Properties

Label 704.4.e.g.703.6
Level $704$
Weight $4$
Character 704.703
Analytic conductor $41.537$
Analytic rank $0$
Dimension $36$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [704,4,Mod(703,704)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(704, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([1, 0, 1]))
 
N = Newforms(chi, 4, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("704.703");
 
S:= CuspForms(chi, 4);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 704 = 2^{6} \cdot 11 \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 704.e (of order \(2\), degree \(1\), not minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(41.5373446440\)
Analytic rank: \(0\)
Dimension: \(36\)
Twist minimal: no (minimal twist has level 352)
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

Embedding invariants

Embedding label 703.6
Character \(\chi\) \(=\) 704.703
Dual form 704.4.e.g.703.5

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+2.43252i q^{3} -17.0450 q^{5} -13.3052 q^{7} +21.0829 q^{9} +(30.7486 + 19.6347i) q^{11} +66.3043i q^{13} -41.4623i q^{15} -10.3897i q^{17} -86.7262 q^{19} -32.3650i q^{21} +134.362i q^{23} +165.533 q^{25} +116.962i q^{27} +69.9754i q^{29} -79.2776i q^{31} +(-47.7618 + 74.7966i) q^{33} +226.787 q^{35} +111.615 q^{37} -161.286 q^{39} -261.845i q^{41} -128.924 q^{43} -359.358 q^{45} -422.628i q^{47} -165.973 q^{49} +25.2731 q^{51} -727.354 q^{53} +(-524.111 - 334.674i) q^{55} -210.963i q^{57} +573.045i q^{59} -889.645i q^{61} -280.511 q^{63} -1130.16i q^{65} +137.512i q^{67} -326.838 q^{69} -35.6256i q^{71} -845.012i q^{73} +402.662i q^{75} +(-409.115 - 261.243i) q^{77} +603.045 q^{79} +284.724 q^{81} +1071.60 q^{83} +177.093i q^{85} -170.216 q^{87} -532.570 q^{89} -882.189i q^{91} +192.844 q^{93} +1478.25 q^{95} -371.900 q^{97} +(648.269 + 413.956i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 36 q - 364 q^{9} + 1236 q^{25} + 592 q^{33} - 984 q^{45} + 2372 q^{49} - 376 q^{53} + 2824 q^{69} + 2592 q^{77} + 6756 q^{81} + 512 q^{89} + 872 q^{93} + 3904 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/704\mathbb{Z}\right)^\times\).

\(n\) \(133\) \(321\) \(639\)
\(\chi(n)\) \(1\) \(-1\) \(-1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 2.43252i 0.468138i 0.972220 + 0.234069i \(0.0752042\pi\)
−0.972220 + 0.234069i \(0.924796\pi\)
\(4\) 0 0
\(5\) −17.0450 −1.52455 −0.762277 0.647251i \(-0.775919\pi\)
−0.762277 + 0.647251i \(0.775919\pi\)
\(6\) 0 0
\(7\) −13.3052 −0.718411 −0.359205 0.933259i \(-0.616952\pi\)
−0.359205 + 0.933259i \(0.616952\pi\)
\(8\) 0 0
\(9\) 21.0829 0.780846
\(10\) 0 0
\(11\) 30.7486 + 19.6347i 0.842824 + 0.538190i
\(12\) 0 0
\(13\) 66.3043i 1.41458i 0.706925 + 0.707289i \(0.250082\pi\)
−0.706925 + 0.707289i \(0.749918\pi\)
\(14\) 0 0
\(15\) 41.4623i 0.713702i
\(16\) 0 0
\(17\) 10.3897i 0.148228i −0.997250 0.0741138i \(-0.976387\pi\)
0.997250 0.0741138i \(-0.0236128\pi\)
\(18\) 0 0
\(19\) −86.7262 −1.04718 −0.523588 0.851971i \(-0.675407\pi\)
−0.523588 + 0.851971i \(0.675407\pi\)
\(20\) 0 0
\(21\) 32.3650i 0.336316i
\(22\) 0 0
\(23\) 134.362i 1.21811i 0.793129 + 0.609053i \(0.208450\pi\)
−0.793129 + 0.609053i \(0.791550\pi\)
\(24\) 0 0
\(25\) 165.533 1.32426
\(26\) 0 0
\(27\) 116.962i 0.833683i
\(28\) 0 0
\(29\) 69.9754i 0.448072i 0.974581 + 0.224036i \(0.0719234\pi\)
−0.974581 + 0.224036i \(0.928077\pi\)
\(30\) 0 0
\(31\) 79.2776i 0.459312i −0.973272 0.229656i \(-0.926240\pi\)
0.973272 0.229656i \(-0.0737601\pi\)
\(32\) 0 0
\(33\) −47.7618 + 74.7966i −0.251947 + 0.394558i
\(34\) 0 0
\(35\) 226.787 1.09526
\(36\) 0 0
\(37\) 111.615 0.495930 0.247965 0.968769i \(-0.420238\pi\)
0.247965 + 0.968769i \(0.420238\pi\)
\(38\) 0 0
\(39\) −161.286 −0.662218
\(40\) 0 0
\(41\) 261.845i 0.997398i −0.866775 0.498699i \(-0.833811\pi\)
0.866775 0.498699i \(-0.166189\pi\)
\(42\) 0 0
\(43\) −128.924 −0.457225 −0.228612 0.973518i \(-0.573419\pi\)
−0.228612 + 0.973518i \(0.573419\pi\)
\(44\) 0 0
\(45\) −359.358 −1.19044
\(46\) 0 0
\(47\) 422.628i 1.31163i −0.754921 0.655815i \(-0.772325\pi\)
0.754921 0.655815i \(-0.227675\pi\)
\(48\) 0 0
\(49\) −165.973 −0.483886
\(50\) 0 0
\(51\) 25.2731 0.0693910
\(52\) 0 0
\(53\) −727.354 −1.88509 −0.942545 0.334081i \(-0.891574\pi\)
−0.942545 + 0.334081i \(0.891574\pi\)
\(54\) 0 0
\(55\) −524.111 334.674i −1.28493 0.820499i
\(56\) 0 0
\(57\) 210.963i 0.490224i
\(58\) 0 0
\(59\) 573.045i 1.26448i 0.774774 + 0.632238i \(0.217863\pi\)
−0.774774 + 0.632238i \(0.782137\pi\)
\(60\) 0 0
\(61\) 889.645i 1.86733i −0.358142 0.933667i \(-0.616590\pi\)
0.358142 0.933667i \(-0.383410\pi\)
\(62\) 0 0
\(63\) −280.511 −0.560968
\(64\) 0 0
\(65\) 1130.16i 2.15660i
\(66\) 0 0
\(67\) 137.512i 0.250743i 0.992110 + 0.125371i \(0.0400122\pi\)
−0.992110 + 0.125371i \(0.959988\pi\)
\(68\) 0 0
\(69\) −326.838 −0.570242
\(70\) 0 0
\(71\) 35.6256i 0.0595491i −0.999557 0.0297745i \(-0.990521\pi\)
0.999557 0.0297745i \(-0.00947893\pi\)
\(72\) 0 0
\(73\) 845.012i 1.35481i −0.735610 0.677406i \(-0.763104\pi\)
0.735610 0.677406i \(-0.236896\pi\)
\(74\) 0 0
\(75\) 402.662i 0.619939i
\(76\) 0 0
\(77\) −409.115 261.243i −0.605493 0.386641i
\(78\) 0 0
\(79\) 603.045 0.858833 0.429417 0.903106i \(-0.358719\pi\)
0.429417 + 0.903106i \(0.358719\pi\)
\(80\) 0 0
\(81\) 284.724 0.390568
\(82\) 0 0
\(83\) 1071.60 1.41715 0.708574 0.705637i \(-0.249339\pi\)
0.708574 + 0.705637i \(0.249339\pi\)
\(84\) 0 0
\(85\) 177.093i 0.225981i
\(86\) 0 0
\(87\) −170.216 −0.209760
\(88\) 0 0
\(89\) −532.570 −0.634296 −0.317148 0.948376i \(-0.602725\pi\)
−0.317148 + 0.948376i \(0.602725\pi\)
\(90\) 0 0
\(91\) 882.189i 1.01625i
\(92\) 0 0
\(93\) 192.844 0.215022
\(94\) 0 0
\(95\) 1478.25 1.59648
\(96\) 0 0
\(97\) −371.900 −0.389286 −0.194643 0.980874i \(-0.562355\pi\)
−0.194643 + 0.980874i \(0.562355\pi\)
\(98\) 0 0
\(99\) 648.269 + 413.956i 0.658116 + 0.420244i
\(100\) 0 0
\(101\) 1273.91i 1.25503i −0.778603 0.627517i \(-0.784071\pi\)
0.778603 0.627517i \(-0.215929\pi\)
\(102\) 0 0
\(103\) 1121.47i 1.07284i 0.843952 + 0.536418i \(0.180223\pi\)
−0.843952 + 0.536418i \(0.819777\pi\)
\(104\) 0 0
\(105\) 551.663i 0.512731i
\(106\) 0 0
\(107\) −2103.03 −1.90007 −0.950035 0.312145i \(-0.898953\pi\)
−0.950035 + 0.312145i \(0.898953\pi\)
\(108\) 0 0
\(109\) 699.322i 0.614522i −0.951625 0.307261i \(-0.900588\pi\)
0.951625 0.307261i \(-0.0994124\pi\)
\(110\) 0 0
\(111\) 271.506i 0.232164i
\(112\) 0 0
\(113\) −1292.70 −1.07617 −0.538086 0.842890i \(-0.680852\pi\)
−0.538086 + 0.842890i \(0.680852\pi\)
\(114\) 0 0
\(115\) 2290.21i 1.85707i
\(116\) 0 0
\(117\) 1397.88i 1.10457i
\(118\) 0 0
\(119\) 138.236i 0.106488i
\(120\) 0 0
\(121\) 559.957 + 1207.48i 0.420704 + 0.907198i
\(122\) 0 0
\(123\) 636.943 0.466920
\(124\) 0 0
\(125\) −690.886 −0.494358
\(126\) 0 0
\(127\) −790.580 −0.552383 −0.276192 0.961103i \(-0.589072\pi\)
−0.276192 + 0.961103i \(0.589072\pi\)
\(128\) 0 0
\(129\) 313.609i 0.214044i
\(130\) 0 0
\(131\) 263.168 0.175520 0.0877601 0.996142i \(-0.472029\pi\)
0.0877601 + 0.996142i \(0.472029\pi\)
\(132\) 0 0
\(133\) 1153.91 0.752303
\(134\) 0 0
\(135\) 1993.63i 1.27099i
\(136\) 0 0
\(137\) −278.091 −0.173423 −0.0867113 0.996233i \(-0.527636\pi\)
−0.0867113 + 0.996233i \(0.527636\pi\)
\(138\) 0 0
\(139\) −1129.28 −0.689098 −0.344549 0.938768i \(-0.611968\pi\)
−0.344549 + 0.938768i \(0.611968\pi\)
\(140\) 0 0
\(141\) 1028.05 0.614025
\(142\) 0 0
\(143\) −1301.87 + 2038.77i −0.761311 + 1.19224i
\(144\) 0 0
\(145\) 1192.73i 0.683110i
\(146\) 0 0
\(147\) 403.732i 0.226526i
\(148\) 0 0
\(149\) 761.663i 0.418778i −0.977832 0.209389i \(-0.932853\pi\)
0.977832 0.209389i \(-0.0671475\pi\)
\(150\) 0 0
\(151\) 2528.60 1.36275 0.681374 0.731936i \(-0.261383\pi\)
0.681374 + 0.731936i \(0.261383\pi\)
\(152\) 0 0
\(153\) 219.044i 0.115743i
\(154\) 0 0
\(155\) 1351.29i 0.700246i
\(156\) 0 0
\(157\) −1085.35 −0.551722 −0.275861 0.961198i \(-0.588963\pi\)
−0.275861 + 0.961198i \(0.588963\pi\)
\(158\) 0 0
\(159\) 1769.30i 0.882482i
\(160\) 0 0
\(161\) 1787.71i 0.875101i
\(162\) 0 0
\(163\) 1268.44i 0.609522i 0.952429 + 0.304761i \(0.0985765\pi\)
−0.952429 + 0.304761i \(0.901423\pi\)
\(164\) 0 0
\(165\) 814.101 1274.91i 0.384107 0.601525i
\(166\) 0 0
\(167\) 136.790 0.0633839 0.0316920 0.999498i \(-0.489910\pi\)
0.0316920 + 0.999498i \(0.489910\pi\)
\(168\) 0 0
\(169\) −2199.26 −1.00103
\(170\) 0 0
\(171\) −1828.44 −0.817684
\(172\) 0 0
\(173\) 4202.29i 1.84679i −0.383855 0.923393i \(-0.625404\pi\)
0.383855 0.923393i \(-0.374596\pi\)
\(174\) 0 0
\(175\) −2202.44 −0.951365
\(176\) 0 0
\(177\) −1393.94 −0.591949
\(178\) 0 0
\(179\) 4018.22i 1.67785i −0.544245 0.838926i \(-0.683184\pi\)
0.544245 0.838926i \(-0.316816\pi\)
\(180\) 0 0
\(181\) 777.837 0.319426 0.159713 0.987163i \(-0.448943\pi\)
0.159713 + 0.987163i \(0.448943\pi\)
\(182\) 0 0
\(183\) 2164.08 0.874171
\(184\) 0 0
\(185\) −1902.48 −0.756071
\(186\) 0 0
\(187\) 203.999 319.469i 0.0797746 0.124930i
\(188\) 0 0
\(189\) 1556.20i 0.598926i
\(190\) 0 0
\(191\) 3512.22i 1.33055i 0.746598 + 0.665275i \(0.231686\pi\)
−0.746598 + 0.665275i \(0.768314\pi\)
\(192\) 0 0
\(193\) 3725.97i 1.38964i 0.719181 + 0.694822i \(0.244517\pi\)
−0.719181 + 0.694822i \(0.755483\pi\)
\(194\) 0 0
\(195\) 2749.13 1.00959
\(196\) 0 0
\(197\) 1998.64i 0.722830i −0.932405 0.361415i \(-0.882294\pi\)
0.932405 0.361415i \(-0.117706\pi\)
\(198\) 0 0
\(199\) 3982.51i 1.41866i 0.704878 + 0.709328i \(0.251002\pi\)
−0.704878 + 0.709328i \(0.748998\pi\)
\(200\) 0 0
\(201\) −334.501 −0.117382
\(202\) 0 0
\(203\) 931.033i 0.321900i
\(204\) 0 0
\(205\) 4463.16i 1.52059i
\(206\) 0 0
\(207\) 2832.74i 0.951154i
\(208\) 0 0
\(209\) −2666.71 1702.84i −0.882585 0.563580i
\(210\) 0 0
\(211\) −3168.73 −1.03386 −0.516930 0.856028i \(-0.672925\pi\)
−0.516930 + 0.856028i \(0.672925\pi\)
\(212\) 0 0
\(213\) 86.6600 0.0278772
\(214\) 0 0
\(215\) 2197.51 0.697064
\(216\) 0 0
\(217\) 1054.80i 0.329975i
\(218\) 0 0
\(219\) 2055.51 0.634239
\(220\) 0 0
\(221\) 688.881 0.209680
\(222\) 0 0
\(223\) 2416.57i 0.725675i −0.931852 0.362837i \(-0.881808\pi\)
0.931852 0.362837i \(-0.118192\pi\)
\(224\) 0 0
\(225\) 3489.91 1.03405
\(226\) 0 0
\(227\) −4183.20 −1.22312 −0.611561 0.791197i \(-0.709458\pi\)
−0.611561 + 0.791197i \(0.709458\pi\)
\(228\) 0 0
\(229\) −1820.35 −0.525292 −0.262646 0.964892i \(-0.584595\pi\)
−0.262646 + 0.964892i \(0.584595\pi\)
\(230\) 0 0
\(231\) 635.478 995.180i 0.181002 0.283455i
\(232\) 0 0
\(233\) 1596.36i 0.448844i −0.974492 0.224422i \(-0.927951\pi\)
0.974492 0.224422i \(-0.0720495\pi\)
\(234\) 0 0
\(235\) 7203.71i 1.99965i
\(236\) 0 0
\(237\) 1466.92i 0.402053i
\(238\) 0 0
\(239\) −4509.16 −1.22039 −0.610195 0.792251i \(-0.708909\pi\)
−0.610195 + 0.792251i \(0.708909\pi\)
\(240\) 0 0
\(241\) 254.715i 0.0680815i 0.999420 + 0.0340408i \(0.0108376\pi\)
−0.999420 + 0.0340408i \(0.989162\pi\)
\(242\) 0 0
\(243\) 3850.58i 1.01652i
\(244\) 0 0
\(245\) 2829.01 0.737710
\(246\) 0 0
\(247\) 5750.32i 1.48131i
\(248\) 0 0
\(249\) 2606.68i 0.663421i
\(250\) 0 0
\(251\) 6788.06i 1.70701i −0.521087 0.853503i \(-0.674473\pi\)
0.521087 0.853503i \(-0.325527\pi\)
\(252\) 0 0
\(253\) −2638.16 + 4131.45i −0.655572 + 1.02665i
\(254\) 0 0
\(255\) −430.781 −0.105790
\(256\) 0 0
\(257\) 2103.18 0.510477 0.255238 0.966878i \(-0.417846\pi\)
0.255238 + 0.966878i \(0.417846\pi\)
\(258\) 0 0
\(259\) −1485.05 −0.356281
\(260\) 0 0
\(261\) 1475.28i 0.349876i
\(262\) 0 0
\(263\) 1909.67 0.447740 0.223870 0.974619i \(-0.428131\pi\)
0.223870 + 0.974619i \(0.428131\pi\)
\(264\) 0 0
\(265\) 12397.8 2.87392
\(266\) 0 0
\(267\) 1295.49i 0.296938i
\(268\) 0 0
\(269\) 750.932 0.170205 0.0851025 0.996372i \(-0.472878\pi\)
0.0851025 + 0.996372i \(0.472878\pi\)
\(270\) 0 0
\(271\) −6715.28 −1.50525 −0.752627 0.658447i \(-0.771214\pi\)
−0.752627 + 0.658447i \(0.771214\pi\)
\(272\) 0 0
\(273\) 2145.94 0.475744
\(274\) 0 0
\(275\) 5089.91 + 3250.19i 1.11612 + 0.712705i
\(276\) 0 0
\(277\) 8735.13i 1.89474i 0.320139 + 0.947370i \(0.396270\pi\)
−0.320139 + 0.947370i \(0.603730\pi\)
\(278\) 0 0
\(279\) 1671.40i 0.358652i
\(280\) 0 0
\(281\) 4509.01i 0.957242i −0.878022 0.478621i \(-0.841137\pi\)
0.878022 0.478621i \(-0.158863\pi\)
\(282\) 0 0
\(283\) 5688.09 1.19478 0.597388 0.801952i \(-0.296205\pi\)
0.597388 + 0.801952i \(0.296205\pi\)
\(284\) 0 0
\(285\) 3595.87i 0.747372i
\(286\) 0 0
\(287\) 3483.89i 0.716541i
\(288\) 0 0
\(289\) 4805.05 0.978029
\(290\) 0 0
\(291\) 904.654i 0.182240i
\(292\) 0 0
\(293\) 1125.73i 0.224457i −0.993682 0.112228i \(-0.964201\pi\)
0.993682 0.112228i \(-0.0357988\pi\)
\(294\) 0 0
\(295\) 9767.56i 1.92776i
\(296\) 0 0
\(297\) −2296.52 + 3596.43i −0.448679 + 0.702647i
\(298\) 0 0
\(299\) −8908.79 −1.72311
\(300\) 0 0
\(301\) 1715.35 0.328475
\(302\) 0 0
\(303\) 3098.80 0.587530
\(304\) 0 0
\(305\) 15164.0i 2.84685i
\(306\) 0 0
\(307\) 8803.56 1.63663 0.818316 0.574769i \(-0.194908\pi\)
0.818316 + 0.574769i \(0.194908\pi\)
\(308\) 0 0
\(309\) −2728.01 −0.502236
\(310\) 0 0
\(311\) 1526.95i 0.278410i −0.990264 0.139205i \(-0.955545\pi\)
0.990264 0.139205i \(-0.0444547\pi\)
\(312\) 0 0
\(313\) 729.366 0.131713 0.0658565 0.997829i \(-0.479022\pi\)
0.0658565 + 0.997829i \(0.479022\pi\)
\(314\) 0 0
\(315\) 4781.31 0.855226
\(316\) 0 0
\(317\) 896.384 0.158820 0.0794100 0.996842i \(-0.474696\pi\)
0.0794100 + 0.996842i \(0.474696\pi\)
\(318\) 0 0
\(319\) −1373.95 + 2151.65i −0.241148 + 0.377646i
\(320\) 0 0
\(321\) 5115.65i 0.889495i
\(322\) 0 0
\(323\) 901.058i 0.155221i
\(324\) 0 0
\(325\) 10975.6i 1.87327i
\(326\) 0 0
\(327\) 1701.11 0.287681
\(328\) 0 0
\(329\) 5623.13i 0.942289i
\(330\) 0 0
\(331\) 10009.7i 1.66219i 0.556131 + 0.831095i \(0.312285\pi\)
−0.556131 + 0.831095i \(0.687715\pi\)
\(332\) 0 0
\(333\) 2353.16 0.387245
\(334\) 0 0
\(335\) 2343.90i 0.382271i
\(336\) 0 0
\(337\) 1013.10i 0.163759i 0.996642 + 0.0818797i \(0.0260923\pi\)
−0.996642 + 0.0818797i \(0.973908\pi\)
\(338\) 0 0
\(339\) 3144.53i 0.503797i
\(340\) 0 0
\(341\) 1556.59 2437.68i 0.247197 0.387119i
\(342\) 0 0
\(343\) 6771.96 1.06604
\(344\) 0 0
\(345\) 5570.97 0.869365
\(346\) 0 0
\(347\) −3920.87 −0.606581 −0.303290 0.952898i \(-0.598085\pi\)
−0.303290 + 0.952898i \(0.598085\pi\)
\(348\) 0 0
\(349\) 5079.23i 0.779040i −0.921018 0.389520i \(-0.872641\pi\)
0.921018 0.389520i \(-0.127359\pi\)
\(350\) 0 0
\(351\) −7755.11 −1.17931
\(352\) 0 0
\(353\) −6450.24 −0.972554 −0.486277 0.873805i \(-0.661645\pi\)
−0.486277 + 0.873805i \(0.661645\pi\)
\(354\) 0 0
\(355\) 607.240i 0.0907858i
\(356\) 0 0
\(357\) −336.263 −0.0498513
\(358\) 0 0
\(359\) 335.400 0.0493085 0.0246542 0.999696i \(-0.492152\pi\)
0.0246542 + 0.999696i \(0.492152\pi\)
\(360\) 0 0
\(361\) 662.436 0.0965791
\(362\) 0 0
\(363\) −2937.22 + 1362.10i −0.424694 + 0.196947i
\(364\) 0 0
\(365\) 14403.3i 2.06548i
\(366\) 0 0
\(367\) 1346.75i 0.191552i 0.995403 + 0.0957762i \(0.0305333\pi\)
−0.995403 + 0.0957762i \(0.969467\pi\)
\(368\) 0 0
\(369\) 5520.44i 0.778815i
\(370\) 0 0
\(371\) 9677.55 1.35427
\(372\) 0 0
\(373\) 2779.96i 0.385900i −0.981209 0.192950i \(-0.938194\pi\)
0.981209 0.192950i \(-0.0618055\pi\)
\(374\) 0 0
\(375\) 1680.59i 0.231428i
\(376\) 0 0
\(377\) −4639.67 −0.633833
\(378\) 0 0
\(379\) 6083.66i 0.824530i −0.911064 0.412265i \(-0.864738\pi\)
0.911064 0.412265i \(-0.135262\pi\)
\(380\) 0 0
\(381\) 1923.10i 0.258592i
\(382\) 0 0
\(383\) 522.352i 0.0696891i 0.999393 + 0.0348445i \(0.0110936\pi\)
−0.999393 + 0.0348445i \(0.988906\pi\)
\(384\) 0 0
\(385\) 6973.38 + 4452.89i 0.923107 + 0.589455i
\(386\) 0 0
\(387\) −2718.08 −0.357022
\(388\) 0 0
\(389\) 6237.60 0.813004 0.406502 0.913650i \(-0.366748\pi\)
0.406502 + 0.913650i \(0.366748\pi\)
\(390\) 0 0
\(391\) 1395.98 0.180557
\(392\) 0 0
\(393\) 640.162i 0.0821677i
\(394\) 0 0
\(395\) −10278.9 −1.30934
\(396\) 0 0
\(397\) 9886.74 1.24988 0.624938 0.780674i \(-0.285124\pi\)
0.624938 + 0.780674i \(0.285124\pi\)
\(398\) 0 0
\(399\) 2806.90i 0.352182i
\(400\) 0 0
\(401\) 7463.90 0.929499 0.464750 0.885442i \(-0.346144\pi\)
0.464750 + 0.885442i \(0.346144\pi\)
\(402\) 0 0
\(403\) 5256.45 0.649733
\(404\) 0 0
\(405\) −4853.13 −0.595441
\(406\) 0 0
\(407\) 3432.01 + 2191.53i 0.417981 + 0.266904i
\(408\) 0 0
\(409\) 4293.30i 0.519047i −0.965737 0.259523i \(-0.916435\pi\)
0.965737 0.259523i \(-0.0835655\pi\)
\(410\) 0 0
\(411\) 676.461i 0.0811858i
\(412\) 0 0
\(413\) 7624.44i 0.908413i
\(414\) 0 0
\(415\) −18265.4 −2.16052
\(416\) 0 0
\(417\) 2747.00i 0.322593i
\(418\) 0 0
\(419\) 9104.73i 1.06156i −0.847509 0.530782i \(-0.821898\pi\)
0.847509 0.530782i \(-0.178102\pi\)
\(420\) 0 0
\(421\) −17033.4 −1.97186 −0.985932 0.167147i \(-0.946544\pi\)
−0.985932 + 0.167147i \(0.946544\pi\)
\(422\) 0 0
\(423\) 8910.21i 1.02418i
\(424\) 0 0
\(425\) 1719.84i 0.196293i
\(426\) 0 0
\(427\) 11836.9i 1.34151i
\(428\) 0 0
\(429\) −4959.34 3166.81i −0.558133 0.356399i
\(430\) 0 0
\(431\) 17431.7 1.94816 0.974081 0.226200i \(-0.0726303\pi\)
0.974081 + 0.226200i \(0.0726303\pi\)
\(432\) 0 0
\(433\) 2796.27 0.310347 0.155174 0.987887i \(-0.450406\pi\)
0.155174 + 0.987887i \(0.450406\pi\)
\(434\) 0 0
\(435\) 2901.34 0.319790
\(436\) 0 0
\(437\) 11652.7i 1.27557i
\(438\) 0 0
\(439\) 3459.06 0.376063 0.188032 0.982163i \(-0.439789\pi\)
0.188032 + 0.982163i \(0.439789\pi\)
\(440\) 0 0
\(441\) −3499.18 −0.377841
\(442\) 0 0
\(443\) 14339.9i 1.53794i 0.639282 + 0.768972i \(0.279232\pi\)
−0.639282 + 0.768972i \(0.720768\pi\)
\(444\) 0 0
\(445\) 9077.67 0.967018
\(446\) 0 0
\(447\) 1852.76 0.196046
\(448\) 0 0
\(449\) −14781.7 −1.55365 −0.776827 0.629715i \(-0.783172\pi\)
−0.776827 + 0.629715i \(0.783172\pi\)
\(450\) 0 0
\(451\) 5141.25 8051.37i 0.536789 0.840631i
\(452\) 0 0
\(453\) 6150.87i 0.637954i
\(454\) 0 0
\(455\) 15036.9i 1.54932i
\(456\) 0 0
\(457\) 6979.66i 0.714431i −0.934022 0.357215i \(-0.883726\pi\)
0.934022 0.357215i \(-0.116274\pi\)
\(458\) 0 0
\(459\) 1215.20 0.123575
\(460\) 0 0
\(461\) 3695.48i 0.373353i 0.982421 + 0.186677i \(0.0597716\pi\)
−0.982421 + 0.186677i \(0.940228\pi\)
\(462\) 0 0
\(463\) 4226.03i 0.424191i 0.977249 + 0.212095i \(0.0680287\pi\)
−0.977249 + 0.212095i \(0.931971\pi\)
\(464\) 0 0
\(465\) −3287.04 −0.327812
\(466\) 0 0
\(467\) 15465.2i 1.53243i −0.642587 0.766213i \(-0.722139\pi\)
0.642587 0.766213i \(-0.277861\pi\)
\(468\) 0 0
\(469\) 1829.62i 0.180136i
\(470\) 0 0
\(471\) 2640.13i 0.258282i
\(472\) 0 0
\(473\) −3964.22 2531.38i −0.385360 0.246074i
\(474\) 0 0
\(475\) −14356.0 −1.38674
\(476\) 0 0
\(477\) −15334.7 −1.47197
\(478\) 0 0
\(479\) 2237.40 0.213423 0.106711 0.994290i \(-0.465968\pi\)
0.106711 + 0.994290i \(0.465968\pi\)
\(480\) 0 0
\(481\) 7400.56i 0.701531i
\(482\) 0 0
\(483\) 4348.63 0.409668
\(484\) 0 0
\(485\) 6339.05 0.593487
\(486\) 0 0
\(487\) 16047.9i 1.49322i 0.665261 + 0.746611i \(0.268320\pi\)
−0.665261 + 0.746611i \(0.731680\pi\)
\(488\) 0 0
\(489\) −3085.51 −0.285340
\(490\) 0 0
\(491\) −17992.0 −1.65371 −0.826853 0.562419i \(-0.809871\pi\)
−0.826853 + 0.562419i \(0.809871\pi\)
\(492\) 0 0
\(493\) 727.022 0.0664167
\(494\) 0 0
\(495\) −11049.8 7055.89i −1.00333 0.640684i
\(496\) 0 0
\(497\) 474.005i 0.0427807i
\(498\) 0 0
\(499\) 4355.95i 0.390780i −0.980726 0.195390i \(-0.937403\pi\)
0.980726 0.195390i \(-0.0625972\pi\)
\(500\) 0 0
\(501\) 332.744i 0.0296725i
\(502\) 0 0
\(503\) −18175.1 −1.61111 −0.805556 0.592520i \(-0.798133\pi\)
−0.805556 + 0.592520i \(0.798133\pi\)
\(504\) 0 0
\(505\) 21713.8i 1.91337i
\(506\) 0 0
\(507\) 5349.75i 0.468621i
\(508\) 0 0
\(509\) 15698.5 1.36704 0.683521 0.729931i \(-0.260448\pi\)
0.683521 + 0.729931i \(0.260448\pi\)
\(510\) 0 0
\(511\) 11243.0i 0.973311i
\(512\) 0 0
\(513\) 10143.7i 0.873013i
\(514\) 0 0
\(515\) 19115.6i 1.63560i
\(516\) 0 0
\(517\) 8298.18 12995.2i 0.705906 1.10547i
\(518\) 0 0
\(519\) 10222.1 0.864552
\(520\) 0 0
\(521\) −16640.5 −1.39930 −0.699650 0.714485i \(-0.746661\pi\)
−0.699650 + 0.714485i \(0.746661\pi\)
\(522\) 0 0
\(523\) −14801.3 −1.23751 −0.618754 0.785585i \(-0.712362\pi\)
−0.618754 + 0.785585i \(0.712362\pi\)
\(524\) 0 0
\(525\) 5357.48i 0.445371i
\(526\) 0 0
\(527\) −823.670 −0.0680828
\(528\) 0 0
\(529\) −5886.19 −0.483783
\(530\) 0 0
\(531\) 12081.4i 0.987361i
\(532\) 0 0
\(533\) 17361.5 1.41090
\(534\) 0 0
\(535\) 35846.2 2.89676
\(536\) 0 0
\(537\) 9774.39 0.785467
\(538\) 0 0
\(539\) −5103.44 3258.83i −0.407831 0.260423i
\(540\) 0 0
\(541\) 2608.25i 0.207278i 0.994615 + 0.103639i \(0.0330487\pi\)
−0.994615 + 0.103639i \(0.966951\pi\)
\(542\) 0 0
\(543\) 1892.10i 0.149536i
\(544\) 0 0
\(545\) 11920.0i 0.936871i
\(546\) 0 0
\(547\) 872.953 0.0682354 0.0341177 0.999418i \(-0.489138\pi\)
0.0341177 + 0.999418i \(0.489138\pi\)
\(548\) 0 0
\(549\) 18756.3i 1.45810i
\(550\) 0 0
\(551\) 6068.70i 0.469211i
\(552\) 0 0
\(553\) −8023.60 −0.616995
\(554\) 0 0
\(555\) 4627.82i 0.353946i
\(556\) 0 0
\(557\) 8753.54i 0.665887i 0.942947 + 0.332944i \(0.108042\pi\)
−0.942947 + 0.332944i \(0.891958\pi\)
\(558\) 0 0
\(559\) 8548.19i 0.646780i
\(560\) 0 0
\(561\) 777.114 + 496.230i 0.0584844 + 0.0373455i
\(562\) 0 0
\(563\) 12393.3 0.927733 0.463867 0.885905i \(-0.346462\pi\)
0.463867 + 0.885905i \(0.346462\pi\)
\(564\) 0 0
\(565\) 22034.2 1.64068
\(566\) 0 0
\(567\) −3788.29 −0.280588
\(568\) 0 0
\(569\) 1169.19i 0.0861425i −0.999072 0.0430713i \(-0.986286\pi\)
0.999072 0.0430713i \(-0.0137142\pi\)
\(570\) 0 0
\(571\) 5255.47 0.385175 0.192587 0.981280i \(-0.438312\pi\)
0.192587 + 0.981280i \(0.438312\pi\)
\(572\) 0 0
\(573\) −8543.53 −0.622882
\(574\) 0 0
\(575\) 22241.4i 1.61309i
\(576\) 0 0
\(577\) −418.397 −0.0301873 −0.0150937 0.999886i \(-0.504805\pi\)
−0.0150937 + 0.999886i \(0.504805\pi\)
\(578\) 0 0
\(579\) −9063.50 −0.650546
\(580\) 0 0
\(581\) −14257.8 −1.01809
\(582\) 0 0
\(583\) −22365.1 14281.4i −1.58880 1.01454i
\(584\) 0 0
\(585\) 23827.0i 1.68397i
\(586\) 0 0
\(587\) 19051.0i 1.33955i 0.742562 + 0.669777i \(0.233610\pi\)
−0.742562 + 0.669777i \(0.766390\pi\)
\(588\) 0 0
\(589\) 6875.45i 0.480981i
\(590\) 0 0
\(591\) 4861.74 0.338384
\(592\) 0 0
\(593\) 12215.5i 0.845918i 0.906149 + 0.422959i \(0.139009\pi\)
−0.906149 + 0.422959i \(0.860991\pi\)
\(594\) 0 0
\(595\) 2356.24i 0.162347i
\(596\) 0 0
\(597\) −9687.53 −0.664127
\(598\) 0 0
\(599\) 2579.14i 0.175928i −0.996124 0.0879640i \(-0.971964\pi\)
0.996124 0.0879640i \(-0.0280360\pi\)
\(600\) 0 0
\(601\) 21548.9i 1.46256i −0.682079 0.731278i \(-0.738924\pi\)
0.682079 0.731278i \(-0.261076\pi\)
\(602\) 0 0
\(603\) 2899.15i 0.195792i
\(604\) 0 0
\(605\) −9544.47 20581.5i −0.641385 1.38307i
\(606\) 0 0
\(607\) −6555.28 −0.438337 −0.219168 0.975687i \(-0.570334\pi\)
−0.219168 + 0.975687i \(0.570334\pi\)
\(608\) 0 0
\(609\) 2264.75 0.150694
\(610\) 0 0
\(611\) 28022.1 1.85540
\(612\) 0 0
\(613\) 9731.22i 0.641175i 0.947219 + 0.320587i \(0.103880\pi\)
−0.947219 + 0.320587i \(0.896120\pi\)
\(614\) 0 0
\(615\) −10856.7 −0.711845
\(616\) 0 0
\(617\) 13257.7 0.865048 0.432524 0.901622i \(-0.357623\pi\)
0.432524 + 0.901622i \(0.357623\pi\)
\(618\) 0 0
\(619\) 5265.08i 0.341876i 0.985282 + 0.170938i \(0.0546798\pi\)
−0.985282 + 0.170938i \(0.945320\pi\)
\(620\) 0 0
\(621\) −15715.3 −1.01551
\(622\) 0 0
\(623\) 7085.92 0.455685
\(624\) 0 0
\(625\) −8915.45 −0.570589
\(626\) 0 0
\(627\) 4142.20 6486.83i 0.263833 0.413172i
\(628\) 0 0
\(629\) 1159.65i 0.0735105i
\(630\) 0 0
\(631\) 6525.46i 0.411687i −0.978585 0.205844i \(-0.934006\pi\)
0.978585 0.205844i \(-0.0659938\pi\)
\(632\) 0 0
\(633\) 7708.00i 0.483990i
\(634\) 0 0
\(635\) 13475.5 0.842138
\(636\) 0 0
\(637\) 11004.7i 0.684495i
\(638\) 0 0
\(639\) 751.090i 0.0464987i
\(640\) 0 0
\(641\) 10522.0 0.648354 0.324177 0.945996i \(-0.394913\pi\)
0.324177 + 0.945996i \(0.394913\pi\)
\(642\) 0 0
\(643\) 25594.8i 1.56977i 0.619641 + 0.784885i \(0.287278\pi\)
−0.619641 + 0.784885i \(0.712722\pi\)
\(644\) 0 0
\(645\) 5345.47i 0.326322i
\(646\) 0 0
\(647\) 7636.35i 0.464012i 0.972714 + 0.232006i \(0.0745289\pi\)
−0.972714 + 0.232006i \(0.925471\pi\)
\(648\) 0 0
\(649\) −11251.6 + 17620.3i −0.680528 + 1.06573i
\(650\) 0 0
\(651\) −2565.82 −0.154474
\(652\) 0 0
\(653\) −24020.7 −1.43951 −0.719757 0.694226i \(-0.755747\pi\)
−0.719757 + 0.694226i \(0.755747\pi\)
\(654\) 0 0
\(655\) −4485.71 −0.267590
\(656\) 0 0
\(657\) 17815.3i 1.05790i
\(658\) 0 0
\(659\) −8775.80 −0.518751 −0.259375 0.965777i \(-0.583517\pi\)
−0.259375 + 0.965777i \(0.583517\pi\)
\(660\) 0 0
\(661\) −29689.7 −1.74705 −0.873523 0.486783i \(-0.838170\pi\)
−0.873523 + 0.486783i \(0.838170\pi\)
\(662\) 0 0
\(663\) 1675.72i 0.0981590i
\(664\) 0 0
\(665\) −19668.3 −1.14693
\(666\) 0 0
\(667\) −9402.04 −0.545800
\(668\) 0 0
\(669\) 5878.35 0.339716
\(670\) 0 0
\(671\) 17467.9 27355.4i 1.00498 1.57383i
\(672\) 0 0
\(673\) 19440.7i 1.11350i −0.830680 0.556750i \(-0.812048\pi\)
0.830680 0.556750i \(-0.187952\pi\)
\(674\) 0 0
\(675\) 19361.1i 1.10402i
\(676\) 0 0
\(677\) 25818.9i 1.46573i −0.680373 0.732866i \(-0.738182\pi\)
0.680373 0.732866i \(-0.261818\pi\)
\(678\) 0 0
\(679\) 4948.19 0.279667
\(680\) 0 0
\(681\) 10175.7i 0.572590i
\(682\) 0 0
\(683\) 26132.5i 1.46403i −0.681290 0.732014i \(-0.738581\pi\)
0.681290 0.732014i \(-0.261419\pi\)
\(684\) 0 0
\(685\) 4740.06 0.264392
\(686\) 0 0
\(687\) 4428.03i 0.245909i
\(688\) 0 0
\(689\) 48226.7i 2.66660i
\(690\) 0 0
\(691\) 12265.4i 0.675251i −0.941281 0.337626i \(-0.890376\pi\)
0.941281 0.337626i \(-0.109624\pi\)
\(692\) 0 0
\(693\) −8625.32 5507.74i −0.472797 0.301907i
\(694\) 0 0
\(695\) 19248.7 1.05057
\(696\) 0 0
\(697\) −2720.49 −0.147842
\(698\) 0 0
\(699\) 3883.17 0.210121
\(700\) 0 0
\(701\) 27576.1i 1.48578i −0.669412 0.742891i \(-0.733454\pi\)
0.669412 0.742891i \(-0.266546\pi\)
\(702\) 0 0
\(703\) −9679.95 −0.519326
\(704\) 0 0
\(705\) −17523.1 −0.936113
\(706\) 0 0
\(707\) 16949.5i 0.901630i
\(708\) 0 0
\(709\) −17099.4 −0.905755 −0.452878 0.891573i \(-0.649603\pi\)
−0.452878 + 0.891573i \(0.649603\pi\)
\(710\) 0 0
\(711\) 12713.9 0.670617
\(712\) 0 0
\(713\) 10651.9 0.559491
\(714\) 0 0
\(715\) 22190.3 34750.8i 1.16066 1.81763i
\(716\) 0 0
\(717\) 10968.6i 0.571312i
\(718\) 0 0
\(719\) 20718.6i 1.07465i 0.843375 + 0.537326i \(0.180566\pi\)
−0.843375 + 0.537326i \(0.819434\pi\)
\(720\) 0 0
\(721\) 14921.4i 0.770737i
\(722\) 0 0
\(723\) −619.599 −0.0318716
\(724\) 0 0
\(725\) 11583.2i 0.593366i
\(726\) 0 0
\(727\) 28072.1i 1.43210i −0.698050 0.716049i \(-0.745949\pi\)
0.698050 0.716049i \(-0.254051\pi\)
\(728\) 0 0
\(729\) −1679.07 −0.0853054
\(730\) 0 0
\(731\) 1339.48i 0.0677733i
\(732\) 0 0
\(733\) 26418.1i 1.33121i 0.746306 + 0.665604i \(0.231826\pi\)
−0.746306 + 0.665604i \(0.768174\pi\)
\(734\) 0 0
\(735\) 6881.63i 0.345351i
\(736\) 0 0
\(737\) −2700.01 + 4228.31i −0.134947 + 0.211332i
\(738\) 0 0
\(739\) −9710.73 −0.483376 −0.241688 0.970354i \(-0.577701\pi\)
−0.241688 + 0.970354i \(0.577701\pi\)
\(740\) 0 0
\(741\) 13987.8 0.693459
\(742\) 0 0
\(743\) −16103.3 −0.795119 −0.397559 0.917576i \(-0.630143\pi\)
−0.397559 + 0.917576i \(0.630143\pi\)
\(744\) 0 0
\(745\) 12982.6i 0.638449i
\(746\) 0 0
\(747\) 22592.4 1.10657
\(748\) 0 0
\(749\) 27981.1 1.36503
\(750\) 0 0
\(751\) 4159.76i 0.202119i 0.994880 + 0.101060i \(0.0322233\pi\)
−0.994880 + 0.101060i \(0.967777\pi\)
\(752\) 0 0
\(753\) 16512.1 0.799115
\(754\) 0 0
\(755\) −43100.1 −2.07758
\(756\) 0 0
\(757\) −10791.8 −0.518142 −0.259071 0.965858i \(-0.583416\pi\)
−0.259071 + 0.965858i \(0.583416\pi\)
\(758\) 0 0
\(759\) −10049.8 6417.38i −0.480614 0.306899i
\(760\) 0 0
\(761\) 8976.40i 0.427588i 0.976879 + 0.213794i \(0.0685821\pi\)
−0.976879 + 0.213794i \(0.931418\pi\)
\(762\) 0 0
\(763\) 9304.58i 0.441479i
\(764\) 0 0
\(765\) 3733.62i 0.176456i
\(766\) 0 0
\(767\) −37995.3 −1.78870
\(768\) 0 0
\(769\) 1696.25i 0.0795429i −0.999209 0.0397714i \(-0.987337\pi\)
0.999209 0.0397714i \(-0.0126630\pi\)
\(770\) 0 0
\(771\) 5116.01i 0.238974i
\(772\) 0 0
\(773\) −11930.9 −0.555140 −0.277570 0.960705i \(-0.589529\pi\)
−0.277570 + 0.960705i \(0.589529\pi\)
\(774\) 0 0
\(775\) 13123.1i 0.608251i
\(776\) 0 0
\(777\) 3612.42i 0.166789i
\(778\) 0 0
\(779\) 22708.8i 1.04445i
\(780\) 0 0
\(781\) 699.499 1095.44i 0.0320487 0.0501894i
\(782\) 0 0
\(783\) −8184.49 −0.373550
\(784\) 0 0
\(785\) 18499.8 0.841130
\(786\) 0 0
\(787\) 4960.04 0.224659 0.112329 0.993671i \(-0.464169\pi\)
0.112329 + 0.993671i \(0.464169\pi\)
\(788\) 0 0
\(789\) 4645.31i 0.209604i
\(790\) 0 0
\(791\) 17199.6 0.773133
\(792\) 0 0
\(793\) 58987.3 2.64149
\(794\) 0 0
\(795\) 30157.8i 1.34539i
\(796\) 0 0
\(797\) −29754.3 −1.32240 −0.661200 0.750210i \(-0.729952\pi\)
−0.661200 + 0.750210i \(0.729952\pi\)
\(798\) 0 0
\(799\) −4390.97 −0.194420
\(800\) 0 0
\(801\) −11228.1 −0.495287
\(802\) 0 0
\(803\) 16591.6 25983.0i 0.729145 1.14187i
\(804\) 0 0
\(805\) 30471.5i 1.33414i
\(806\) 0 0
\(807\) 1826.66i 0.0796795i
\(808\) 0 0
\(809\) 26889.9i 1.16860i 0.811537 + 0.584301i \(0.198631\pi\)
−0.811537 + 0.584301i \(0.801369\pi\)
\(810\) 0 0
\(811\) 32017.3 1.38629 0.693143 0.720800i \(-0.256225\pi\)
0.693143 + 0.720800i \(0.256225\pi\)
\(812\) 0 0
\(813\) 16335.0i 0.704667i
\(814\) 0 0
\(815\) 21620.6i 0.929248i
\(816\) 0 0
\(817\) 11181.1 0.478795
\(818\) 0 0
\(819\) 18599.1i 0.793533i
\(820\) 0 0
\(821\) 27289.8i 1.16007i 0.814590 + 0.580037i \(0.196962\pi\)
−0.814590 + 0.580037i \(0.803038\pi\)
\(822\) 0 0
\(823\) 22033.4i 0.933215i −0.884465 0.466607i \(-0.845476\pi\)
0.884465 0.466607i \(-0.154524\pi\)
\(824\) 0 0
\(825\) −7906.15 + 12381.3i −0.333645 + 0.522499i
\(826\) 0 0
\(827\) −33737.0 −1.41856 −0.709280 0.704927i \(-0.750980\pi\)
−0.709280 + 0.704927i \(0.750980\pi\)
\(828\) 0 0
\(829\) −16510.5 −0.691716 −0.345858 0.938287i \(-0.612412\pi\)
−0.345858 + 0.938287i \(0.612412\pi\)
\(830\) 0 0
\(831\) −21248.4 −0.887001
\(832\) 0 0
\(833\) 1724.41i 0.0717253i
\(834\) 0 0
\(835\) −2331.59 −0.0966322
\(836\) 0 0
\(837\) 9272.50 0.382921
\(838\) 0 0
\(839\) 45871.0i 1.88754i 0.330607 + 0.943769i \(0.392747\pi\)
−0.330607 + 0.943769i \(0.607253\pi\)
\(840\) 0 0
\(841\) 19492.4 0.799231
\(842\) 0 0
\(843\) 10968.2 0.448122
\(844\) 0 0
\(845\) 37486.5 1.52612
\(846\) 0 0
\(847\) −7450.31 16065.7i −0.302238 0.651741i
\(848\) 0 0
\(849\) 13836.4i 0.559321i
\(850\) 0 0
\(851\) 14996.8i 0.604095i
\(852\) 0 0
\(853\) 15785.3i 0.633619i 0.948489 + 0.316810i \(0.102612\pi\)
−0.948489 + 0.316810i \(0.897388\pi\)
\(854\) 0 0
\(855\) 31165.7 1.24660
\(856\) 0 0
\(857\) 34256.8i 1.36545i −0.730676 0.682724i \(-0.760795\pi\)
0.730676 0.682724i \(-0.239205\pi\)
\(858\) 0 0
\(859\) 17672.6i 0.701959i 0.936383 + 0.350980i \(0.114151\pi\)
−0.936383 + 0.350980i \(0.885849\pi\)
\(860\) 0 0
\(861\) −8474.62 −0.335440
\(862\) 0 0
\(863\) 42470.1i 1.67520i −0.546282 0.837602i \(-0.683957\pi\)
0.546282 0.837602i \(-0.316043\pi\)
\(864\) 0 0
\(865\) 71628.1i 2.81553i
\(866\) 0 0
\(867\) 11688.4i 0.457853i
\(868\) 0 0
\(869\) 18542.8 + 11840.6i 0.723845 + 0.462215i
\(870\) 0 0
\(871\) −9117.64 −0.354695
\(872\) 0 0
\(873\) −7840.72 −0.303973
\(874\) 0 0
\(875\) 9192.34 0.355152
\(876\) 0 0
\(877\) 35718.5i 1.37529i 0.726048 + 0.687644i \(0.241355\pi\)
−0.726048 + 0.687644i \(0.758645\pi\)
\(878\) 0 0
\(879\) 2738.35 0.105077
\(880\) 0 0
\(881\) −50710.8 −1.93926 −0.969631 0.244574i \(-0.921352\pi\)
−0.969631 + 0.244574i \(0.921352\pi\)
\(882\) 0 0
\(883\) 45180.8i 1.72192i 0.508674 + 0.860959i \(0.330136\pi\)
−0.508674 + 0.860959i \(0.669864\pi\)
\(884\) 0 0
\(885\) 23759.8 0.902459
\(886\) 0 0
\(887\) −4529.58 −0.171464 −0.0857318 0.996318i \(-0.527323\pi\)
−0.0857318 + 0.996318i \(0.527323\pi\)
\(888\) 0 0
\(889\) 10518.8 0.396838
\(890\) 0 0
\(891\) 8754.87 + 5590.47i 0.329180 + 0.210200i
\(892\) 0 0
\(893\) 36652.9i 1.37351i
\(894\) 0 0
\(895\) 68490.6i 2.55798i
\(896\) 0 0
\(897\) 21670.8i 0.806652i
\(898\) 0 0
\(899\) 5547.48 0.205805
\(900\) 0 0
\(901\) 7556.98i 0.279422i
\(902\) 0 0
\(903\) 4172.61i 0.153772i
\(904\) 0 0
\(905\) −13258.3 −0.486983
\(906\) 0 0
\(907\) 18622.6i 0.681757i −0.940107 0.340879i \(-0.889276\pi\)
0.940107 0.340879i \(-0.110724\pi\)
\(908\) 0 0
\(909\) 26857.6i 0.979989i
\(910\) 0 0
\(911\) 8308.78i 0.302176i 0.988520 + 0.151088i \(0.0482777\pi\)
−0.988520 + 0.151088i \(0.951722\pi\)
\(912\) 0 0
\(913\) 32950.2 + 21040.5i 1.19441 + 0.762694i
\(914\) 0 0
\(915\) −36886.8 −1.33272
\(916\) 0 0
\(917\) −3501.50 −0.126096
\(918\) 0 0
\(919\) 30375.5 1.09031 0.545155 0.838335i \(-0.316471\pi\)
0.545155 + 0.838335i \(0.316471\pi\)
\(920\) 0 0
\(921\) 21414.8i 0.766170i
\(922\) 0 0
\(923\) 2362.13 0.0842368
\(924\) 0 0
\(925\) 18476.0 0.656742
\(926\) 0 0
\(927\) 23643.9i 0.837720i
\(928\) 0 0
\(929\) −8885.01 −0.313787 −0.156893 0.987616i \(-0.550148\pi\)
−0.156893 + 0.987616i \(0.550148\pi\)
\(930\) 0 0
\(931\) 14394.2 0.506714
\(932\) 0 0
\(933\) 3714.34 0.130334
\(934\) 0 0
\(935\) −3477.16 + 5445.35i −0.121621 + 0.190462i
\(936\) 0 0
\(937\) 17067.2i 0.595048i −0.954714 0.297524i \(-0.903839\pi\)
0.954714 0.297524i \(-0.0961609\pi\)
\(938\) 0 0
\(939\) 1774.20i 0.0616599i
\(940\) 0 0
\(941\) 8029.30i 0.278159i −0.990281 0.139080i \(-0.955586\pi\)
0.990281 0.139080i \(-0.0444144\pi\)
\(942\) 0 0
\(943\) 35182.1 1.21494
\(944\) 0 0
\(945\) 26525.5i 0.913095i
\(946\) 0 0
\(947\) 2363.09i 0.0810878i 0.999178 + 0.0405439i \(0.0129091\pi\)
−0.999178 + 0.0405439i \(0.987091\pi\)
\(948\) 0 0
\(949\) 56028.0 1.91649
\(950\) 0 0
\(951\) 2180.47i 0.0743498i
\(952\) 0 0
\(953\) 4486.13i 0.152487i 0.997089 + 0.0762435i \(0.0242926\pi\)
−0.997089 + 0.0762435i \(0.975707\pi\)
\(954\) 0 0
\(955\) 59865.8i 2.02850i
\(956\) 0 0
\(957\) −5233.92 3342.15i −0.176791 0.112891i
\(958\) 0 0
\(959\) 3700.04 0.124589
\(960\) 0 0
\(961\) 23506.1 0.789032
\(962\) 0 0
\(963\) −44337.8 −1.48366
\(964\) 0 0
\(965\) 63509.3i 2.11859i
\(966\) 0 0
\(967\) −30172.1 −1.00338 −0.501690 0.865047i \(-0.667288\pi\)
−0.501690 + 0.865047i \(0.667288\pi\)
\(968\) 0 0
\(969\) −2191.84 −0.0726647
\(970\) 0 0
\(971\) 22408.0i 0.740585i −0.928915 0.370292i \(-0.879257\pi\)
0.928915 0.370292i \(-0.120743\pi\)
\(972\) 0 0
\(973\) 15025.3 0.495055
\(974\) 0 0
\(975\) −26698.2 −0.876951
\(976\) 0 0
\(977\) 2866.87 0.0938784 0.0469392 0.998898i \(-0.485053\pi\)
0.0469392 + 0.998898i \(0.485053\pi\)
\(978\) 0 0
\(979\) −16375.8 10456.9i −0.534599 0.341371i
\(980\) 0 0
\(981\) 14743.7i 0.479847i
\(982\) 0 0
\(983\) 2310.73i 0.0749754i −0.999297 0.0374877i \(-0.988064\pi\)
0.999297 0.0374877i \(-0.0119355\pi\)
\(984\) 0 0
\(985\) 34066.9i 1.10199i
\(986\) 0 0
\(987\) −13678.4 −0.441122
\(988\) 0 0
\(989\) 17322.5i 0.556948i
\(990\) 0 0
\(991\) 7176.98i 0.230055i −0.993362 0.115027i \(-0.963304\pi\)
0.993362 0.115027i \(-0.0366956\pi\)
\(992\) 0 0
\(993\) −24348.9 −0.778135
\(994\) 0 0
\(995\) 67882.0i 2.16282i
\(996\) 0 0
\(997\) 13428.4i 0.426561i 0.976991 + 0.213280i \(0.0684148\pi\)
−0.976991 + 0.213280i \(0.931585\pi\)
\(998\) 0 0
\(999\) 13054.8i 0.413448i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 704.4.e.g.703.6 36
4.3 odd 2 inner 704.4.e.g.703.17 36
8.3 odd 2 352.4.e.a.351.20 yes 36
8.5 even 2 352.4.e.a.351.31 yes 36
11.10 odd 2 inner 704.4.e.g.703.18 36
44.43 even 2 inner 704.4.e.g.703.5 36
88.21 odd 2 352.4.e.a.351.19 36
88.43 even 2 352.4.e.a.351.32 yes 36
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
352.4.e.a.351.19 36 88.21 odd 2
352.4.e.a.351.20 yes 36 8.3 odd 2
352.4.e.a.351.31 yes 36 8.5 even 2
352.4.e.a.351.32 yes 36 88.43 even 2
704.4.e.g.703.5 36 44.43 even 2 inner
704.4.e.g.703.6 36 1.1 even 1 trivial
704.4.e.g.703.17 36 4.3 odd 2 inner
704.4.e.g.703.18 36 11.10 odd 2 inner