210599 + 0.977573i \(0.432459\pi\)
\(758\) 0 0
\(759\) 2651.89 + 2341.87i 0.126821 + 0.111996i
\(760\) 0 0
\(761\) 24086.4i 1.14735i 0.819084 + 0.573673i \(0.194482\pi\)
−0.819084 + 0.573673i \(0.805518\pi\)
\(762\) 0 0
\(763\) 39822.2i 1.88946i
\(764\) 0 0
\(765\) 30971.0i 1.46374i
\(766\) 0 0
\(767\) −552.784 −0.0260233
\(768\) 0 0
\(769\) 3920.45i 0.183843i −0.995766 0.0919214i \(-0.970699\pi\)
0.995766 0.0919214i \(-0.0293009\pi\)
\(770\) 0 0
\(771\) 3555.57i 0.166084i
\(772\) 0 0
\(773\) −37620.2 −1.75046 −0.875229 0.483709i \(-0.839289\pi\)
−0.875229 + 0.483709i \(0.839289\pi\)
\(774\) 0 0
\(775\) 73269.9i 3.39604i
\(776\) 0 0
\(777\) 18256.3i 0.842908i
\(778\) 0 0
\(779\) 26660.2i 1.22619i
\(780\) 0 0
\(781\) 22029.1 24945.3i 1.00930 1.14291i
\(782\) 0 0
\(783\) 31009.8 1.41532
\(784\) 0 0
\(785\) −6147.50 −0.279508
\(786\) 0 0
\(787\) 9586.49 0.434208 0.217104 0.976149i \(-0.430339\pi\)
0.217104 + 0.976149i \(0.430339\pi\)
\(788\) 0 0
\(789\) 9421.89i 0.425131i
\(790\) 0 0
\(791\) 6544.12 0.294162
\(792\) 0 0
\(793\) −7409.78 −0.331815
\(794\) 0 0
\(795\) 3758.24i 0.167662i
\(796\) 0 0
\(797\) 2797.38 0.124327 0.0621633 0.998066i \(-0.480200\pi\)
0.0621633 + 0.998066i \(0.480200\pi\)
\(798\) 0 0
\(799\) −20875.7 −0.924319
\(800\) 0 0
\(801\) 13279.3 0.585767
\(802\) 0 0
\(803\) 20524.3 23241.3i 0.901976 1.02138i
\(804\) 0 0
\(805\) 12266.9i 0.537081i
\(806\) 0 0
\(807\) 2237.70i 0.0976093i
\(808\) 0 0
\(809\) 18308.0i 0.795644i 0.917463 + 0.397822i \(0.130234\pi\)
−0.917463 + 0.397822i \(0.869766\pi\)
\(810\) 0 0
\(811\) 23483.2 1.01678 0.508388 0.861128i \(-0.330242\pi\)
0.508388 + 0.861128i \(0.330242\pi\)
\(812\) 0 0
\(813\) 18118.0i 0.781582i
\(814\) 0 0
\(815\) 15929.7i 0.684655i
\(816\) 0 0
\(817\) −3892.28 −0.166675
\(818\) 0 0
\(819\) 15208.8i 0.648887i
\(820\) 0 0
\(821\) 4309.63i 0.183200i 0.995796 + 0.0916000i \(0.0291981\pi\)
−0.995796 + 0.0916000i \(0.970802\pi\)
\(822\) 0 0
\(823\) 9337.21i 0.395473i −0.980255 0.197737i \(-0.936641\pi\)
0.980255 0.197737i \(-0.0633591\pi\)
\(824\) 0 0
\(825\) 18126.2 20525.8i 0.764939 0.866200i
\(826\) 0 0
\(827\) −15376.3 −0.646535 −0.323268 0.946308i \(-0.604781\pi\)
−0.323268 + 0.946308i \(0.604781\pi\)
\(828\) 0 0
\(829\) 29696.0 1.24413 0.622065 0.782966i \(-0.286294\pi\)
0.622065 + 0.782966i \(0.286294\pi\)
\(830\) 0 0
\(831\) −12401.5 −0.517692
\(832\) 0 0
\(833\) 6439.56i 0.267848i
\(834\) 0 0
\(835\) 2350.07 0.0973982
\(836\) 0 0
\(837\) 41287.2 1.70501
\(838\) 0 0
\(839\) 29560.4i 1.21638i −0.793793 0.608188i \(-0.791897\pi\)
0.793793 0.608188i \(-0.208103\pi\)
\(840\) 0 0
\(841\) −26708.7 −1.09511
\(842\) 0 0
\(843\) −10454.5 −0.427130
\(844\) 0 0
\(845\) 7029.16 0.286166
\(846\) 0 0
\(847\) −3344.80 26835.6i −0.135689 1.08864i
\(848\) 0 0
\(849\) 21422.3i 0.865973i
\(850\) 0 0
\(851\) 9166.44i 0.369238i
\(852\) 0 0
\(853\) 24061.3i 0.965819i −0.875670 0.482910i \(-0.839580\pi\)
0.875670 0.482910i \(-0.160420\pi\)
\(854\) 0 0
\(855\) −30109.7 −1.20436
\(856\) 0 0
\(857\) 2247.42i 0.0895803i 0.998996 + 0.0447901i \(0.0142619\pi\)
−0.998996 + 0.0447901i \(0.985738\pi\)
\(858\) 0 0
\(859\) 27776.7i 1.10329i 0.834078 + 0.551647i \(0.186000\pi\)
−0.834078 + 0.551647i \(0.814000\pi\)
\(860\) 0 0
\(861\) 18625.9 0.737244
\(862\) 0 0
\(863\) 37405.1i 1.47542i 0.675119 + 0.737709i \(0.264092\pi\)
−0.675119 + 0.737709i \(0.735908\pi\)
\(864\) 0 0
\(865\) 32666.0i 1.28402i
\(866\) 0 0
\(867\) 11079.0i 0.433981i
\(868\) 0 0
\(869\) 11469.6 + 10128.8i 0.447733 + 0.395392i
\(870\) 0 0
\(871\) −6661.35 −0.259140
\(872\) 0 0
\(873\) 31700.0 1.22896
\(874\) 0 0
\(875\) −46195.8 −1.78480
\(876\) 0 0
\(877\) 1996.92i 0.0768885i 0.999261 + 0.0384443i \(0.0122402\pi\)
−0.999261 + 0.0384443i \(0.987760\pi\)
\(878\) 0 0
\(879\) −16241.1 −0.623205
\(880\) 0 0
\(881\) 21494.7 0.821990 0.410995 0.911638i \(-0.365181\pi\)
0.410995 + 0.911638i \(0.365181\pi\)
\(882\) 0 0
\(883\) 4664.50i 0.177772i 0.996042 + 0.0888862i \(0.0283307\pi\)
−0.996042 + 0.0888862i \(0.971669\pi\)
\(884\) 0 0
\(885\) 764.572 0.0290405
\(886\) 0 0
\(887\) 30507.3 1.15483 0.577415 0.816451i \(-0.304061\pi\)
0.577415 + 0.816451i \(0.304061\pi\)
\(888\) 0 0
\(889\) −37071.8 −1.39859
\(890\) 0 0
\(891\) 1350.61 + 1192.72i 0.0507825 + 0.0448459i
\(892\) 0 0
\(893\) 20295.2i 0.760528i
\(894\) 0 0
\(895\) 50934.2i 1.90228i
\(896\) 0 0
\(897\) 4149.35i 0.154451i
\(898\) 0 0
\(899\) −68032.7 −2.52394
\(900\) 0 0
\(901\) 5856.98i 0.216564i
\(902\) 0 0
\(903\) 2719.30i 0.100213i
\(904\) 0 0
\(905\) 12646.8 0.464525
\(906\) 0 0
\(907\) 52828.4i 1.93400i 0.254777 + 0.967000i \(0.417998\pi\)
−0.254777 + 0.967000i \(0.582002\pi\)
\(908\) 0 0
\(909\) 7810.08i 0.284977i
\(910\) 0 0
\(911\) 22840.9i 0.830685i −0.909665 0.415343i \(-0.863662\pi\)
0.909665 0.415343i \(-0.136338\pi\)
\(912\) 0 0
\(913\) −37045.1 32714.4i −1.34284 1.18586i
\(914\) 0 0
\(915\) 10248.7 0.370285
\(916\) 0 0
\(917\) −52754.1 −1.89978
\(918\) 0 0
\(919\) −31840.9 −1.14291 −0.571456 0.820633i \(-0.693621\pi\)
−0.571456 + 0.820633i \(0.693621\pi\)
\(920\) 0 0
\(921\) 5070.91i 0.181425i
\(922\) 0 0
\(923\) 39031.3 1.39191
\(924\) 0 0
\(925\) −70948.8 −2.52193
\(926\) 0 0
\(927\) 10017.9i 0.354942i
\(928\) 0 0
\(929\) −32093.2 −1.13342 −0.566709 0.823918i \(-0.691784\pi\)
−0.566709 + 0.823918i \(0.691784\pi\)
\(930\) 0 0
\(931\) −6260.47 −0.220385
\(932\) 0 0
\(933\) −19060.0 −0.668805
\(934\) 0 0
\(935\) −42753.0 + 48412.5i −1.49537 + 1.69333i
\(936\) 0 0
\(937\) 13617.4i 0.474773i 0.971415 + 0.237387i \(0.0762908\pi\)
−0.971415 + 0.237387i \(0.923709\pi\)
\(938\) 0 0
\(939\) 17814.5i 0.619121i
\(940\) 0 0
\(941\) 91.4083i 0.00316666i −0.999999 0.00158333i \(-0.999496\pi\)
0.999999 0.00158333i \(-0.000503990\pi\)
\(942\) 0 0
\(943\) 9352.01 0.322952
\(944\) 0 0
\(945\) 53501.7i 1.84170i
\(946\) 0 0
\(947\) 30951.5i 1.06208i −0.847347 0.531039i \(-0.821802\pi\)
0.847347 0.531039i \(-0.178198\pi\)
\(948\) 0 0
\(949\) 36365.1 1.24390
\(950\) 0 0
\(951\) 5603.64i 0.191073i
\(952\) 0 0
\(953\) 51183.2i 1.73975i −0.493269 0.869877i \(-0.664198\pi\)
0.493269 0.869877i \(-0.335802\pi\)
\(954\) 0 0
\(955\) 35319.9i 1.19678i
\(956\) 0 0
\(957\) 19058.6 + 16830.6i 0.643759 + 0.568502i
\(958\) 0 0
\(959\) 6915.41 0.232857
\(960\) 0 0
\(961\) −60789.4 −2.04053
\(962\) 0 0
\(963\) 18910.5 0.632795
\(964\) 0 0
\(965\) 41500.4i 1.38440i
\(966\) 0 0
\(967\) −18209.8 −0.605571 −0.302785 0.953059i \(-0.597917\pi\)
−0.302785 + 0.953059i \(0.597917\pi\)
\(968\) 0 0
\(969\) −25497.1 −0.845288
\(970\) 0 0
\(971\) 33508.5i 1.10746i −0.832698 0.553728i \(-0.813205\pi\)
0.832698 0.553728i \(-0.186795\pi\)
\(972\) 0 0
\(973\) −29923.4 −0.985919
\(974\) 0 0
\(975\) 32116.2 1.05491
\(976\) 0 0
\(977\) 40753.4 1.33451 0.667256 0.744829i \(-0.267469\pi\)
0.667256 + 0.744829i \(0.267469\pi\)
\(978\) 0 0
\(979\) 20757.5 + 18330.9i 0.677644 + 0.598426i
\(980\) 0 0
\(981\) 34287.7i 1.11592i
\(982\) 0 0
\(983\) 675.886i 0.0219302i 0.999940 + 0.0109651i \(0.00349038\pi\)
−0.999940 + 0.0109651i \(0.996510\pi\)
\(984\) 0 0
\(985\) 39904.0i 1.29081i
\(986\) 0 0
\(987\) −14179.0 −0.457266
\(988\) 0 0
\(989\) 1365.35i 0.0438986i
\(990\) 0 0
\(991\) 22802.9i 0.730936i 0.930824 + 0.365468i \(0.119091\pi\)
−0.930824 + 0.365468i \(0.880909\pi\)
\(992\) 0 0
\(993\) −6179.54 −0.197484
\(994\) 0 0
\(995\) 77918.2i 2.48259i
\(996\) 0 0
\(997\) 59937.6i 1.90396i −0.306166 0.951978i \(-0.599046\pi\)
0.306166 0.951978i \(-0.400954\pi\)
\(998\) 0 0
\(999\) 39979.2i 1.26615i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 704.4.e.g.703.19 36
4.3 odd 2 inner 704.4.e.g.703.4 36
8.3 odd 2 352.4.e.a.351.33 yes 36
8.5 even 2 352.4.e.a.351.18 yes 36
11.10 odd 2 inner 704.4.e.g.703.3 36
44.43 even 2 inner 704.4.e.g.703.20 36
88.21 odd 2 352.4.e.a.351.34 yes 36
88.43 even 2 352.4.e.a.351.17 36
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
352.4.e.a.351.17 36 88.43 even 2
352.4.e.a.351.18 yes 36 8.5 even 2
352.4.e.a.351.33 yes 36 8.3 odd 2
352.4.e.a.351.34 yes 36 88.21 odd 2
704.4.e.g.703.3 36 11.10 odd 2 inner
704.4.e.g.703.4 36 4.3 odd 2 inner
704.4.e.g.703.19 36 1.1 even 1 trivial
704.4.e.g.703.20 36 44.43 even 2 inner