Properties

Label 704.4.e.g.703.2
Level $704$
Weight $4$
Character 704.703
Analytic conductor $41.537$
Analytic rank $0$
Dimension $36$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [704,4,Mod(703,704)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(704, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([1, 0, 1]))
 
N = Newforms(chi, 4, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("704.703");
 
S:= CuspForms(chi, 4);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 704 = 2^{6} \cdot 11 \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 704.e (of order \(2\), degree \(1\), not minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(41.5373446440\)
Analytic rank: \(0\)
Dimension: \(36\)
Twist minimal: no (minimal twist has level 352)
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

Embedding invariants

Embedding label 703.2
Character \(\chi\) \(=\) 704.703
Dual form 704.4.e.g.703.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+9.41697i q^{3} +17.7991 q^{5} +30.3804 q^{7} -61.6793 q^{9} +(36.4823 - 0.203999i) q^{11} -73.3735i q^{13} +167.613i q^{15} +33.5998i q^{17} +3.79105 q^{19} +286.091i q^{21} -39.3421i q^{23} +191.807 q^{25} -326.574i q^{27} +80.3580i q^{29} +132.048i q^{31} +(1.92105 + 343.553i) q^{33} +540.743 q^{35} +177.408 q^{37} +690.957 q^{39} +155.637i q^{41} +49.0555 q^{43} -1097.84 q^{45} -363.000i q^{47} +579.967 q^{49} -316.409 q^{51} -313.897 q^{53} +(649.351 - 3.63099i) q^{55} +35.7002i q^{57} -31.5479i q^{59} -204.455i q^{61} -1873.84 q^{63} -1305.98i q^{65} -638.489i q^{67} +370.484 q^{69} +712.511i q^{71} +747.515i q^{73} +1806.24i q^{75} +(1108.35 - 6.19755i) q^{77} +722.055 q^{79} +1410.00 q^{81} +6.82976 q^{83} +598.046i q^{85} -756.729 q^{87} -1160.53 q^{89} -2229.12i q^{91} -1243.49 q^{93} +67.4771 q^{95} -855.560 q^{97} +(-2250.20 + 12.5825i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 36 q - 364 q^{9} + 1236 q^{25} + 592 q^{33} - 984 q^{45} + 2372 q^{49} - 376 q^{53} + 2824 q^{69} + 2592 q^{77} + 6756 q^{81} + 512 q^{89} + 872 q^{93} + 3904 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/704\mathbb{Z}\right)^\times\).

\(n\) \(133\) \(321\) \(639\)
\(\chi(n)\) \(1\) \(-1\) \(-1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 9.41697i 1.81230i 0.422960 + 0.906148i \(0.360991\pi\)
−0.422960 + 0.906148i \(0.639009\pi\)
\(4\) 0 0
\(5\) 17.7991 1.59200 0.795999 0.605298i \(-0.206946\pi\)
0.795999 + 0.605298i \(0.206946\pi\)
\(6\) 0 0
\(7\) 30.3804 1.64039 0.820193 0.572087i \(-0.193866\pi\)
0.820193 + 0.572087i \(0.193866\pi\)
\(8\) 0 0
\(9\) −61.6793 −2.28442
\(10\) 0 0
\(11\) 36.4823 0.203999i 0.999984 0.00559163i
\(12\) 0 0
\(13\) 73.3735i 1.56540i −0.622401 0.782698i \(-0.713843\pi\)
0.622401 0.782698i \(-0.286157\pi\)
\(14\) 0 0
\(15\) 167.613i 2.88517i
\(16\) 0 0
\(17\) 33.5998i 0.479362i 0.970852 + 0.239681i \(0.0770429\pi\)
−0.970852 + 0.239681i \(0.922957\pi\)
\(18\) 0 0
\(19\) 3.79105 0.0457750 0.0228875 0.999738i \(-0.492714\pi\)
0.0228875 + 0.999738i \(0.492714\pi\)
\(20\) 0 0
\(21\) 286.091i 2.97287i
\(22\) 0 0
\(23\) 39.3421i 0.356670i −0.983970 0.178335i \(-0.942929\pi\)
0.983970 0.178335i \(-0.0570710\pi\)
\(24\) 0 0
\(25\) 191.807 1.53446
\(26\) 0 0
\(27\) 326.574i 2.32775i
\(28\) 0 0
\(29\) 80.3580i 0.514555i 0.966338 + 0.257278i \(0.0828255\pi\)
−0.966338 + 0.257278i \(0.917175\pi\)
\(30\) 0 0
\(31\) 132.048i 0.765047i 0.923946 + 0.382523i \(0.124945\pi\)
−0.923946 + 0.382523i \(0.875055\pi\)
\(32\) 0 0
\(33\) 1.92105 + 343.553i 0.0101337 + 1.81227i
\(34\) 0 0
\(35\) 540.743 2.61149
\(36\) 0 0
\(37\) 177.408 0.788260 0.394130 0.919055i \(-0.371046\pi\)
0.394130 + 0.919055i \(0.371046\pi\)
\(38\) 0 0
\(39\) 690.957 2.83696
\(40\) 0 0
\(41\) 155.637i 0.592841i 0.955058 + 0.296420i \(0.0957929\pi\)
−0.955058 + 0.296420i \(0.904207\pi\)
\(42\) 0 0
\(43\) 49.0555 0.173974 0.0869871 0.996209i \(-0.472276\pi\)
0.0869871 + 0.996209i \(0.472276\pi\)
\(44\) 0 0
\(45\) −1097.84 −3.63679
\(46\) 0 0
\(47\) 363.000i 1.12658i −0.826261 0.563288i \(-0.809536\pi\)
0.826261 0.563288i \(-0.190464\pi\)
\(48\) 0 0
\(49\) 579.967 1.69087
\(50\) 0 0
\(51\) −316.409 −0.868747
\(52\) 0 0
\(53\) −313.897 −0.813530 −0.406765 0.913533i \(-0.633343\pi\)
−0.406765 + 0.913533i \(0.633343\pi\)
\(54\) 0 0
\(55\) 649.351 3.63099i 1.59197 0.00890186i
\(56\) 0 0
\(57\) 35.7002i 0.0829580i
\(58\) 0 0
\(59\) 31.5479i 0.0696134i −0.999394 0.0348067i \(-0.988918\pi\)
0.999394 0.0348067i \(-0.0110815\pi\)
\(60\) 0 0
\(61\) 204.455i 0.429144i −0.976708 0.214572i \(-0.931164\pi\)
0.976708 0.214572i \(-0.0688356\pi\)
\(62\) 0 0
\(63\) −1873.84 −3.74733
\(64\) 0 0
\(65\) 1305.98i 2.49211i
\(66\) 0 0
\(67\) 638.489i 1.16424i −0.813104 0.582118i \(-0.802224\pi\)
0.813104 0.582118i \(-0.197776\pi\)
\(68\) 0 0
\(69\) 370.484 0.646391
\(70\) 0 0
\(71\) 712.511i 1.19098i 0.803363 + 0.595489i \(0.203042\pi\)
−0.803363 + 0.595489i \(0.796958\pi\)
\(72\) 0 0
\(73\) 747.515i 1.19849i 0.800564 + 0.599247i \(0.204533\pi\)
−0.800564 + 0.599247i \(0.795467\pi\)
\(74\) 0 0
\(75\) 1806.24i 2.78089i
\(76\) 0 0
\(77\) 1108.35 6.19755i 1.64036 0.00917243i
\(78\) 0 0
\(79\) 722.055 1.02832 0.514162 0.857693i \(-0.328103\pi\)
0.514162 + 0.857693i \(0.328103\pi\)
\(80\) 0 0
\(81\) 1410.00 1.93416
\(82\) 0 0
\(83\) 6.82976 0.00903209 0.00451605 0.999990i \(-0.498562\pi\)
0.00451605 + 0.999990i \(0.498562\pi\)
\(84\) 0 0
\(85\) 598.046i 0.763144i
\(86\) 0 0
\(87\) −756.729 −0.932527
\(88\) 0 0
\(89\) −1160.53 −1.38220 −0.691099 0.722760i \(-0.742873\pi\)
−0.691099 + 0.722760i \(0.742873\pi\)
\(90\) 0 0
\(91\) 2229.12i 2.56786i
\(92\) 0 0
\(93\) −1243.49 −1.38649
\(94\) 0 0
\(95\) 67.4771 0.0728738
\(96\) 0 0
\(97\) −855.560 −0.895556 −0.447778 0.894145i \(-0.647784\pi\)
−0.447778 + 0.894145i \(0.647784\pi\)
\(98\) 0 0
\(99\) −2250.20 + 12.5825i −2.28438 + 0.0127736i
\(100\) 0 0
\(101\) 532.344i 0.524457i 0.965006 + 0.262229i \(0.0844574\pi\)
−0.965006 + 0.262229i \(0.915543\pi\)
\(102\) 0 0
\(103\) 1207.14i 1.15479i 0.816465 + 0.577395i \(0.195931\pi\)
−0.816465 + 0.577395i \(0.804069\pi\)
\(104\) 0 0
\(105\) 5092.16i 4.73280i
\(106\) 0 0
\(107\) 649.928 0.587205 0.293603 0.955928i \(-0.405146\pi\)
0.293603 + 0.955928i \(0.405146\pi\)
\(108\) 0 0
\(109\) 660.536i 0.580439i 0.956960 + 0.290220i \(0.0937284\pi\)
−0.956960 + 0.290220i \(0.906272\pi\)
\(110\) 0 0
\(111\) 1670.64i 1.42856i
\(112\) 0 0
\(113\) −1731.78 −1.44170 −0.720851 0.693090i \(-0.756249\pi\)
−0.720851 + 0.693090i \(0.756249\pi\)
\(114\) 0 0
\(115\) 700.254i 0.567817i
\(116\) 0 0
\(117\) 4525.63i 3.57602i
\(118\) 0 0
\(119\) 1020.78i 0.786339i
\(120\) 0 0
\(121\) 1330.92 14.8847i 0.999937 0.0111831i
\(122\) 0 0
\(123\) −1465.63 −1.07440
\(124\) 0 0
\(125\) 1189.11 0.850856
\(126\) 0 0
\(127\) −2756.86 −1.92623 −0.963116 0.269088i \(-0.913278\pi\)
−0.963116 + 0.269088i \(0.913278\pi\)
\(128\) 0 0
\(129\) 461.954i 0.315293i
\(130\) 0 0
\(131\) −1322.04 −0.881734 −0.440867 0.897573i \(-0.645329\pi\)
−0.440867 + 0.897573i \(0.645329\pi\)
\(132\) 0 0
\(133\) 115.173 0.0750887
\(134\) 0 0
\(135\) 5812.72i 3.70578i
\(136\) 0 0
\(137\) −1272.26 −0.793408 −0.396704 0.917947i \(-0.629846\pi\)
−0.396704 + 0.917947i \(0.629846\pi\)
\(138\) 0 0
\(139\) 2210.02 1.34857 0.674287 0.738469i \(-0.264451\pi\)
0.674287 + 0.738469i \(0.264451\pi\)
\(140\) 0 0
\(141\) 3418.36 2.04169
\(142\) 0 0
\(143\) −14.9681 2676.84i −0.00875311 1.56537i
\(144\) 0 0
\(145\) 1430.30i 0.819171i
\(146\) 0 0
\(147\) 5461.54i 3.06435i
\(148\) 0 0
\(149\) 3036.72i 1.66965i −0.550515 0.834825i \(-0.685569\pi\)
0.550515 0.834825i \(-0.314431\pi\)
\(150\) 0 0
\(151\) −2031.12 −1.09464 −0.547319 0.836924i \(-0.684352\pi\)
−0.547319 + 0.836924i \(0.684352\pi\)
\(152\) 0 0
\(153\) 2072.42i 1.09506i
\(154\) 0 0
\(155\) 2350.33i 1.21795i
\(156\) 0 0
\(157\) −1074.14 −0.546026 −0.273013 0.962010i \(-0.588020\pi\)
−0.273013 + 0.962010i \(0.588020\pi\)
\(158\) 0 0
\(159\) 2955.96i 1.47436i
\(160\) 0 0
\(161\) 1195.23i 0.585076i
\(162\) 0 0
\(163\) 876.432i 0.421150i −0.977578 0.210575i \(-0.932466\pi\)
0.977578 0.210575i \(-0.0675336\pi\)
\(164\) 0 0
\(165\) 34.1929 + 6114.92i 0.0161328 + 2.88513i
\(166\) 0 0
\(167\) 2312.96 1.07175 0.535874 0.844298i \(-0.319982\pi\)
0.535874 + 0.844298i \(0.319982\pi\)
\(168\) 0 0
\(169\) −3186.68 −1.45047
\(170\) 0 0
\(171\) −233.829 −0.104569
\(172\) 0 0
\(173\) 2571.97i 1.13031i −0.824985 0.565155i \(-0.808816\pi\)
0.824985 0.565155i \(-0.191184\pi\)
\(174\) 0 0
\(175\) 5827.18 2.51710
\(176\) 0 0
\(177\) 297.086 0.126160
\(178\) 0 0
\(179\) 2882.88i 1.20378i −0.798580 0.601889i \(-0.794415\pi\)
0.798580 0.601889i \(-0.205585\pi\)
\(180\) 0 0
\(181\) −1451.53 −0.596084 −0.298042 0.954553i \(-0.596334\pi\)
−0.298042 + 0.954553i \(0.596334\pi\)
\(182\) 0 0
\(183\) 1925.35 0.777736
\(184\) 0 0
\(185\) 3157.69 1.25491
\(186\) 0 0
\(187\) 6.85432 + 1225.80i 0.00268041 + 0.479355i
\(188\) 0 0
\(189\) 9921.46i 3.81841i
\(190\) 0 0
\(191\) 2702.75i 1.02389i 0.859017 + 0.511947i \(0.171076\pi\)
−0.859017 + 0.511947i \(0.828924\pi\)
\(192\) 0 0
\(193\) 3196.49i 1.19217i −0.802923 0.596083i \(-0.796723\pi\)
0.802923 0.596083i \(-0.203277\pi\)
\(194\) 0 0
\(195\) 12298.4 4.51644
\(196\) 0 0
\(197\) 407.301i 0.147305i −0.997284 0.0736523i \(-0.976534\pi\)
0.997284 0.0736523i \(-0.0234655\pi\)
\(198\) 0 0
\(199\) 1740.63i 0.620051i −0.950728 0.310025i \(-0.899662\pi\)
0.950728 0.310025i \(-0.100338\pi\)
\(200\) 0 0
\(201\) 6012.63 2.10994
\(202\) 0 0
\(203\) 2441.31i 0.844069i
\(204\) 0 0
\(205\) 2770.20i 0.943801i
\(206\) 0 0
\(207\) 2426.60i 0.814783i
\(208\) 0 0
\(209\) 138.306 0.773368i 0.0457743 0.000255957i
\(210\) 0 0
\(211\) −2418.44 −0.789062 −0.394531 0.918883i \(-0.629093\pi\)
−0.394531 + 0.918883i \(0.629093\pi\)
\(212\) 0 0
\(213\) −6709.70 −2.15841
\(214\) 0 0
\(215\) 873.142 0.276967
\(216\) 0 0
\(217\) 4011.66i 1.25497i
\(218\) 0 0
\(219\) −7039.33 −2.17203
\(220\) 0 0
\(221\) 2465.34 0.750392
\(222\) 0 0
\(223\) 1252.23i 0.376034i −0.982166 0.188017i \(-0.939794\pi\)
0.982166 0.188017i \(-0.0602059\pi\)
\(224\) 0 0
\(225\) −11830.5 −3.50535
\(226\) 0 0
\(227\) 888.191 0.259697 0.129849 0.991534i \(-0.458551\pi\)
0.129849 + 0.991534i \(0.458551\pi\)
\(228\) 0 0
\(229\) 3316.99 0.957174 0.478587 0.878040i \(-0.341149\pi\)
0.478587 + 0.878040i \(0.341149\pi\)
\(230\) 0 0
\(231\) 58.3622 + 10437.3i 0.0166232 + 2.97282i
\(232\) 0 0
\(233\) 266.045i 0.0748035i −0.999300 0.0374017i \(-0.988092\pi\)
0.999300 0.0374017i \(-0.0119081\pi\)
\(234\) 0 0
\(235\) 6461.07i 1.79351i
\(236\) 0 0
\(237\) 6799.57i 1.86363i
\(238\) 0 0
\(239\) −1852.14 −0.501276 −0.250638 0.968081i \(-0.580640\pi\)
−0.250638 + 0.968081i \(0.580640\pi\)
\(240\) 0 0
\(241\) 7072.56i 1.89039i −0.326510 0.945194i \(-0.605873\pi\)
0.326510 0.945194i \(-0.394127\pi\)
\(242\) 0 0
\(243\) 4460.42i 1.17751i
\(244\) 0 0
\(245\) 10322.9 2.69186
\(246\) 0 0
\(247\) 278.162i 0.0716561i
\(248\) 0 0
\(249\) 64.3157i 0.0163688i
\(250\) 0 0
\(251\) 3720.78i 0.935672i 0.883815 + 0.467836i \(0.154966\pi\)
−0.883815 + 0.467836i \(0.845034\pi\)
\(252\) 0 0
\(253\) −8.02574 1435.29i −0.00199436 0.356664i
\(254\) 0 0
\(255\) −5631.78 −1.38304
\(256\) 0 0
\(257\) −6472.20 −1.57091 −0.785457 0.618916i \(-0.787572\pi\)
−0.785457 + 0.618916i \(0.787572\pi\)
\(258\) 0 0
\(259\) 5389.71 1.29305
\(260\) 0 0
\(261\) 4956.43i 1.17546i
\(262\) 0 0
\(263\) 6331.30 1.48443 0.742214 0.670163i \(-0.233776\pi\)
0.742214 + 0.670163i \(0.233776\pi\)
\(264\) 0 0
\(265\) −5587.08 −1.29514
\(266\) 0 0
\(267\) 10928.7i 2.50495i
\(268\) 0 0
\(269\) −5551.45 −1.25828 −0.629141 0.777291i \(-0.716593\pi\)
−0.629141 + 0.777291i \(0.716593\pi\)
\(270\) 0 0
\(271\) 2092.42 0.469023 0.234512 0.972113i \(-0.424651\pi\)
0.234512 + 0.972113i \(0.424651\pi\)
\(272\) 0 0
\(273\) 20991.5 4.65372
\(274\) 0 0
\(275\) 6997.57 39.1284i 1.53443 0.00858011i
\(276\) 0 0
\(277\) 1204.35i 0.261236i −0.991433 0.130618i \(-0.958304\pi\)
0.991433 0.130618i \(-0.0416961\pi\)
\(278\) 0 0
\(279\) 8144.61i 1.74769i
\(280\) 0 0
\(281\) 5812.55i 1.23398i 0.786972 + 0.616988i \(0.211647\pi\)
−0.786972 + 0.616988i \(0.788353\pi\)
\(282\) 0 0
\(283\) −2834.78 −0.595443 −0.297721 0.954653i \(-0.596227\pi\)
−0.297721 + 0.954653i \(0.596227\pi\)
\(284\) 0 0
\(285\) 635.430i 0.132069i
\(286\) 0 0
\(287\) 4728.32i 0.972488i
\(288\) 0 0
\(289\) 3784.05 0.770212
\(290\) 0 0
\(291\) 8056.78i 1.62301i
\(292\) 0 0
\(293\) 7014.62i 1.39863i −0.714814 0.699314i \(-0.753489\pi\)
0.714814 0.699314i \(-0.246511\pi\)
\(294\) 0 0
\(295\) 561.524i 0.110824i
\(296\) 0 0
\(297\) −66.6207 11914.2i −0.0130159 2.32771i
\(298\) 0 0
\(299\) −2886.67 −0.558330
\(300\) 0 0
\(301\) 1490.32 0.285385
\(302\) 0 0
\(303\) −5013.06 −0.950472
\(304\) 0 0
\(305\) 3639.11i 0.683196i
\(306\) 0 0
\(307\) 6706.63 1.24680 0.623400 0.781903i \(-0.285751\pi\)
0.623400 + 0.781903i \(0.285751\pi\)
\(308\) 0 0
\(309\) −11367.6 −2.09282
\(310\) 0 0
\(311\) 2375.27i 0.433084i 0.976273 + 0.216542i \(0.0694778\pi\)
−0.976273 + 0.216542i \(0.930522\pi\)
\(312\) 0 0
\(313\) 188.963 0.0341240 0.0170620 0.999854i \(-0.494569\pi\)
0.0170620 + 0.999854i \(0.494569\pi\)
\(314\) 0 0
\(315\) −33352.7 −5.96574
\(316\) 0 0
\(317\) −1511.86 −0.267870 −0.133935 0.990990i \(-0.542761\pi\)
−0.133935 + 0.990990i \(0.542761\pi\)
\(318\) 0 0
\(319\) 16.3929 + 2931.64i 0.00287720 + 0.514547i
\(320\) 0 0
\(321\) 6120.36i 1.06419i
\(322\) 0 0
\(323\) 127.379i 0.0219428i
\(324\) 0 0
\(325\) 14073.6i 2.40204i
\(326\) 0 0
\(327\) −6220.25 −1.05193
\(328\) 0 0
\(329\) 11028.1i 1.84802i
\(330\) 0 0
\(331\) 4462.63i 0.741052i 0.928822 + 0.370526i \(0.120823\pi\)
−0.928822 + 0.370526i \(0.879177\pi\)
\(332\) 0 0
\(333\) −10942.4 −1.80072
\(334\) 0 0
\(335\) 11364.5i 1.85346i
\(336\) 0 0
\(337\) 10849.8i 1.75378i 0.480689 + 0.876891i \(0.340387\pi\)
−0.480689 + 0.876891i \(0.659613\pi\)
\(338\) 0 0
\(339\) 16308.1i 2.61279i
\(340\) 0 0
\(341\) 26.9375 + 4817.40i 0.00427786 + 0.765035i
\(342\) 0 0
\(343\) 7199.16 1.13329
\(344\) 0 0
\(345\) 6594.27 1.02905
\(346\) 0 0
\(347\) 8318.75 1.28696 0.643478 0.765464i \(-0.277491\pi\)
0.643478 + 0.765464i \(0.277491\pi\)
\(348\) 0 0
\(349\) 4475.92i 0.686506i 0.939243 + 0.343253i \(0.111529\pi\)
−0.939243 + 0.343253i \(0.888471\pi\)
\(350\) 0 0
\(351\) −23961.9 −3.64385
\(352\) 0 0
\(353\) 4020.70 0.606233 0.303117 0.952954i \(-0.401973\pi\)
0.303117 + 0.952954i \(0.401973\pi\)
\(354\) 0 0
\(355\) 12682.0i 1.89604i
\(356\) 0 0
\(357\) −9612.62 −1.42508
\(358\) 0 0
\(359\) −1198.45 −0.176189 −0.0880944 0.996112i \(-0.528078\pi\)
−0.0880944 + 0.996112i \(0.528078\pi\)
\(360\) 0 0
\(361\) −6844.63 −0.997905
\(362\) 0 0
\(363\) 140.169 + 12533.2i 0.0202671 + 1.81218i
\(364\) 0 0
\(365\) 13305.1i 1.90800i
\(366\) 0 0
\(367\) 12127.9i 1.72498i 0.506070 + 0.862492i \(0.331098\pi\)
−0.506070 + 0.862492i \(0.668902\pi\)
\(368\) 0 0
\(369\) 9599.61i 1.35430i
\(370\) 0 0
\(371\) −9536.31 −1.33450
\(372\) 0 0
\(373\) 4567.00i 0.633968i 0.948431 + 0.316984i \(0.102670\pi\)
−0.948431 + 0.316984i \(0.897330\pi\)
\(374\) 0 0
\(375\) 11197.8i 1.54200i
\(376\) 0 0
\(377\) 5896.15 0.805483
\(378\) 0 0
\(379\) 5811.56i 0.787652i 0.919185 + 0.393826i \(0.128849\pi\)
−0.919185 + 0.393826i \(0.871151\pi\)
\(380\) 0 0
\(381\) 25961.2i 3.49090i
\(382\) 0 0
\(383\) 9585.96i 1.27890i −0.768832 0.639451i \(-0.779162\pi\)
0.768832 0.639451i \(-0.220838\pi\)
\(384\) 0 0
\(385\) 19727.5 110.311i 2.61145 0.0146025i
\(386\) 0 0
\(387\) −3025.71 −0.397430
\(388\) 0 0
\(389\) 417.280 0.0543880 0.0271940 0.999630i \(-0.491343\pi\)
0.0271940 + 0.999630i \(0.491343\pi\)
\(390\) 0 0
\(391\) 1321.89 0.170974
\(392\) 0 0
\(393\) 12449.6i 1.59796i
\(394\) 0 0
\(395\) 12851.9 1.63709
\(396\) 0 0
\(397\) −4548.41 −0.575007 −0.287504 0.957780i \(-0.592825\pi\)
−0.287504 + 0.957780i \(0.592825\pi\)
\(398\) 0 0
\(399\) 1084.58i 0.136083i
\(400\) 0 0
\(401\) −15243.5 −1.89832 −0.949159 0.314796i \(-0.898064\pi\)
−0.949159 + 0.314796i \(0.898064\pi\)
\(402\) 0 0
\(403\) 9688.80 1.19760
\(404\) 0 0
\(405\) 25096.7 3.07917
\(406\) 0 0
\(407\) 6472.24 36.1909i 0.788248 0.00440766i
\(408\) 0 0
\(409\) 15182.5i 1.83552i −0.397141 0.917758i \(-0.629998\pi\)
0.397141 0.917758i \(-0.370002\pi\)
\(410\) 0 0
\(411\) 11980.9i 1.43789i
\(412\) 0 0
\(413\) 958.437i 0.114193i
\(414\) 0 0
\(415\) 121.563 0.0143791
\(416\) 0 0
\(417\) 20811.7i 2.44402i
\(418\) 0 0
\(419\) 4620.31i 0.538704i 0.963042 + 0.269352i \(0.0868095\pi\)
−0.963042 + 0.269352i \(0.913191\pi\)
\(420\) 0 0
\(421\) 7886.52 0.912983 0.456491 0.889728i \(-0.349106\pi\)
0.456491 + 0.889728i \(0.349106\pi\)
\(422\) 0 0
\(423\) 22389.6i 2.57357i
\(424\) 0 0
\(425\) 6444.69i 0.735561i
\(426\) 0 0
\(427\) 6211.42i 0.703961i
\(428\) 0 0
\(429\) 25207.7 140.954i 2.83692 0.0158632i
\(430\) 0 0
\(431\) 4609.02 0.515101 0.257551 0.966265i \(-0.417085\pi\)
0.257551 + 0.966265i \(0.417085\pi\)
\(432\) 0 0
\(433\) 10466.4 1.16162 0.580811 0.814039i \(-0.302736\pi\)
0.580811 + 0.814039i \(0.302736\pi\)
\(434\) 0 0
\(435\) −13469.1 −1.48458
\(436\) 0 0
\(437\) 149.148i 0.0163266i
\(438\) 0 0
\(439\) 5328.49 0.579305 0.289652 0.957132i \(-0.406460\pi\)
0.289652 + 0.957132i \(0.406460\pi\)
\(440\) 0 0
\(441\) −35772.0 −3.86265
\(442\) 0 0
\(443\) 2967.26i 0.318237i 0.987260 + 0.159118i \(0.0508651\pi\)
−0.987260 + 0.159118i \(0.949135\pi\)
\(444\) 0 0
\(445\) −20656.3 −2.20046
\(446\) 0 0
\(447\) 28596.7 3.02590
\(448\) 0 0
\(449\) −15406.0 −1.61927 −0.809637 0.586932i \(-0.800336\pi\)
−0.809637 + 0.586932i \(0.800336\pi\)
\(450\) 0 0
\(451\) 31.7498 + 5678.01i 0.00331494 + 0.592831i
\(452\) 0 0
\(453\) 19127.0i 1.98381i
\(454\) 0 0
\(455\) 39676.2i 4.08802i
\(456\) 0 0
\(457\) 14676.6i 1.50228i −0.660141 0.751142i \(-0.729503\pi\)
0.660141 0.751142i \(-0.270497\pi\)
\(458\) 0 0
\(459\) 10972.8 1.11584
\(460\) 0 0
\(461\) 12794.0i 1.29258i 0.763094 + 0.646288i \(0.223679\pi\)
−0.763094 + 0.646288i \(0.776321\pi\)
\(462\) 0 0
\(463\) 4138.32i 0.415387i −0.978194 0.207694i \(-0.933404\pi\)
0.978194 0.207694i \(-0.0665957\pi\)
\(464\) 0 0
\(465\) −22133.0 −2.20729
\(466\) 0 0
\(467\) 2466.57i 0.244410i 0.992505 + 0.122205i \(0.0389965\pi\)
−0.992505 + 0.122205i \(0.961004\pi\)
\(468\) 0 0
\(469\) 19397.5i 1.90980i
\(470\) 0 0
\(471\) 10115.2i 0.989561i
\(472\) 0 0
\(473\) 1789.66 10.0072i 0.173971 0.000972799i
\(474\) 0 0
\(475\) 727.150 0.0702399
\(476\) 0 0
\(477\) 19361.0 1.85844
\(478\) 0 0
\(479\) −2084.12 −0.198802 −0.0994009 0.995047i \(-0.531693\pi\)
−0.0994009 + 0.995047i \(0.531693\pi\)
\(480\) 0 0
\(481\) 13017.0i 1.23394i
\(482\) 0 0
\(483\) 11255.4 1.06033
\(484\) 0 0
\(485\) −15228.2 −1.42572
\(486\) 0 0
\(487\) 4131.19i 0.384399i −0.981356 0.192199i \(-0.938438\pi\)
0.981356 0.192199i \(-0.0615620\pi\)
\(488\) 0 0
\(489\) 8253.33 0.763249
\(490\) 0 0
\(491\) 10166.3 0.934413 0.467207 0.884148i \(-0.345260\pi\)
0.467207 + 0.884148i \(0.345260\pi\)
\(492\) 0 0
\(493\) −2700.01 −0.246658
\(494\) 0 0
\(495\) −40051.6 + 223.957i −3.63674 + 0.0203356i
\(496\) 0 0
\(497\) 21646.4i 1.95367i
\(498\) 0 0
\(499\) 13074.0i 1.17289i −0.809989 0.586446i \(-0.800527\pi\)
0.809989 0.586446i \(-0.199473\pi\)
\(500\) 0 0
\(501\) 21781.0i 1.94233i
\(502\) 0 0
\(503\) 4251.49 0.376868 0.188434 0.982086i \(-0.439659\pi\)
0.188434 + 0.982086i \(0.439659\pi\)
\(504\) 0 0
\(505\) 9475.22i 0.834935i
\(506\) 0 0
\(507\) 30008.8i 2.62868i
\(508\) 0 0
\(509\) 14717.7 1.28163 0.640817 0.767694i \(-0.278596\pi\)
0.640817 + 0.767694i \(0.278596\pi\)
\(510\) 0 0
\(511\) 22709.8i 1.96599i
\(512\) 0 0
\(513\) 1238.06i 0.106553i
\(514\) 0 0
\(515\) 21486.0i 1.83842i
\(516\) 0 0
\(517\) −74.0516 13243.1i −0.00629939 1.12656i
\(518\) 0 0
\(519\) 24220.2 2.04846
\(520\) 0 0
\(521\) −406.171 −0.0341548 −0.0170774 0.999854i \(-0.505436\pi\)
−0.0170774 + 0.999854i \(0.505436\pi\)
\(522\) 0 0
\(523\) −13155.5 −1.09990 −0.549951 0.835197i \(-0.685353\pi\)
−0.549951 + 0.835197i \(0.685353\pi\)
\(524\) 0 0
\(525\) 54874.4i 4.56174i
\(526\) 0 0
\(527\) −4436.78 −0.366735
\(528\) 0 0
\(529\) 10619.2 0.872787
\(530\) 0 0
\(531\) 1945.85i 0.159026i
\(532\) 0 0
\(533\) 11419.7 0.928031
\(534\) 0 0
\(535\) 11568.1 0.934829
\(536\) 0 0
\(537\) 27148.0 2.18160
\(538\) 0 0
\(539\) 21158.5 118.313i 1.69084 0.00945470i
\(540\) 0 0
\(541\) 3349.50i 0.266185i −0.991104 0.133092i \(-0.957509\pi\)
0.991104 0.133092i \(-0.0424907\pi\)
\(542\) 0 0
\(543\) 13669.0i 1.08028i
\(544\) 0 0
\(545\) 11756.9i 0.924058i
\(546\) 0 0
\(547\) 12489.8 0.976280 0.488140 0.872765i \(-0.337675\pi\)
0.488140 + 0.872765i \(0.337675\pi\)
\(548\) 0 0
\(549\) 12610.6i 0.980345i
\(550\) 0 0
\(551\) 304.641i 0.0235538i
\(552\) 0 0
\(553\) 21936.3 1.68685
\(554\) 0 0
\(555\) 29735.9i 2.27427i
\(556\) 0 0
\(557\) 19262.8i 1.46533i 0.680589 + 0.732665i \(0.261724\pi\)
−0.680589 + 0.732665i \(0.738276\pi\)
\(558\) 0 0
\(559\) 3599.37i 0.272339i
\(560\) 0 0
\(561\) −11543.3 + 64.5469i −0.868733 + 0.00485771i
\(562\) 0 0
\(563\) −8441.34 −0.631900 −0.315950 0.948776i \(-0.602323\pi\)
−0.315950 + 0.948776i \(0.602323\pi\)
\(564\) 0 0
\(565\) −30824.1 −2.29519
\(566\) 0 0
\(567\) 42836.3 3.17276
\(568\) 0 0
\(569\) 10765.4i 0.793164i 0.917999 + 0.396582i \(0.129804\pi\)
−0.917999 + 0.396582i \(0.870196\pi\)
\(570\) 0 0
\(571\) −12604.1 −0.923757 −0.461879 0.886943i \(-0.652824\pi\)
−0.461879 + 0.886943i \(0.652824\pi\)
\(572\) 0 0
\(573\) −25451.7 −1.85560
\(574\) 0 0
\(575\) 7546.11i 0.547295i
\(576\) 0 0
\(577\) −9182.15 −0.662492 −0.331246 0.943544i \(-0.607469\pi\)
−0.331246 + 0.943544i \(0.607469\pi\)
\(578\) 0 0
\(579\) 30101.2 2.16056
\(580\) 0 0
\(581\) 207.491 0.0148161
\(582\) 0 0
\(583\) −11451.7 + 64.0345i −0.813517 + 0.00454895i
\(584\) 0 0
\(585\) 80552.1i 5.69302i
\(586\) 0 0
\(587\) 14346.4i 1.00875i 0.863484 + 0.504377i \(0.168278\pi\)
−0.863484 + 0.504377i \(0.831722\pi\)
\(588\) 0 0
\(589\) 500.599i 0.0350200i
\(590\) 0 0
\(591\) 3835.54 0.266960
\(592\) 0 0
\(593\) 19737.0i 1.36678i 0.730053 + 0.683391i \(0.239495\pi\)
−0.730053 + 0.683391i \(0.760505\pi\)
\(594\) 0 0
\(595\) 18168.9i 1.25185i
\(596\) 0 0
\(597\) 16391.5 1.12372
\(598\) 0 0
\(599\) 13732.3i 0.936706i −0.883542 0.468353i \(-0.844848\pi\)
0.883542 0.468353i \(-0.155152\pi\)
\(600\) 0 0
\(601\) 23513.7i 1.59592i −0.602713 0.797958i \(-0.705914\pi\)
0.602713 0.797958i \(-0.294086\pi\)
\(602\) 0 0
\(603\) 39381.6i 2.65960i
\(604\) 0 0
\(605\) 23689.1 264.934i 1.59190 0.0178034i
\(606\) 0 0
\(607\) 1069.45 0.0715121 0.0357560 0.999361i \(-0.488616\pi\)
0.0357560 + 0.999361i \(0.488616\pi\)
\(608\) 0 0
\(609\) −22989.7 −1.52970
\(610\) 0 0
\(611\) −26634.6 −1.76354
\(612\) 0 0
\(613\) 17502.7i 1.15322i 0.817018 + 0.576612i \(0.195625\pi\)
−0.817018 + 0.576612i \(0.804375\pi\)
\(614\) 0 0
\(615\) −26086.9 −1.71045
\(616\) 0 0
\(617\) −18013.9 −1.17538 −0.587692 0.809085i \(-0.699963\pi\)
−0.587692 + 0.809085i \(0.699963\pi\)
\(618\) 0 0
\(619\) 9108.77i 0.591458i −0.955272 0.295729i \(-0.904437\pi\)
0.955272 0.295729i \(-0.0955625\pi\)
\(620\) 0 0
\(621\) −12848.1 −0.830238
\(622\) 0 0
\(623\) −35257.3 −2.26734
\(624\) 0 0
\(625\) −2810.89 −0.179897
\(626\) 0 0
\(627\) 7.28278 + 1302.42i 0.000463870 + 0.0829567i
\(628\) 0 0
\(629\) 5960.87i 0.377862i
\(630\) 0 0
\(631\) 27228.8i 1.71785i 0.512105 + 0.858923i \(0.328866\pi\)
−0.512105 + 0.858923i \(0.671134\pi\)
\(632\) 0 0
\(633\) 22774.3i 1.43001i
\(634\) 0 0
\(635\) −49069.5 −3.06656
\(636\) 0 0
\(637\) 42554.3i 2.64688i
\(638\) 0 0
\(639\) 43947.2i 2.72070i
\(640\) 0 0
\(641\) 14904.7 0.918409 0.459204 0.888331i \(-0.348135\pi\)
0.459204 + 0.888331i \(0.348135\pi\)
\(642\) 0 0
\(643\) 12264.4i 0.752194i −0.926580 0.376097i \(-0.877266\pi\)
0.926580 0.376097i \(-0.122734\pi\)
\(644\) 0 0
\(645\) 8222.36i 0.501946i
\(646\) 0 0
\(647\) 26840.7i 1.63094i 0.578801 + 0.815469i \(0.303521\pi\)
−0.578801 + 0.815469i \(0.696479\pi\)
\(648\) 0 0
\(649\) −6.43573 1150.94i −0.000389252 0.0696123i
\(650\) 0 0
\(651\) −37777.7 −2.27438
\(652\) 0 0
\(653\) 12511.4 0.749785 0.374892 0.927068i \(-0.377680\pi\)
0.374892 + 0.927068i \(0.377680\pi\)
\(654\) 0 0
\(655\) −23531.1 −1.40372
\(656\) 0 0
\(657\) 46106.3i 2.73786i
\(658\) 0 0
\(659\) 17122.7 1.01215 0.506076 0.862489i \(-0.331096\pi\)
0.506076 + 0.862489i \(0.331096\pi\)
\(660\) 0 0
\(661\) 27540.4 1.62057 0.810284 0.586037i \(-0.199313\pi\)
0.810284 + 0.586037i \(0.199313\pi\)
\(662\) 0 0
\(663\) 23216.0i 1.35993i
\(664\) 0 0
\(665\) 2049.98 0.119541
\(666\) 0 0
\(667\) 3161.45 0.183526
\(668\) 0 0
\(669\) 11792.2 0.681485
\(670\) 0 0
\(671\) −41.7085 7458.98i −0.00239961 0.429137i
\(672\) 0 0
\(673\) 26046.9i 1.49188i −0.666012 0.745941i \(-0.732000\pi\)
0.666012 0.745941i \(-0.268000\pi\)
\(674\) 0 0
\(675\) 62639.3i 3.57184i
\(676\) 0 0
\(677\) 10233.3i 0.580942i 0.956884 + 0.290471i \(0.0938121\pi\)
−0.956884 + 0.290471i \(0.906188\pi\)
\(678\) 0 0
\(679\) −25992.2 −1.46906
\(680\) 0 0
\(681\) 8364.07i 0.470649i
\(682\) 0 0
\(683\) 22601.7i 1.26622i −0.774060 0.633112i \(-0.781777\pi\)
0.774060 0.633112i \(-0.218223\pi\)
\(684\) 0 0
\(685\) −22645.1 −1.26310
\(686\) 0 0
\(687\) 31236.0i 1.73468i
\(688\) 0 0
\(689\) 23031.7i 1.27350i
\(690\) 0 0
\(691\) 17886.9i 0.984731i −0.870389 0.492365i \(-0.836132\pi\)
0.870389 0.492365i \(-0.163868\pi\)
\(692\) 0 0
\(693\) −68362.1 + 382.261i −3.74727 + 0.0209537i
\(694\) 0 0
\(695\) 39336.4 2.14693
\(696\) 0 0
\(697\) −5229.39 −0.284185
\(698\) 0 0
\(699\) 2505.34 0.135566
\(700\) 0 0
\(701\) 8089.76i 0.435872i −0.975963 0.217936i \(-0.930068\pi\)
0.975963 0.217936i \(-0.0699323\pi\)
\(702\) 0 0
\(703\) 672.560 0.0360826
\(704\) 0 0
\(705\) 60843.7 3.25037
\(706\) 0 0
\(707\) 16172.8i 0.860312i
\(708\) 0 0
\(709\) 274.224 0.0145257 0.00726283 0.999974i \(-0.497688\pi\)
0.00726283 + 0.999974i \(0.497688\pi\)
\(710\) 0 0
\(711\) −44535.9 −2.34912
\(712\) 0 0
\(713\) 5195.04 0.272869
\(714\) 0 0
\(715\) −266.418 47645.2i −0.0139349 2.49207i
\(716\) 0 0
\(717\) 17441.6i 0.908461i
\(718\) 0 0
\(719\) 949.067i 0.0492270i 0.999697 + 0.0246135i \(0.00783551\pi\)
−0.999697 + 0.0246135i \(0.992164\pi\)
\(720\) 0 0
\(721\) 36673.5i 1.89430i
\(722\) 0 0
\(723\) 66602.1 3.42594
\(724\) 0 0
\(725\) 15413.2i 0.789563i
\(726\) 0 0
\(727\) 23767.7i 1.21251i −0.795270 0.606256i \(-0.792671\pi\)
0.795270 0.606256i \(-0.207329\pi\)
\(728\) 0 0
\(729\) −3933.63 −0.199849
\(730\) 0 0
\(731\) 1648.26i 0.0833966i
\(732\) 0 0
\(733\) 17509.7i 0.882312i −0.897430 0.441156i \(-0.854569\pi\)
0.897430 0.441156i \(-0.145431\pi\)
\(734\) 0 0
\(735\) 97210.3i 4.87844i
\(736\) 0 0
\(737\) −130.251 23293.5i −0.00650997 1.16422i
\(738\) 0 0
\(739\) −37975.9 −1.89035 −0.945174 0.326567i \(-0.894108\pi\)
−0.945174 + 0.326567i \(0.894108\pi\)
\(740\) 0 0
\(741\) 2619.45 0.129862
\(742\) 0 0
\(743\) 27755.4 1.37045 0.685226 0.728330i \(-0.259703\pi\)
0.685226 + 0.728330i \(0.259703\pi\)
\(744\) 0 0
\(745\) 54050.9i 2.65808i
\(746\) 0 0
\(747\) −421.255 −0.0206331
\(748\) 0 0
\(749\) 19745.1 0.963243
\(750\) 0 0
\(751\) 34722.2i 1.68713i −0.537031 0.843563i \(-0.680454\pi\)
0.537031 0.843563i \(-0.319546\pi\)
\(752\) 0 0
\(753\) −35038.5 −1.69571
\(754\) 0 0
\(755\) −36152.1 −1.74266
\(756\) 0 0
\(757\) 14197.0 0.681637 0.340818 0.940129i \(-0.389296\pi\)
0.340818 + 0.940129i \(0.389296\pi\)
\(758\) 0 0
\(759\) 13516.1 75.5782i 0.646381 0.00361438i
\(760\) 0 0
\(761\) 8653.44i 0.412204i −0.978531 0.206102i \(-0.933922\pi\)
0.978531 0.206102i \(-0.0660778\pi\)
\(762\) 0 0
\(763\) 20067.3i 0.952145i
\(764\) 0 0
\(765\) 36887.1i 1.74334i
\(766\) 0 0
\(767\) −2314.78 −0.108973
\(768\) 0 0
\(769\) 18768.1i 0.880099i 0.897974 + 0.440049i \(0.145039\pi\)
−0.897974 + 0.440049i \(0.854961\pi\)
\(770\) 0 0
\(771\) 60948.5i 2.84696i
\(772\) 0 0
\(773\) −14263.3 −0.663666 −0.331833 0.943338i \(-0.607667\pi\)
−0.331833 + 0.943338i \(0.607667\pi\)
\(774\) 0 0
\(775\) 25327.7i 1.17393i
\(776\) 0 0
\(777\) 50754.8i 2.34339i
\(778\) 0 0
\(779\) 590.028i 0.0271373i
\(780\) 0 0
\(781\) 145.351 + 25994.0i 0.00665951 + 1.19096i
\(782\) 0 0
\(783\) 26242.9 1.19776
\(784\) 0 0
\(785\) −19118.8 −0.869272
\(786\) 0 0
\(787\) 13427.9 0.608201 0.304100 0.952640i \(-0.401644\pi\)
0.304100 + 0.952640i \(0.401644\pi\)
\(788\) 0 0
\(789\) 59621.6i 2.69022i
\(790\) 0 0
\(791\) −52612.2 −2.36495
\(792\) 0 0
\(793\) −15001.6 −0.671780
\(794\) 0 0
\(795\) 52613.4i 2.34717i
\(796\) 0 0
\(797\) 8225.98 0.365595 0.182797 0.983151i \(-0.441485\pi\)
0.182797 + 0.983151i \(0.441485\pi\)
\(798\) 0 0
\(799\) 12196.8 0.540038
\(800\) 0 0
\(801\) 71580.6 3.15752
\(802\) 0 0
\(803\) 152.492 + 27271.1i 0.00670153 + 1.19848i
\(804\) 0 0
\(805\) 21274.0i 0.931440i
\(806\) 0 0
\(807\) 52277.9i 2.28038i
\(808\) 0 0
\(809\) 31308.8i 1.36064i 0.732914 + 0.680321i \(0.238160\pi\)
−0.732914 + 0.680321i \(0.761840\pi\)
\(810\) 0 0
\(811\) −14023.8 −0.607203 −0.303601 0.952799i \(-0.598189\pi\)
−0.303601 + 0.952799i \(0.598189\pi\)
\(812\) 0 0
\(813\) 19704.2i 0.850010i
\(814\) 0 0
\(815\) 15599.7i 0.670470i
\(816\) 0 0
\(817\) 185.972 0.00796367
\(818\) 0 0
\(819\) 137490.i 5.86606i
\(820\) 0 0
\(821\) 30198.1i 1.28370i 0.766828 + 0.641852i \(0.221834\pi\)
−0.766828 + 0.641852i \(0.778166\pi\)
\(822\) 0 0
\(823\) 35007.9i 1.48275i −0.671093 0.741373i \(-0.734175\pi\)
0.671093 0.741373i \(-0.265825\pi\)
\(824\) 0 0
\(825\) 368.471 + 65895.9i 0.0155497 + 2.78085i
\(826\) 0 0
\(827\) 19445.1 0.817622 0.408811 0.912619i \(-0.365943\pi\)
0.408811 + 0.912619i \(0.365943\pi\)
\(828\) 0 0
\(829\) −33474.0 −1.40241 −0.701206 0.712959i \(-0.747355\pi\)
−0.701206 + 0.712959i \(0.747355\pi\)
\(830\) 0 0
\(831\) 11341.3 0.473437
\(832\) 0 0
\(833\) 19486.8i 0.810538i
\(834\) 0 0
\(835\) 41168.5 1.70622
\(836\) 0 0
\(837\) 43123.4 1.78084
\(838\) 0 0
\(839\) 18202.2i 0.749000i 0.927227 + 0.374500i \(0.122186\pi\)
−0.927227 + 0.374500i \(0.877814\pi\)
\(840\) 0 0
\(841\) 17931.6 0.735233
\(842\) 0 0
\(843\) −54736.6 −2.23633
\(844\) 0 0
\(845\) −56719.9 −2.30914
\(846\) 0 0
\(847\) 40433.8 452.202i 1.64028 0.0183446i
\(848\) 0 0
\(849\) 26695.1i 1.07912i
\(850\) 0 0
\(851\) 6979.60i 0.281149i
\(852\) 0 0
\(853\) 3788.44i 0.152068i −0.997105 0.0760338i \(-0.975774\pi\)
0.997105 0.0760338i \(-0.0242257\pi\)
\(854\) 0 0
\(855\) −4161.95 −0.166474
\(856\) 0 0
\(857\) 31127.7i 1.24073i −0.784314 0.620364i \(-0.786985\pi\)
0.784314 0.620364i \(-0.213015\pi\)
\(858\) 0 0
\(859\) 17355.0i 0.689342i 0.938723 + 0.344671i \(0.112010\pi\)
−0.938723 + 0.344671i \(0.887990\pi\)
\(860\) 0 0
\(861\) −44526.5 −1.76244
\(862\) 0 0
\(863\) 40088.8i 1.58127i 0.612285 + 0.790637i \(0.290251\pi\)
−0.612285 + 0.790637i \(0.709749\pi\)
\(864\) 0 0
\(865\) 45778.8i 1.79945i
\(866\) 0 0
\(867\) 35634.3i 1.39585i
\(868\) 0 0
\(869\) 26342.2 147.298i 1.02831 0.00575000i
\(870\) 0 0
\(871\) −46848.2 −1.82249
\(872\) 0 0
\(873\) 52770.4 2.04583
\(874\) 0 0
\(875\) 36125.5 1.39573
\(876\) 0 0
\(877\) 14573.4i 0.561127i −0.959835 0.280563i \(-0.909479\pi\)
0.959835 0.280563i \(-0.0905213\pi\)
\(878\) 0 0
\(879\) 66056.4 2.53473
\(880\) 0 0
\(881\) 16920.2 0.647055 0.323528 0.946219i \(-0.395131\pi\)
0.323528 + 0.946219i \(0.395131\pi\)
\(882\) 0 0
\(883\) 52003.4i 1.98194i −0.134077 0.990971i \(-0.542807\pi\)
0.134077 0.990971i \(-0.457193\pi\)
\(884\) 0 0
\(885\) 5287.85 0.200847
\(886\) 0 0
\(887\) 4547.91 0.172158 0.0860789 0.996288i \(-0.472566\pi\)
0.0860789 + 0.996288i \(0.472566\pi\)
\(888\) 0 0
\(889\) −83754.3 −3.15976
\(890\) 0 0
\(891\) 51440.0 287.638i 1.93413 0.0108151i
\(892\) 0 0
\(893\) 1376.15i 0.0515690i
\(894\) 0 0
\(895\) 51312.5i 1.91641i
\(896\) 0 0
\(897\) 27183.7i 1.01186i
\(898\) 0 0
\(899\) −10611.1 −0.393659
\(900\) 0 0
\(901\) 10546.9i 0.389975i
\(902\) 0 0
\(903\) 14034.3i 0.517202i
\(904\) 0 0
\(905\) −25835.9 −0.948965
\(906\) 0 0
\(907\) 9470.21i 0.346696i 0.984861 + 0.173348i \(0.0554585\pi\)
−0.984861 + 0.173348i \(0.944541\pi\)
\(908\) 0 0
\(909\) 32834.6i 1.19808i
\(910\) 0 0
\(911\) 47456.6i 1.72592i 0.505276 + 0.862958i \(0.331391\pi\)
−0.505276 + 0.862958i \(0.668609\pi\)
\(912\) 0 0
\(913\) 249.165 1.39326i 0.00903195 5.05041e-5i
\(914\) 0 0
\(915\) 34269.4 1.23815
\(916\) 0 0
\(917\) −40164.0 −1.44638
\(918\) 0 0
\(919\) 1873.51 0.0672484 0.0336242 0.999435i \(-0.489295\pi\)
0.0336242 + 0.999435i \(0.489295\pi\)
\(920\) 0 0
\(921\) 63156.1i 2.25957i
\(922\) 0 0
\(923\) 52279.5 1.86435
\(924\) 0 0
\(925\) 34028.1 1.20955
\(926\) 0 0
\(927\) 74455.8i 2.63803i
\(928\) 0 0
\(929\) 3698.04 0.130601 0.0653007 0.997866i \(-0.479199\pi\)
0.0653007 + 0.997866i \(0.479199\pi\)
\(930\) 0 0
\(931\) 2198.68 0.0773995
\(932\) 0 0
\(933\) −22367.8 −0.784877
\(934\) 0 0
\(935\) 122.001 + 21818.1i 0.00426721 + 0.763132i
\(936\) 0 0
\(937\) 11195.9i 0.390344i −0.980769 0.195172i \(-0.937473\pi\)
0.980769 0.195172i \(-0.0625266\pi\)
\(938\) 0 0
\(939\) 1779.46i 0.0618428i
\(940\) 0 0
\(941\) 19628.8i 0.680000i −0.940425 0.340000i \(-0.889573\pi\)
0.940425 0.340000i \(-0.110427\pi\)
\(942\) 0 0
\(943\) 6123.10 0.211448
\(944\) 0 0
\(945\) 176593.i 6.07890i
\(946\) 0 0
\(947\) 827.647i 0.0284001i 0.999899 + 0.0142001i \(0.00452017\pi\)
−0.999899 + 0.0142001i \(0.995480\pi\)
\(948\) 0 0
\(949\) 54847.8 1.87612
\(950\) 0 0
\(951\) 14237.2i 0.485459i
\(952\) 0 0
\(953\) 21364.6i 0.726199i 0.931750 + 0.363100i \(0.118281\pi\)
−0.931750 + 0.363100i \(0.881719\pi\)
\(954\) 0 0
\(955\) 48106.4i 1.63004i
\(956\) 0 0
\(957\) −27607.2 + 154.372i −0.932512 + 0.00521434i
\(958\) 0 0
\(959\) −38651.9 −1.30150
\(960\) 0 0
\(961\) 12354.4 0.414703
\(962\) 0 0
\(963\) −40087.2 −1.34142
\(964\) 0 0
\(965\) 56894.5i 1.89793i
\(966\) 0 0
\(967\) 14549.5 0.483846 0.241923 0.970295i \(-0.422222\pi\)
0.241923 + 0.970295i \(0.422222\pi\)
\(968\) 0 0
\(969\) −1199.52 −0.0397669
\(970\) 0 0
\(971\) 14973.2i 0.494864i 0.968905 + 0.247432i \(0.0795867\pi\)
−0.968905 + 0.247432i \(0.920413\pi\)
\(972\) 0 0
\(973\) 67141.4 2.21218
\(974\) 0 0
\(975\) 132530. 4.35320
\(976\) 0 0
\(977\) −31130.0 −1.01938 −0.509691 0.860358i \(-0.670240\pi\)
−0.509691 + 0.860358i \(0.670240\pi\)
\(978\) 0 0
\(979\) −42338.7 + 236.746i −1.38218 + 0.00772874i
\(980\) 0 0
\(981\) 40741.4i 1.32597i
\(982\) 0 0
\(983\) 28874.9i 0.936894i 0.883492 + 0.468447i \(0.155186\pi\)
−0.883492 + 0.468447i \(0.844814\pi\)
\(984\) 0 0
\(985\) 7249.59i 0.234509i
\(986\) 0 0
\(987\) 103851. 3.34916
\(988\) 0 0
\(989\) 1929.95i 0.0620513i
\(990\) 0 0
\(991\) 11280.6i 0.361594i 0.983520 + 0.180797i \(0.0578678\pi\)
−0.983520 + 0.180797i \(0.942132\pi\)
\(992\) 0 0
\(993\) −42024.4 −1.34301
\(994\) 0 0
\(995\) 30981.6i 0.987119i
\(996\) 0 0
\(997\) 50409.4i 1.60128i −0.599143 0.800642i \(-0.704492\pi\)
0.599143 0.800642i \(-0.295508\pi\)
\(998\) 0 0
\(999\) 57936.8i 1.83487i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 704.4.e.g.703.2 36
4.3 odd 2 inner 704.4.e.g.703.11 36
8.3 odd 2 352.4.e.a.351.26 yes 36
8.5 even 2 352.4.e.a.351.35 yes 36
11.10 odd 2 inner 704.4.e.g.703.12 36
44.43 even 2 inner 704.4.e.g.703.1 36
88.21 odd 2 352.4.e.a.351.25 36
88.43 even 2 352.4.e.a.351.36 yes 36
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
352.4.e.a.351.25 36 88.21 odd 2
352.4.e.a.351.26 yes 36 8.3 odd 2
352.4.e.a.351.35 yes 36 8.5 even 2
352.4.e.a.351.36 yes 36 88.43 even 2
704.4.e.g.703.1 36 44.43 even 2 inner
704.4.e.g.703.2 36 1.1 even 1 trivial
704.4.e.g.703.11 36 4.3 odd 2 inner
704.4.e.g.703.12 36 11.10 odd 2 inner