Properties

Label 7056.2.b.u.1567.2
Level $7056$
Weight $2$
Character 7056.1567
Analytic conductor $56.342$
Analytic rank $0$
Dimension $4$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [7056,2,Mod(1567,7056)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(7056, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([1, 0, 0, 1]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("7056.1567");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 7056 = 2^{4} \cdot 3^{2} \cdot 7^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 7056.b (of order \(2\), degree \(1\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(56.3424436662\)
Analytic rank: \(0\)
Dimension: \(4\)
Coefficient field: 4.0.2048.2
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{4} + 4x^{2} + 2 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{5}]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 2352)
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

Embedding invariants

Embedding label 1567.2
Root \(-0.765367i\) of defining polynomial
Character \(\chi\) \(=\) 7056.1567
Dual form 7056.2.b.u.1567.3

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-0.765367i q^{5} +2.16478i q^{11} +0.317025i q^{13} +3.37849i q^{17} -5.65685 q^{19} -5.22625i q^{23} +4.41421 q^{25} +2.58579 q^{29} -1.65685 q^{31} -1.41421 q^{37} -5.99162i q^{41} -7.39104i q^{43} +9.65685 q^{47} -1.65685 q^{53} +1.65685 q^{55} +5.65685 q^{59} +7.07401i q^{61} +0.242641 q^{65} -11.7206i q^{67} +15.6788i q^{71} +6.62567i q^{73} +13.5140i q^{79} +6.34315 q^{83} +2.58579 q^{85} +11.4036i q^{89} +4.32957i q^{95} -3.82683i q^{97} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 4 q + 12 q^{25} + 16 q^{29} + 16 q^{31} + 16 q^{47} + 16 q^{53} - 16 q^{55} - 16 q^{65} + 48 q^{83} + 16 q^{85}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/7056\mathbb{Z}\right)^\times\).

\(n\) \(785\) \(1765\) \(4609\) \(6175\)
\(\chi(n)\) \(1\) \(1\) \(-1\) \(-1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 0 0
\(4\) 0 0
\(5\) − 0.765367i − 0.342282i −0.985247 0.171141i \(-0.945255\pi\)
0.985247 0.171141i \(-0.0547454\pi\)
\(6\) 0 0
\(7\) 0 0
\(8\) 0 0
\(9\) 0 0
\(10\) 0 0
\(11\) 2.16478i 0.652707i 0.945248 + 0.326354i \(0.105820\pi\)
−0.945248 + 0.326354i \(0.894180\pi\)
\(12\) 0 0
\(13\) 0.317025i 0.0879270i 0.999033 + 0.0439635i \(0.0139985\pi\)
−0.999033 + 0.0439635i \(0.986001\pi\)
\(14\) 0 0
\(15\) 0 0
\(16\) 0 0
\(17\) 3.37849i 0.819405i 0.912219 + 0.409702i \(0.134367\pi\)
−0.912219 + 0.409702i \(0.865633\pi\)
\(18\) 0 0
\(19\) −5.65685 −1.29777 −0.648886 0.760886i \(-0.724765\pi\)
−0.648886 + 0.760886i \(0.724765\pi\)
\(20\) 0 0
\(21\) 0 0
\(22\) 0 0
\(23\) − 5.22625i − 1.08975i −0.838518 0.544874i \(-0.816577\pi\)
0.838518 0.544874i \(-0.183423\pi\)
\(24\) 0 0
\(25\) 4.41421 0.882843
\(26\) 0 0
\(27\) 0 0
\(28\) 0 0
\(29\) 2.58579 0.480168 0.240084 0.970752i \(-0.422825\pi\)
0.240084 + 0.970752i \(0.422825\pi\)
\(30\) 0 0
\(31\) −1.65685 −0.297580 −0.148790 0.988869i \(-0.547538\pi\)
−0.148790 + 0.988869i \(0.547538\pi\)
\(32\) 0 0
\(33\) 0 0
\(34\) 0 0
\(35\) 0 0
\(36\) 0 0
\(37\) −1.41421 −0.232495 −0.116248 0.993220i \(-0.537087\pi\)
−0.116248 + 0.993220i \(0.537087\pi\)
\(38\) 0 0
\(39\) 0 0
\(40\) 0 0
\(41\) − 5.99162i − 0.935734i −0.883799 0.467867i \(-0.845023\pi\)
0.883799 0.467867i \(-0.154977\pi\)
\(42\) 0 0
\(43\) − 7.39104i − 1.12712i −0.826074 0.563561i \(-0.809431\pi\)
0.826074 0.563561i \(-0.190569\pi\)
\(44\) 0 0
\(45\) 0 0
\(46\) 0 0
\(47\) 9.65685 1.40860 0.704298 0.709904i \(-0.251262\pi\)
0.704298 + 0.709904i \(0.251262\pi\)
\(48\) 0 0
\(49\) 0 0
\(50\) 0 0
\(51\) 0 0
\(52\) 0 0
\(53\) −1.65685 −0.227586 −0.113793 0.993504i \(-0.536300\pi\)
−0.113793 + 0.993504i \(0.536300\pi\)
\(54\) 0 0
\(55\) 1.65685 0.223410
\(56\) 0 0
\(57\) 0 0
\(58\) 0 0
\(59\) 5.65685 0.736460 0.368230 0.929735i \(-0.379964\pi\)
0.368230 + 0.929735i \(0.379964\pi\)
\(60\) 0 0
\(61\) 7.07401i 0.905734i 0.891578 + 0.452867i \(0.149599\pi\)
−0.891578 + 0.452867i \(0.850401\pi\)
\(62\) 0 0
\(63\) 0 0
\(64\) 0 0
\(65\) 0.242641 0.0300959
\(66\) 0 0
\(67\) − 11.7206i − 1.43190i −0.698152 0.715950i \(-0.745994\pi\)
0.698152 0.715950i \(-0.254006\pi\)
\(68\) 0 0
\(69\) 0 0
\(70\) 0 0
\(71\) 15.6788i 1.86073i 0.366640 + 0.930363i \(0.380508\pi\)
−0.366640 + 0.930363i \(0.619492\pi\)
\(72\) 0 0
\(73\) 6.62567i 0.775476i 0.921770 + 0.387738i \(0.126743\pi\)
−0.921770 + 0.387738i \(0.873257\pi\)
\(74\) 0 0
\(75\) 0 0
\(76\) 0 0
\(77\) 0 0
\(78\) 0 0
\(79\) 13.5140i 1.52044i 0.649665 + 0.760220i \(0.274909\pi\)
−0.649665 + 0.760220i \(0.725091\pi\)
\(80\) 0 0
\(81\) 0 0
\(82\) 0 0
\(83\) 6.34315 0.696251 0.348125 0.937448i \(-0.386818\pi\)
0.348125 + 0.937448i \(0.386818\pi\)
\(84\) 0 0
\(85\) 2.58579 0.280468
\(86\) 0 0
\(87\) 0 0
\(88\) 0 0
\(89\) 11.4036i 1.20878i 0.796690 + 0.604389i \(0.206583\pi\)
−0.796690 + 0.604389i \(0.793417\pi\)
\(90\) 0 0
\(91\) 0 0
\(92\) 0 0
\(93\) 0 0
\(94\) 0 0
\(95\) 4.32957i 0.444204i
\(96\) 0 0
\(97\) − 3.82683i − 0.388556i −0.980946 0.194278i \(-0.937764\pi\)
0.980946 0.194278i \(-0.0622364\pi\)
\(98\) 0 0
\(99\) 0 0
\(100\) 0 0
\(101\) 16.6298i 1.65473i 0.561665 + 0.827365i \(0.310161\pi\)
−0.561665 + 0.827365i \(0.689839\pi\)
\(102\) 0 0
\(103\) −12.0000 −1.18240 −0.591198 0.806527i \(-0.701345\pi\)
−0.591198 + 0.806527i \(0.701345\pi\)
\(104\) 0 0
\(105\) 0 0
\(106\) 0 0
\(107\) − 3.95815i − 0.382649i −0.981527 0.191324i \(-0.938722\pi\)
0.981527 0.191324i \(-0.0612783\pi\)
\(108\) 0 0
\(109\) −4.72792 −0.452853 −0.226426 0.974028i \(-0.572704\pi\)
−0.226426 + 0.974028i \(0.572704\pi\)
\(110\) 0 0
\(111\) 0 0
\(112\) 0 0
\(113\) 16.9706 1.59646 0.798228 0.602355i \(-0.205771\pi\)
0.798228 + 0.602355i \(0.205771\pi\)
\(114\) 0 0
\(115\) −4.00000 −0.373002
\(116\) 0 0
\(117\) 0 0
\(118\) 0 0
\(119\) 0 0
\(120\) 0 0
\(121\) 6.31371 0.573973
\(122\) 0 0
\(123\) 0 0
\(124\) 0 0
\(125\) − 7.20533i − 0.644464i
\(126\) 0 0
\(127\) − 13.5140i − 1.19917i −0.800311 0.599586i \(-0.795332\pi\)
0.800311 0.599586i \(-0.204668\pi\)
\(128\) 0 0
\(129\) 0 0
\(130\) 0 0
\(131\) 15.3137 1.33796 0.668982 0.743278i \(-0.266730\pi\)
0.668982 + 0.743278i \(0.266730\pi\)
\(132\) 0 0
\(133\) 0 0
\(134\) 0 0
\(135\) 0 0
\(136\) 0 0
\(137\) 13.4142 1.14605 0.573027 0.819537i \(-0.305769\pi\)
0.573027 + 0.819537i \(0.305769\pi\)
\(138\) 0 0
\(139\) −17.6569 −1.49763 −0.748817 0.662776i \(-0.769378\pi\)
−0.748817 + 0.662776i \(0.769378\pi\)
\(140\) 0 0
\(141\) 0 0
\(142\) 0 0
\(143\) −0.686292 −0.0573906
\(144\) 0 0
\(145\) − 1.97908i − 0.164353i
\(146\) 0 0
\(147\) 0 0
\(148\) 0 0
\(149\) 12.9706 1.06259 0.531295 0.847187i \(-0.321706\pi\)
0.531295 + 0.847187i \(0.321706\pi\)
\(150\) 0 0
\(151\) 6.12293i 0.498277i 0.968468 + 0.249139i \(0.0801475\pi\)
−0.968468 + 0.249139i \(0.919852\pi\)
\(152\) 0 0
\(153\) 0 0
\(154\) 0 0
\(155\) 1.26810i 0.101856i
\(156\) 0 0
\(157\) 14.9134i 1.19022i 0.803645 + 0.595109i \(0.202891\pi\)
−0.803645 + 0.595109i \(0.797109\pi\)
\(158\) 0 0
\(159\) 0 0
\(160\) 0 0
\(161\) 0 0
\(162\) 0 0
\(163\) 6.12293i 0.479585i 0.970824 + 0.239793i \(0.0770795\pi\)
−0.970824 + 0.239793i \(0.922921\pi\)
\(164\) 0 0
\(165\) 0 0
\(166\) 0 0
\(167\) −9.65685 −0.747270 −0.373635 0.927576i \(-0.621889\pi\)
−0.373635 + 0.927576i \(0.621889\pi\)
\(168\) 0 0
\(169\) 12.8995 0.992269
\(170\) 0 0
\(171\) 0 0
\(172\) 0 0
\(173\) 9.42450i 0.716532i 0.933620 + 0.358266i \(0.116632\pi\)
−0.933620 + 0.358266i \(0.883368\pi\)
\(174\) 0 0
\(175\) 0 0
\(176\) 0 0
\(177\) 0 0
\(178\) 0 0
\(179\) 20.0083i 1.49549i 0.663985 + 0.747746i \(0.268864\pi\)
−0.663985 + 0.747746i \(0.731136\pi\)
\(180\) 0 0
\(181\) − 16.1815i − 1.20276i −0.798963 0.601380i \(-0.794618\pi\)
0.798963 0.601380i \(-0.205382\pi\)
\(182\) 0 0
\(183\) 0 0
\(184\) 0 0
\(185\) 1.08239i 0.0795791i
\(186\) 0 0
\(187\) −7.31371 −0.534831
\(188\) 0 0
\(189\) 0 0
\(190\) 0 0
\(191\) − 13.8854i − 1.00471i −0.864661 0.502356i \(-0.832467\pi\)
0.864661 0.502356i \(-0.167533\pi\)
\(192\) 0 0
\(193\) 3.31371 0.238526 0.119263 0.992863i \(-0.461947\pi\)
0.119263 + 0.992863i \(0.461947\pi\)
\(194\) 0 0
\(195\) 0 0
\(196\) 0 0
\(197\) 25.3137 1.80353 0.901764 0.432230i \(-0.142273\pi\)
0.901764 + 0.432230i \(0.142273\pi\)
\(198\) 0 0
\(199\) −5.65685 −0.401004 −0.200502 0.979693i \(-0.564257\pi\)
−0.200502 + 0.979693i \(0.564257\pi\)
\(200\) 0 0
\(201\) 0 0
\(202\) 0 0
\(203\) 0 0
\(204\) 0 0
\(205\) −4.58579 −0.320285
\(206\) 0 0
\(207\) 0 0
\(208\) 0 0
\(209\) − 12.2459i − 0.847065i
\(210\) 0 0
\(211\) 7.39104i 0.508820i 0.967096 + 0.254410i \(0.0818813\pi\)
−0.967096 + 0.254410i \(0.918119\pi\)
\(212\) 0 0
\(213\) 0 0
\(214\) 0 0
\(215\) −5.65685 −0.385794
\(216\) 0 0
\(217\) 0 0
\(218\) 0 0
\(219\) 0 0
\(220\) 0 0
\(221\) −1.07107 −0.0720478
\(222\) 0 0
\(223\) 19.3137 1.29334 0.646671 0.762769i \(-0.276161\pi\)
0.646671 + 0.762769i \(0.276161\pi\)
\(224\) 0 0
\(225\) 0 0
\(226\) 0 0
\(227\) −3.31371 −0.219939 −0.109969 0.993935i \(-0.535075\pi\)
−0.109969 + 0.993935i \(0.535075\pi\)
\(228\) 0 0
\(229\) − 4.72352i − 0.312139i −0.987746 0.156069i \(-0.950118\pi\)
0.987746 0.156069i \(-0.0498824\pi\)
\(230\) 0 0
\(231\) 0 0
\(232\) 0 0
\(233\) −0.242641 −0.0158959 −0.00794796 0.999968i \(-0.502530\pi\)
−0.00794796 + 0.999968i \(0.502530\pi\)
\(234\) 0 0
\(235\) − 7.39104i − 0.482138i
\(236\) 0 0
\(237\) 0 0
\(238\) 0 0
\(239\) 0.896683i 0.0580016i 0.999579 + 0.0290008i \(0.00923254\pi\)
−0.999579 + 0.0290008i \(0.990767\pi\)
\(240\) 0 0
\(241\) − 3.11586i − 0.200710i −0.994952 0.100355i \(-0.968002\pi\)
0.994952 0.100355i \(-0.0319979\pi\)
\(242\) 0 0
\(243\) 0 0
\(244\) 0 0
\(245\) 0 0
\(246\) 0 0
\(247\) − 1.79337i − 0.114109i
\(248\) 0 0
\(249\) 0 0
\(250\) 0 0
\(251\) 8.97056 0.566217 0.283108 0.959088i \(-0.408634\pi\)
0.283108 + 0.959088i \(0.408634\pi\)
\(252\) 0 0
\(253\) 11.3137 0.711287
\(254\) 0 0
\(255\) 0 0
\(256\) 0 0
\(257\) 18.9803i 1.18396i 0.805953 + 0.591980i \(0.201654\pi\)
−0.805953 + 0.591980i \(0.798346\pi\)
\(258\) 0 0
\(259\) 0 0
\(260\) 0 0
\(261\) 0 0
\(262\) 0 0
\(263\) − 26.1313i − 1.61132i −0.592377 0.805661i \(-0.701810\pi\)
0.592377 0.805661i \(-0.298190\pi\)
\(264\) 0 0
\(265\) 1.26810i 0.0778988i
\(266\) 0 0
\(267\) 0 0
\(268\) 0 0
\(269\) 25.1802i 1.53526i 0.640892 + 0.767631i \(0.278565\pi\)
−0.640892 + 0.767631i \(0.721435\pi\)
\(270\) 0 0
\(271\) 9.65685 0.586612 0.293306 0.956019i \(-0.405245\pi\)
0.293306 + 0.956019i \(0.405245\pi\)
\(272\) 0 0
\(273\) 0 0
\(274\) 0 0
\(275\) 9.55582i 0.576238i
\(276\) 0 0
\(277\) −9.31371 −0.559607 −0.279803 0.960057i \(-0.590269\pi\)
−0.279803 + 0.960057i \(0.590269\pi\)
\(278\) 0 0
\(279\) 0 0
\(280\) 0 0
\(281\) 22.3848 1.33536 0.667682 0.744447i \(-0.267287\pi\)
0.667682 + 0.744447i \(0.267287\pi\)
\(282\) 0 0
\(283\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(284\) 0 0
\(285\) 0 0
\(286\) 0 0
\(287\) 0 0
\(288\) 0 0
\(289\) 5.58579 0.328576
\(290\) 0 0
\(291\) 0 0
\(292\) 0 0
\(293\) − 31.4119i − 1.83510i −0.397617 0.917552i \(-0.630163\pi\)
0.397617 0.917552i \(-0.369837\pi\)
\(294\) 0 0
\(295\) − 4.32957i − 0.252077i
\(296\) 0 0
\(297\) 0 0
\(298\) 0 0
\(299\) 1.65685 0.0958184
\(300\) 0 0
\(301\) 0 0
\(302\) 0 0
\(303\) 0 0
\(304\) 0 0
\(305\) 5.41421 0.310017
\(306\) 0 0
\(307\) −3.31371 −0.189123 −0.0945617 0.995519i \(-0.530145\pi\)
−0.0945617 + 0.995519i \(0.530145\pi\)
\(308\) 0 0
\(309\) 0 0
\(310\) 0 0
\(311\) 4.00000 0.226819 0.113410 0.993548i \(-0.463823\pi\)
0.113410 + 0.993548i \(0.463823\pi\)
\(312\) 0 0
\(313\) 19.8770i 1.12351i 0.827302 + 0.561757i \(0.189875\pi\)
−0.827302 + 0.561757i \(0.810125\pi\)
\(314\) 0 0
\(315\) 0 0
\(316\) 0 0
\(317\) 5.31371 0.298448 0.149224 0.988803i \(-0.452323\pi\)
0.149224 + 0.988803i \(0.452323\pi\)
\(318\) 0 0
\(319\) 5.59767i 0.313409i
\(320\) 0 0
\(321\) 0 0
\(322\) 0 0
\(323\) − 19.1116i − 1.06340i
\(324\) 0 0
\(325\) 1.39942i 0.0776257i
\(326\) 0 0
\(327\) 0 0
\(328\) 0 0
\(329\) 0 0
\(330\) 0 0
\(331\) − 25.2346i − 1.38702i −0.720448 0.693509i \(-0.756064\pi\)
0.720448 0.693509i \(-0.243936\pi\)
\(332\) 0 0
\(333\) 0 0
\(334\) 0 0
\(335\) −8.97056 −0.490114
\(336\) 0 0
\(337\) 20.7279 1.12912 0.564561 0.825391i \(-0.309046\pi\)
0.564561 + 0.825391i \(0.309046\pi\)
\(338\) 0 0
\(339\) 0 0
\(340\) 0 0
\(341\) − 3.58673i − 0.194232i
\(342\) 0 0
\(343\) 0 0
\(344\) 0 0
\(345\) 0 0
\(346\) 0 0
\(347\) − 3.43289i − 0.184287i −0.995746 0.0921435i \(-0.970628\pi\)
0.995746 0.0921435i \(-0.0293718\pi\)
\(348\) 0 0
\(349\) − 20.7737i − 1.11199i −0.831186 0.555995i \(-0.812337\pi\)
0.831186 0.555995i \(-0.187663\pi\)
\(350\) 0 0
\(351\) 0 0
\(352\) 0 0
\(353\) 14.9134i 0.793760i 0.917871 + 0.396880i \(0.129907\pi\)
−0.917871 + 0.396880i \(0.870093\pi\)
\(354\) 0 0
\(355\) 12.0000 0.636894
\(356\) 0 0
\(357\) 0 0
\(358\) 0 0
\(359\) 15.6788i 0.827493i 0.910392 + 0.413747i \(0.135780\pi\)
−0.910392 + 0.413747i \(0.864220\pi\)
\(360\) 0 0
\(361\) 13.0000 0.684211
\(362\) 0 0
\(363\) 0 0
\(364\) 0 0
\(365\) 5.07107 0.265432
\(366\) 0 0
\(367\) 21.6569 1.13048 0.565239 0.824927i \(-0.308784\pi\)
0.565239 + 0.824927i \(0.308784\pi\)
\(368\) 0 0
\(369\) 0 0
\(370\) 0 0
\(371\) 0 0
\(372\) 0 0
\(373\) 34.6274 1.79294 0.896470 0.443105i \(-0.146123\pi\)
0.896470 + 0.443105i \(0.146123\pi\)
\(374\) 0 0
\(375\) 0 0
\(376\) 0 0
\(377\) 0.819760i 0.0422198i
\(378\) 0 0
\(379\) 33.1509i 1.70285i 0.524479 + 0.851423i \(0.324260\pi\)
−0.524479 + 0.851423i \(0.675740\pi\)
\(380\) 0 0
\(381\) 0 0
\(382\) 0 0
\(383\) −36.2843 −1.85404 −0.927020 0.375012i \(-0.877638\pi\)
−0.927020 + 0.375012i \(0.877638\pi\)
\(384\) 0 0
\(385\) 0 0
\(386\) 0 0
\(387\) 0 0
\(388\) 0 0
\(389\) −20.0416 −1.01615 −0.508076 0.861313i \(-0.669643\pi\)
−0.508076 + 0.861313i \(0.669643\pi\)
\(390\) 0 0
\(391\) 17.6569 0.892946
\(392\) 0 0
\(393\) 0 0
\(394\) 0 0
\(395\) 10.3431 0.520420
\(396\) 0 0
\(397\) 19.4287i 0.975097i 0.873096 + 0.487548i \(0.162109\pi\)
−0.873096 + 0.487548i \(0.837891\pi\)
\(398\) 0 0
\(399\) 0 0
\(400\) 0 0
\(401\) 22.8701 1.14208 0.571038 0.820924i \(-0.306541\pi\)
0.571038 + 0.820924i \(0.306541\pi\)
\(402\) 0 0
\(403\) − 0.525265i − 0.0261653i
\(404\) 0 0
\(405\) 0 0
\(406\) 0 0
\(407\) − 3.06147i − 0.151751i
\(408\) 0 0
\(409\) 7.89377i 0.390322i 0.980771 + 0.195161i \(0.0625229\pi\)
−0.980771 + 0.195161i \(0.937477\pi\)
\(410\) 0 0
\(411\) 0 0
\(412\) 0 0
\(413\) 0 0
\(414\) 0 0
\(415\) − 4.85483i − 0.238314i
\(416\) 0 0
\(417\) 0 0
\(418\) 0 0
\(419\) 22.6274 1.10542 0.552711 0.833373i \(-0.313593\pi\)
0.552711 + 0.833373i \(0.313593\pi\)
\(420\) 0 0
\(421\) −6.68629 −0.325870 −0.162935 0.986637i \(-0.552096\pi\)
−0.162935 + 0.986637i \(0.552096\pi\)
\(422\) 0 0
\(423\) 0 0
\(424\) 0 0
\(425\) 14.9134i 0.723406i
\(426\) 0 0
\(427\) 0 0
\(428\) 0 0
\(429\) 0 0
\(430\) 0 0
\(431\) − 15.1535i − 0.729918i −0.931024 0.364959i \(-0.881083\pi\)
0.931024 0.364959i \(-0.118917\pi\)
\(432\) 0 0
\(433\) 9.87285i 0.474459i 0.971454 + 0.237229i \(0.0762393\pi\)
−0.971454 + 0.237229i \(0.923761\pi\)
\(434\) 0 0
\(435\) 0 0
\(436\) 0 0
\(437\) 29.5641i 1.41424i
\(438\) 0 0
\(439\) 22.6274 1.07995 0.539974 0.841682i \(-0.318434\pi\)
0.539974 + 0.841682i \(0.318434\pi\)
\(440\) 0 0
\(441\) 0 0
\(442\) 0 0
\(443\) 26.1313i 1.24153i 0.783995 + 0.620767i \(0.213179\pi\)
−0.783995 + 0.620767i \(0.786821\pi\)
\(444\) 0 0
\(445\) 8.72792 0.413743
\(446\) 0 0
\(447\) 0 0
\(448\) 0 0
\(449\) 29.6569 1.39959 0.699797 0.714342i \(-0.253274\pi\)
0.699797 + 0.714342i \(0.253274\pi\)
\(450\) 0 0
\(451\) 12.9706 0.610760
\(452\) 0 0
\(453\) 0 0
\(454\) 0 0
\(455\) 0 0
\(456\) 0 0
\(457\) −19.3137 −0.903457 −0.451729 0.892155i \(-0.649192\pi\)
−0.451729 + 0.892155i \(0.649192\pi\)
\(458\) 0 0
\(459\) 0 0
\(460\) 0 0
\(461\) − 24.2066i − 1.12741i −0.825975 0.563706i \(-0.809375\pi\)
0.825975 0.563706i \(-0.190625\pi\)
\(462\) 0 0
\(463\) − 1.79337i − 0.0833448i −0.999131 0.0416724i \(-0.986731\pi\)
0.999131 0.0416724i \(-0.0132686\pi\)
\(464\) 0 0
\(465\) 0 0
\(466\) 0 0
\(467\) −19.3137 −0.893732 −0.446866 0.894601i \(-0.647460\pi\)
−0.446866 + 0.894601i \(0.647460\pi\)
\(468\) 0 0
\(469\) 0 0
\(470\) 0 0
\(471\) 0 0
\(472\) 0 0
\(473\) 16.0000 0.735681
\(474\) 0 0
\(475\) −24.9706 −1.14573
\(476\) 0 0
\(477\) 0 0
\(478\) 0 0
\(479\) −26.6274 −1.21664 −0.608319 0.793693i \(-0.708156\pi\)
−0.608319 + 0.793693i \(0.708156\pi\)
\(480\) 0 0
\(481\) − 0.448342i − 0.0204426i
\(482\) 0 0
\(483\) 0 0
\(484\) 0 0
\(485\) −2.92893 −0.132996
\(486\) 0 0
\(487\) 35.6871i 1.61714i 0.588403 + 0.808568i \(0.299757\pi\)
−0.588403 + 0.808568i \(0.700243\pi\)
\(488\) 0 0
\(489\) 0 0
\(490\) 0 0
\(491\) − 14.4107i − 0.650344i −0.945655 0.325172i \(-0.894578\pi\)
0.945655 0.325172i \(-0.105422\pi\)
\(492\) 0 0
\(493\) 8.73606i 0.393452i
\(494\) 0 0
\(495\) 0 0
\(496\) 0 0
\(497\) 0 0
\(498\) 0 0
\(499\) − 17.3183i − 0.775272i −0.921812 0.387636i \(-0.873292\pi\)
0.921812 0.387636i \(-0.126708\pi\)
\(500\) 0 0
\(501\) 0 0
\(502\) 0 0
\(503\) −37.6569 −1.67904 −0.839518 0.543332i \(-0.817163\pi\)
−0.839518 + 0.543332i \(0.817163\pi\)
\(504\) 0 0
\(505\) 12.7279 0.566385
\(506\) 0 0
\(507\) 0 0
\(508\) 0 0
\(509\) − 10.5069i − 0.465710i −0.972511 0.232855i \(-0.925193\pi\)
0.972511 0.232855i \(-0.0748068\pi\)
\(510\) 0 0
\(511\) 0 0
\(512\) 0 0
\(513\) 0 0
\(514\) 0 0
\(515\) 9.18440i 0.404713i
\(516\) 0 0
\(517\) 20.9050i 0.919401i
\(518\) 0 0
\(519\) 0 0
\(520\) 0 0
\(521\) − 1.66205i − 0.0728157i −0.999337 0.0364079i \(-0.988408\pi\)
0.999337 0.0364079i \(-0.0115915\pi\)
\(522\) 0 0
\(523\) 10.6274 0.464704 0.232352 0.972632i \(-0.425358\pi\)
0.232352 + 0.972632i \(0.425358\pi\)
\(524\) 0 0
\(525\) 0 0
\(526\) 0 0
\(527\) − 5.59767i − 0.243838i
\(528\) 0 0
\(529\) −4.31371 −0.187553
\(530\) 0 0
\(531\) 0 0
\(532\) 0 0
\(533\) 1.89949 0.0822763
\(534\) 0 0
\(535\) −3.02944 −0.130974
\(536\) 0 0
\(537\) 0 0
\(538\) 0 0
\(539\) 0 0
\(540\) 0 0
\(541\) −12.0000 −0.515920 −0.257960 0.966156i \(-0.583050\pi\)
−0.257960 + 0.966156i \(0.583050\pi\)
\(542\) 0 0
\(543\) 0 0
\(544\) 0 0
\(545\) 3.61859i 0.155004i
\(546\) 0 0
\(547\) 30.8322i 1.31829i 0.752015 + 0.659146i \(0.229082\pi\)
−0.752015 + 0.659146i \(0.770918\pi\)
\(548\) 0 0
\(549\) 0 0
\(550\) 0 0
\(551\) −14.6274 −0.623149
\(552\) 0 0
\(553\) 0 0
\(554\) 0 0
\(555\) 0 0
\(556\) 0 0
\(557\) −21.3137 −0.903091 −0.451545 0.892248i \(-0.649127\pi\)
−0.451545 + 0.892248i \(0.649127\pi\)
\(558\) 0 0
\(559\) 2.34315 0.0991045
\(560\) 0 0
\(561\) 0 0
\(562\) 0 0
\(563\) −32.9706 −1.38954 −0.694772 0.719230i \(-0.744495\pi\)
−0.694772 + 0.719230i \(0.744495\pi\)
\(564\) 0 0
\(565\) − 12.9887i − 0.546439i
\(566\) 0 0
\(567\) 0 0
\(568\) 0 0
\(569\) −2.58579 −0.108402 −0.0542009 0.998530i \(-0.517261\pi\)
−0.0542009 + 0.998530i \(0.517261\pi\)
\(570\) 0 0
\(571\) 22.1731i 0.927916i 0.885857 + 0.463958i \(0.153571\pi\)
−0.885857 + 0.463958i \(0.846429\pi\)
\(572\) 0 0
\(573\) 0 0
\(574\) 0 0
\(575\) − 23.0698i − 0.962077i
\(576\) 0 0
\(577\) − 12.9343i − 0.538463i −0.963076 0.269231i \(-0.913230\pi\)
0.963076 0.269231i \(-0.0867696\pi\)
\(578\) 0 0
\(579\) 0 0
\(580\) 0 0
\(581\) 0 0
\(582\) 0 0
\(583\) − 3.58673i − 0.148547i
\(584\) 0 0
\(585\) 0 0
\(586\) 0 0
\(587\) 8.97056 0.370255 0.185127 0.982715i \(-0.440730\pi\)
0.185127 + 0.982715i \(0.440730\pi\)
\(588\) 0 0
\(589\) 9.37258 0.386191
\(590\) 0 0
\(591\) 0 0
\(592\) 0 0
\(593\) 23.1242i 0.949596i 0.880095 + 0.474798i \(0.157479\pi\)
−0.880095 + 0.474798i \(0.842521\pi\)
\(594\) 0 0
\(595\) 0 0
\(596\) 0 0
\(597\) 0 0
\(598\) 0 0
\(599\) − 9.55582i − 0.390440i −0.980759 0.195220i \(-0.937458\pi\)
0.980759 0.195220i \(-0.0625421\pi\)
\(600\) 0 0
\(601\) − 44.1061i − 1.79913i −0.436791 0.899563i \(-0.643885\pi\)
0.436791 0.899563i \(-0.356115\pi\)
\(602\) 0 0
\(603\) 0 0
\(604\) 0 0
\(605\) − 4.83230i − 0.196461i
\(606\) 0 0
\(607\) 43.3137 1.75805 0.879025 0.476776i \(-0.158195\pi\)
0.879025 + 0.476776i \(0.158195\pi\)
\(608\) 0 0
\(609\) 0 0
\(610\) 0 0
\(611\) 3.06147i 0.123854i
\(612\) 0 0
\(613\) −4.24264 −0.171359 −0.0856793 0.996323i \(-0.527306\pi\)
−0.0856793 + 0.996323i \(0.527306\pi\)
\(614\) 0 0
\(615\) 0 0
\(616\) 0 0
\(617\) 3.55635 0.143173 0.0715866 0.997434i \(-0.477194\pi\)
0.0715866 + 0.997434i \(0.477194\pi\)
\(618\) 0 0
\(619\) −30.3431 −1.21959 −0.609797 0.792558i \(-0.708749\pi\)
−0.609797 + 0.792558i \(0.708749\pi\)
\(620\) 0 0
\(621\) 0 0
\(622\) 0 0
\(623\) 0 0
\(624\) 0 0
\(625\) 16.5563 0.662254
\(626\) 0 0
\(627\) 0 0
\(628\) 0 0
\(629\) − 4.77791i − 0.190508i
\(630\) 0 0
\(631\) − 6.12293i − 0.243750i −0.992545 0.121875i \(-0.961109\pi\)
0.992545 0.121875i \(-0.0388907\pi\)
\(632\) 0 0
\(633\) 0 0
\(634\) 0 0
\(635\) −10.3431 −0.410455
\(636\) 0 0
\(637\) 0 0
\(638\) 0 0
\(639\) 0 0
\(640\) 0 0
\(641\) 38.8701 1.53527 0.767637 0.640884i \(-0.221432\pi\)
0.767637 + 0.640884i \(0.221432\pi\)
\(642\) 0 0
\(643\) 21.6569 0.854063 0.427031 0.904237i \(-0.359559\pi\)
0.427031 + 0.904237i \(0.359559\pi\)
\(644\) 0 0
\(645\) 0 0
\(646\) 0 0
\(647\) 12.9706 0.509925 0.254963 0.966951i \(-0.417937\pi\)
0.254963 + 0.966951i \(0.417937\pi\)
\(648\) 0 0
\(649\) 12.2459i 0.480692i
\(650\) 0 0
\(651\) 0 0
\(652\) 0 0
\(653\) −35.0711 −1.37244 −0.686218 0.727395i \(-0.740731\pi\)
−0.686218 + 0.727395i \(0.740731\pi\)
\(654\) 0 0
\(655\) − 11.7206i − 0.457962i
\(656\) 0 0
\(657\) 0 0
\(658\) 0 0
\(659\) − 33.5223i − 1.30584i −0.757425 0.652922i \(-0.773543\pi\)
0.757425 0.652922i \(-0.226457\pi\)
\(660\) 0 0
\(661\) 33.7624i 1.31321i 0.754237 + 0.656603i \(0.228007\pi\)
−0.754237 + 0.656603i \(0.771993\pi\)
\(662\) 0 0
\(663\) 0 0
\(664\) 0 0
\(665\) 0 0
\(666\) 0 0
\(667\) − 13.5140i − 0.523263i
\(668\) 0 0
\(669\) 0 0
\(670\) 0 0
\(671\) −15.3137 −0.591179
\(672\) 0 0
\(673\) −7.07107 −0.272570 −0.136285 0.990670i \(-0.543516\pi\)
−0.136285 + 0.990670i \(0.543516\pi\)
\(674\) 0 0
\(675\) 0 0
\(676\) 0 0
\(677\) − 3.82683i − 0.147077i −0.997292 0.0735386i \(-0.976571\pi\)
0.997292 0.0735386i \(-0.0234292\pi\)
\(678\) 0 0
\(679\) 0 0
\(680\) 0 0
\(681\) 0 0
\(682\) 0 0
\(683\) − 21.8017i − 0.834219i −0.908856 0.417109i \(-0.863043\pi\)
0.908856 0.417109i \(-0.136957\pi\)
\(684\) 0 0
\(685\) − 10.2668i − 0.392274i
\(686\) 0 0
\(687\) 0 0
\(688\) 0 0
\(689\) − 0.525265i − 0.0200110i
\(690\) 0 0
\(691\) 1.65685 0.0630297 0.0315149 0.999503i \(-0.489967\pi\)
0.0315149 + 0.999503i \(0.489967\pi\)
\(692\) 0 0
\(693\) 0 0
\(694\) 0 0
\(695\) 13.5140i 0.512614i
\(696\) 0 0
\(697\) 20.2426 0.766745
\(698\) 0 0
\(699\) 0 0
\(700\) 0 0
\(701\) −6.38478 −0.241150 −0.120575 0.992704i \(-0.538474\pi\)
−0.120575 + 0.992704i \(0.538474\pi\)
\(702\) 0 0
\(703\) 8.00000 0.301726
\(704\) 0 0
\(705\) 0 0
\(706\) 0 0
\(707\) 0 0
\(708\) 0 0
\(709\) −33.8995 −1.27312 −0.636561 0.771226i \(-0.719644\pi\)
−0.636561 + 0.771226i \(0.719644\pi\)
\(710\) 0 0
\(711\) 0 0
\(712\) 0 0
\(713\) 8.65914i 0.324287i
\(714\) 0 0
\(715\) 0.525265i 0.0196438i
\(716\) 0 0
\(717\) 0 0
\(718\) 0 0
\(719\) 20.2843 0.756476 0.378238 0.925708i \(-0.376530\pi\)
0.378238 + 0.925708i \(0.376530\pi\)
\(720\) 0 0
\(721\) 0 0
\(722\) 0 0
\(723\) 0 0
\(724\) 0 0
\(725\) 11.4142 0.423913
\(726\) 0 0
\(727\) −12.9706 −0.481052 −0.240526 0.970643i \(-0.577320\pi\)
−0.240526 + 0.970643i \(0.577320\pi\)
\(728\) 0 0
\(729\) 0 0
\(730\) 0 0
\(731\) 24.9706 0.923570
\(732\) 0 0
\(733\) − 51.1257i − 1.88837i −0.329413 0.944186i \(-0.606851\pi\)
0.329413 0.944186i \(-0.393149\pi\)
\(734\) 0 0
\(735\) 0 0
\(736\) 0 0
\(737\) 25.3726 0.934611
\(738\) 0 0
\(739\) − 41.8100i − 1.53801i −0.639245 0.769003i \(-0.720753\pi\)
0.639245 0.769003i \(-0.279247\pi\)
\(740\) 0 0
\(741\) 0 0
\(742\) 0 0
\(743\) 29.1927i 1.07098i 0.844542 + 0.535489i \(0.179873\pi\)
−0.844542 + 0.535489i \(0.820127\pi\)
\(744\) 0 0
\(745\) − 9.92724i − 0.363706i
\(746\) 0 0
\(747\) 0 0
\(748\) 0 0
\(749\) 0 0
\(750\) 0 0
\(751\) 28.2960i 1.03254i 0.856427 + 0.516269i \(0.172679\pi\)
−0.856427 + 0.516269i \(0.827321\pi\)
\(752\) 0 0
\(753\) 0 0
\(754\) 0 0
\(755\) 4.68629 0.170552
\(756\) 0 0
\(757\) −10.3848 −0.377441 −0.188721 0.982031i \(-0.560434\pi\)
−0.188721 + 0.982031i \(0.560434\pi\)
\(758\) 0 0
\(759\) 0 0
\(760\) 0 0
\(761\) 12.5629i 0.455405i 0.973731 + 0.227702i \(0.0731213\pi\)
−0.973731 + 0.227702i \(0.926879\pi\)
\(762\) 0 0
\(763\) 0 0
\(764\) 0 0
\(765\) 0 0
\(766\) 0 0
\(767\) 1.79337i 0.0647547i
\(768\) 0 0
\(769\) 40.5963i 1.46394i 0.681337 + 0.731970i \(0.261399\pi\)
−0.681337 + 0.731970i \(0.738601\pi\)
\(770\) 0 0
\(771\) 0 0
\(772\) 0 0
\(773\) 8.68167i 0.312258i 0.987737 + 0.156129i \(0.0499015\pi\)
−0.987737 + 0.156129i \(0.950098\pi\)
\(774\) 0 0
\(775\) −7.31371 −0.262716
\(776\) 0 0
\(777\) 0 0
\(778\) 0 0
\(779\) 33.8937i 1.21437i
\(780\) 0 0
\(781\) −33.9411 −1.21451
\(782\) 0 0
\(783\) 0 0
\(784\) 0 0
\(785\) 11.4142 0.407391
\(786\) 0 0
\(787\) 23.3137 0.831044 0.415522 0.909583i \(-0.363599\pi\)
0.415522 + 0.909583i \(0.363599\pi\)
\(788\) 0 0
\(789\) 0 0
\(790\) 0 0
\(791\) 0 0
\(792\) 0 0
\(793\) −2.24264 −0.0796385
\(794\) 0 0
\(795\) 0 0
\(796\) 0 0
\(797\) 2.48181i 0.0879102i 0.999034 + 0.0439551i \(0.0139959\pi\)
−0.999034 + 0.0439551i \(0.986004\pi\)
\(798\) 0 0
\(799\) 32.6256i 1.15421i
\(800\) 0 0
\(801\) 0 0
\(802\) 0 0
\(803\) −14.3431 −0.506159
\(804\) 0 0
\(805\) 0 0
\(806\) 0 0
\(807\) 0 0
\(808\) 0 0
\(809\) 10.0000 0.351581 0.175791 0.984428i \(-0.443752\pi\)
0.175791 + 0.984428i \(0.443752\pi\)
\(810\) 0 0
\(811\) 1.65685 0.0581800 0.0290900 0.999577i \(-0.490739\pi\)
0.0290900 + 0.999577i \(0.490739\pi\)
\(812\) 0 0
\(813\) 0 0
\(814\) 0 0
\(815\) 4.68629 0.164154
\(816\) 0 0
\(817\) 41.8100i 1.46275i
\(818\) 0 0
\(819\) 0 0
\(820\) 0 0
\(821\) 25.3137 0.883455 0.441727 0.897149i \(-0.354366\pi\)
0.441727 + 0.897149i \(0.354366\pi\)
\(822\) 0 0
\(823\) 34.4190i 1.19977i 0.800086 + 0.599885i \(0.204787\pi\)
−0.800086 + 0.599885i \(0.795213\pi\)
\(824\) 0 0
\(825\) 0 0
\(826\) 0 0
\(827\) 12.6173i 0.438746i 0.975641 + 0.219373i \(0.0704012\pi\)
−0.975641 + 0.219373i \(0.929599\pi\)
\(828\) 0 0
\(829\) 21.7473i 0.755315i 0.925945 + 0.377657i \(0.123270\pi\)
−0.925945 + 0.377657i \(0.876730\pi\)
\(830\) 0 0
\(831\) 0 0
\(832\) 0 0
\(833\) 0 0
\(834\) 0 0
\(835\) 7.39104i 0.255777i
\(836\) 0 0
\(837\) 0 0
\(838\) 0 0
\(839\) 29.9411 1.03368 0.516841 0.856081i \(-0.327108\pi\)
0.516841 + 0.856081i \(0.327108\pi\)
\(840\) 0 0
\(841\) −22.3137 −0.769438
\(842\) 0 0
\(843\) 0 0
\(844\) 0 0
\(845\) − 9.87285i − 0.339636i
\(846\) 0 0
\(847\) 0 0
\(848\) 0 0
\(849\) 0 0
\(850\) 0 0
\(851\) 7.39104i 0.253361i
\(852\) 0 0
\(853\) − 5.46635i − 0.187164i −0.995612 0.0935822i \(-0.970168\pi\)
0.995612 0.0935822i \(-0.0298318\pi\)
\(854\) 0 0
\(855\) 0 0
\(856\) 0 0
\(857\) − 47.6159i − 1.62653i −0.581894 0.813264i \(-0.697688\pi\)
0.581894 0.813264i \(-0.302312\pi\)
\(858\) 0 0
\(859\) −38.6274 −1.31795 −0.658975 0.752165i \(-0.729010\pi\)
−0.658975 + 0.752165i \(0.729010\pi\)
\(860\) 0 0
\(861\) 0 0
\(862\) 0 0
\(863\) − 31.7289i − 1.08007i −0.841644 0.540033i \(-0.818412\pi\)
0.841644 0.540033i \(-0.181588\pi\)
\(864\) 0 0
\(865\) 7.21320 0.245256
\(866\) 0 0
\(867\) 0 0
\(868\) 0 0
\(869\) −29.2548 −0.992402
\(870\) 0 0
\(871\) 3.71573 0.125903
\(872\) 0 0
\(873\) 0 0
\(874\) 0 0
\(875\) 0 0
\(876\) 0 0
\(877\) 36.2426 1.22383 0.611914 0.790925i \(-0.290400\pi\)
0.611914 + 0.790925i \(0.290400\pi\)
\(878\) 0 0
\(879\) 0 0
\(880\) 0 0
\(881\) 50.7862i 1.71103i 0.517778 + 0.855515i \(0.326759\pi\)
−0.517778 + 0.855515i \(0.673241\pi\)
\(882\) 0 0
\(883\) − 16.5754i − 0.557808i −0.960319 0.278904i \(-0.910029\pi\)
0.960319 0.278904i \(-0.0899711\pi\)
\(884\) 0 0
\(885\) 0 0
\(886\) 0 0
\(887\) 24.6863 0.828885 0.414442 0.910076i \(-0.363977\pi\)
0.414442 + 0.910076i \(0.363977\pi\)
\(888\) 0 0
\(889\) 0 0
\(890\) 0 0
\(891\) 0 0
\(892\) 0 0
\(893\) −54.6274 −1.82804
\(894\) 0 0
\(895\) 15.3137 0.511881
\(896\) 0 0
\(897\) 0 0
\(898\) 0 0
\(899\) −4.28427 −0.142888
\(900\) 0 0
\(901\) − 5.59767i − 0.186485i
\(902\) 0 0
\(903\) 0 0
\(904\) 0 0
\(905\) −12.3848 −0.411684
\(906\) 0 0
\(907\) 1.79337i 0.0595477i 0.999557 + 0.0297739i \(0.00947872\pi\)
−0.999557 + 0.0297739i \(0.990521\pi\)
\(908\) 0 0
\(909\) 0 0
\(910\) 0 0
\(911\) 26.6565i 0.883170i 0.897219 + 0.441585i \(0.145584\pi\)
−0.897219 + 0.441585i \(0.854416\pi\)
\(912\) 0 0
\(913\) 13.7315i 0.454448i
\(914\) 0 0
\(915\) 0 0
\(916\) 0 0
\(917\) 0 0
\(918\) 0 0
\(919\) − 29.0389i − 0.957904i −0.877841 0.478952i \(-0.841017\pi\)
0.877841 0.478952i \(-0.158983\pi\)
\(920\) 0 0
\(921\) 0 0
\(922\) 0 0
\(923\) −4.97056 −0.163608
\(924\) 0 0
\(925\) −6.24264 −0.205257
\(926\) 0 0
\(927\) 0 0
\(928\) 0 0
\(929\) − 13.8310i − 0.453780i −0.973920 0.226890i \(-0.927144\pi\)
0.973920 0.226890i \(-0.0728558\pi\)
\(930\) 0 0
\(931\) 0 0
\(932\) 0 0
\(933\) 0 0
\(934\) 0 0
\(935\) 5.59767i 0.183063i
\(936\) 0 0
\(937\) − 3.82683i − 0.125017i −0.998044 0.0625086i \(-0.980090\pi\)
0.998044 0.0625086i \(-0.0199101\pi\)
\(938\) 0 0
\(939\) 0 0
\(940\) 0 0
\(941\) 11.0322i 0.359638i 0.983700 + 0.179819i \(0.0575512\pi\)
−0.983700 + 0.179819i \(0.942449\pi\)
\(942\) 0 0
\(943\) −31.3137 −1.01971
\(944\) 0 0
\(945\) 0 0
\(946\) 0 0
\(947\) − 38.3771i − 1.24709i −0.781788 0.623545i \(-0.785692\pi\)
0.781788 0.623545i \(-0.214308\pi\)
\(948\) 0 0
\(949\) −2.10051 −0.0681853
\(950\) 0 0
\(951\) 0 0
\(952\) 0 0
\(953\) −38.0000 −1.23094 −0.615470 0.788160i \(-0.711034\pi\)
−0.615470 + 0.788160i \(0.711034\pi\)
\(954\) 0 0
\(955\) −10.6274 −0.343895
\(956\) 0 0
\(957\) 0 0
\(958\) 0 0
\(959\) 0 0
\(960\) 0 0
\(961\) −28.2548 −0.911446
\(962\) 0 0
\(963\) 0 0
\(964\) 0 0
\(965\) − 2.53620i − 0.0816433i
\(966\) 0 0
\(967\) − 49.9439i − 1.60609i −0.595920 0.803044i \(-0.703213\pi\)
0.595920 0.803044i \(-0.296787\pi\)
\(968\) 0 0
\(969\) 0 0
\(970\) 0 0
\(971\) 11.0294 0.353951 0.176976 0.984215i \(-0.443369\pi\)
0.176976 + 0.984215i \(0.443369\pi\)
\(972\) 0 0
\(973\) 0 0
\(974\) 0 0
\(975\) 0 0
\(976\) 0 0
\(977\) 42.1838 1.34958 0.674789 0.738011i \(-0.264235\pi\)
0.674789 + 0.738011i \(0.264235\pi\)
\(978\) 0 0
\(979\) −24.6863 −0.788977
\(980\) 0 0
\(981\) 0 0
\(982\) 0 0
\(983\) 23.5980 0.752659 0.376329 0.926486i \(-0.377186\pi\)
0.376329 + 0.926486i \(0.377186\pi\)
\(984\) 0 0
\(985\) − 19.3743i − 0.617316i
\(986\) 0 0
\(987\) 0 0
\(988\) 0 0
\(989\) −38.6274 −1.22828
\(990\) 0 0
\(991\) − 15.3073i − 0.486254i −0.969995 0.243127i \(-0.921827\pi\)
0.969995 0.243127i \(-0.0781731\pi\)
\(992\) 0 0
\(993\) 0 0
\(994\) 0 0
\(995\) 4.32957i 0.137257i
\(996\) 0 0
\(997\) − 48.8071i − 1.54574i −0.634567 0.772868i \(-0.718821\pi\)
0.634567 0.772868i \(-0.281179\pi\)
\(998\) 0 0
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 7056.2.b.u.1567.2 4
3.2 odd 2 2352.2.b.i.1567.3 yes 4
4.3 odd 2 7056.2.b.t.1567.2 4
7.6 odd 2 7056.2.b.t.1567.3 4
12.11 even 2 2352.2.b.j.1567.3 yes 4
21.2 odd 6 2352.2.bl.s.31.3 8
21.5 even 6 2352.2.bl.p.31.2 8
21.11 odd 6 2352.2.bl.s.607.2 8
21.17 even 6 2352.2.bl.p.607.3 8
21.20 even 2 2352.2.b.j.1567.2 yes 4
28.27 even 2 inner 7056.2.b.u.1567.3 4
84.11 even 6 2352.2.bl.p.607.2 8
84.23 even 6 2352.2.bl.p.31.3 8
84.47 odd 6 2352.2.bl.s.31.2 8
84.59 odd 6 2352.2.bl.s.607.3 8
84.83 odd 2 2352.2.b.i.1567.2 4
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
2352.2.b.i.1567.2 4 84.83 odd 2
2352.2.b.i.1567.3 yes 4 3.2 odd 2
2352.2.b.j.1567.2 yes 4 21.20 even 2
2352.2.b.j.1567.3 yes 4 12.11 even 2
2352.2.bl.p.31.2 8 21.5 even 6
2352.2.bl.p.31.3 8 84.23 even 6
2352.2.bl.p.607.2 8 84.11 even 6
2352.2.bl.p.607.3 8 21.17 even 6
2352.2.bl.s.31.2 8 84.47 odd 6
2352.2.bl.s.31.3 8 21.2 odd 6
2352.2.bl.s.607.2 8 21.11 odd 6
2352.2.bl.s.607.3 8 84.59 odd 6
7056.2.b.t.1567.2 4 4.3 odd 2
7056.2.b.t.1567.3 4 7.6 odd 2
7056.2.b.u.1567.2 4 1.1 even 1 trivial
7056.2.b.u.1567.3 4 28.27 even 2 inner