Properties

Label 712.1.s.a.275.1
Level $712$
Weight $1$
Character 712.275
Analytic conductor $0.355$
Analytic rank $0$
Dimension $10$
Projective image $D_{11}$
CM discriminant -8
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [712,1,Mod(67,712)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(712, base_ring=CyclotomicField(22))
 
chi = DirichletCharacter(H, H._module([11, 11, 14]))
 
N = Newforms(chi, 1, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("712.67");
 
S:= CuspForms(chi, 1);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 712 = 2^{3} \cdot 89 \)
Weight: \( k \) \(=\) \( 1 \)
Character orbit: \([\chi]\) \(=\) 712.s (of order \(22\), degree \(10\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(0.355334288995\)
Analytic rank: \(0\)
Dimension: \(10\)
Coefficient field: \(\Q(\zeta_{22})\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{10} - x^{9} + x^{8} - x^{7} + x^{6} - x^{5} + x^{4} - x^{3} + x^{2} - x + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2]\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Projective image: \(D_{11}\)
Projective field: Galois closure of \(\mathbb{Q}[x]/(x^{11} - \cdots)\)

Embedding invariants

Embedding label 275.1
Root \(0.142315 - 0.989821i\) of defining polynomial
Character \(\chi\) \(=\) 712.275
Dual form 712.1.s.a.523.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-0.654861 + 0.755750i) q^{2} +(-0.118239 + 0.822373i) q^{3} +(-0.142315 - 0.989821i) q^{4} +(-0.544078 - 0.627899i) q^{6} +(0.841254 + 0.540641i) q^{8} +(0.297176 + 0.0872586i) q^{9} +(1.41542 - 0.909632i) q^{11} +0.830830 q^{12} +(-0.959493 + 0.281733i) q^{16} +(0.857685 + 0.989821i) q^{17} +(-0.260554 + 0.167448i) q^{18} +(-1.61435 - 0.474017i) q^{19} +(-0.239446 + 1.66538i) q^{22} +(-0.544078 + 0.627899i) q^{24} +(0.415415 + 0.909632i) q^{25} +(-0.452036 + 0.989821i) q^{27} +(0.415415 - 0.909632i) q^{32} +(0.580699 + 1.27155i) q^{33} -1.30972 q^{34} +(0.0440780 - 0.306569i) q^{36} +(1.41542 - 0.909632i) q^{38} +(-0.284630 - 1.97964i) q^{41} +(-1.10181 + 0.708089i) q^{43} +(-1.10181 - 1.27155i) q^{44} +(-0.118239 - 0.822373i) q^{48} +(0.415415 + 0.909632i) q^{49} +(-0.959493 - 0.281733i) q^{50} +(-0.915415 + 0.588302i) q^{51} +(-0.452036 - 0.989821i) q^{54} +(0.580699 - 1.27155i) q^{57} +(0.186393 + 1.29639i) q^{59} +(0.415415 + 0.909632i) q^{64} +(-1.34125 - 0.393828i) q^{66} +(0.273100 - 1.89945i) q^{67} +(0.857685 - 0.989821i) q^{68} +(0.202824 + 0.234072i) q^{72} +(-0.797176 + 0.234072i) q^{73} +(-0.797176 + 0.234072i) q^{75} +(-0.239446 + 1.66538i) q^{76} +(-0.500000 - 0.321330i) q^{81} +(1.68251 + 1.08128i) q^{82} +(0.186393 + 0.215109i) q^{83} +(0.186393 - 1.29639i) q^{86} +1.68251 q^{88} +(0.415415 - 0.909632i) q^{89} +(0.698939 + 0.449181i) q^{96} +(-1.61435 - 1.03748i) q^{97} +(-0.959493 - 0.281733i) q^{98} +(0.500000 - 0.146813i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 10 q - q^{2} - 2 q^{3} - q^{4} - 2 q^{6} - q^{8} - 3 q^{9} + 9 q^{11} - 2 q^{12} - q^{16} + 9 q^{17} - 3 q^{18} - 2 q^{19} - 2 q^{22} - 2 q^{24} - q^{25} + 7 q^{27} - q^{32} - 4 q^{33} - 2 q^{34}+ \cdots + 5 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/712\mathbb{Z}\right)^\times\).

\(n\) \(357\) \(535\) \(537\)
\(\chi(n)\) \(-1\) \(-1\) \(e\left(\frac{6}{11}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −0.654861 + 0.755750i −0.654861 + 0.755750i
\(3\) −0.118239 + 0.822373i −0.118239 + 0.822373i 0.841254 + 0.540641i \(0.181818\pi\)
−0.959493 + 0.281733i \(0.909091\pi\)
\(4\) −0.142315 0.989821i −0.142315 0.989821i
\(5\) 0 0 −0.841254 0.540641i \(-0.818182\pi\)
0.841254 + 0.540641i \(0.181818\pi\)
\(6\) −0.544078 0.627899i −0.544078 0.627899i
\(7\) 0 0 −0.841254 0.540641i \(-0.818182\pi\)
0.841254 + 0.540641i \(0.181818\pi\)
\(8\) 0.841254 + 0.540641i 0.841254 + 0.540641i
\(9\) 0.297176 + 0.0872586i 0.297176 + 0.0872586i
\(10\) 0 0
\(11\) 1.41542 0.909632i 1.41542 0.909632i 0.415415 0.909632i \(-0.363636\pi\)
1.00000 \(0\)
\(12\) 0.830830 0.830830
\(13\) 0 0 0.142315 0.989821i \(-0.454545\pi\)
−0.142315 + 0.989821i \(0.545455\pi\)
\(14\) 0 0
\(15\) 0 0
\(16\) −0.959493 + 0.281733i −0.959493 + 0.281733i
\(17\) 0.857685 + 0.989821i 0.857685 + 0.989821i 1.00000 \(0\)
−0.142315 + 0.989821i \(0.545455\pi\)
\(18\) −0.260554 + 0.167448i −0.260554 + 0.167448i
\(19\) −1.61435 0.474017i −1.61435 0.474017i −0.654861 0.755750i \(-0.727273\pi\)
−0.959493 + 0.281733i \(0.909091\pi\)
\(20\) 0 0
\(21\) 0 0
\(22\) −0.239446 + 1.66538i −0.239446 + 1.66538i
\(23\) 0 0 −0.959493 0.281733i \(-0.909091\pi\)
0.959493 + 0.281733i \(0.0909091\pi\)
\(24\) −0.544078 + 0.627899i −0.544078 + 0.627899i
\(25\) 0.415415 + 0.909632i 0.415415 + 0.909632i
\(26\) 0 0
\(27\) −0.452036 + 0.989821i −0.452036 + 0.989821i
\(28\) 0 0
\(29\) 0 0 −0.841254 0.540641i \(-0.818182\pi\)
0.841254 + 0.540641i \(0.181818\pi\)
\(30\) 0 0
\(31\) 0 0 0.959493 0.281733i \(-0.0909091\pi\)
−0.959493 + 0.281733i \(0.909091\pi\)
\(32\) 0.415415 0.909632i 0.415415 0.909632i
\(33\) 0.580699 + 1.27155i 0.580699 + 1.27155i
\(34\) −1.30972 −1.30972
\(35\) 0 0
\(36\) 0.0440780 0.306569i 0.0440780 0.306569i
\(37\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(38\) 1.41542 0.909632i 1.41542 0.909632i
\(39\) 0 0
\(40\) 0 0
\(41\) −0.284630 1.97964i −0.284630 1.97964i −0.142315 0.989821i \(-0.545455\pi\)
−0.142315 0.989821i \(-0.545455\pi\)
\(42\) 0 0
\(43\) −1.10181 + 0.708089i −1.10181 + 0.708089i −0.959493 0.281733i \(-0.909091\pi\)
−0.142315 + 0.989821i \(0.545455\pi\)
\(44\) −1.10181 1.27155i −1.10181 1.27155i
\(45\) 0 0
\(46\) 0 0
\(47\) 0 0 −0.142315 0.989821i \(-0.545455\pi\)
0.142315 + 0.989821i \(0.454545\pi\)
\(48\) −0.118239 0.822373i −0.118239 0.822373i
\(49\) 0.415415 + 0.909632i 0.415415 + 0.909632i
\(50\) −0.959493 0.281733i −0.959493 0.281733i
\(51\) −0.915415 + 0.588302i −0.915415 + 0.588302i
\(52\) 0 0
\(53\) 0 0 0.142315 0.989821i \(-0.454545\pi\)
−0.142315 + 0.989821i \(0.545455\pi\)
\(54\) −0.452036 0.989821i −0.452036 0.989821i
\(55\) 0 0
\(56\) 0 0
\(57\) 0.580699 1.27155i 0.580699 1.27155i
\(58\) 0 0
\(59\) 0.186393 + 1.29639i 0.186393 + 1.29639i 0.841254 + 0.540641i \(0.181818\pi\)
−0.654861 + 0.755750i \(0.727273\pi\)
\(60\) 0 0
\(61\) 0 0 0.415415 0.909632i \(-0.363636\pi\)
−0.415415 + 0.909632i \(0.636364\pi\)
\(62\) 0 0
\(63\) 0 0
\(64\) 0.415415 + 0.909632i 0.415415 + 0.909632i
\(65\) 0 0
\(66\) −1.34125 0.393828i −1.34125 0.393828i
\(67\) 0.273100 1.89945i 0.273100 1.89945i −0.142315 0.989821i \(-0.545455\pi\)
0.415415 0.909632i \(-0.363636\pi\)
\(68\) 0.857685 0.989821i 0.857685 0.989821i
\(69\) 0 0
\(70\) 0 0
\(71\) 0 0 0.841254 0.540641i \(-0.181818\pi\)
−0.841254 + 0.540641i \(0.818182\pi\)
\(72\) 0.202824 + 0.234072i 0.202824 + 0.234072i
\(73\) −0.797176 + 0.234072i −0.797176 + 0.234072i −0.654861 0.755750i \(-0.727273\pi\)
−0.142315 + 0.989821i \(0.545455\pi\)
\(74\) 0 0
\(75\) −0.797176 + 0.234072i −0.797176 + 0.234072i
\(76\) −0.239446 + 1.66538i −0.239446 + 1.66538i
\(77\) 0 0
\(78\) 0 0
\(79\) 0 0 0.959493 0.281733i \(-0.0909091\pi\)
−0.959493 + 0.281733i \(0.909091\pi\)
\(80\) 0 0
\(81\) −0.500000 0.321330i −0.500000 0.321330i
\(82\) 1.68251 + 1.08128i 1.68251 + 1.08128i
\(83\) 0.186393 + 0.215109i 0.186393 + 0.215109i 0.841254 0.540641i \(-0.181818\pi\)
−0.654861 + 0.755750i \(0.727273\pi\)
\(84\) 0 0
\(85\) 0 0
\(86\) 0.186393 1.29639i 0.186393 1.29639i
\(87\) 0 0
\(88\) 1.68251 1.68251
\(89\) 0.415415 0.909632i 0.415415 0.909632i
\(90\) 0 0
\(91\) 0 0
\(92\) 0 0
\(93\) 0 0
\(94\) 0 0
\(95\) 0 0
\(96\) 0.698939 + 0.449181i 0.698939 + 0.449181i
\(97\) −1.61435 1.03748i −1.61435 1.03748i −0.959493 0.281733i \(-0.909091\pi\)
−0.654861 0.755750i \(-0.727273\pi\)
\(98\) −0.959493 0.281733i −0.959493 0.281733i
\(99\) 0.500000 0.146813i 0.500000 0.146813i
\(100\) 0.841254 0.540641i 0.841254 0.540641i
\(101\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(102\) 0.154861 1.07708i 0.154861 1.07708i
\(103\) 0 0 0.959493 0.281733i \(-0.0909091\pi\)
−0.959493 + 0.281733i \(0.909091\pi\)
\(104\) 0 0
\(105\) 0 0
\(106\) 0 0
\(107\) 1.68251 1.08128i 1.68251 1.08128i 0.841254 0.540641i \(-0.181818\pi\)
0.841254 0.540641i \(-0.181818\pi\)
\(108\) 1.04408 + 0.306569i 1.04408 + 0.306569i
\(109\) 0 0 0.415415 0.909632i \(-0.363636\pi\)
−0.415415 + 0.909632i \(0.636364\pi\)
\(110\) 0 0
\(111\) 0 0
\(112\) 0 0
\(113\) 0.186393 0.215109i 0.186393 0.215109i −0.654861 0.755750i \(-0.727273\pi\)
0.841254 + 0.540641i \(0.181818\pi\)
\(114\) 0.580699 + 1.27155i 0.580699 + 1.27155i
\(115\) 0 0
\(116\) 0 0
\(117\) 0 0
\(118\) −1.10181 0.708089i −1.10181 0.708089i
\(119\) 0 0
\(120\) 0 0
\(121\) 0.760554 1.66538i 0.760554 1.66538i
\(122\) 0 0
\(123\) 1.66166 1.66166
\(124\) 0 0
\(125\) 0 0
\(126\) 0 0
\(127\) 0 0 0.841254 0.540641i \(-0.181818\pi\)
−0.841254 + 0.540641i \(0.818182\pi\)
\(128\) −0.959493 0.281733i −0.959493 0.281733i
\(129\) −0.452036 0.989821i −0.452036 0.989821i
\(130\) 0 0
\(131\) −0.118239 0.822373i −0.118239 0.822373i −0.959493 0.281733i \(-0.909091\pi\)
0.841254 0.540641i \(-0.181818\pi\)
\(132\) 1.17597 0.755750i 1.17597 0.755750i
\(133\) 0 0
\(134\) 1.25667 + 1.45027i 1.25667 + 1.45027i
\(135\) 0 0
\(136\) 0.186393 + 1.29639i 0.186393 + 1.29639i
\(137\) 0.186393 + 1.29639i 0.186393 + 1.29639i 0.841254 + 0.540641i \(0.181818\pi\)
−0.654861 + 0.755750i \(0.727273\pi\)
\(138\) 0 0
\(139\) −1.61435 0.474017i −1.61435 0.474017i −0.654861 0.755750i \(-0.727273\pi\)
−0.959493 + 0.281733i \(0.909091\pi\)
\(140\) 0 0
\(141\) 0 0
\(142\) 0 0
\(143\) 0 0
\(144\) −0.309721 −0.309721
\(145\) 0 0
\(146\) 0.345139 0.755750i 0.345139 0.755750i
\(147\) −0.797176 + 0.234072i −0.797176 + 0.234072i
\(148\) 0 0
\(149\) 0 0 −0.841254 0.540641i \(-0.818182\pi\)
0.841254 + 0.540641i \(0.181818\pi\)
\(150\) 0.345139 0.755750i 0.345139 0.755750i
\(151\) 0 0 0.415415 0.909632i \(-0.363636\pi\)
−0.415415 + 0.909632i \(0.636364\pi\)
\(152\) −1.10181 1.27155i −1.10181 1.27155i
\(153\) 0.168513 + 0.368991i 0.168513 + 0.368991i
\(154\) 0 0
\(155\) 0 0
\(156\) 0 0
\(157\) 0 0 0.654861 0.755750i \(-0.272727\pi\)
−0.654861 + 0.755750i \(0.727273\pi\)
\(158\) 0 0
\(159\) 0 0
\(160\) 0 0
\(161\) 0 0
\(162\) 0.570276 0.167448i 0.570276 0.167448i
\(163\) −0.544078 + 0.627899i −0.544078 + 0.627899i −0.959493 0.281733i \(-0.909091\pi\)
0.415415 + 0.909632i \(0.363636\pi\)
\(164\) −1.91899 + 0.563465i −1.91899 + 0.563465i
\(165\) 0 0
\(166\) −0.284630 −0.284630
\(167\) 0 0 0.841254 0.540641i \(-0.181818\pi\)
−0.841254 + 0.540641i \(0.818182\pi\)
\(168\) 0 0
\(169\) −0.959493 0.281733i −0.959493 0.281733i
\(170\) 0 0
\(171\) −0.438384 0.281733i −0.438384 0.281733i
\(172\) 0.857685 + 0.989821i 0.857685 + 0.989821i
\(173\) 0 0 −0.841254 0.540641i \(-0.818182\pi\)
0.841254 + 0.540641i \(0.181818\pi\)
\(174\) 0 0
\(175\) 0 0
\(176\) −1.10181 + 1.27155i −1.10181 + 1.27155i
\(177\) −1.08816 −1.08816
\(178\) 0.415415 + 0.909632i 0.415415 + 0.909632i
\(179\) −1.91899 −1.91899 −0.959493 0.281733i \(-0.909091\pi\)
−0.959493 + 0.281733i \(0.909091\pi\)
\(180\) 0 0
\(181\) 0 0 0.142315 0.989821i \(-0.454545\pi\)
−0.142315 + 0.989821i \(0.545455\pi\)
\(182\) 0 0
\(183\) 0 0
\(184\) 0 0
\(185\) 0 0
\(186\) 0 0
\(187\) 2.11435 + 0.620830i 2.11435 + 0.620830i
\(188\) 0 0
\(189\) 0 0
\(190\) 0 0
\(191\) 0 0 0.142315 0.989821i \(-0.454545\pi\)
−0.142315 + 0.989821i \(0.545455\pi\)
\(192\) −0.797176 + 0.234072i −0.797176 + 0.234072i
\(193\) 1.25667 1.45027i 1.25667 1.45027i 0.415415 0.909632i \(-0.363636\pi\)
0.841254 0.540641i \(-0.181818\pi\)
\(194\) 1.84125 0.540641i 1.84125 0.540641i
\(195\) 0 0
\(196\) 0.841254 0.540641i 0.841254 0.540641i
\(197\) 0 0 −0.959493 0.281733i \(-0.909091\pi\)
0.959493 + 0.281733i \(0.0909091\pi\)
\(198\) −0.216476 + 0.474017i −0.216476 + 0.474017i
\(199\) 0 0 0.654861 0.755750i \(-0.272727\pi\)
−0.654861 + 0.755750i \(0.727273\pi\)
\(200\) −0.142315 + 0.989821i −0.142315 + 0.989821i
\(201\) 1.52977 + 0.449181i 1.52977 + 0.449181i
\(202\) 0 0
\(203\) 0 0
\(204\) 0.712591 + 0.822373i 0.712591 + 0.822373i
\(205\) 0 0
\(206\) 0 0
\(207\) 0 0
\(208\) 0 0
\(209\) −2.71616 + 0.797537i −2.71616 + 0.797537i
\(210\) 0 0
\(211\) −0.544078 1.19136i −0.544078 1.19136i −0.959493 0.281733i \(-0.909091\pi\)
0.415415 0.909632i \(-0.363636\pi\)
\(212\) 0 0
\(213\) 0 0
\(214\) −0.284630 + 1.97964i −0.284630 + 1.97964i
\(215\) 0 0
\(216\) −0.915415 + 0.588302i −0.915415 + 0.588302i
\(217\) 0 0
\(218\) 0 0
\(219\) −0.0982369 0.683252i −0.0982369 0.683252i
\(220\) 0 0
\(221\) 0 0
\(222\) 0 0
\(223\) 0 0 −0.654861 0.755750i \(-0.727273\pi\)
0.654861 + 0.755750i \(0.272727\pi\)
\(224\) 0 0
\(225\) 0.0440780 + 0.306569i 0.0440780 + 0.306569i
\(226\) 0.0405070 + 0.281733i 0.0405070 + 0.281733i
\(227\) 0.345139 + 0.755750i 0.345139 + 0.755750i 1.00000 \(0\)
−0.654861 + 0.755750i \(0.727273\pi\)
\(228\) −1.34125 0.393828i −1.34125 0.393828i
\(229\) 0 0 0.841254 0.540641i \(-0.181818\pi\)
−0.841254 + 0.540641i \(0.818182\pi\)
\(230\) 0 0
\(231\) 0 0
\(232\) 0 0
\(233\) −0.284630 −0.284630 −0.142315 0.989821i \(-0.545455\pi\)
−0.142315 + 0.989821i \(0.545455\pi\)
\(234\) 0 0
\(235\) 0 0
\(236\) 1.25667 0.368991i 1.25667 0.368991i
\(237\) 0 0
\(238\) 0 0
\(239\) 0 0 0.415415 0.909632i \(-0.363636\pi\)
−0.415415 + 0.909632i \(0.636364\pi\)
\(240\) 0 0
\(241\) 0.186393 + 0.215109i 0.186393 + 0.215109i 0.841254 0.540641i \(-0.181818\pi\)
−0.654861 + 0.755750i \(0.727273\pi\)
\(242\) 0.760554 + 1.66538i 0.760554 + 1.66538i
\(243\) −0.389217 + 0.449181i −0.389217 + 0.449181i
\(244\) 0 0
\(245\) 0 0
\(246\) −1.08816 + 1.25580i −1.08816 + 1.25580i
\(247\) 0 0
\(248\) 0 0
\(249\) −0.198939 + 0.127850i −0.198939 + 0.127850i
\(250\) 0 0
\(251\) 0.273100 0.0801894i 0.273100 0.0801894i −0.142315 0.989821i \(-0.545455\pi\)
0.415415 + 0.909632i \(0.363636\pi\)
\(252\) 0 0
\(253\) 0 0
\(254\) 0 0
\(255\) 0 0
\(256\) 0.841254 0.540641i 0.841254 0.540641i
\(257\) −1.61435 + 0.474017i −1.61435 + 0.474017i −0.959493 0.281733i \(-0.909091\pi\)
−0.654861 + 0.755750i \(0.727273\pi\)
\(258\) 1.04408 + 0.306569i 1.04408 + 0.306569i
\(259\) 0 0
\(260\) 0 0
\(261\) 0 0
\(262\) 0.698939 + 0.449181i 0.698939 + 0.449181i
\(263\) 0 0 −0.142315 0.989821i \(-0.545455\pi\)
0.142315 + 0.989821i \(0.454545\pi\)
\(264\) −0.198939 + 1.38365i −0.198939 + 1.38365i
\(265\) 0 0
\(266\) 0 0
\(267\) 0.698939 + 0.449181i 0.698939 + 0.449181i
\(268\) −1.91899 −1.91899
\(269\) 0 0 0.654861 0.755750i \(-0.272727\pi\)
−0.654861 + 0.755750i \(0.727273\pi\)
\(270\) 0 0
\(271\) 0 0 −0.142315 0.989821i \(-0.545455\pi\)
0.142315 + 0.989821i \(0.454545\pi\)
\(272\) −1.10181 0.708089i −1.10181 0.708089i
\(273\) 0 0
\(274\) −1.10181 0.708089i −1.10181 0.708089i
\(275\) 1.41542 + 0.909632i 1.41542 + 0.909632i
\(276\) 0 0
\(277\) 0 0 0.959493 0.281733i \(-0.0909091\pi\)
−0.959493 + 0.281733i \(0.909091\pi\)
\(278\) 1.41542 0.909632i 1.41542 0.909632i
\(279\) 0 0
\(280\) 0 0
\(281\) −1.61435 + 0.474017i −1.61435 + 0.474017i −0.959493 0.281733i \(-0.909091\pi\)
−0.654861 + 0.755750i \(0.727273\pi\)
\(282\) 0 0
\(283\) 0.273100 0.0801894i 0.273100 0.0801894i −0.142315 0.989821i \(-0.545455\pi\)
0.415415 + 0.909632i \(0.363636\pi\)
\(284\) 0 0
\(285\) 0 0
\(286\) 0 0
\(287\) 0 0
\(288\) 0.202824 0.234072i 0.202824 0.234072i
\(289\) −0.101808 + 0.708089i −0.101808 + 0.708089i
\(290\) 0 0
\(291\) 1.04408 1.20493i 1.04408 1.20493i
\(292\) 0.345139 + 0.755750i 0.345139 + 0.755750i
\(293\) 0 0 −0.654861 0.755750i \(-0.727273\pi\)
0.654861 + 0.755750i \(0.272727\pi\)
\(294\) 0.345139 0.755750i 0.345139 0.755750i
\(295\) 0 0
\(296\) 0 0
\(297\) 0.260554 + 1.81219i 0.260554 + 1.81219i
\(298\) 0 0
\(299\) 0 0
\(300\) 0.345139 + 0.755750i 0.345139 + 0.755750i
\(301\) 0 0
\(302\) 0 0
\(303\) 0 0
\(304\) 1.68251 1.68251
\(305\) 0 0
\(306\) −0.389217 0.114284i −0.389217 0.114284i
\(307\) −0.118239 0.258908i −0.118239 0.258908i 0.841254 0.540641i \(-0.181818\pi\)
−0.959493 + 0.281733i \(0.909091\pi\)
\(308\) 0 0
\(309\) 0 0
\(310\) 0 0
\(311\) 0 0 −0.654861 0.755750i \(-0.727273\pi\)
0.654861 + 0.755750i \(0.272727\pi\)
\(312\) 0 0
\(313\) −1.61435 + 1.03748i −1.61435 + 1.03748i −0.654861 + 0.755750i \(0.727273\pi\)
−0.959493 + 0.281733i \(0.909091\pi\)
\(314\) 0 0
\(315\) 0 0
\(316\) 0 0
\(317\) 0 0 −0.959493 0.281733i \(-0.909091\pi\)
0.959493 + 0.281733i \(0.0909091\pi\)
\(318\) 0 0
\(319\) 0 0
\(320\) 0 0
\(321\) 0.690279 + 1.51150i 0.690279 + 1.51150i
\(322\) 0 0
\(323\) −0.915415 2.00448i −0.915415 2.00448i
\(324\) −0.246902 + 0.540641i −0.246902 + 0.540641i
\(325\) 0 0
\(326\) −0.118239 0.822373i −0.118239 0.822373i
\(327\) 0 0
\(328\) 0.830830 1.81926i 0.830830 1.81926i
\(329\) 0 0
\(330\) 0 0
\(331\) 0.698939 + 1.53046i 0.698939 + 1.53046i 0.841254 + 0.540641i \(0.181818\pi\)
−0.142315 + 0.989821i \(0.545455\pi\)
\(332\) 0.186393 0.215109i 0.186393 0.215109i
\(333\) 0 0
\(334\) 0 0
\(335\) 0 0
\(336\) 0 0
\(337\) −1.61435 0.474017i −1.61435 0.474017i −0.654861 0.755750i \(-0.727273\pi\)
−0.959493 + 0.281733i \(0.909091\pi\)
\(338\) 0.841254 0.540641i 0.841254 0.540641i
\(339\) 0.154861 + 0.178719i 0.154861 + 0.178719i
\(340\) 0 0
\(341\) 0 0
\(342\) 0.500000 0.146813i 0.500000 0.146813i
\(343\) 0 0
\(344\) −1.30972 −1.30972
\(345\) 0 0
\(346\) 0 0
\(347\) 0.273100 + 0.0801894i 0.273100 + 0.0801894i 0.415415 0.909632i \(-0.363636\pi\)
−0.142315 + 0.989821i \(0.545455\pi\)
\(348\) 0 0
\(349\) 0 0 −0.841254 0.540641i \(-0.818182\pi\)
0.841254 + 0.540641i \(0.181818\pi\)
\(350\) 0 0
\(351\) 0 0
\(352\) −0.239446 1.66538i −0.239446 1.66538i
\(353\) 0.273100 1.89945i 0.273100 1.89945i −0.142315 0.989821i \(-0.545455\pi\)
0.415415 0.909632i \(-0.363636\pi\)
\(354\) 0.712591 0.822373i 0.712591 0.822373i
\(355\) 0 0
\(356\) −0.959493 0.281733i −0.959493 0.281733i
\(357\) 0 0
\(358\) 1.25667 1.45027i 1.25667 1.45027i
\(359\) 0 0 0.142315 0.989821i \(-0.454545\pi\)
−0.142315 + 0.989821i \(0.545455\pi\)
\(360\) 0 0
\(361\) 1.54019 + 0.989821i 1.54019 + 0.989821i
\(362\) 0 0
\(363\) 1.27964 + 0.822373i 1.27964 + 0.822373i
\(364\) 0 0
\(365\) 0 0
\(366\) 0 0
\(367\) 0 0 0.841254 0.540641i \(-0.181818\pi\)
−0.841254 + 0.540641i \(0.818182\pi\)
\(368\) 0 0
\(369\) 0.0881559 0.613138i 0.0881559 0.613138i
\(370\) 0 0
\(371\) 0 0
\(372\) 0 0
\(373\) 0 0 −0.654861 0.755750i \(-0.727273\pi\)
0.654861 + 0.755750i \(0.272727\pi\)
\(374\) −1.85380 + 1.19136i −1.85380 + 1.19136i
\(375\) 0 0
\(376\) 0 0
\(377\) 0 0
\(378\) 0 0
\(379\) 1.84125 + 0.540641i 1.84125 + 0.540641i 1.00000 \(0\)
0.841254 + 0.540641i \(0.181818\pi\)
\(380\) 0 0
\(381\) 0 0
\(382\) 0 0
\(383\) 0 0 0.415415 0.909632i \(-0.363636\pi\)
−0.415415 + 0.909632i \(0.636364\pi\)
\(384\) 0.345139 0.755750i 0.345139 0.755750i
\(385\) 0 0
\(386\) 0.273100 + 1.89945i 0.273100 + 1.89945i
\(387\) −0.389217 + 0.114284i −0.389217 + 0.114284i
\(388\) −0.797176 + 1.74557i −0.797176 + 1.74557i
\(389\) 0 0 −0.415415 0.909632i \(-0.636364\pi\)
0.415415 + 0.909632i \(0.363636\pi\)
\(390\) 0 0
\(391\) 0 0
\(392\) −0.142315 + 0.989821i −0.142315 + 0.989821i
\(393\) 0.690279 0.690279
\(394\) 0 0
\(395\) 0 0
\(396\) −0.216476 0.474017i −0.216476 0.474017i
\(397\) 0 0 −0.142315 0.989821i \(-0.545455\pi\)
0.142315 + 0.989821i \(0.454545\pi\)
\(398\) 0 0
\(399\) 0 0
\(400\) −0.654861 0.755750i −0.654861 0.755750i
\(401\) 1.25667 + 1.45027i 1.25667 + 1.45027i 0.841254 + 0.540641i \(0.181818\pi\)
0.415415 + 0.909632i \(0.363636\pi\)
\(402\) −1.34125 + 0.861971i −1.34125 + 0.861971i
\(403\) 0 0
\(404\) 0 0
\(405\) 0 0
\(406\) 0 0
\(407\) 0 0
\(408\) −1.08816 −1.08816
\(409\) 0.273100 1.89945i 0.273100 1.89945i −0.142315 0.989821i \(-0.545455\pi\)
0.415415 0.909632i \(-0.363636\pi\)
\(410\) 0 0
\(411\) −1.08816 −1.08816
\(412\) 0 0
\(413\) 0 0
\(414\) 0 0
\(415\) 0 0
\(416\) 0 0
\(417\) 0.580699 1.27155i 0.580699 1.27155i
\(418\) 1.17597 2.57501i 1.17597 2.57501i
\(419\) 1.25667 + 1.45027i 1.25667 + 1.45027i 0.841254 + 0.540641i \(0.181818\pi\)
0.415415 + 0.909632i \(0.363636\pi\)
\(420\) 0 0
\(421\) 0 0 0.654861 0.755750i \(-0.272727\pi\)
−0.654861 + 0.755750i \(0.727273\pi\)
\(422\) 1.25667 + 0.368991i 1.25667 + 0.368991i
\(423\) 0 0
\(424\) 0 0
\(425\) −0.544078 + 1.19136i −0.544078 + 1.19136i
\(426\) 0 0
\(427\) 0 0
\(428\) −1.30972 1.51150i −1.30972 1.51150i
\(429\) 0 0
\(430\) 0 0
\(431\) 0 0 0.959493 0.281733i \(-0.0909091\pi\)
−0.959493 + 0.281733i \(0.909091\pi\)
\(432\) 0.154861 1.07708i 0.154861 1.07708i
\(433\) 0.830830 0.830830 0.415415 0.909632i \(-0.363636\pi\)
0.415415 + 0.909632i \(0.363636\pi\)
\(434\) 0 0
\(435\) 0 0
\(436\) 0 0
\(437\) 0 0
\(438\) 0.580699 + 0.373193i 0.580699 + 0.373193i
\(439\) 0 0 −0.654861 0.755750i \(-0.727273\pi\)
0.654861 + 0.755750i \(0.272727\pi\)
\(440\) 0 0
\(441\) 0.0440780 + 0.306569i 0.0440780 + 0.306569i
\(442\) 0 0
\(443\) 0.186393 0.215109i 0.186393 0.215109i −0.654861 0.755750i \(-0.727273\pi\)
0.841254 + 0.540641i \(0.181818\pi\)
\(444\) 0 0
\(445\) 0 0
\(446\) 0 0
\(447\) 0 0
\(448\) 0 0
\(449\) 0.0405070 + 0.281733i 0.0405070 + 0.281733i 1.00000 \(0\)
−0.959493 + 0.281733i \(0.909091\pi\)
\(450\) −0.260554 0.167448i −0.260554 0.167448i
\(451\) −2.20362 2.54311i −2.20362 2.54311i
\(452\) −0.239446 0.153882i −0.239446 0.153882i
\(453\) 0 0
\(454\) −0.797176 0.234072i −0.797176 0.234072i
\(455\) 0 0
\(456\) 1.17597 0.755750i 1.17597 0.755750i
\(457\) −1.91899 −1.91899 −0.959493 0.281733i \(-0.909091\pi\)
−0.959493 + 0.281733i \(0.909091\pi\)
\(458\) 0 0
\(459\) −1.36745 + 0.401520i −1.36745 + 0.401520i
\(460\) 0 0
\(461\) 0 0 0.959493 0.281733i \(-0.0909091\pi\)
−0.959493 + 0.281733i \(0.909091\pi\)
\(462\) 0 0
\(463\) 0 0 0.841254 0.540641i \(-0.181818\pi\)
−0.841254 + 0.540641i \(0.818182\pi\)
\(464\) 0 0
\(465\) 0 0
\(466\) 0.186393 0.215109i 0.186393 0.215109i
\(467\) 0.186393 1.29639i 0.186393 1.29639i −0.654861 0.755750i \(-0.727273\pi\)
0.841254 0.540641i \(-0.181818\pi\)
\(468\) 0 0
\(469\) 0 0
\(470\) 0 0
\(471\) 0 0
\(472\) −0.544078 + 1.19136i −0.544078 + 1.19136i
\(473\) −0.915415 + 2.00448i −0.915415 + 2.00448i
\(474\) 0 0
\(475\) −0.239446 1.66538i −0.239446 1.66538i
\(476\) 0 0
\(477\) 0 0
\(478\) 0 0
\(479\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(480\) 0 0
\(481\) 0 0
\(482\) −0.284630 −0.284630
\(483\) 0 0
\(484\) −1.75667 0.515804i −1.75667 0.515804i
\(485\) 0 0
\(486\) −0.0845850 0.588302i −0.0845850 0.588302i
\(487\) 0 0 −0.142315 0.989821i \(-0.545455\pi\)
0.142315 + 0.989821i \(0.454545\pi\)
\(488\) 0 0
\(489\) −0.452036 0.521678i −0.452036 0.521678i
\(490\) 0 0
\(491\) 1.41542 0.909632i 1.41542 0.909632i 0.415415 0.909632i \(-0.363636\pi\)
1.00000 \(0\)
\(492\) −0.236479 1.64475i −0.236479 1.64475i
\(493\) 0 0
\(494\) 0 0
\(495\) 0 0
\(496\) 0 0
\(497\) 0 0
\(498\) 0.0336545 0.234072i 0.0336545 0.234072i
\(499\) −0.118239 0.258908i −0.118239 0.258908i 0.841254 0.540641i \(-0.181818\pi\)
−0.959493 + 0.281733i \(0.909091\pi\)
\(500\) 0 0
\(501\) 0 0
\(502\) −0.118239 + 0.258908i −0.118239 + 0.258908i
\(503\) 0 0 0.959493 0.281733i \(-0.0909091\pi\)
−0.959493 + 0.281733i \(0.909091\pi\)
\(504\) 0 0
\(505\) 0 0
\(506\) 0 0
\(507\) 0.345139 0.755750i 0.345139 0.755750i
\(508\) 0 0
\(509\) 0 0 −0.415415 0.909632i \(-0.636364\pi\)
0.415415 + 0.909632i \(0.363636\pi\)
\(510\) 0 0
\(511\) 0 0
\(512\) −0.142315 + 0.989821i −0.142315 + 0.989821i
\(513\) 1.19894 1.38365i 1.19894 1.38365i
\(514\) 0.698939 1.53046i 0.698939 1.53046i
\(515\) 0 0
\(516\) −0.915415 + 0.588302i −0.915415 + 0.588302i
\(517\) 0 0
\(518\) 0 0
\(519\) 0 0
\(520\) 0 0
\(521\) 0.186393 1.29639i 0.186393 1.29639i −0.654861 0.755750i \(-0.727273\pi\)
0.841254 0.540641i \(-0.181818\pi\)
\(522\) 0 0
\(523\) 0.698939 0.449181i 0.698939 0.449181i −0.142315 0.989821i \(-0.545455\pi\)
0.841254 + 0.540641i \(0.181818\pi\)
\(524\) −0.797176 + 0.234072i −0.797176 + 0.234072i
\(525\) 0 0
\(526\) 0 0
\(527\) 0 0
\(528\) −0.915415 1.05645i −0.915415 1.05645i
\(529\) 0.841254 + 0.540641i 0.841254 + 0.540641i
\(530\) 0 0
\(531\) −0.0577299 + 0.401520i −0.0577299 + 0.401520i
\(532\) 0 0
\(533\) 0 0
\(534\) −0.797176 + 0.234072i −0.797176 + 0.234072i
\(535\) 0 0
\(536\) 1.25667 1.45027i 1.25667 1.45027i
\(537\) 0.226900 1.57812i 0.226900 1.57812i
\(538\) 0 0
\(539\) 1.41542 + 0.909632i 1.41542 + 0.909632i
\(540\) 0 0
\(541\) 0 0 −0.841254 0.540641i \(-0.818182\pi\)
0.841254 + 0.540641i \(0.181818\pi\)
\(542\) 0 0
\(543\) 0 0
\(544\) 1.25667 0.368991i 1.25667 0.368991i
\(545\) 0 0
\(546\) 0 0
\(547\) −0.239446 + 1.66538i −0.239446 + 1.66538i 0.415415 + 0.909632i \(0.363636\pi\)
−0.654861 + 0.755750i \(0.727273\pi\)
\(548\) 1.25667 0.368991i 1.25667 0.368991i
\(549\) 0 0
\(550\) −1.61435 + 0.474017i −1.61435 + 0.474017i
\(551\) 0 0
\(552\) 0 0
\(553\) 0 0
\(554\) 0 0
\(555\) 0 0
\(556\) −0.239446 + 1.66538i −0.239446 + 1.66538i
\(557\) 0 0 −0.959493 0.281733i \(-0.909091\pi\)
0.959493 + 0.281733i \(0.0909091\pi\)
\(558\) 0 0
\(559\) 0 0
\(560\) 0 0
\(561\) −0.760554 + 1.66538i −0.760554 + 1.66538i
\(562\) 0.698939 1.53046i 0.698939 1.53046i
\(563\) 1.41542 + 0.909632i 1.41542 + 0.909632i 1.00000 \(0\)
0.415415 + 0.909632i \(0.363636\pi\)
\(564\) 0 0
\(565\) 0 0
\(566\) −0.118239 + 0.258908i −0.118239 + 0.258908i
\(567\) 0 0
\(568\) 0 0
\(569\) −0.797176 1.74557i −0.797176 1.74557i −0.654861 0.755750i \(-0.727273\pi\)
−0.142315 0.989821i \(-0.545455\pi\)
\(570\) 0 0
\(571\) 2.00000 2.00000 1.00000 \(0\)
1.00000 \(0\)
\(572\) 0 0
\(573\) 0 0
\(574\) 0 0
\(575\) 0 0
\(576\) 0.0440780 + 0.306569i 0.0440780 + 0.306569i
\(577\) 1.41542 0.909632i 1.41542 0.909632i 0.415415 0.909632i \(-0.363636\pi\)
1.00000 \(0\)
\(578\) −0.468468 0.540641i −0.468468 0.540641i
\(579\) 1.04408 + 1.20493i 1.04408 + 1.20493i
\(580\) 0 0
\(581\) 0 0
\(582\) 0.226900 + 1.57812i 0.226900 + 1.57812i
\(583\) 0 0
\(584\) −0.797176 0.234072i −0.797176 0.234072i
\(585\) 0 0
\(586\) 0 0
\(587\) −0.239446 + 1.66538i −0.239446 + 1.66538i 0.415415 + 0.909632i \(0.363636\pi\)
−0.654861 + 0.755750i \(0.727273\pi\)
\(588\) 0.345139 + 0.755750i 0.345139 + 0.755750i
\(589\) 0 0
\(590\) 0 0
\(591\) 0 0
\(592\) 0 0
\(593\) 0.273100 + 1.89945i 0.273100 + 1.89945i 0.415415 + 0.909632i \(0.363636\pi\)
−0.142315 + 0.989821i \(0.545455\pi\)
\(594\) −1.54019 0.989821i −1.54019 0.989821i
\(595\) 0 0
\(596\) 0 0
\(597\) 0 0
\(598\) 0 0
\(599\) 0 0 0.654861 0.755750i \(-0.272727\pi\)
−0.654861 + 0.755750i \(0.727273\pi\)
\(600\) −0.797176 0.234072i −0.797176 0.234072i
\(601\) −0.118239 + 0.822373i −0.118239 + 0.822373i 0.841254 + 0.540641i \(0.181818\pi\)
−0.959493 + 0.281733i \(0.909091\pi\)
\(602\) 0 0
\(603\) 0.246902 0.540641i 0.246902 0.540641i
\(604\) 0 0
\(605\) 0 0
\(606\) 0 0
\(607\) 0 0 0.959493 0.281733i \(-0.0909091\pi\)
−0.959493 + 0.281733i \(0.909091\pi\)
\(608\) −1.10181 + 1.27155i −1.10181 + 1.27155i
\(609\) 0 0
\(610\) 0 0
\(611\) 0 0
\(612\) 0.341254 0.219310i 0.341254 0.219310i
\(613\) 0 0 0.959493 0.281733i \(-0.0909091\pi\)
−0.959493 + 0.281733i \(0.909091\pi\)
\(614\) 0.273100 + 0.0801894i 0.273100 + 0.0801894i
\(615\) 0 0
\(616\) 0 0
\(617\) −0.544078 0.627899i −0.544078 0.627899i 0.415415 0.909632i \(-0.363636\pi\)
−0.959493 + 0.281733i \(0.909091\pi\)
\(618\) 0 0
\(619\) −0.118239 0.822373i −0.118239 0.822373i −0.959493 0.281733i \(-0.909091\pi\)
0.841254 0.540641i \(-0.181818\pi\)
\(620\) 0 0
\(621\) 0 0
\(622\) 0 0
\(623\) 0 0
\(624\) 0 0
\(625\) −0.654861 + 0.755750i −0.654861 + 0.755750i
\(626\) 0.273100 1.89945i 0.273100 1.89945i
\(627\) −0.334716 2.32800i −0.334716 2.32800i
\(628\) 0 0
\(629\) 0 0
\(630\) 0 0
\(631\) 0 0 −0.841254 0.540641i \(-0.818182\pi\)
0.841254 + 0.540641i \(0.181818\pi\)
\(632\) 0 0
\(633\) 1.04408 0.306569i 1.04408 0.306569i
\(634\) 0 0
\(635\) 0 0
\(636\) 0 0
\(637\) 0 0
\(638\) 0 0
\(639\) 0 0
\(640\) 0 0
\(641\) 0.698939 0.449181i 0.698939 0.449181i −0.142315 0.989821i \(-0.545455\pi\)
0.841254 + 0.540641i \(0.181818\pi\)
\(642\) −1.59435 0.468144i −1.59435 0.468144i
\(643\) −0.797176 + 1.74557i −0.797176 + 1.74557i −0.142315 + 0.989821i \(0.545455\pi\)
−0.654861 + 0.755750i \(0.727273\pi\)
\(644\) 0 0
\(645\) 0 0
\(646\) 2.11435 + 0.620830i 2.11435 + 0.620830i
\(647\) 0 0 0.654861 0.755750i \(-0.272727\pi\)
−0.654861 + 0.755750i \(0.727273\pi\)
\(648\) −0.246902 0.540641i −0.246902 0.540641i
\(649\) 1.44306 + 1.66538i 1.44306 + 1.66538i
\(650\) 0 0
\(651\) 0 0
\(652\) 0.698939 + 0.449181i 0.698939 + 0.449181i
\(653\) 0 0 −0.142315 0.989821i \(-0.545455\pi\)
0.142315 + 0.989821i \(0.454545\pi\)
\(654\) 0 0
\(655\) 0 0
\(656\) 0.830830 + 1.81926i 0.830830 + 1.81926i
\(657\) −0.257326 −0.257326
\(658\) 0 0
\(659\) −0.118239 + 0.822373i −0.118239 + 0.822373i 0.841254 + 0.540641i \(0.181818\pi\)
−0.959493 + 0.281733i \(0.909091\pi\)
\(660\) 0 0
\(661\) 0 0 0.841254 0.540641i \(-0.181818\pi\)
−0.841254 + 0.540641i \(0.818182\pi\)
\(662\) −1.61435 0.474017i −1.61435 0.474017i
\(663\) 0 0
\(664\) 0.0405070 + 0.281733i 0.0405070 + 0.281733i
\(665\) 0 0
\(666\) 0 0
\(667\) 0 0
\(668\) 0 0
\(669\) 0 0
\(670\) 0 0
\(671\) 0 0
\(672\) 0 0
\(673\) −1.91899 0.563465i −1.91899 0.563465i −0.959493 0.281733i \(-0.909091\pi\)
−0.959493 0.281733i \(-0.909091\pi\)
\(674\) 1.41542 0.909632i 1.41542 0.909632i
\(675\) −1.08816 −1.08816
\(676\) −0.142315 + 0.989821i −0.142315 + 0.989821i
\(677\) 0 0 −0.415415 0.909632i \(-0.636364\pi\)
0.415415 + 0.909632i \(0.363636\pi\)
\(678\) −0.236479 −0.236479
\(679\) 0 0
\(680\) 0 0
\(681\) −0.662317 + 0.194474i −0.662317 + 0.194474i
\(682\) 0 0
\(683\) 0.698939 + 0.449181i 0.698939 + 0.449181i 0.841254 0.540641i \(-0.181818\pi\)
−0.142315 + 0.989821i \(0.545455\pi\)
\(684\) −0.216476 + 0.474017i −0.216476 + 0.474017i
\(685\) 0 0
\(686\) 0 0
\(687\) 0 0
\(688\) 0.857685 0.989821i 0.857685 0.989821i
\(689\) 0 0
\(690\) 0 0
\(691\) 0.186393 0.215109i 0.186393 0.215109i −0.654861 0.755750i \(-0.727273\pi\)
0.841254 + 0.540641i \(0.181818\pi\)
\(692\) 0 0
\(693\) 0 0
\(694\) −0.239446 + 0.153882i −0.239446 + 0.153882i
\(695\) 0 0
\(696\) 0 0
\(697\) 1.71537 1.97964i 1.71537 1.97964i
\(698\) 0 0
\(699\) 0.0336545 0.234072i 0.0336545 0.234072i
\(700\) 0 0
\(701\) 0 0 0.841254 0.540641i \(-0.181818\pi\)
−0.841254 + 0.540641i \(0.818182\pi\)
\(702\) 0 0
\(703\) 0 0
\(704\) 1.41542 + 0.909632i 1.41542 + 0.909632i
\(705\) 0 0
\(706\) 1.25667 + 1.45027i 1.25667 + 1.45027i
\(707\) 0 0
\(708\) 0.154861 + 1.07708i 0.154861 + 1.07708i
\(709\) 0 0 0.142315 0.989821i \(-0.454545\pi\)
−0.142315 + 0.989821i \(0.545455\pi\)
\(710\) 0 0
\(711\) 0 0
\(712\) 0.841254 0.540641i 0.841254 0.540641i
\(713\) 0 0
\(714\) 0 0
\(715\) 0 0
\(716\) 0.273100 + 1.89945i 0.273100 + 1.89945i
\(717\) 0 0
\(718\) 0 0
\(719\) 0 0 −0.841254 0.540641i \(-0.818182\pi\)
0.841254 + 0.540641i \(0.181818\pi\)
\(720\) 0 0
\(721\) 0 0
\(722\) −1.75667 + 0.515804i −1.75667 + 0.515804i
\(723\) −0.198939 + 0.127850i −0.198939 + 0.127850i
\(724\) 0 0
\(725\) 0 0
\(726\) −1.45949 + 0.428546i −1.45949 + 0.428546i
\(727\) 0 0 0.654861 0.755750i \(-0.272727\pi\)
−0.654861 + 0.755750i \(0.727273\pi\)
\(728\) 0 0
\(729\) −0.712591 0.822373i −0.712591 0.822373i
\(730\) 0 0
\(731\) −1.64589 0.483276i −1.64589 0.483276i
\(732\) 0 0
\(733\) 0 0 0.654861 0.755750i \(-0.272727\pi\)
−0.654861 + 0.755750i \(0.727273\pi\)
\(734\) 0 0
\(735\) 0 0
\(736\) 0 0
\(737\) −1.34125 2.93694i −1.34125 2.93694i
\(738\) 0.405649 + 0.468144i 0.405649 + 0.468144i
\(739\) −0.797176 + 1.74557i −0.797176 + 1.74557i −0.142315 + 0.989821i \(0.545455\pi\)
−0.654861 + 0.755750i \(0.727273\pi\)
\(740\) 0 0
\(741\) 0 0
\(742\) 0 0
\(743\) 0 0 0.959493 0.281733i \(-0.0909091\pi\)
−0.959493 + 0.281733i \(0.909091\pi\)
\(744\) 0 0
\(745\) 0 0
\(746\) 0 0
\(747\) 0.0366213 + 0.0801894i 0.0366213 + 0.0801894i
\(748\) 0.313607 2.18119i 0.313607 2.18119i
\(749\) 0 0
\(750\) 0 0
\(751\) 0 0 −0.959493 0.281733i \(-0.909091\pi\)
0.959493 + 0.281733i \(0.0909091\pi\)
\(752\) 0 0
\(753\) 0.0336545 + 0.234072i 0.0336545 + 0.234072i
\(754\) 0 0
\(755\) 0 0
\(756\) 0 0
\(757\) 0 0 −0.654861 0.755750i \(-0.727273\pi\)
0.654861 + 0.755750i \(0.272727\pi\)
\(758\) −1.61435 + 1.03748i −1.61435 + 1.03748i
\(759\) 0 0
\(760\) 0 0
\(761\) 0.698939 + 1.53046i 0.698939 + 1.53046i 0.841254 + 0.540641i \(0.181818\pi\)
−0.142315 + 0.989821i \(0.545455\pi\)
\(762\) 0 0
\(763\) 0 0
\(764\) 0 0
\(765\) 0 0
\(766\) 0 0
\(767\) 0 0
\(768\) 0.345139 + 0.755750i 0.345139 + 0.755750i
\(769\) −0.118239 + 0.258908i −0.118239 + 0.258908i −0.959493 0.281733i \(-0.909091\pi\)
0.841254 + 0.540641i \(0.181818\pi\)
\(770\) 0 0
\(771\) −0.198939 1.38365i −0.198939 1.38365i
\(772\) −1.61435 1.03748i −1.61435 1.03748i
\(773\) 0 0 0.415415 0.909632i \(-0.363636\pi\)
−0.415415 + 0.909632i \(0.636364\pi\)
\(774\) 0.168513 0.368991i 0.168513 0.368991i
\(775\) 0 0
\(776\) −0.797176 1.74557i −0.797176 1.74557i
\(777\) 0 0
\(778\) 0 0
\(779\) −0.478891 + 3.33076i −0.478891 + 3.33076i
\(780\) 0 0
\(781\) 0 0
\(782\) 0 0
\(783\) 0 0
\(784\) −0.654861 0.755750i −0.654861 0.755750i
\(785\) 0 0
\(786\) −0.452036 + 0.521678i −0.452036 + 0.521678i
\(787\) 0.273100 0.0801894i 0.273100 0.0801894i −0.142315 0.989821i \(-0.545455\pi\)
0.415415 + 0.909632i \(0.363636\pi\)
\(788\) 0 0
\(789\) 0 0
\(790\) 0 0
\(791\) 0 0
\(792\) 0.500000 + 0.146813i 0.500000 + 0.146813i
\(793\) 0 0
\(794\) 0 0
\(795\) 0 0
\(796\) 0 0
\(797\) 0 0 −0.142315 0.989821i \(-0.545455\pi\)
0.142315 + 0.989821i \(0.454545\pi\)
\(798\) 0 0
\(799\) 0 0
\(800\) 1.00000 1.00000
\(801\) 0.202824 0.234072i 0.202824 0.234072i
\(802\) −1.91899 −1.91899
\(803\) −0.915415 + 1.05645i −0.915415 + 1.05645i
\(804\) 0.226900 1.57812i 0.226900 1.57812i
\(805\) 0 0
\(806\) 0 0
\(807\) 0 0
\(808\) 0 0
\(809\) −1.10181 0.708089i −1.10181 0.708089i −0.142315 0.989821i \(-0.545455\pi\)
−0.959493 + 0.281733i \(0.909091\pi\)
\(810\) 0 0
\(811\) −1.91899 + 0.563465i −1.91899 + 0.563465i −0.959493 + 0.281733i \(0.909091\pi\)
−0.959493 + 0.281733i \(0.909091\pi\)
\(812\) 0 0
\(813\) 0 0
\(814\) 0 0
\(815\) 0 0
\(816\) 0.712591 0.822373i 0.712591 0.822373i
\(817\) 2.11435 0.620830i 2.11435 0.620830i
\(818\) 1.25667 + 1.45027i 1.25667 + 1.45027i
\(819\) 0 0
\(820\) 0 0
\(821\) 0 0 0.415415 0.909632i \(-0.363636\pi\)
−0.415415 + 0.909632i \(0.636364\pi\)
\(822\) 0.712591 0.822373i 0.712591 0.822373i
\(823\) 0 0 0.142315 0.989821i \(-0.454545\pi\)
−0.142315 + 0.989821i \(0.545455\pi\)
\(824\) 0 0
\(825\) −0.915415 + 1.05645i −0.915415 + 1.05645i
\(826\) 0 0
\(827\) 0.186393 + 0.215109i 0.186393 + 0.215109i 0.841254 0.540641i \(-0.181818\pi\)
−0.654861 + 0.755750i \(0.727273\pi\)
\(828\) 0 0
\(829\) 0 0 0.415415 0.909632i \(-0.363636\pi\)
−0.415415 + 0.909632i \(0.636364\pi\)
\(830\) 0 0
\(831\) 0 0
\(832\) 0 0
\(833\) −0.544078 + 1.19136i −0.544078 + 1.19136i
\(834\) 0.580699 + 1.27155i 0.580699 + 1.27155i
\(835\) 0 0
\(836\) 1.17597 + 2.57501i 1.17597 + 2.57501i
\(837\) 0 0
\(838\) −1.91899 −1.91899
\(839\) 0 0 0.841254 0.540641i \(-0.181818\pi\)
−0.841254 + 0.540641i \(0.818182\pi\)
\(840\) 0 0
\(841\) 0.415415 + 0.909632i 0.415415 + 0.909632i
\(842\) 0 0
\(843\) −0.198939 1.38365i −0.198939 1.38365i
\(844\) −1.10181 + 0.708089i −1.10181 + 0.708089i
\(845\) 0 0
\(846\) 0 0
\(847\) 0 0
\(848\) 0 0
\(849\) 0.0336545 + 0.234072i 0.0336545 + 0.234072i
\(850\) −0.544078 1.19136i −0.544078 1.19136i
\(851\) 0 0
\(852\) 0 0
\(853\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(854\) 0 0
\(855\) 0 0
\(856\) 2.00000 2.00000
\(857\) 0.698939 + 1.53046i 0.698939 + 1.53046i 0.841254 + 0.540641i \(0.181818\pi\)
−0.142315 + 0.989821i \(0.545455\pi\)
\(858\) 0 0
\(859\) 0.273100 0.0801894i 0.273100 0.0801894i −0.142315 0.989821i \(-0.545455\pi\)
0.415415 + 0.909632i \(0.363636\pi\)
\(860\) 0 0
\(861\) 0 0
\(862\) 0 0
\(863\) 0 0 0.415415 0.909632i \(-0.363636\pi\)
−0.415415 + 0.909632i \(0.636364\pi\)
\(864\) 0.712591 + 0.822373i 0.712591 + 0.822373i
\(865\) 0 0
\(866\) −0.544078 + 0.627899i −0.544078 + 0.627899i
\(867\) −0.570276 0.167448i −0.570276 0.167448i
\(868\) 0 0
\(869\) 0 0
\(870\) 0 0
\(871\) 0 0
\(872\) 0 0
\(873\) −0.389217 0.449181i −0.389217 0.449181i
\(874\) 0 0
\(875\) 0 0
\(876\) −0.662317 + 0.194474i −0.662317 + 0.194474i
\(877\) 0 0 0.142315 0.989821i \(-0.454545\pi\)
−0.142315 + 0.989821i \(0.545455\pi\)
\(878\) 0 0
\(879\) 0 0
\(880\) 0 0
\(881\) 1.25667 + 0.368991i 1.25667 + 0.368991i 0.841254 0.540641i \(-0.181818\pi\)
0.415415 + 0.909632i \(0.363636\pi\)
\(882\) −0.260554 0.167448i −0.260554 0.167448i
\(883\) −0.239446 0.153882i −0.239446 0.153882i 0.415415 0.909632i \(-0.363636\pi\)
−0.654861 + 0.755750i \(0.727273\pi\)
\(884\) 0 0
\(885\) 0 0
\(886\) 0.0405070 + 0.281733i 0.0405070 + 0.281733i
\(887\) 0 0 0.142315 0.989821i \(-0.454545\pi\)
−0.142315 + 0.989821i \(0.545455\pi\)
\(888\) 0 0
\(889\) 0 0
\(890\) 0 0
\(891\) −1.00000 −1.00000
\(892\) 0 0
\(893\) 0 0
\(894\) 0 0
\(895\) 0 0
\(896\) 0 0
\(897\) 0 0
\(898\) −0.239446 0.153882i −0.239446 0.153882i
\(899\) 0 0
\(900\) 0.297176 0.0872586i 0.297176 0.0872586i
\(901\) 0 0
\(902\) 3.36501 3.36501
\(903\) 0 0
\(904\) 0.273100 0.0801894i 0.273100 0.0801894i
\(905\) 0 0
\(906\) 0 0
\(907\) 0.857685 + 0.989821i 0.857685 + 0.989821i 1.00000 \(0\)
−0.142315 + 0.989821i \(0.545455\pi\)
\(908\) 0.698939 0.449181i 0.698939 0.449181i
\(909\) 0 0
\(910\) 0 0
\(911\) 0 0 0.654861 0.755750i \(-0.272727\pi\)
−0.654861 + 0.755750i \(0.727273\pi\)
\(912\) −0.198939 + 1.38365i −0.198939 + 1.38365i
\(913\) 0.459493 + 0.134919i 0.459493 + 0.134919i
\(914\) 1.25667 1.45027i 1.25667 1.45027i
\(915\) 0 0
\(916\) 0 0
\(917\) 0 0
\(918\) 0.592042 1.29639i 0.592042 1.29639i
\(919\) 0 0 −0.841254 0.540641i \(-0.818182\pi\)
0.841254 + 0.540641i \(0.181818\pi\)
\(920\) 0 0
\(921\) 0.226900 0.0666238i 0.226900 0.0666238i
\(922\) 0 0
\(923\) 0 0
\(924\) 0 0
\(925\) 0 0
\(926\) 0 0
\(927\) 0 0
\(928\) 0 0
\(929\) 0.273100 + 0.0801894i 0.273100 + 0.0801894i 0.415415 0.909632i \(-0.363636\pi\)
−0.142315 + 0.989821i \(0.545455\pi\)
\(930\) 0 0
\(931\) −0.239446 1.66538i −0.239446 1.66538i
\(932\) 0.0405070 + 0.281733i 0.0405070 + 0.281733i
\(933\) 0 0
\(934\) 0.857685 + 0.989821i 0.857685 + 0.989821i
\(935\) 0 0
\(936\) 0 0
\(937\) 0.186393 + 1.29639i 0.186393 + 1.29639i 0.841254 + 0.540641i \(0.181818\pi\)
−0.654861 + 0.755750i \(0.727273\pi\)
\(938\) 0 0
\(939\) −0.662317 1.45027i −0.662317 1.45027i
\(940\) 0 0
\(941\) 0 0 0.841254 0.540641i \(-0.181818\pi\)
−0.841254 + 0.540641i \(0.818182\pi\)
\(942\) 0 0
\(943\) 0 0
\(944\) −0.544078 1.19136i −0.544078 1.19136i
\(945\) 0 0
\(946\) −0.915415 2.00448i −0.915415 2.00448i
\(947\) −0.797176 + 1.74557i −0.797176 + 1.74557i −0.142315 + 0.989821i \(0.545455\pi\)
−0.654861 + 0.755750i \(0.727273\pi\)
\(948\) 0 0
\(949\) 0 0
\(950\) 1.41542 + 0.909632i 1.41542 + 0.909632i
\(951\) 0 0
\(952\) 0 0
\(953\) −0.544078 0.627899i −0.544078 0.627899i 0.415415 0.909632i \(-0.363636\pi\)
−0.959493 + 0.281733i \(0.909091\pi\)
\(954\) 0 0
\(955\) 0 0
\(956\) 0 0
\(957\) 0 0
\(958\) 0 0
\(959\) 0 0
\(960\) 0 0
\(961\) 0.841254 0.540641i 0.841254 0.540641i
\(962\) 0 0
\(963\) 0.594351 0.174517i 0.594351 0.174517i
\(964\) 0.186393 0.215109i 0.186393 0.215109i
\(965\) 0 0
\(966\) 0 0
\(967\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(968\) 1.54019 0.989821i 1.54019 0.989821i
\(969\) 1.75667 0.515804i 1.75667 0.515804i
\(970\) 0 0
\(971\) −1.61435 1.03748i −1.61435 1.03748i −0.959493 0.281733i \(-0.909091\pi\)
−0.654861 0.755750i \(-0.727273\pi\)
\(972\) 0.500000 + 0.321330i 0.500000 + 0.321330i
\(973\) 0 0
\(974\) 0 0
\(975\) 0 0
\(976\) 0 0
\(977\) −0.544078 + 0.627899i −0.544078 + 0.627899i −0.959493 0.281733i \(-0.909091\pi\)
0.415415 + 0.909632i \(0.363636\pi\)
\(978\) 0.690279 0.690279
\(979\) −0.239446 1.66538i −0.239446 1.66538i
\(980\) 0 0
\(981\) 0 0
\(982\) −0.239446 + 1.66538i −0.239446 + 1.66538i
\(983\) 0 0 −0.142315 0.989821i \(-0.545455\pi\)
0.142315 + 0.989821i \(0.454545\pi\)
\(984\) 1.39788 + 0.898361i 1.39788 + 0.898361i
\(985\) 0 0
\(986\) 0 0
\(987\) 0 0
\(988\) 0 0
\(989\) 0 0
\(990\) 0 0
\(991\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(992\) 0 0
\(993\) −1.34125 + 0.393828i −1.34125 + 0.393828i
\(994\) 0 0
\(995\) 0 0
\(996\) 0.154861 + 0.178719i 0.154861 + 0.178719i
\(997\) 0 0 0.841254 0.540641i \(-0.181818\pi\)
−0.841254 + 0.540641i \(0.818182\pi\)
\(998\) 0.273100 + 0.0801894i 0.273100 + 0.0801894i
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 712.1.s.a.275.1 10
4.3 odd 2 2848.1.bu.a.2767.1 10
8.3 odd 2 CM 712.1.s.a.275.1 10
8.5 even 2 2848.1.bu.a.2767.1 10
89.78 even 11 inner 712.1.s.a.523.1 yes 10
356.167 odd 22 2848.1.bu.a.879.1 10
712.523 odd 22 inner 712.1.s.a.523.1 yes 10
712.701 even 22 2848.1.bu.a.879.1 10
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
712.1.s.a.275.1 10 1.1 even 1 trivial
712.1.s.a.275.1 10 8.3 odd 2 CM
712.1.s.a.523.1 yes 10 89.78 even 11 inner
712.1.s.a.523.1 yes 10 712.523 odd 22 inner
2848.1.bu.a.879.1 10 356.167 odd 22
2848.1.bu.a.879.1 10 712.701 even 22
2848.1.bu.a.2767.1 10 4.3 odd 2
2848.1.bu.a.2767.1 10 8.5 even 2