Properties

Label 72.2.n.a.61.1
Level $72$
Weight $2$
Character 72.61
Analytic conductor $0.575$
Analytic rank $0$
Dimension $4$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [72,2,Mod(13,72)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(72, base_ring=CyclotomicField(6))
 
chi = DirichletCharacter(H, H._module([0, 3, 2]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("72.13");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 72 = 2^{3} \cdot 3^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 72.n (of order \(6\), degree \(2\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(0.574922894553\)
Analytic rank: \(0\)
Dimension: \(4\)
Relative dimension: \(2\) over \(\Q(\zeta_{6})\)
Coefficient field: \(\Q(\zeta_{12})\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{4} - x^{2} + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2, a_3]\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{6}]$

Embedding invariants

Embedding label 61.1
Root \(0.866025 - 0.500000i\) of defining polynomial
Character \(\chi\) \(=\) 72.61
Dual form 72.2.n.a.13.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-1.36603 + 0.366025i) q^{2} +(-0.866025 + 1.50000i) q^{3} +(1.73205 - 1.00000i) q^{4} +(-1.73205 + 1.00000i) q^{5} +(0.633975 - 2.36603i) q^{6} +(-2.00000 + 3.46410i) q^{7} +(-2.00000 + 2.00000i) q^{8} +(-1.50000 - 2.59808i) q^{9} +(2.00000 - 2.00000i) q^{10} +(2.59808 + 1.50000i) q^{11} +3.46410i q^{12} +(1.73205 - 1.00000i) q^{13} +(1.46410 - 5.46410i) q^{14} -3.46410i q^{15} +(2.00000 - 3.46410i) q^{16} +5.00000 q^{17} +(3.00000 + 3.00000i) q^{18} +1.00000i q^{19} +(-2.00000 + 3.46410i) q^{20} +(-3.46410 - 6.00000i) q^{21} +(-4.09808 - 1.09808i) q^{22} +(-1.00000 - 1.73205i) q^{23} +(-1.26795 - 4.73205i) q^{24} +(-0.500000 + 0.866025i) q^{25} +(-2.00000 + 2.00000i) q^{26} +5.19615 q^{27} +8.00000i q^{28} +(1.26795 + 4.73205i) q^{30} +(2.00000 + 3.46410i) q^{31} +(-1.46410 + 5.46410i) q^{32} +(-4.50000 + 2.59808i) q^{33} +(-6.83013 + 1.83013i) q^{34} -8.00000i q^{35} +(-5.19615 - 3.00000i) q^{36} +2.00000i q^{37} +(-0.366025 - 1.36603i) q^{38} +3.46410i q^{39} +(1.46410 - 5.46410i) q^{40} +(2.50000 + 4.33013i) q^{41} +(6.92820 + 6.92820i) q^{42} +(-9.52628 - 5.50000i) q^{43} +6.00000 q^{44} +(5.19615 + 3.00000i) q^{45} +(2.00000 + 2.00000i) q^{46} +(3.00000 - 5.19615i) q^{47} +(3.46410 + 6.00000i) q^{48} +(-4.50000 - 7.79423i) q^{49} +(0.366025 - 1.36603i) q^{50} +(-4.33013 + 7.50000i) q^{51} +(2.00000 - 3.46410i) q^{52} +(-7.09808 + 1.90192i) q^{54} -6.00000 q^{55} +(-2.92820 - 10.9282i) q^{56} +(-1.50000 - 0.866025i) q^{57} +(-0.866025 + 0.500000i) q^{59} +(-3.46410 - 6.00000i) q^{60} +(10.3923 + 6.00000i) q^{61} +(-4.00000 - 4.00000i) q^{62} +12.0000 q^{63} -8.00000i q^{64} +(-2.00000 + 3.46410i) q^{65} +(5.19615 - 5.19615i) q^{66} +(2.59808 - 1.50000i) q^{67} +(8.66025 - 5.00000i) q^{68} +3.46410 q^{69} +(2.92820 + 10.9282i) q^{70} -6.00000 q^{71} +(8.19615 + 2.19615i) q^{72} +9.00000 q^{73} +(-0.732051 - 2.73205i) q^{74} +(-0.866025 - 1.50000i) q^{75} +(1.00000 + 1.73205i) q^{76} +(-10.3923 + 6.00000i) q^{77} +(-1.26795 - 4.73205i) q^{78} +(7.00000 - 12.1244i) q^{79} +8.00000i q^{80} +(-4.50000 + 7.79423i) q^{81} +(-5.00000 - 5.00000i) q^{82} +(3.46410 + 2.00000i) q^{83} +(-12.0000 - 6.92820i) q^{84} +(-8.66025 + 5.00000i) q^{85} +(15.0263 + 4.02628i) q^{86} +(-8.19615 + 2.19615i) q^{88} -14.0000 q^{89} +(-8.19615 - 2.19615i) q^{90} +8.00000i q^{91} +(-3.46410 - 2.00000i) q^{92} -6.92820 q^{93} +(-2.19615 + 8.19615i) q^{94} +(-1.00000 - 1.73205i) q^{95} +(-6.92820 - 6.92820i) q^{96} +(-0.500000 + 0.866025i) q^{97} +(9.00000 + 9.00000i) q^{98} -9.00000i q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 4 q - 2 q^{2} + 6 q^{6} - 8 q^{7} - 8 q^{8} - 6 q^{9} + 8 q^{10} - 8 q^{14} + 8 q^{16} + 20 q^{17} + 12 q^{18} - 8 q^{20} - 6 q^{22} - 4 q^{23} - 12 q^{24} - 2 q^{25} - 8 q^{26} + 12 q^{30} + 8 q^{31} + 8 q^{32}+ \cdots + 36 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/72\mathbb{Z}\right)^\times\).

\(n\) \(37\) \(55\) \(65\)
\(\chi(n)\) \(-1\) \(1\) \(e\left(\frac{2}{3}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −1.36603 + 0.366025i −0.965926 + 0.258819i
\(3\) −0.866025 + 1.50000i −0.500000 + 0.866025i
\(4\) 1.73205 1.00000i 0.866025 0.500000i
\(5\) −1.73205 + 1.00000i −0.774597 + 0.447214i −0.834512 0.550990i \(-0.814250\pi\)
0.0599153 + 0.998203i \(0.480917\pi\)
\(6\) 0.633975 2.36603i 0.258819 0.965926i
\(7\) −2.00000 + 3.46410i −0.755929 + 1.30931i 0.188982 + 0.981981i \(0.439481\pi\)
−0.944911 + 0.327327i \(0.893852\pi\)
\(8\) −2.00000 + 2.00000i −0.707107 + 0.707107i
\(9\) −1.50000 2.59808i −0.500000 0.866025i
\(10\) 2.00000 2.00000i 0.632456 0.632456i
\(11\) 2.59808 + 1.50000i 0.783349 + 0.452267i 0.837616 0.546259i \(-0.183949\pi\)
−0.0542666 + 0.998526i \(0.517282\pi\)
\(12\) 3.46410i 1.00000i
\(13\) 1.73205 1.00000i 0.480384 0.277350i −0.240192 0.970725i \(-0.577210\pi\)
0.720577 + 0.693375i \(0.243877\pi\)
\(14\) 1.46410 5.46410i 0.391298 1.46034i
\(15\) 3.46410i 0.894427i
\(16\) 2.00000 3.46410i 0.500000 0.866025i
\(17\) 5.00000 1.21268 0.606339 0.795206i \(-0.292637\pi\)
0.606339 + 0.795206i \(0.292637\pi\)
\(18\) 3.00000 + 3.00000i 0.707107 + 0.707107i
\(19\) 1.00000i 0.229416i 0.993399 + 0.114708i \(0.0365932\pi\)
−0.993399 + 0.114708i \(0.963407\pi\)
\(20\) −2.00000 + 3.46410i −0.447214 + 0.774597i
\(21\) −3.46410 6.00000i −0.755929 1.30931i
\(22\) −4.09808 1.09808i −0.873713 0.234111i
\(23\) −1.00000 1.73205i −0.208514 0.361158i 0.742732 0.669588i \(-0.233529\pi\)
−0.951247 + 0.308431i \(0.900196\pi\)
\(24\) −1.26795 4.73205i −0.258819 0.965926i
\(25\) −0.500000 + 0.866025i −0.100000 + 0.173205i
\(26\) −2.00000 + 2.00000i −0.392232 + 0.392232i
\(27\) 5.19615 1.00000
\(28\) 8.00000i 1.51186i
\(29\) 0 0 0.500000 0.866025i \(-0.333333\pi\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(30\) 1.26795 + 4.73205i 0.231495 + 0.863950i
\(31\) 2.00000 + 3.46410i 0.359211 + 0.622171i 0.987829 0.155543i \(-0.0497126\pi\)
−0.628619 + 0.777714i \(0.716379\pi\)
\(32\) −1.46410 + 5.46410i −0.258819 + 0.965926i
\(33\) −4.50000 + 2.59808i −0.783349 + 0.452267i
\(34\) −6.83013 + 1.83013i −1.17136 + 0.313864i
\(35\) 8.00000i 1.35225i
\(36\) −5.19615 3.00000i −0.866025 0.500000i
\(37\) 2.00000i 0.328798i 0.986394 + 0.164399i \(0.0525685\pi\)
−0.986394 + 0.164399i \(0.947432\pi\)
\(38\) −0.366025 1.36603i −0.0593772 0.221599i
\(39\) 3.46410i 0.554700i
\(40\) 1.46410 5.46410i 0.231495 0.863950i
\(41\) 2.50000 + 4.33013i 0.390434 + 0.676252i 0.992507 0.122189i \(-0.0389915\pi\)
−0.602072 + 0.798441i \(0.705658\pi\)
\(42\) 6.92820 + 6.92820i 1.06904 + 1.06904i
\(43\) −9.52628 5.50000i −1.45274 0.838742i −0.454108 0.890947i \(-0.650042\pi\)
−0.998636 + 0.0522047i \(0.983375\pi\)
\(44\) 6.00000 0.904534
\(45\) 5.19615 + 3.00000i 0.774597 + 0.447214i
\(46\) 2.00000 + 2.00000i 0.294884 + 0.294884i
\(47\) 3.00000 5.19615i 0.437595 0.757937i −0.559908 0.828554i \(-0.689164\pi\)
0.997503 + 0.0706177i \(0.0224970\pi\)
\(48\) 3.46410 + 6.00000i 0.500000 + 0.866025i
\(49\) −4.50000 7.79423i −0.642857 1.11346i
\(50\) 0.366025 1.36603i 0.0517638 0.193185i
\(51\) −4.33013 + 7.50000i −0.606339 + 1.05021i
\(52\) 2.00000 3.46410i 0.277350 0.480384i
\(53\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(54\) −7.09808 + 1.90192i −0.965926 + 0.258819i
\(55\) −6.00000 −0.809040
\(56\) −2.92820 10.9282i −0.391298 1.46034i
\(57\) −1.50000 0.866025i −0.198680 0.114708i
\(58\) 0 0
\(59\) −0.866025 + 0.500000i −0.112747 + 0.0650945i −0.555313 0.831641i \(-0.687402\pi\)
0.442566 + 0.896736i \(0.354068\pi\)
\(60\) −3.46410 6.00000i −0.447214 0.774597i
\(61\) 10.3923 + 6.00000i 1.33060 + 0.768221i 0.985391 0.170305i \(-0.0544754\pi\)
0.345207 + 0.938527i \(0.387809\pi\)
\(62\) −4.00000 4.00000i −0.508001 0.508001i
\(63\) 12.0000 1.51186
\(64\) 8.00000i 1.00000i
\(65\) −2.00000 + 3.46410i −0.248069 + 0.429669i
\(66\) 5.19615 5.19615i 0.639602 0.639602i
\(67\) 2.59808 1.50000i 0.317406 0.183254i −0.332830 0.942987i \(-0.608004\pi\)
0.650236 + 0.759733i \(0.274670\pi\)
\(68\) 8.66025 5.00000i 1.05021 0.606339i
\(69\) 3.46410 0.417029
\(70\) 2.92820 + 10.9282i 0.349987 + 1.30617i
\(71\) −6.00000 −0.712069 −0.356034 0.934473i \(-0.615871\pi\)
−0.356034 + 0.934473i \(0.615871\pi\)
\(72\) 8.19615 + 2.19615i 0.965926 + 0.258819i
\(73\) 9.00000 1.05337 0.526685 0.850060i \(-0.323435\pi\)
0.526685 + 0.850060i \(0.323435\pi\)
\(74\) −0.732051 2.73205i −0.0850992 0.317594i
\(75\) −0.866025 1.50000i −0.100000 0.173205i
\(76\) 1.00000 + 1.73205i 0.114708 + 0.198680i
\(77\) −10.3923 + 6.00000i −1.18431 + 0.683763i
\(78\) −1.26795 4.73205i −0.143567 0.535799i
\(79\) 7.00000 12.1244i 0.787562 1.36410i −0.139895 0.990166i \(-0.544677\pi\)
0.927457 0.373930i \(-0.121990\pi\)
\(80\) 8.00000i 0.894427i
\(81\) −4.50000 + 7.79423i −0.500000 + 0.866025i
\(82\) −5.00000 5.00000i −0.552158 0.552158i
\(83\) 3.46410 + 2.00000i 0.380235 + 0.219529i 0.677920 0.735135i \(-0.262881\pi\)
−0.297686 + 0.954664i \(0.596215\pi\)
\(84\) −12.0000 6.92820i −1.30931 0.755929i
\(85\) −8.66025 + 5.00000i −0.939336 + 0.542326i
\(86\) 15.0263 + 4.02628i 1.62033 + 0.434165i
\(87\) 0 0
\(88\) −8.19615 + 2.19615i −0.873713 + 0.234111i
\(89\) −14.0000 −1.48400 −0.741999 0.670402i \(-0.766122\pi\)
−0.741999 + 0.670402i \(0.766122\pi\)
\(90\) −8.19615 2.19615i −0.863950 0.231495i
\(91\) 8.00000i 0.838628i
\(92\) −3.46410 2.00000i −0.361158 0.208514i
\(93\) −6.92820 −0.718421
\(94\) −2.19615 + 8.19615i −0.226516 + 0.845369i
\(95\) −1.00000 1.73205i −0.102598 0.177705i
\(96\) −6.92820 6.92820i −0.707107 0.707107i
\(97\) −0.500000 + 0.866025i −0.0507673 + 0.0879316i −0.890292 0.455389i \(-0.849500\pi\)
0.839525 + 0.543321i \(0.182833\pi\)
\(98\) 9.00000 + 9.00000i 0.909137 + 0.909137i
\(99\) 9.00000i 0.904534i
\(100\) 2.00000i 0.200000i
\(101\) 12.1244 + 7.00000i 1.20642 + 0.696526i 0.961975 0.273138i \(-0.0880614\pi\)
0.244443 + 0.969664i \(0.421395\pi\)
\(102\) 3.16987 11.8301i 0.313864 1.17136i
\(103\) 3.00000 + 5.19615i 0.295599 + 0.511992i 0.975124 0.221660i \(-0.0711475\pi\)
−0.679525 + 0.733652i \(0.737814\pi\)
\(104\) −1.46410 + 5.46410i −0.143567 + 0.535799i
\(105\) 12.0000 + 6.92820i 1.17108 + 0.676123i
\(106\) 0 0
\(107\) 3.00000i 0.290021i 0.989430 + 0.145010i \(0.0463216\pi\)
−0.989430 + 0.145010i \(0.953678\pi\)
\(108\) 9.00000 5.19615i 0.866025 0.500000i
\(109\) 20.0000i 1.91565i −0.287348 0.957826i \(-0.592774\pi\)
0.287348 0.957826i \(-0.407226\pi\)
\(110\) 8.19615 2.19615i 0.781472 0.209395i
\(111\) −3.00000 1.73205i −0.284747 0.164399i
\(112\) 8.00000 + 13.8564i 0.755929 + 1.30931i
\(113\) −3.00000 5.19615i −0.282216 0.488813i 0.689714 0.724082i \(-0.257736\pi\)
−0.971930 + 0.235269i \(0.924403\pi\)
\(114\) 2.36603 + 0.633975i 0.221599 + 0.0593772i
\(115\) 3.46410 + 2.00000i 0.323029 + 0.186501i
\(116\) 0 0
\(117\) −5.19615 3.00000i −0.480384 0.277350i
\(118\) 1.00000 1.00000i 0.0920575 0.0920575i
\(119\) −10.0000 + 17.3205i −0.916698 + 1.58777i
\(120\) 6.92820 + 6.92820i 0.632456 + 0.632456i
\(121\) −1.00000 1.73205i −0.0909091 0.157459i
\(122\) −16.3923 4.39230i −1.48409 0.397661i
\(123\) −8.66025 −0.780869
\(124\) 6.92820 + 4.00000i 0.622171 + 0.359211i
\(125\) 12.0000i 1.07331i
\(126\) −16.3923 + 4.39230i −1.46034 + 0.391298i
\(127\) −2.00000 −0.177471 −0.0887357 0.996055i \(-0.528283\pi\)
−0.0887357 + 0.996055i \(0.528283\pi\)
\(128\) 2.92820 + 10.9282i 0.258819 + 0.965926i
\(129\) 16.5000 9.52628i 1.45274 0.838742i
\(130\) 1.46410 5.46410i 0.128410 0.479233i
\(131\) −3.46410 + 2.00000i −0.302660 + 0.174741i −0.643637 0.765331i \(-0.722575\pi\)
0.340977 + 0.940072i \(0.389242\pi\)
\(132\) −5.19615 + 9.00000i −0.452267 + 0.783349i
\(133\) −3.46410 2.00000i −0.300376 0.173422i
\(134\) −3.00000 + 3.00000i −0.259161 + 0.259161i
\(135\) −9.00000 + 5.19615i −0.774597 + 0.447214i
\(136\) −10.0000 + 10.0000i −0.857493 + 0.857493i
\(137\) 4.50000 7.79423i 0.384461 0.665906i −0.607233 0.794524i \(-0.707721\pi\)
0.991694 + 0.128618i \(0.0410540\pi\)
\(138\) −4.73205 + 1.26795i −0.402819 + 0.107935i
\(139\) 11.2583 6.50000i 0.954919 0.551323i 0.0603135 0.998179i \(-0.480790\pi\)
0.894606 + 0.446857i \(0.147457\pi\)
\(140\) −8.00000 13.8564i −0.676123 1.17108i
\(141\) 5.19615 + 9.00000i 0.437595 + 0.757937i
\(142\) 8.19615 2.19615i 0.687806 0.184297i
\(143\) 6.00000 0.501745
\(144\) −12.0000 −1.00000
\(145\) 0 0
\(146\) −12.2942 + 3.29423i −1.01748 + 0.272632i
\(147\) 15.5885 1.28571
\(148\) 2.00000 + 3.46410i 0.164399 + 0.284747i
\(149\) 15.5885 9.00000i 1.27706 0.737309i 0.300750 0.953703i \(-0.402763\pi\)
0.976306 + 0.216394i \(0.0694297\pi\)
\(150\) 1.73205 + 1.73205i 0.141421 + 0.141421i
\(151\) 3.00000 5.19615i 0.244137 0.422857i −0.717752 0.696299i \(-0.754829\pi\)
0.961888 + 0.273442i \(0.0881622\pi\)
\(152\) −2.00000 2.00000i −0.162221 0.162221i
\(153\) −7.50000 12.9904i −0.606339 1.05021i
\(154\) 12.0000 12.0000i 0.966988 0.966988i
\(155\) −6.92820 4.00000i −0.556487 0.321288i
\(156\) 3.46410 + 6.00000i 0.277350 + 0.480384i
\(157\) −3.46410 + 2.00000i −0.276465 + 0.159617i −0.631822 0.775113i \(-0.717693\pi\)
0.355357 + 0.934731i \(0.384359\pi\)
\(158\) −5.12436 + 19.1244i −0.407672 + 1.52145i
\(159\) 0 0
\(160\) −2.92820 10.9282i −0.231495 0.863950i
\(161\) 8.00000 0.630488
\(162\) 3.29423 12.2942i 0.258819 0.965926i
\(163\) 4.00000i 0.313304i −0.987654 0.156652i \(-0.949930\pi\)
0.987654 0.156652i \(-0.0500701\pi\)
\(164\) 8.66025 + 5.00000i 0.676252 + 0.390434i
\(165\) 5.19615 9.00000i 0.404520 0.700649i
\(166\) −5.46410 1.46410i −0.424097 0.113636i
\(167\) 1.00000 + 1.73205i 0.0773823 + 0.134030i 0.902120 0.431486i \(-0.142010\pi\)
−0.824737 + 0.565516i \(0.808677\pi\)
\(168\) 18.9282 + 5.07180i 1.46034 + 0.391298i
\(169\) −4.50000 + 7.79423i −0.346154 + 0.599556i
\(170\) 10.0000 10.0000i 0.766965 0.766965i
\(171\) 2.59808 1.50000i 0.198680 0.114708i
\(172\) −22.0000 −1.67748
\(173\) −20.7846 12.0000i −1.58022 0.912343i −0.994826 0.101598i \(-0.967605\pi\)
−0.585399 0.810745i \(-0.699062\pi\)
\(174\) 0 0
\(175\) −2.00000 3.46410i −0.151186 0.261861i
\(176\) 10.3923 6.00000i 0.783349 0.452267i
\(177\) 1.73205i 0.130189i
\(178\) 19.1244 5.12436i 1.43343 0.384087i
\(179\) 20.0000i 1.49487i 0.664335 + 0.747435i \(0.268715\pi\)
−0.664335 + 0.747435i \(0.731285\pi\)
\(180\) 12.0000 0.894427
\(181\) 10.0000i 0.743294i 0.928374 + 0.371647i \(0.121207\pi\)
−0.928374 + 0.371647i \(0.878793\pi\)
\(182\) −2.92820 10.9282i −0.217053 0.810052i
\(183\) −18.0000 + 10.3923i −1.33060 + 0.768221i
\(184\) 5.46410 + 1.46410i 0.402819 + 0.107935i
\(185\) −2.00000 3.46410i −0.147043 0.254686i
\(186\) 9.46410 2.53590i 0.693942 0.185941i
\(187\) 12.9904 + 7.50000i 0.949951 + 0.548454i
\(188\) 12.0000i 0.875190i
\(189\) −10.3923 + 18.0000i −0.755929 + 1.30931i
\(190\) 2.00000 + 2.00000i 0.145095 + 0.145095i
\(191\) 8.00000 13.8564i 0.578860 1.00261i −0.416751 0.909021i \(-0.636831\pi\)
0.995610 0.0935936i \(-0.0298354\pi\)
\(192\) 12.0000 + 6.92820i 0.866025 + 0.500000i
\(193\) 7.50000 + 12.9904i 0.539862 + 0.935068i 0.998911 + 0.0466572i \(0.0148568\pi\)
−0.459049 + 0.888411i \(0.651810\pi\)
\(194\) 0.366025 1.36603i 0.0262791 0.0980749i
\(195\) −3.46410 6.00000i −0.248069 0.429669i
\(196\) −15.5885 9.00000i −1.11346 0.642857i
\(197\) 8.00000i 0.569976i 0.958531 + 0.284988i \(0.0919897\pi\)
−0.958531 + 0.284988i \(0.908010\pi\)
\(198\) 3.29423 + 12.2942i 0.234111 + 0.873713i
\(199\) −8.00000 −0.567105 −0.283552 0.958957i \(-0.591513\pi\)
−0.283552 + 0.958957i \(0.591513\pi\)
\(200\) −0.732051 2.73205i −0.0517638 0.193185i
\(201\) 5.19615i 0.366508i
\(202\) −19.1244 5.12436i −1.34558 0.360548i
\(203\) 0 0
\(204\) 17.3205i 1.21268i
\(205\) −8.66025 5.00000i −0.604858 0.349215i
\(206\) −6.00000 6.00000i −0.418040 0.418040i
\(207\) −3.00000 + 5.19615i −0.208514 + 0.361158i
\(208\) 8.00000i 0.554700i
\(209\) −1.50000 + 2.59808i −0.103757 + 0.179713i
\(210\) −18.9282 5.07180i −1.30617 0.349987i
\(211\) −13.8564 + 8.00000i −0.953914 + 0.550743i −0.894295 0.447478i \(-0.852322\pi\)
−0.0596196 + 0.998221i \(0.518989\pi\)
\(212\) 0 0
\(213\) 5.19615 9.00000i 0.356034 0.616670i
\(214\) −1.09808 4.09808i −0.0750629 0.280139i
\(215\) 22.0000 1.50039
\(216\) −10.3923 + 10.3923i −0.707107 + 0.707107i
\(217\) −16.0000 −1.08615
\(218\) 7.32051 + 27.3205i 0.495807 + 1.85038i
\(219\) −7.79423 + 13.5000i −0.526685 + 0.912245i
\(220\) −10.3923 + 6.00000i −0.700649 + 0.404520i
\(221\) 8.66025 5.00000i 0.582552 0.336336i
\(222\) 4.73205 + 1.26795i 0.317594 + 0.0850992i
\(223\) −1.00000 + 1.73205i −0.0669650 + 0.115987i −0.897564 0.440884i \(-0.854665\pi\)
0.830599 + 0.556871i \(0.187998\pi\)
\(224\) −16.0000 16.0000i −1.06904 1.06904i
\(225\) 3.00000 0.200000
\(226\) 6.00000 + 6.00000i 0.399114 + 0.399114i
\(227\) −6.06218 3.50000i −0.402361 0.232303i 0.285141 0.958485i \(-0.407959\pi\)
−0.687502 + 0.726182i \(0.741293\pi\)
\(228\) −3.46410 −0.229416
\(229\) −17.3205 + 10.0000i −1.14457 + 0.660819i −0.947559 0.319582i \(-0.896457\pi\)
−0.197013 + 0.980401i \(0.563124\pi\)
\(230\) −5.46410 1.46410i −0.360292 0.0965400i
\(231\) 20.7846i 1.36753i
\(232\) 0 0
\(233\) 13.0000 0.851658 0.425829 0.904804i \(-0.359982\pi\)
0.425829 + 0.904804i \(0.359982\pi\)
\(234\) 8.19615 + 2.19615i 0.535799 + 0.143567i
\(235\) 12.0000i 0.782794i
\(236\) −1.00000 + 1.73205i −0.0650945 + 0.112747i
\(237\) 12.1244 + 21.0000i 0.787562 + 1.36410i
\(238\) 7.32051 27.3205i 0.474518 1.77093i
\(239\) 15.0000 + 25.9808i 0.970269 + 1.68056i 0.694737 + 0.719264i \(0.255521\pi\)
0.275533 + 0.961292i \(0.411146\pi\)
\(240\) −12.0000 6.92820i −0.774597 0.447214i
\(241\) −8.50000 + 14.7224i −0.547533 + 0.948355i 0.450910 + 0.892570i \(0.351100\pi\)
−0.998443 + 0.0557856i \(0.982234\pi\)
\(242\) 2.00000 + 2.00000i 0.128565 + 0.128565i
\(243\) −7.79423 13.5000i −0.500000 0.866025i
\(244\) 24.0000 1.53644
\(245\) 15.5885 + 9.00000i 0.995910 + 0.574989i
\(246\) 11.8301 3.16987i 0.754261 0.202104i
\(247\) 1.00000 + 1.73205i 0.0636285 + 0.110208i
\(248\) −10.9282 2.92820i −0.693942 0.185941i
\(249\) −6.00000 + 3.46410i −0.380235 + 0.219529i
\(250\) 4.39230 + 16.3923i 0.277794 + 1.03674i
\(251\) 15.0000i 0.946792i −0.880850 0.473396i \(-0.843028\pi\)
0.880850 0.473396i \(-0.156972\pi\)
\(252\) 20.7846 12.0000i 1.30931 0.755929i
\(253\) 6.00000i 0.377217i
\(254\) 2.73205 0.732051i 0.171424 0.0459330i
\(255\) 17.3205i 1.08465i
\(256\) −8.00000 13.8564i −0.500000 0.866025i
\(257\) −7.50000 12.9904i −0.467837 0.810318i 0.531487 0.847066i \(-0.321633\pi\)
−0.999325 + 0.0367485i \(0.988300\pi\)
\(258\) −19.0526 + 19.0526i −1.18616 + 1.18616i
\(259\) −6.92820 4.00000i −0.430498 0.248548i
\(260\) 8.00000i 0.496139i
\(261\) 0 0
\(262\) 4.00000 4.00000i 0.247121 0.247121i
\(263\) 4.00000 6.92820i 0.246651 0.427211i −0.715944 0.698158i \(-0.754003\pi\)
0.962594 + 0.270947i \(0.0873367\pi\)
\(264\) 3.80385 14.1962i 0.234111 0.873713i
\(265\) 0 0
\(266\) 5.46410 + 1.46410i 0.335026 + 0.0897698i
\(267\) 12.1244 21.0000i 0.741999 1.28518i
\(268\) 3.00000 5.19615i 0.183254 0.317406i
\(269\) 12.0000i 0.731653i 0.930683 + 0.365826i \(0.119214\pi\)
−0.930683 + 0.365826i \(0.880786\pi\)
\(270\) 10.3923 10.3923i 0.632456 0.632456i
\(271\) 12.0000 0.728948 0.364474 0.931214i \(-0.381249\pi\)
0.364474 + 0.931214i \(0.381249\pi\)
\(272\) 10.0000 17.3205i 0.606339 1.05021i
\(273\) −12.0000 6.92820i −0.726273 0.419314i
\(274\) −3.29423 + 12.2942i −0.199012 + 0.742722i
\(275\) −2.59808 + 1.50000i −0.156670 + 0.0904534i
\(276\) 6.00000 3.46410i 0.361158 0.208514i
\(277\) 1.73205 + 1.00000i 0.104069 + 0.0600842i 0.551131 0.834419i \(-0.314196\pi\)
−0.447062 + 0.894503i \(0.647530\pi\)
\(278\) −13.0000 + 13.0000i −0.779688 + 0.779688i
\(279\) 6.00000 10.3923i 0.359211 0.622171i
\(280\) 16.0000 + 16.0000i 0.956183 + 0.956183i
\(281\) 3.00000 5.19615i 0.178965 0.309976i −0.762561 0.646916i \(-0.776058\pi\)
0.941526 + 0.336939i \(0.109392\pi\)
\(282\) −10.3923 10.3923i −0.618853 0.618853i
\(283\) 17.3205 10.0000i 1.02960 0.594438i 0.112728 0.993626i \(-0.464041\pi\)
0.916869 + 0.399188i \(0.130708\pi\)
\(284\) −10.3923 + 6.00000i −0.616670 + 0.356034i
\(285\) 3.46410 0.205196
\(286\) −8.19615 + 2.19615i −0.484649 + 0.129861i
\(287\) −20.0000 −1.18056
\(288\) 16.3923 4.39230i 0.965926 0.258819i
\(289\) 8.00000 0.470588
\(290\) 0 0
\(291\) −0.866025 1.50000i −0.0507673 0.0879316i
\(292\) 15.5885 9.00000i 0.912245 0.526685i
\(293\) 10.3923 6.00000i 0.607125 0.350524i −0.164714 0.986341i \(-0.552670\pi\)
0.771839 + 0.635818i \(0.219337\pi\)
\(294\) −21.2942 + 5.70577i −1.24190 + 0.332767i
\(295\) 1.00000 1.73205i 0.0582223 0.100844i
\(296\) −4.00000 4.00000i −0.232495 0.232495i
\(297\) 13.5000 + 7.79423i 0.783349 + 0.452267i
\(298\) −18.0000 + 18.0000i −1.04271 + 1.04271i
\(299\) −3.46410 2.00000i −0.200334 0.115663i
\(300\) −3.00000 1.73205i −0.173205 0.100000i
\(301\) 38.1051 22.0000i 2.19634 1.26806i
\(302\) −2.19615 + 8.19615i −0.126374 + 0.471636i
\(303\) −21.0000 + 12.1244i −1.20642 + 0.696526i
\(304\) 3.46410 + 2.00000i 0.198680 + 0.114708i
\(305\) −24.0000 −1.37424
\(306\) 15.0000 + 15.0000i 0.857493 + 0.857493i
\(307\) 9.00000i 0.513657i −0.966457 0.256829i \(-0.917322\pi\)
0.966457 0.256829i \(-0.0826776\pi\)
\(308\) −12.0000 + 20.7846i −0.683763 + 1.18431i
\(309\) −10.3923 −0.591198
\(310\) 10.9282 + 2.92820i 0.620680 + 0.166311i
\(311\) −10.0000 17.3205i −0.567048 0.982156i −0.996856 0.0792356i \(-0.974752\pi\)
0.429808 0.902920i \(-0.358581\pi\)
\(312\) −6.92820 6.92820i −0.392232 0.392232i
\(313\) 0.500000 0.866025i 0.0282617 0.0489506i −0.851549 0.524276i \(-0.824336\pi\)
0.879810 + 0.475325i \(0.157669\pi\)
\(314\) 4.00000 4.00000i 0.225733 0.225733i
\(315\) −20.7846 + 12.0000i −1.17108 + 0.676123i
\(316\) 28.0000i 1.57512i
\(317\) −19.0526 11.0000i −1.07010 0.617822i −0.141890 0.989882i \(-0.545318\pi\)
−0.928208 + 0.372061i \(0.878651\pi\)
\(318\) 0 0
\(319\) 0 0
\(320\) 8.00000 + 13.8564i 0.447214 + 0.774597i
\(321\) −4.50000 2.59808i −0.251166 0.145010i
\(322\) −10.9282 + 2.92820i −0.609005 + 0.163182i
\(323\) 5.00000i 0.278207i
\(324\) 18.0000i 1.00000i
\(325\) 2.00000i 0.110940i
\(326\) 1.46410 + 5.46410i 0.0810891 + 0.302629i
\(327\) 30.0000 + 17.3205i 1.65900 + 0.957826i
\(328\) −13.6603 3.66025i −0.754261 0.202104i
\(329\) 12.0000 + 20.7846i 0.661581 + 1.14589i
\(330\) −3.80385 + 14.1962i −0.209395 + 0.781472i
\(331\) −17.3205 10.0000i −0.952021 0.549650i −0.0583130 0.998298i \(-0.518572\pi\)
−0.893708 + 0.448649i \(0.851905\pi\)
\(332\) 8.00000 0.439057
\(333\) 5.19615 3.00000i 0.284747 0.164399i
\(334\) −2.00000 2.00000i −0.109435 0.109435i
\(335\) −3.00000 + 5.19615i −0.163908 + 0.283896i
\(336\) −27.7128 −1.51186
\(337\) −3.50000 6.06218i −0.190657 0.330228i 0.754811 0.655942i \(-0.227729\pi\)
−0.945468 + 0.325714i \(0.894395\pi\)
\(338\) 3.29423 12.2942i 0.179182 0.668718i
\(339\) 10.3923 0.564433
\(340\) −10.0000 + 17.3205i −0.542326 + 0.939336i
\(341\) 12.0000i 0.649836i
\(342\) −3.00000 + 3.00000i −0.162221 + 0.162221i
\(343\) 8.00000 0.431959
\(344\) 30.0526 8.05256i 1.62033 0.434165i
\(345\) −6.00000 + 3.46410i −0.323029 + 0.186501i
\(346\) 32.7846 + 8.78461i 1.76251 + 0.472264i
\(347\) 11.2583 6.50000i 0.604379 0.348938i −0.166383 0.986061i \(-0.553209\pi\)
0.770762 + 0.637123i \(0.219876\pi\)
\(348\) 0 0
\(349\) 13.8564 + 8.00000i 0.741716 + 0.428230i 0.822693 0.568486i \(-0.192471\pi\)
−0.0809766 + 0.996716i \(0.525804\pi\)
\(350\) 4.00000 + 4.00000i 0.213809 + 0.213809i
\(351\) 9.00000 5.19615i 0.480384 0.277350i
\(352\) −12.0000 + 12.0000i −0.639602 + 0.639602i
\(353\) −7.50000 + 12.9904i −0.399185 + 0.691408i −0.993626 0.112731i \(-0.964040\pi\)
0.594441 + 0.804139i \(0.297373\pi\)
\(354\) 0.633975 + 2.36603i 0.0336954 + 0.125753i
\(355\) 10.3923 6.00000i 0.551566 0.318447i
\(356\) −24.2487 + 14.0000i −1.28518 + 0.741999i
\(357\) −17.3205 30.0000i −0.916698 1.58777i
\(358\) −7.32051 27.3205i −0.386901 1.44393i
\(359\) −4.00000 −0.211112 −0.105556 0.994413i \(-0.533662\pi\)
−0.105556 + 0.994413i \(0.533662\pi\)
\(360\) −16.3923 + 4.39230i −0.863950 + 0.231495i
\(361\) 18.0000 0.947368
\(362\) −3.66025 13.6603i −0.192379 0.717967i
\(363\) 3.46410 0.181818
\(364\) 8.00000 + 13.8564i 0.419314 + 0.726273i
\(365\) −15.5885 + 9.00000i −0.815937 + 0.471082i
\(366\) 20.7846 20.7846i 1.08643 1.08643i
\(367\) −9.00000 + 15.5885i −0.469796 + 0.813711i −0.999404 0.0345320i \(-0.989006\pi\)
0.529607 + 0.848243i \(0.322339\pi\)
\(368\) −8.00000 −0.417029
\(369\) 7.50000 12.9904i 0.390434 0.676252i
\(370\) 4.00000 + 4.00000i 0.207950 + 0.207950i
\(371\) 0 0
\(372\) −12.0000 + 6.92820i −0.622171 + 0.359211i
\(373\) −22.5167 + 13.0000i −1.16587 + 0.673114i −0.952703 0.303902i \(-0.901711\pi\)
−0.213165 + 0.977016i \(0.568377\pi\)
\(374\) −20.4904 5.49038i −1.05953 0.283901i
\(375\) 18.0000 + 10.3923i 0.929516 + 0.536656i
\(376\) 4.39230 + 16.3923i 0.226516 + 0.845369i
\(377\) 0 0
\(378\) 7.60770 28.3923i 0.391298 1.46034i
\(379\) 5.00000i 0.256833i −0.991720 0.128416i \(-0.959011\pi\)
0.991720 0.128416i \(-0.0409894\pi\)
\(380\) −3.46410 2.00000i −0.177705 0.102598i
\(381\) 1.73205 3.00000i 0.0887357 0.153695i
\(382\) −5.85641 + 21.8564i −0.299640 + 1.11827i
\(383\) −9.00000 15.5885i −0.459879 0.796533i 0.539076 0.842257i \(-0.318774\pi\)
−0.998954 + 0.0457244i \(0.985440\pi\)
\(384\) −18.9282 5.07180i −0.965926 0.258819i
\(385\) 12.0000 20.7846i 0.611577 1.05928i
\(386\) −15.0000 15.0000i −0.763480 0.763480i
\(387\) 33.0000i 1.67748i
\(388\) 2.00000i 0.101535i
\(389\) −6.92820 4.00000i −0.351274 0.202808i 0.313972 0.949432i \(-0.398340\pi\)
−0.665246 + 0.746624i \(0.731673\pi\)
\(390\) 6.92820 + 6.92820i 0.350823 + 0.350823i
\(391\) −5.00000 8.66025i −0.252861 0.437968i
\(392\) 24.5885 + 6.58846i 1.24190 + 0.332767i
\(393\) 6.92820i 0.349482i
\(394\) −2.92820 10.9282i −0.147521 0.550555i
\(395\) 28.0000i 1.40883i
\(396\) −9.00000 15.5885i −0.452267 0.783349i
\(397\) 22.0000i 1.10415i 0.833795 + 0.552074i \(0.186163\pi\)
−0.833795 + 0.552074i \(0.813837\pi\)
\(398\) 10.9282 2.92820i 0.547781 0.146778i
\(399\) 6.00000 3.46410i 0.300376 0.173422i
\(400\) 2.00000 + 3.46410i 0.100000 + 0.173205i
\(401\) 7.50000 + 12.9904i 0.374532 + 0.648709i 0.990257 0.139253i \(-0.0444700\pi\)
−0.615725 + 0.787961i \(0.711137\pi\)
\(402\) −1.90192 7.09808i −0.0948593 0.354020i
\(403\) 6.92820 + 4.00000i 0.345118 + 0.199254i
\(404\) 28.0000 1.39305
\(405\) 18.0000i 0.894427i
\(406\) 0 0
\(407\) −3.00000 + 5.19615i −0.148704 + 0.257564i
\(408\) −6.33975 23.6603i −0.313864 1.17136i
\(409\) −15.5000 26.8468i −0.766426 1.32749i −0.939490 0.342578i \(-0.888700\pi\)
0.173064 0.984911i \(-0.444633\pi\)
\(410\) 13.6603 + 3.66025i 0.674632 + 0.180767i
\(411\) 7.79423 + 13.5000i 0.384461 + 0.665906i
\(412\) 10.3923 + 6.00000i 0.511992 + 0.295599i
\(413\) 4.00000i 0.196827i
\(414\) 2.19615 8.19615i 0.107935 0.402819i
\(415\) −8.00000 −0.392705
\(416\) 2.92820 + 10.9282i 0.143567 + 0.535799i
\(417\) 22.5167i 1.10265i
\(418\) 1.09808 4.09808i 0.0537087 0.200443i
\(419\) 31.1769 18.0000i 1.52309 0.879358i 0.523465 0.852047i \(-0.324639\pi\)
0.999627 0.0273103i \(-0.00869423\pi\)
\(420\) 27.7128 1.35225
\(421\) −19.0526 11.0000i −0.928565 0.536107i −0.0422075 0.999109i \(-0.513439\pi\)
−0.886357 + 0.463002i \(0.846772\pi\)
\(422\) 16.0000 16.0000i 0.778868 0.778868i
\(423\) −18.0000 −0.875190
\(424\) 0 0
\(425\) −2.50000 + 4.33013i −0.121268 + 0.210042i
\(426\) −3.80385 + 14.1962i −0.184297 + 0.687806i
\(427\) −41.5692 + 24.0000i −2.01168 + 1.16144i
\(428\) 3.00000 + 5.19615i 0.145010 + 0.251166i
\(429\) −5.19615 + 9.00000i −0.250873 + 0.434524i
\(430\) −30.0526 + 8.05256i −1.44926 + 0.388329i
\(431\) −36.0000 −1.73406 −0.867029 0.498257i \(-0.833974\pi\)
−0.867029 + 0.498257i \(0.833974\pi\)
\(432\) 10.3923 18.0000i 0.500000 0.866025i
\(433\) 5.00000 0.240285 0.120142 0.992757i \(-0.461665\pi\)
0.120142 + 0.992757i \(0.461665\pi\)
\(434\) 21.8564 5.85641i 1.04914 0.281117i
\(435\) 0 0
\(436\) −20.0000 34.6410i −0.957826 1.65900i
\(437\) 1.73205 1.00000i 0.0828552 0.0478365i
\(438\) 5.70577 21.2942i 0.272632 1.01748i
\(439\) 0 0 −0.866025 0.500000i \(-0.833333\pi\)
0.866025 + 0.500000i \(0.166667\pi\)
\(440\) 12.0000 12.0000i 0.572078 0.572078i
\(441\) −13.5000 + 23.3827i −0.642857 + 1.11346i
\(442\) −10.0000 + 10.0000i −0.475651 + 0.475651i
\(443\) 7.79423 + 4.50000i 0.370315 + 0.213801i 0.673596 0.739100i \(-0.264749\pi\)
−0.303281 + 0.952901i \(0.598082\pi\)
\(444\) −6.92820 −0.328798
\(445\) 24.2487 14.0000i 1.14950 0.663664i
\(446\) 0.732051 2.73205i 0.0346636 0.129366i
\(447\) 31.1769i 1.47462i
\(448\) 27.7128 + 16.0000i 1.30931 + 0.755929i
\(449\) 21.0000 0.991051 0.495526 0.868593i \(-0.334975\pi\)
0.495526 + 0.868593i \(0.334975\pi\)
\(450\) −4.09808 + 1.09808i −0.193185 + 0.0517638i
\(451\) 15.0000i 0.706322i
\(452\) −10.3923 6.00000i −0.488813 0.282216i
\(453\) 5.19615 + 9.00000i 0.244137 + 0.422857i
\(454\) 9.56218 + 2.56218i 0.448775 + 0.120249i
\(455\) −8.00000 13.8564i −0.375046 0.649598i
\(456\) 4.73205 1.26795i 0.221599 0.0593772i
\(457\) 18.5000 32.0429i 0.865393 1.49891i −0.00126243 0.999999i \(-0.500402\pi\)
0.866656 0.498906i \(-0.166265\pi\)
\(458\) 20.0000 20.0000i 0.934539 0.934539i
\(459\) 25.9808 1.21268
\(460\) 8.00000 0.373002
\(461\) 5.19615 + 3.00000i 0.242009 + 0.139724i 0.616100 0.787668i \(-0.288712\pi\)
−0.374091 + 0.927392i \(0.622045\pi\)
\(462\) 7.60770 + 28.3923i 0.353942 + 1.32093i
\(463\) −5.00000 8.66025i −0.232370 0.402476i 0.726135 0.687552i \(-0.241315\pi\)
−0.958505 + 0.285076i \(0.907981\pi\)
\(464\) 0 0
\(465\) 12.0000 6.92820i 0.556487 0.321288i
\(466\) −17.7583 + 4.75833i −0.822639 + 0.220425i
\(467\) 29.0000i 1.34196i −0.741475 0.670980i \(-0.765874\pi\)
0.741475 0.670980i \(-0.234126\pi\)
\(468\) −12.0000 −0.554700
\(469\) 12.0000i 0.554109i
\(470\) −4.39230 16.3923i −0.202602 0.756121i
\(471\) 6.92820i 0.319235i
\(472\) 0.732051 2.73205i 0.0336954 0.125753i
\(473\) −16.5000 28.5788i −0.758671 1.31406i
\(474\) −24.2487 24.2487i −1.11378 1.11378i
\(475\) −0.866025 0.500000i −0.0397360 0.0229416i
\(476\) 40.0000i 1.83340i
\(477\) 0 0
\(478\) −30.0000 30.0000i −1.37217 1.37217i
\(479\) −8.00000 + 13.8564i −0.365529 + 0.633115i −0.988861 0.148842i \(-0.952445\pi\)
0.623332 + 0.781958i \(0.285779\pi\)
\(480\) 18.9282 + 5.07180i 0.863950 + 0.231495i
\(481\) 2.00000 + 3.46410i 0.0911922 + 0.157949i
\(482\) 6.22243 23.2224i 0.283424 1.05775i
\(483\) −6.92820 + 12.0000i −0.315244 + 0.546019i
\(484\) −3.46410 2.00000i −0.157459 0.0909091i
\(485\) 2.00000i 0.0908153i
\(486\) 15.5885 + 15.5885i 0.707107 + 0.707107i
\(487\) 20.0000 0.906287 0.453143 0.891438i \(-0.350303\pi\)
0.453143 + 0.891438i \(0.350303\pi\)
\(488\) −32.7846 + 8.78461i −1.48409 + 0.397661i
\(489\) 6.00000 + 3.46410i 0.271329 + 0.156652i
\(490\) −24.5885 6.58846i −1.11079 0.297636i
\(491\) −16.4545 + 9.50000i −0.742580 + 0.428729i −0.823007 0.568032i \(-0.807705\pi\)
0.0804264 + 0.996761i \(0.474372\pi\)
\(492\) −15.0000 + 8.66025i −0.676252 + 0.390434i
\(493\) 0 0
\(494\) −2.00000 2.00000i −0.0899843 0.0899843i
\(495\) 9.00000 + 15.5885i 0.404520 + 0.700649i
\(496\) 16.0000 0.718421
\(497\) 12.0000 20.7846i 0.538274 0.932317i
\(498\) 6.92820 6.92820i 0.310460 0.310460i
\(499\) −12.9904 + 7.50000i −0.581529 + 0.335746i −0.761741 0.647882i \(-0.775655\pi\)
0.180212 + 0.983628i \(0.442322\pi\)
\(500\) −12.0000 20.7846i −0.536656 0.929516i
\(501\) −3.46410 −0.154765
\(502\) 5.49038 + 20.4904i 0.245048 + 0.914530i
\(503\) 36.0000 1.60516 0.802580 0.596544i \(-0.203460\pi\)
0.802580 + 0.596544i \(0.203460\pi\)
\(504\) −24.0000 + 24.0000i −1.06904 + 1.06904i
\(505\) −28.0000 −1.24598
\(506\) 2.19615 + 8.19615i 0.0976309 + 0.364363i
\(507\) −7.79423 13.5000i −0.346154 0.599556i
\(508\) −3.46410 + 2.00000i −0.153695 + 0.0887357i
\(509\) −31.1769 + 18.0000i −1.38189 + 0.797836i −0.992384 0.123187i \(-0.960689\pi\)
−0.389509 + 0.921023i \(0.627355\pi\)
\(510\) 6.33975 + 23.6603i 0.280729 + 1.04769i
\(511\) −18.0000 + 31.1769i −0.796273 + 1.37919i
\(512\) 16.0000 + 16.0000i 0.707107 + 0.707107i
\(513\) 5.19615i 0.229416i
\(514\) 15.0000 + 15.0000i 0.661622 + 0.661622i
\(515\) −10.3923 6.00000i −0.457940 0.264392i
\(516\) 19.0526 33.0000i 0.838742 1.45274i
\(517\) 15.5885 9.00000i 0.685580 0.395820i
\(518\) 10.9282 + 2.92820i 0.480158 + 0.128658i
\(519\) 36.0000 20.7846i 1.58022 0.912343i
\(520\) −2.92820 10.9282i −0.128410 0.479233i
\(521\) 15.0000 0.657162 0.328581 0.944476i \(-0.393430\pi\)
0.328581 + 0.944476i \(0.393430\pi\)
\(522\) 0 0
\(523\) 36.0000i 1.57417i −0.616844 0.787085i \(-0.711589\pi\)
0.616844 0.787085i \(-0.288411\pi\)
\(524\) −4.00000 + 6.92820i −0.174741 + 0.302660i
\(525\) 6.92820 0.302372
\(526\) −2.92820 + 10.9282i −0.127676 + 0.476492i
\(527\) 10.0000 + 17.3205i 0.435607 + 0.754493i
\(528\) 20.7846i 0.904534i
\(529\) 9.50000 16.4545i 0.413043 0.715412i
\(530\) 0 0
\(531\) 2.59808 + 1.50000i 0.112747 + 0.0650945i
\(532\) −8.00000 −0.346844
\(533\) 8.66025 + 5.00000i 0.375117 + 0.216574i
\(534\) −8.87564 + 33.1244i −0.384087 + 1.43343i
\(535\) −3.00000 5.19615i −0.129701 0.224649i
\(536\) −2.19615 + 8.19615i −0.0948593 + 0.354020i
\(537\) −30.0000 17.3205i −1.29460 0.747435i
\(538\) −4.39230 16.3923i −0.189366 0.706722i
\(539\) 27.0000i 1.16297i
\(540\) −10.3923 + 18.0000i −0.447214 + 0.774597i
\(541\) 22.0000i 0.945854i −0.881102 0.472927i \(-0.843197\pi\)
0.881102 0.472927i \(-0.156803\pi\)
\(542\) −16.3923 + 4.39230i −0.704110 + 0.188666i
\(543\) −15.0000 8.66025i −0.643712 0.371647i
\(544\) −7.32051 + 27.3205i −0.313864 + 1.17136i
\(545\) 20.0000 + 34.6410i 0.856706 + 1.48386i
\(546\) 18.9282 + 5.07180i 0.810052 + 0.217053i
\(547\) 30.3109 + 17.5000i 1.29600 + 0.748246i 0.979711 0.200417i \(-0.0642296\pi\)
0.316289 + 0.948663i \(0.397563\pi\)
\(548\) 18.0000i 0.768922i
\(549\) 36.0000i 1.53644i
\(550\) 3.00000 3.00000i 0.127920 0.127920i
\(551\) 0 0
\(552\) −6.92820 + 6.92820i −0.294884 + 0.294884i
\(553\) 28.0000 + 48.4974i 1.19068 + 2.06232i
\(554\) −2.73205 0.732051i −0.116074 0.0311019i
\(555\) 6.92820 0.294086
\(556\) 13.0000 22.5167i 0.551323 0.954919i
\(557\) 24.0000i 1.01691i −0.861088 0.508456i \(-0.830216\pi\)
0.861088 0.508456i \(-0.169784\pi\)
\(558\) −4.39230 + 16.3923i −0.185941 + 0.693942i
\(559\) −22.0000 −0.930501
\(560\) −27.7128 16.0000i −1.17108 0.676123i
\(561\) −22.5000 + 12.9904i −0.949951 + 0.548454i
\(562\) −2.19615 + 8.19615i −0.0926391 + 0.345734i
\(563\) −7.79423 + 4.50000i −0.328488 + 0.189652i −0.655169 0.755482i \(-0.727403\pi\)
0.326682 + 0.945134i \(0.394069\pi\)
\(564\) 18.0000 + 10.3923i 0.757937 + 0.437595i
\(565\) 10.3923 + 6.00000i 0.437208 + 0.252422i
\(566\) −20.0000 + 20.0000i −0.840663 + 0.840663i
\(567\) −18.0000 31.1769i −0.755929 1.30931i
\(568\) 12.0000 12.0000i 0.503509 0.503509i
\(569\) −19.5000 + 33.7750i −0.817483 + 1.41592i 0.0900490 + 0.995937i \(0.471298\pi\)
−0.907532 + 0.419984i \(0.862036\pi\)
\(570\) −4.73205 + 1.26795i −0.198204 + 0.0531085i
\(571\) −4.33013 + 2.50000i −0.181210 + 0.104622i −0.587861 0.808962i \(-0.700030\pi\)
0.406651 + 0.913584i \(0.366697\pi\)
\(572\) 10.3923 6.00000i 0.434524 0.250873i
\(573\) 13.8564 + 24.0000i 0.578860 + 1.00261i
\(574\) 27.3205 7.32051i 1.14034 0.305552i
\(575\) 2.00000 0.0834058
\(576\) −20.7846 + 12.0000i −0.866025 + 0.500000i
\(577\) −33.0000 −1.37381 −0.686904 0.726748i \(-0.741031\pi\)
−0.686904 + 0.726748i \(0.741031\pi\)
\(578\) −10.9282 + 2.92820i −0.454553 + 0.121797i
\(579\) −25.9808 −1.07972
\(580\) 0 0
\(581\) −13.8564 + 8.00000i −0.574861 + 0.331896i
\(582\) 1.73205 + 1.73205i 0.0717958 + 0.0717958i
\(583\) 0 0
\(584\) −18.0000 + 18.0000i −0.744845 + 0.744845i
\(585\) 12.0000 0.496139
\(586\) −12.0000 + 12.0000i −0.495715 + 0.495715i
\(587\) 32.0429 + 18.5000i 1.32255 + 0.763577i 0.984135 0.177419i \(-0.0567748\pi\)
0.338418 + 0.940996i \(0.390108\pi\)
\(588\) 27.0000 15.5885i 1.11346 0.642857i
\(589\) −3.46410 + 2.00000i −0.142736 + 0.0824086i
\(590\) −0.732051 + 2.73205i −0.0301381 + 0.112477i
\(591\) −12.0000 6.92820i −0.493614 0.284988i
\(592\) 6.92820 + 4.00000i 0.284747 + 0.164399i
\(593\) −30.0000 −1.23195 −0.615976 0.787765i \(-0.711238\pi\)
−0.615976 + 0.787765i \(0.711238\pi\)
\(594\) −21.2942 5.70577i −0.873713 0.234111i
\(595\) 40.0000i 1.63984i
\(596\) 18.0000 31.1769i 0.737309 1.27706i
\(597\) 6.92820 12.0000i 0.283552 0.491127i
\(598\) 5.46410 + 1.46410i 0.223444 + 0.0598716i
\(599\) −19.0000 32.9090i −0.776319 1.34462i −0.934050 0.357142i \(-0.883751\pi\)
0.157731 0.987482i \(-0.449582\pi\)
\(600\) 4.73205 + 1.26795i 0.193185 + 0.0517638i
\(601\) −2.50000 + 4.33013i −0.101977 + 0.176630i −0.912499 0.409079i \(-0.865850\pi\)
0.810522 + 0.585708i \(0.199184\pi\)
\(602\) −44.0000 + 44.0000i −1.79331 + 1.79331i
\(603\) −7.79423 4.50000i −0.317406 0.183254i
\(604\) 12.0000i 0.488273i
\(605\) 3.46410 + 2.00000i 0.140836 + 0.0813116i
\(606\) 24.2487 24.2487i 0.985037 0.985037i
\(607\) 10.0000 + 17.3205i 0.405887 + 0.703018i 0.994424 0.105453i \(-0.0336291\pi\)
−0.588537 + 0.808470i \(0.700296\pi\)
\(608\) −5.46410 1.46410i −0.221599 0.0593772i
\(609\) 0 0
\(610\) 32.7846 8.78461i 1.32741 0.355678i
\(611\) 12.0000i 0.485468i
\(612\) −25.9808 15.0000i −1.05021 0.606339i
\(613\) 34.0000i 1.37325i 0.727013 + 0.686624i \(0.240908\pi\)
−0.727013 + 0.686624i \(0.759092\pi\)
\(614\) 3.29423 + 12.2942i 0.132944 + 0.496155i
\(615\) 15.0000 8.66025i 0.604858 0.349215i
\(616\) 8.78461 32.7846i 0.353942 1.32093i
\(617\) −2.50000 4.33013i −0.100646 0.174324i 0.811305 0.584623i \(-0.198758\pi\)
−0.911951 + 0.410299i \(0.865424\pi\)
\(618\) 14.1962 3.80385i 0.571053 0.153013i
\(619\) −2.59808 1.50000i −0.104425 0.0602901i 0.446878 0.894595i \(-0.352536\pi\)
−0.551303 + 0.834305i \(0.685869\pi\)
\(620\) −16.0000 −0.642575
\(621\) −5.19615 9.00000i −0.208514 0.361158i
\(622\) 20.0000 + 20.0000i 0.801927 + 0.801927i
\(623\) 28.0000 48.4974i 1.12180 1.94301i
\(624\) 12.0000 + 6.92820i 0.480384 + 0.277350i
\(625\) 9.50000 + 16.4545i 0.380000 + 0.658179i
\(626\) −0.366025 + 1.36603i −0.0146293 + 0.0545974i
\(627\) −2.59808 4.50000i −0.103757 0.179713i
\(628\) −4.00000 + 6.92820i −0.159617 + 0.276465i
\(629\) 10.0000i 0.398726i
\(630\) 24.0000 24.0000i 0.956183 0.956183i
\(631\) 34.0000 1.35352 0.676759 0.736204i \(-0.263384\pi\)
0.676759 + 0.736204i \(0.263384\pi\)
\(632\) 10.2487 + 38.2487i 0.407672 + 1.52145i
\(633\) 27.7128i 1.10149i
\(634\) 30.0526 + 8.05256i 1.19354 + 0.319808i
\(635\) 3.46410 2.00000i 0.137469 0.0793676i
\(636\) 0 0
\(637\) −15.5885 9.00000i −0.617637 0.356593i
\(638\) 0 0
\(639\) 9.00000 + 15.5885i 0.356034 + 0.616670i
\(640\) −16.0000 16.0000i −0.632456 0.632456i
\(641\) 15.5000 26.8468i 0.612213 1.06038i −0.378653 0.925539i \(-0.623613\pi\)
0.990867 0.134846i \(-0.0430539\pi\)
\(642\) 7.09808 + 1.90192i 0.280139 + 0.0750629i
\(643\) 4.33013 2.50000i 0.170764 0.0985904i −0.412182 0.911101i \(-0.635233\pi\)
0.582946 + 0.812511i \(0.301900\pi\)
\(644\) 13.8564 8.00000i 0.546019 0.315244i
\(645\) −19.0526 + 33.0000i −0.750194 + 1.29937i
\(646\) −1.83013 6.83013i −0.0720054 0.268728i
\(647\) 24.0000 0.943537 0.471769 0.881722i \(-0.343616\pi\)
0.471769 + 0.881722i \(0.343616\pi\)
\(648\) −6.58846 24.5885i −0.258819 0.965926i
\(649\) −3.00000 −0.117760
\(650\) −0.732051 2.73205i −0.0287134 0.107160i
\(651\) 13.8564 24.0000i 0.543075 0.940634i
\(652\) −4.00000 6.92820i −0.156652 0.271329i
\(653\) 31.1769 18.0000i 1.22005 0.704394i 0.255119 0.966910i \(-0.417885\pi\)
0.964928 + 0.262515i \(0.0845520\pi\)
\(654\) −47.3205 12.6795i −1.85038 0.495807i
\(655\) 4.00000 6.92820i 0.156293 0.270707i
\(656\) 20.0000 0.780869
\(657\) −13.5000 23.3827i −0.526685 0.912245i
\(658\) −24.0000 24.0000i −0.935617 0.935617i
\(659\) 10.3923 + 6.00000i 0.404827 + 0.233727i 0.688565 0.725175i \(-0.258241\pi\)
−0.283738 + 0.958902i \(0.591575\pi\)
\(660\) 20.7846i 0.809040i
\(661\) 12.1244 7.00000i 0.471583 0.272268i −0.245319 0.969442i \(-0.578893\pi\)
0.716902 + 0.697174i \(0.245559\pi\)
\(662\) 27.3205 + 7.32051i 1.06184 + 0.284520i
\(663\) 17.3205i 0.672673i
\(664\) −10.9282 + 2.92820i −0.424097 + 0.113636i
\(665\) 8.00000 0.310227
\(666\) −6.00000 + 6.00000i −0.232495 + 0.232495i
\(667\) 0 0
\(668\) 3.46410 + 2.00000i 0.134030 + 0.0773823i
\(669\) −1.73205 3.00000i −0.0669650 0.115987i
\(670\) 2.19615 8.19615i 0.0848448 0.316645i
\(671\) 18.0000 + 31.1769i 0.694882 + 1.20357i
\(672\) 37.8564 10.1436i 1.46034 0.391298i
\(673\) −13.0000 + 22.5167i −0.501113 + 0.867953i 0.498886 + 0.866668i \(0.333743\pi\)
−0.999999 + 0.00128586i \(0.999591\pi\)
\(674\) 7.00000 + 7.00000i 0.269630 + 0.269630i
\(675\) −2.59808 + 4.50000i −0.100000 + 0.173205i
\(676\) 18.0000i 0.692308i
\(677\) 41.5692 + 24.0000i 1.59763 + 0.922395i 0.991941 + 0.126697i \(0.0404375\pi\)
0.605693 + 0.795698i \(0.292896\pi\)
\(678\) −14.1962 + 3.80385i −0.545200 + 0.146086i
\(679\) −2.00000 3.46410i −0.0767530 0.132940i
\(680\) 7.32051 27.3205i 0.280729 1.04769i
\(681\) 10.5000 6.06218i 0.402361 0.232303i
\(682\) −4.39230 16.3923i −0.168190 0.627694i
\(683\) 35.0000i 1.33924i 0.742705 + 0.669619i \(0.233543\pi\)
−0.742705 + 0.669619i \(0.766457\pi\)
\(684\) 3.00000 5.19615i 0.114708 0.198680i
\(685\) 18.0000i 0.687745i
\(686\) −10.9282 + 2.92820i −0.417241 + 0.111799i
\(687\) 34.6410i 1.32164i
\(688\) −38.1051 + 22.0000i −1.45274 + 0.838742i
\(689\) 0 0
\(690\) 6.92820 6.92820i 0.263752 0.263752i
\(691\) −24.2487 14.0000i −0.922464 0.532585i −0.0380440 0.999276i \(-0.512113\pi\)
−0.884420 + 0.466691i \(0.845446\pi\)
\(692\) −48.0000 −1.82469
\(693\) 31.1769 + 18.0000i 1.18431 + 0.683763i
\(694\) −13.0000 + 13.0000i −0.493473 + 0.493473i
\(695\) −13.0000 + 22.5167i −0.493118 + 0.854106i
\(696\) 0 0
\(697\) 12.5000 + 21.6506i 0.473471 + 0.820076i
\(698\) −21.8564 5.85641i −0.827277 0.221668i
\(699\) −11.2583 + 19.5000i −0.425829 + 0.737558i
\(700\) −6.92820 4.00000i −0.261861 0.151186i
\(701\) 10.0000i 0.377695i 0.982006 + 0.188847i \(0.0604752\pi\)
−0.982006 + 0.188847i \(0.939525\pi\)
\(702\) −10.3923 + 10.3923i −0.392232 + 0.392232i
\(703\) −2.00000 −0.0754314
\(704\) 12.0000 20.7846i 0.452267 0.783349i
\(705\) −18.0000 10.3923i −0.677919 0.391397i
\(706\) 5.49038 20.4904i 0.206633 0.771166i
\(707\) −48.4974 + 28.0000i −1.82393 + 1.05305i
\(708\) −1.73205 3.00000i −0.0650945 0.112747i
\(709\) 6.92820 + 4.00000i 0.260194 + 0.150223i 0.624423 0.781086i \(-0.285334\pi\)
−0.364229 + 0.931309i \(0.618667\pi\)
\(710\) −12.0000 + 12.0000i −0.450352 + 0.450352i
\(711\) −42.0000 −1.57512
\(712\) 28.0000 28.0000i 1.04934 1.04934i
\(713\) 4.00000 6.92820i 0.149801 0.259463i
\(714\) 34.6410 + 34.6410i 1.29641 + 1.29641i
\(715\) −10.3923 + 6.00000i −0.388650 + 0.224387i
\(716\) 20.0000 + 34.6410i 0.747435 + 1.29460i
\(717\) −51.9615 −1.94054
\(718\) 5.46410 1.46410i 0.203918 0.0546398i
\(719\) −34.0000 −1.26799 −0.633993 0.773339i \(-0.718585\pi\)
−0.633993 + 0.773339i \(0.718585\pi\)
\(720\) 20.7846 12.0000i 0.774597 0.447214i
\(721\) −24.0000 −0.893807
\(722\) −24.5885 + 6.58846i −0.915088 + 0.245197i
\(723\) −14.7224 25.5000i −0.547533 0.948355i
\(724\) 10.0000 + 17.3205i 0.371647 + 0.643712i
\(725\) 0 0
\(726\) −4.73205 + 1.26795i −0.175623 + 0.0470580i
\(727\) −3.00000 + 5.19615i −0.111264 + 0.192715i −0.916280 0.400538i \(-0.868823\pi\)
0.805016 + 0.593253i \(0.202157\pi\)
\(728\) −16.0000 16.0000i −0.592999 0.592999i
\(729\) 27.0000 1.00000
\(730\) 18.0000 18.0000i 0.666210 0.666210i
\(731\) −47.6314 27.5000i −1.76171 1.01712i
\(732\) −20.7846 + 36.0000i −0.768221 + 1.33060i
\(733\) −24.2487 + 14.0000i −0.895647 + 0.517102i −0.875785 0.482701i \(-0.839656\pi\)
−0.0198613 + 0.999803i \(0.506322\pi\)
\(734\) 6.58846 24.5885i 0.243184 0.907577i
\(735\) −27.0000 + 15.5885i −0.995910 + 0.574989i
\(736\) 10.9282 2.92820i 0.402819 0.107935i
\(737\) 9.00000 0.331519
\(738\) −5.49038 + 20.4904i −0.202104 + 0.754261i
\(739\) 41.0000i 1.50821i 0.656754 + 0.754105i \(0.271929\pi\)
−0.656754 + 0.754105i \(0.728071\pi\)
\(740\) −6.92820 4.00000i −0.254686 0.147043i
\(741\) −3.46410 −0.127257
\(742\) 0 0
\(743\) 22.0000 + 38.1051i 0.807102 + 1.39794i 0.914863 + 0.403764i \(0.132298\pi\)
−0.107761 + 0.994177i \(0.534368\pi\)
\(744\) 13.8564 13.8564i 0.508001 0.508001i
\(745\) −18.0000 + 31.1769i −0.659469 + 1.14223i
\(746\) 26.0000 26.0000i 0.951928 0.951928i
\(747\) 12.0000i 0.439057i
\(748\) 30.0000 1.09691
\(749\) −10.3923 6.00000i −0.379727 0.219235i
\(750\) −28.3923 7.60770i −1.03674 0.277794i
\(751\) −1.00000 1.73205i −0.0364905 0.0632034i 0.847203 0.531269i \(-0.178285\pi\)
−0.883694 + 0.468065i \(0.844951\pi\)
\(752\) −12.0000 20.7846i −0.437595 0.757937i
\(753\) 22.5000 + 12.9904i 0.819946 + 0.473396i
\(754\) 0 0
\(755\) 12.0000i 0.436725i
\(756\) 41.5692i 1.51186i
\(757\) 36.0000i 1.30844i −0.756303 0.654221i \(-0.772997\pi\)
0.756303 0.654221i \(-0.227003\pi\)
\(758\) 1.83013 + 6.83013i 0.0664732 + 0.248081i
\(759\) 9.00000 + 5.19615i 0.326679 + 0.188608i
\(760\) 5.46410 + 1.46410i 0.198204 + 0.0531085i
\(761\) −7.00000 12.1244i −0.253750 0.439508i 0.710805 0.703389i \(-0.248331\pi\)
−0.964555 + 0.263881i \(0.914997\pi\)
\(762\) −1.26795 + 4.73205i −0.0459330 + 0.171424i
\(763\) 69.2820 + 40.0000i 2.50818 + 1.44810i
\(764\) 32.0000i 1.15772i
\(765\) 25.9808 + 15.0000i 0.939336 + 0.542326i
\(766\) 18.0000 + 18.0000i 0.650366 + 0.650366i
\(767\) −1.00000 + 1.73205i −0.0361079 + 0.0625407i
\(768\) 27.7128 1.00000
\(769\) −17.0000 29.4449i −0.613036 1.06181i −0.990726 0.135877i \(-0.956615\pi\)
0.377690 0.925932i \(-0.376718\pi\)
\(770\) −8.78461 + 32.7846i −0.316575 + 1.18148i
\(771\) 25.9808 0.935674
\(772\) 25.9808 + 15.0000i 0.935068 + 0.539862i
\(773\) 38.0000i 1.36677i −0.730061 0.683383i \(-0.760508\pi\)
0.730061 0.683383i \(-0.239492\pi\)
\(774\) −12.0788 45.0788i −0.434165 1.62033i
\(775\) −4.00000 −0.143684
\(776\) −0.732051 2.73205i −0.0262791 0.0980749i
\(777\) 12.0000 6.92820i 0.430498 0.248548i
\(778\) 10.9282 + 2.92820i 0.391795 + 0.104981i
\(779\) −4.33013 + 2.50000i −0.155143 + 0.0895718i
\(780\) −12.0000 6.92820i −0.429669 0.248069i
\(781\) −15.5885 9.00000i −0.557799 0.322045i
\(782\) 10.0000 + 10.0000i 0.357599 + 0.357599i
\(783\) 0 0
\(784\) −36.0000 −1.28571
\(785\) 4.00000 6.92820i 0.142766 0.247278i
\(786\) 2.53590 + 9.46410i 0.0904525 + 0.337573i
\(787\) 10.3923 6.00000i 0.370446 0.213877i −0.303207 0.952925i \(-0.598058\pi\)
0.673653 + 0.739048i \(0.264724\pi\)
\(788\) 8.00000 + 13.8564i 0.284988 + 0.493614i
\(789\) 6.92820 + 12.0000i 0.246651 + 0.427211i
\(790\) −10.2487 38.2487i −0.364633 1.36083i
\(791\) 24.0000 0.853342
\(792\) 18.0000 + 18.0000i 0.639602 + 0.639602i
\(793\) 24.0000 0.852265
\(794\) −8.05256 30.0526i −0.285775 1.06653i
\(795\) 0 0
\(796\) −13.8564 + 8.00000i −0.491127 + 0.283552i
\(797\) −19.0526 + 11.0000i −0.674876 + 0.389640i −0.797922 0.602761i \(-0.794067\pi\)
0.123045 + 0.992401i \(0.460734\pi\)
\(798\) −6.92820 + 6.92820i −0.245256 + 0.245256i
\(799\) 15.0000 25.9808i 0.530662 0.919133i
\(800\) −4.00000 4.00000i −0.141421 0.141421i
\(801\) 21.0000 + 36.3731i 0.741999 + 1.28518i
\(802\) −15.0000 15.0000i −0.529668 0.529668i
\(803\) 23.3827 + 13.5000i 0.825157 + 0.476405i
\(804\) 5.19615 + 9.00000i 0.183254 + 0.317406i
\(805\) −13.8564 + 8.00000i −0.488374 + 0.281963i
\(806\) −10.9282 2.92820i −0.384930 0.103142i
\(807\) −18.0000 10.3923i −0.633630 0.365826i
\(808\) −38.2487 + 10.2487i −1.34558 + 0.360548i
\(809\) −9.00000 −0.316423 −0.158212 0.987405i \(-0.550573\pi\)
−0.158212 + 0.987405i \(0.550573\pi\)
\(810\) 6.58846 + 24.5885i 0.231495 + 0.863950i
\(811\) 7.00000i 0.245803i −0.992419 0.122902i \(-0.960780\pi\)
0.992419 0.122902i \(-0.0392200\pi\)
\(812\) 0 0
\(813\) −10.3923 + 18.0000i −0.364474 + 0.631288i
\(814\) 2.19615 8.19615i 0.0769751 0.287275i
\(815\) 4.00000 + 6.92820i 0.140114 + 0.242684i
\(816\) 17.3205 + 30.0000i 0.606339 + 1.05021i
\(817\) 5.50000 9.52628i 0.192421 0.333282i
\(818\) 31.0000 + 31.0000i 1.08389 + 1.08389i
\(819\) 20.7846 12.0000i 0.726273 0.419314i
\(820\) −20.0000 −0.698430
\(821\) −24.2487 14.0000i −0.846286 0.488603i 0.0131101 0.999914i \(-0.495827\pi\)
−0.859396 + 0.511311i \(0.829160\pi\)
\(822\) −15.5885 15.5885i −0.543710 0.543710i
\(823\) −13.0000 22.5167i −0.453152 0.784881i 0.545428 0.838157i \(-0.316367\pi\)
−0.998580 + 0.0532760i \(0.983034\pi\)
\(824\) −16.3923 4.39230i −0.571053 0.153013i
\(825\) 5.19615i 0.180907i
\(826\) 1.46410 + 5.46410i 0.0509426 + 0.190120i
\(827\) 48.0000i 1.66912i −0.550914 0.834562i \(-0.685721\pi\)
0.550914 0.834562i \(-0.314279\pi\)
\(828\) 12.0000i 0.417029i
\(829\) 32.0000i 1.11141i −0.831381 0.555703i \(-0.812449\pi\)
0.831381 0.555703i \(-0.187551\pi\)
\(830\) 10.9282 2.92820i 0.379323 0.101639i
\(831\) −3.00000 + 1.73205i −0.104069 + 0.0600842i
\(832\) −8.00000 13.8564i −0.277350 0.480384i
\(833\) −22.5000 38.9711i −0.779579 1.35027i
\(834\) −8.24167 30.7583i −0.285386 1.06507i
\(835\) −3.46410 2.00000i −0.119880 0.0692129i
\(836\) 6.00000i 0.207514i
\(837\) 10.3923 + 18.0000i 0.359211 + 0.622171i
\(838\) −36.0000 + 36.0000i −1.24360 + 1.24360i
\(839\) −2.00000 + 3.46410i −0.0690477 + 0.119594i −0.898482 0.439010i \(-0.855329\pi\)
0.829435 + 0.558604i \(0.188663\pi\)
\(840\) −37.8564 + 10.1436i −1.30617 + 0.349987i
\(841\) −14.5000 25.1147i −0.500000 0.866025i
\(842\) 30.0526 + 8.05256i 1.03568 + 0.277510i
\(843\) 5.19615 + 9.00000i 0.178965 + 0.309976i
\(844\) −16.0000 + 27.7128i −0.550743 + 0.953914i
\(845\) 18.0000i 0.619219i
\(846\) 24.5885 6.58846i 0.845369 0.226516i
\(847\) 8.00000 0.274883
\(848\) 0 0
\(849\) 34.6410i 1.18888i
\(850\) 1.83013 6.83013i 0.0627728 0.234271i
\(851\) 3.46410 2.00000i 0.118748 0.0685591i
\(852\) 20.7846i 0.712069i
\(853\) −36.3731 21.0000i −1.24539 0.719026i −0.275204 0.961386i \(-0.588745\pi\)
−0.970186 + 0.242360i \(0.922079\pi\)
\(854\) 48.0000 48.0000i 1.64253 1.64253i
\(855\) −3.00000 + 5.19615i −0.102598 + 0.177705i
\(856\) −6.00000 6.00000i −0.205076 0.205076i
\(857\) −3.00000 + 5.19615i −0.102478 + 0.177497i −0.912705 0.408619i \(-0.866010\pi\)
0.810227 + 0.586116i \(0.199344\pi\)
\(858\) 3.80385 14.1962i 0.129861 0.484649i
\(859\) 30.3109 17.5000i 1.03419 0.597092i 0.116011 0.993248i \(-0.462989\pi\)
0.918183 + 0.396156i \(0.129656\pi\)
\(860\) 38.1051 22.0000i 1.29937 0.750194i
\(861\) 17.3205 30.0000i 0.590281 1.02240i
\(862\) 49.1769 13.1769i 1.67497 0.448807i
\(863\) 6.00000 0.204242 0.102121 0.994772i \(-0.467437\pi\)
0.102121 + 0.994772i \(0.467437\pi\)
\(864\) −7.60770 + 28.3923i −0.258819 + 0.965926i
\(865\) 48.0000 1.63205
\(866\) −6.83013 + 1.83013i −0.232097 + 0.0621902i
\(867\) −6.92820 + 12.0000i −0.235294 + 0.407541i
\(868\) −27.7128 + 16.0000i −0.940634 + 0.543075i
\(869\) 36.3731 21.0000i 1.23387 0.712376i
\(870\) 0 0
\(871\) 3.00000 5.19615i 0.101651 0.176065i
\(872\) 40.0000 + 40.0000i 1.35457 + 1.35457i
\(873\) 3.00000 0.101535
\(874\) −2.00000 + 2.00000i −0.0676510 + 0.0676510i
\(875\) 41.5692 + 24.0000i 1.40530 + 0.811348i
\(876\) 31.1769i 1.05337i
\(877\) −6.92820 + 4.00000i −0.233949 + 0.135070i −0.612392 0.790554i \(-0.709793\pi\)
0.378444 + 0.925624i \(0.376459\pi\)
\(878\) 0 0
\(879\) 20.7846i 0.701047i
\(880\) −12.0000 + 20.7846i −0.404520 + 0.700649i
\(881\) −2.00000 −0.0673817 −0.0336909 0.999432i \(-0.510726\pi\)
−0.0336909 + 0.999432i \(0.510726\pi\)
\(882\) 9.88269 36.8827i 0.332767 1.24190i
\(883\) 23.0000i 0.774012i 0.922077 + 0.387006i \(0.126491\pi\)
−0.922077 + 0.387006i \(0.873509\pi\)
\(884\) 10.0000 17.3205i 0.336336 0.582552i
\(885\) 1.73205 + 3.00000i 0.0582223 + 0.100844i
\(886\) −12.2942 3.29423i −0.413033 0.110672i
\(887\) −15.0000 25.9808i −0.503651 0.872349i −0.999991 0.00422062i \(-0.998657\pi\)
0.496340 0.868128i \(-0.334677\pi\)
\(888\) 9.46410 2.53590i 0.317594 0.0850992i
\(889\) 4.00000 6.92820i 0.134156 0.232364i
\(890\) −28.0000 + 28.0000i −0.938562 + 0.938562i
\(891\) −23.3827 + 13.5000i −0.783349 + 0.452267i
\(892\) 4.00000i 0.133930i
\(893\) 5.19615 + 3.00000i 0.173883 + 0.100391i
\(894\) −11.4115 42.5885i −0.381659 1.42437i
\(895\) −20.0000 34.6410i −0.668526 1.15792i
\(896\) −43.7128 11.7128i −1.46034 0.391298i
\(897\) 6.00000 3.46410i 0.200334 0.115663i
\(898\) −28.6865 + 7.68653i −0.957282 + 0.256503i
\(899\) 0 0
\(900\) 5.19615 3.00000i 0.173205 0.100000i
\(901\) 0 0
\(902\) −5.49038 20.4904i −0.182810 0.682255i
\(903\) 76.2102i 2.53612i
\(904\) 16.3923 + 4.39230i 0.545200 + 0.146086i
\(905\) −10.0000 17.3205i −0.332411 0.575753i
\(906\) −10.3923 10.3923i −0.345261 0.345261i
\(907\) −21.6506 12.5000i −0.718898 0.415056i 0.0954492 0.995434i \(-0.469571\pi\)
−0.814347 + 0.580379i \(0.802905\pi\)
\(908\) −14.0000 −0.464606
\(909\) 42.0000i 1.39305i
\(910\) 16.0000 + 16.0000i 0.530395 + 0.530395i
\(911\) −6.00000 + 10.3923i −0.198789 + 0.344312i −0.948136 0.317865i \(-0.897034\pi\)
0.749347 + 0.662177i \(0.230367\pi\)
\(912\) −6.00000 + 3.46410i −0.198680 + 0.114708i
\(913\) 6.00000 + 10.3923i 0.198571 + 0.343935i
\(914\) −13.5429 + 50.5429i −0.447961 + 1.67181i
\(915\) 20.7846 36.0000i 0.687118 1.19012i
\(916\) −20.0000 + 34.6410i −0.660819 + 1.14457i
\(917\) 16.0000i 0.528367i
\(918\) −35.4904 + 9.50962i −1.17136 + 0.313864i
\(919\) −42.0000 −1.38545 −0.692726 0.721201i \(-0.743591\pi\)
−0.692726 + 0.721201i \(0.743591\pi\)
\(920\) −10.9282 + 2.92820i −0.360292 + 0.0965400i
\(921\) 13.5000 + 7.79423i 0.444840 + 0.256829i
\(922\) −8.19615 2.19615i −0.269926 0.0723264i
\(923\) −10.3923 + 6.00000i −0.342067 + 0.197492i
\(924\) −20.7846 36.0000i −0.683763 1.18431i
\(925\) −1.73205 1.00000i −0.0569495 0.0328798i
\(926\) 10.0000 + 10.0000i 0.328620 + 0.328620i
\(927\) 9.00000 15.5885i 0.295599 0.511992i
\(928\) 0 0
\(929\) −7.00000 + 12.1244i −0.229663 + 0.397787i −0.957708 0.287742i \(-0.907096\pi\)
0.728046 + 0.685529i \(0.240429\pi\)
\(930\) −13.8564 + 13.8564i −0.454369 + 0.454369i
\(931\) 7.79423 4.50000i 0.255446 0.147482i
\(932\) 22.5167 13.0000i 0.737558 0.425829i
\(933\) 34.6410 1.13410
\(934\) 10.6147 + 39.6147i 0.347325 + 1.29623i
\(935\) −30.0000 −0.981105
\(936\) 16.3923 4.39230i 0.535799 0.143567i
\(937\) 2.00000 0.0653372 0.0326686 0.999466i \(-0.489599\pi\)
0.0326686 + 0.999466i \(0.489599\pi\)
\(938\) −4.39230 16.3923i −0.143414 0.535228i
\(939\) 0.866025 + 1.50000i 0.0282617 + 0.0489506i
\(940\) 12.0000 + 20.7846i 0.391397 + 0.677919i
\(941\) 20.7846 12.0000i 0.677559 0.391189i −0.121376 0.992607i \(-0.538731\pi\)
0.798935 + 0.601418i \(0.205397\pi\)
\(942\) 2.53590 + 9.46410i 0.0826240 + 0.308357i
\(943\) 5.00000 8.66025i 0.162822 0.282017i
\(944\) 4.00000i 0.130189i
\(945\) 41.5692i 1.35225i
\(946\) 33.0000 + 33.0000i 1.07292 + 1.07292i
\(947\) 2.59808 + 1.50000i 0.0844261 + 0.0487435i 0.541619 0.840624i \(-0.317812\pi\)
−0.457193 + 0.889368i \(0.651145\pi\)
\(948\) 42.0000 + 24.2487i 1.36410 + 0.787562i
\(949\) 15.5885 9.00000i 0.506023 0.292152i
\(950\) 1.36603 + 0.366025i 0.0443197 + 0.0118754i
\(951\) 33.0000 19.0526i 1.07010 0.617822i
\(952\) −14.6410 54.6410i −0.474518 1.77093i
\(953\) −21.0000 −0.680257 −0.340128 0.940379i \(-0.610471\pi\)
−0.340128 + 0.940379i \(0.610471\pi\)
\(954\) 0 0
\(955\) 32.0000i 1.03550i
\(956\) 51.9615 + 30.0000i 1.68056 + 0.970269i
\(957\) 0 0
\(958\) 5.85641 21.8564i 0.189212 0.706148i
\(959\) 18.0000 + 31.1769i 0.581250 + 1.00676i
\(960\) −27.7128 −0.894427
\(961\) 7.50000 12.9904i 0.241935 0.419045i
\(962\) −4.00000 4.00000i −0.128965 0.128965i
\(963\) 7.79423 4.50000i 0.251166 0.145010i
\(964\) 34.0000i 1.09507i
\(965\) −25.9808 15.0000i −0.836350 0.482867i
\(966\) 5.07180 18.9282i 0.163182 0.609005i
\(967\) 2.00000 + 3.46410i 0.0643157 + 0.111398i 0.896390 0.443266i \(-0.146180\pi\)
−0.832075 + 0.554664i \(0.812847\pi\)
\(968\) 5.46410 + 1.46410i 0.175623 + 0.0470580i
\(969\) −7.50000 4.33013i −0.240935 0.139104i
\(970\) 0.732051 + 2.73205i 0.0235047 + 0.0877209i
\(971\) 12.0000i 0.385098i 0.981287 + 0.192549i \(0.0616755\pi\)
−0.981287 + 0.192549i \(0.938325\pi\)
\(972\) −27.0000 15.5885i −0.866025 0.500000i
\(973\) 52.0000i 1.66704i
\(974\) −27.3205 + 7.32051i −0.875406 + 0.234564i
\(975\) −3.00000 1.73205i −0.0960769 0.0554700i
\(976\) 41.5692 24.0000i 1.33060 0.768221i
\(977\) 15.5000 + 26.8468i 0.495889 + 0.858905i 0.999989 0.00474056i \(-0.00150897\pi\)
−0.504100 + 0.863645i \(0.668176\pi\)
\(978\) −9.46410 2.53590i −0.302629 0.0810891i
\(979\) −36.3731 21.0000i −1.16249 0.671163i
\(980\) 36.0000 1.14998
\(981\) −51.9615 + 30.0000i −1.65900 + 0.957826i
\(982\) 19.0000 19.0000i 0.606314 0.606314i
\(983\) −23.0000 + 39.8372i −0.733586 + 1.27061i 0.221755 + 0.975102i \(0.428822\pi\)
−0.955341 + 0.295506i \(0.904512\pi\)
\(984\) 17.3205 17.3205i 0.552158 0.552158i
\(985\) −8.00000 13.8564i −0.254901 0.441502i
\(986\) 0 0
\(987\) −41.5692 −1.32316
\(988\) 3.46410 + 2.00000i 0.110208 + 0.0636285i
\(989\) 22.0000i 0.699559i
\(990\) −18.0000 18.0000i −0.572078 0.572078i
\(991\) 56.0000 1.77890 0.889449 0.457034i \(-0.151088\pi\)
0.889449 + 0.457034i \(0.151088\pi\)
\(992\) −21.8564 + 5.85641i −0.693942 + 0.185941i
\(993\) 30.0000 17.3205i 0.952021 0.549650i
\(994\) −8.78461 + 32.7846i −0.278631 + 1.03986i
\(995\) 13.8564 8.00000i 0.439278 0.253617i
\(996\) −6.92820 + 12.0000i −0.219529 + 0.380235i
\(997\) 10.3923 + 6.00000i 0.329128 + 0.190022i 0.655454 0.755235i \(-0.272477\pi\)
−0.326326 + 0.945257i \(0.605811\pi\)
\(998\) 15.0000 15.0000i 0.474817 0.474817i
\(999\) 10.3923i 0.328798i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 72.2.n.a.61.1 yes 4
3.2 odd 2 216.2.n.a.181.2 4
4.3 odd 2 288.2.r.a.241.2 4
8.3 odd 2 288.2.r.a.241.1 4
8.5 even 2 inner 72.2.n.a.61.2 yes 4
9.2 odd 6 648.2.d.a.325.1 2
9.4 even 3 inner 72.2.n.a.13.2 yes 4
9.5 odd 6 216.2.n.a.37.1 4
9.7 even 3 648.2.d.d.325.2 2
12.11 even 2 864.2.r.a.721.2 4
24.5 odd 2 216.2.n.a.181.1 4
24.11 even 2 864.2.r.a.721.1 4
36.7 odd 6 2592.2.d.b.1297.1 2
36.11 even 6 2592.2.d.a.1297.2 2
36.23 even 6 864.2.r.a.145.1 4
36.31 odd 6 288.2.r.a.49.1 4
72.5 odd 6 216.2.n.a.37.2 4
72.11 even 6 2592.2.d.a.1297.1 2
72.13 even 6 inner 72.2.n.a.13.1 4
72.29 odd 6 648.2.d.a.325.2 2
72.43 odd 6 2592.2.d.b.1297.2 2
72.59 even 6 864.2.r.a.145.2 4
72.61 even 6 648.2.d.d.325.1 2
72.67 odd 6 288.2.r.a.49.2 4
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
72.2.n.a.13.1 4 72.13 even 6 inner
72.2.n.a.13.2 yes 4 9.4 even 3 inner
72.2.n.a.61.1 yes 4 1.1 even 1 trivial
72.2.n.a.61.2 yes 4 8.5 even 2 inner
216.2.n.a.37.1 4 9.5 odd 6
216.2.n.a.37.2 4 72.5 odd 6
216.2.n.a.181.1 4 24.5 odd 2
216.2.n.a.181.2 4 3.2 odd 2
288.2.r.a.49.1 4 36.31 odd 6
288.2.r.a.49.2 4 72.67 odd 6
288.2.r.a.241.1 4 8.3 odd 2
288.2.r.a.241.2 4 4.3 odd 2
648.2.d.a.325.1 2 9.2 odd 6
648.2.d.a.325.2 2 72.29 odd 6
648.2.d.d.325.1 2 72.61 even 6
648.2.d.d.325.2 2 9.7 even 3
864.2.r.a.145.1 4 36.23 even 6
864.2.r.a.145.2 4 72.59 even 6
864.2.r.a.721.1 4 24.11 even 2
864.2.r.a.721.2 4 12.11 even 2
2592.2.d.a.1297.1 2 72.11 even 6
2592.2.d.a.1297.2 2 36.11 even 6
2592.2.d.b.1297.1 2 36.7 odd 6
2592.2.d.b.1297.2 2 72.43 odd 6