Properties

Label 864.2.r.a.145.2
Level $864$
Weight $2$
Character 864.145
Analytic conductor $6.899$
Analytic rank $0$
Dimension $4$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [864,2,Mod(145,864)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(864, base_ring=CyclotomicField(6))
 
chi = DirichletCharacter(H, H._module([0, 3, 2]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("864.145");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 864 = 2^{5} \cdot 3^{3} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 864.r (of order \(6\), degree \(2\), not minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(6.89907473464\)
Analytic rank: \(0\)
Dimension: \(4\)
Relative dimension: \(2\) over \(\Q(\zeta_{6})\)
Coefficient field: \(\Q(\zeta_{12})\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{4} - x^{2} + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{11}]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 72)
Sato-Tate group: $\mathrm{SU}(2)[C_{6}]$

Embedding invariants

Embedding label 145.2
Root \(0.866025 + 0.500000i\) of defining polynomial
Character \(\chi\) \(=\) 864.145
Dual form 864.2.r.a.721.2

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(1.73205 + 1.00000i) q^{5} +(2.00000 + 3.46410i) q^{7} +(2.59808 - 1.50000i) q^{11} +(1.73205 + 1.00000i) q^{13} -5.00000 q^{17} +1.00000i q^{19} +(-1.00000 + 1.73205i) q^{23} +(-0.500000 - 0.866025i) q^{25} +(-2.00000 + 3.46410i) q^{31} +8.00000i q^{35} -2.00000i q^{37} +(-2.50000 + 4.33013i) q^{41} +(9.52628 - 5.50000i) q^{43} +(3.00000 + 5.19615i) q^{47} +(-4.50000 + 7.79423i) q^{49} +6.00000 q^{55} +(-0.866025 - 0.500000i) q^{59} +(10.3923 - 6.00000i) q^{61} +(2.00000 + 3.46410i) q^{65} +(-2.59808 - 1.50000i) q^{67} -6.00000 q^{71} +9.00000 q^{73} +(10.3923 + 6.00000i) q^{77} +(-7.00000 - 12.1244i) q^{79} +(3.46410 - 2.00000i) q^{83} +(-8.66025 - 5.00000i) q^{85} +14.0000 q^{89} +8.00000i q^{91} +(-1.00000 + 1.73205i) q^{95} +(-0.500000 - 0.866025i) q^{97} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 4 q + 8 q^{7} - 20 q^{17} - 4 q^{23} - 2 q^{25} - 8 q^{31} - 10 q^{41} + 12 q^{47} - 18 q^{49} + 24 q^{55} + 8 q^{65} - 24 q^{71} + 36 q^{73} - 28 q^{79} + 56 q^{89} - 4 q^{95} - 2 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/864\mathbb{Z}\right)^\times\).

\(n\) \(325\) \(353\) \(703\)
\(\chi(n)\) \(-1\) \(e\left(\frac{1}{3}\right)\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 0 0
\(4\) 0 0
\(5\) 1.73205 + 1.00000i 0.774597 + 0.447214i 0.834512 0.550990i \(-0.185750\pi\)
−0.0599153 + 0.998203i \(0.519083\pi\)
\(6\) 0 0
\(7\) 2.00000 + 3.46410i 0.755929 + 1.30931i 0.944911 + 0.327327i \(0.106148\pi\)
−0.188982 + 0.981981i \(0.560519\pi\)
\(8\) 0 0
\(9\) 0 0
\(10\) 0 0
\(11\) 2.59808 1.50000i 0.783349 0.452267i −0.0542666 0.998526i \(-0.517282\pi\)
0.837616 + 0.546259i \(0.183949\pi\)
\(12\) 0 0
\(13\) 1.73205 + 1.00000i 0.480384 + 0.277350i 0.720577 0.693375i \(-0.243877\pi\)
−0.240192 + 0.970725i \(0.577210\pi\)
\(14\) 0 0
\(15\) 0 0
\(16\) 0 0
\(17\) −5.00000 −1.21268 −0.606339 0.795206i \(-0.707363\pi\)
−0.606339 + 0.795206i \(0.707363\pi\)
\(18\) 0 0
\(19\) 1.00000i 0.229416i 0.993399 + 0.114708i \(0.0365932\pi\)
−0.993399 + 0.114708i \(0.963407\pi\)
\(20\) 0 0
\(21\) 0 0
\(22\) 0 0
\(23\) −1.00000 + 1.73205i −0.208514 + 0.361158i −0.951247 0.308431i \(-0.900196\pi\)
0.742732 + 0.669588i \(0.233529\pi\)
\(24\) 0 0
\(25\) −0.500000 0.866025i −0.100000 0.173205i
\(26\) 0 0
\(27\) 0 0
\(28\) 0 0
\(29\) 0 0 −0.500000 0.866025i \(-0.666667\pi\)
0.500000 + 0.866025i \(0.333333\pi\)
\(30\) 0 0
\(31\) −2.00000 + 3.46410i −0.359211 + 0.622171i −0.987829 0.155543i \(-0.950287\pi\)
0.628619 + 0.777714i \(0.283621\pi\)
\(32\) 0 0
\(33\) 0 0
\(34\) 0 0
\(35\) 8.00000i 1.35225i
\(36\) 0 0
\(37\) 2.00000i 0.328798i −0.986394 0.164399i \(-0.947432\pi\)
0.986394 0.164399i \(-0.0525685\pi\)
\(38\) 0 0
\(39\) 0 0
\(40\) 0 0
\(41\) −2.50000 + 4.33013i −0.390434 + 0.676252i −0.992507 0.122189i \(-0.961009\pi\)
0.602072 + 0.798441i \(0.294342\pi\)
\(42\) 0 0
\(43\) 9.52628 5.50000i 1.45274 0.838742i 0.454108 0.890947i \(-0.349958\pi\)
0.998636 + 0.0522047i \(0.0166248\pi\)
\(44\) 0 0
\(45\) 0 0
\(46\) 0 0
\(47\) 3.00000 + 5.19615i 0.437595 + 0.757937i 0.997503 0.0706177i \(-0.0224970\pi\)
−0.559908 + 0.828554i \(0.689164\pi\)
\(48\) 0 0
\(49\) −4.50000 + 7.79423i −0.642857 + 1.11346i
\(50\) 0 0
\(51\) 0 0
\(52\) 0 0
\(53\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(54\) 0 0
\(55\) 6.00000 0.809040
\(56\) 0 0
\(57\) 0 0
\(58\) 0 0
\(59\) −0.866025 0.500000i −0.112747 0.0650945i 0.442566 0.896736i \(-0.354068\pi\)
−0.555313 + 0.831641i \(0.687402\pi\)
\(60\) 0 0
\(61\) 10.3923 6.00000i 1.33060 0.768221i 0.345207 0.938527i \(-0.387809\pi\)
0.985391 + 0.170305i \(0.0544754\pi\)
\(62\) 0 0
\(63\) 0 0
\(64\) 0 0
\(65\) 2.00000 + 3.46410i 0.248069 + 0.429669i
\(66\) 0 0
\(67\) −2.59808 1.50000i −0.317406 0.183254i 0.332830 0.942987i \(-0.391996\pi\)
−0.650236 + 0.759733i \(0.725330\pi\)
\(68\) 0 0
\(69\) 0 0
\(70\) 0 0
\(71\) −6.00000 −0.712069 −0.356034 0.934473i \(-0.615871\pi\)
−0.356034 + 0.934473i \(0.615871\pi\)
\(72\) 0 0
\(73\) 9.00000 1.05337 0.526685 0.850060i \(-0.323435\pi\)
0.526685 + 0.850060i \(0.323435\pi\)
\(74\) 0 0
\(75\) 0 0
\(76\) 0 0
\(77\) 10.3923 + 6.00000i 1.18431 + 0.683763i
\(78\) 0 0
\(79\) −7.00000 12.1244i −0.787562 1.36410i −0.927457 0.373930i \(-0.878010\pi\)
0.139895 0.990166i \(-0.455323\pi\)
\(80\) 0 0
\(81\) 0 0
\(82\) 0 0
\(83\) 3.46410 2.00000i 0.380235 0.219529i −0.297686 0.954664i \(-0.596215\pi\)
0.677920 + 0.735135i \(0.262881\pi\)
\(84\) 0 0
\(85\) −8.66025 5.00000i −0.939336 0.542326i
\(86\) 0 0
\(87\) 0 0
\(88\) 0 0
\(89\) 14.0000 1.48400 0.741999 0.670402i \(-0.233878\pi\)
0.741999 + 0.670402i \(0.233878\pi\)
\(90\) 0 0
\(91\) 8.00000i 0.838628i
\(92\) 0 0
\(93\) 0 0
\(94\) 0 0
\(95\) −1.00000 + 1.73205i −0.102598 + 0.177705i
\(96\) 0 0
\(97\) −0.500000 0.866025i −0.0507673 0.0879316i 0.839525 0.543321i \(-0.182833\pi\)
−0.890292 + 0.455389i \(0.849500\pi\)
\(98\) 0 0
\(99\) 0 0
\(100\) 0 0
\(101\) −12.1244 + 7.00000i −1.20642 + 0.696526i −0.961975 0.273138i \(-0.911939\pi\)
−0.244443 + 0.969664i \(0.578605\pi\)
\(102\) 0 0
\(103\) −3.00000 + 5.19615i −0.295599 + 0.511992i −0.975124 0.221660i \(-0.928852\pi\)
0.679525 + 0.733652i \(0.262186\pi\)
\(104\) 0 0
\(105\) 0 0
\(106\) 0 0
\(107\) 3.00000i 0.290021i −0.989430 0.145010i \(-0.953678\pi\)
0.989430 0.145010i \(-0.0463216\pi\)
\(108\) 0 0
\(109\) 20.0000i 1.91565i 0.287348 + 0.957826i \(0.407226\pi\)
−0.287348 + 0.957826i \(0.592774\pi\)
\(110\) 0 0
\(111\) 0 0
\(112\) 0 0
\(113\) 3.00000 5.19615i 0.282216 0.488813i −0.689714 0.724082i \(-0.742264\pi\)
0.971930 + 0.235269i \(0.0755971\pi\)
\(114\) 0 0
\(115\) −3.46410 + 2.00000i −0.323029 + 0.186501i
\(116\) 0 0
\(117\) 0 0
\(118\) 0 0
\(119\) −10.0000 17.3205i −0.916698 1.58777i
\(120\) 0 0
\(121\) −1.00000 + 1.73205i −0.0909091 + 0.157459i
\(122\) 0 0
\(123\) 0 0
\(124\) 0 0
\(125\) 12.0000i 1.07331i
\(126\) 0 0
\(127\) 2.00000 0.177471 0.0887357 0.996055i \(-0.471717\pi\)
0.0887357 + 0.996055i \(0.471717\pi\)
\(128\) 0 0
\(129\) 0 0
\(130\) 0 0
\(131\) −3.46410 2.00000i −0.302660 0.174741i 0.340977 0.940072i \(-0.389242\pi\)
−0.643637 + 0.765331i \(0.722575\pi\)
\(132\) 0 0
\(133\) −3.46410 + 2.00000i −0.300376 + 0.173422i
\(134\) 0 0
\(135\) 0 0
\(136\) 0 0
\(137\) −4.50000 7.79423i −0.384461 0.665906i 0.607233 0.794524i \(-0.292279\pi\)
−0.991694 + 0.128618i \(0.958946\pi\)
\(138\) 0 0
\(139\) −11.2583 6.50000i −0.954919 0.551323i −0.0603135 0.998179i \(-0.519210\pi\)
−0.894606 + 0.446857i \(0.852543\pi\)
\(140\) 0 0
\(141\) 0 0
\(142\) 0 0
\(143\) 6.00000 0.501745
\(144\) 0 0
\(145\) 0 0
\(146\) 0 0
\(147\) 0 0
\(148\) 0 0
\(149\) −15.5885 9.00000i −1.27706 0.737309i −0.300750 0.953703i \(-0.597237\pi\)
−0.976306 + 0.216394i \(0.930570\pi\)
\(150\) 0 0
\(151\) −3.00000 5.19615i −0.244137 0.422857i 0.717752 0.696299i \(-0.245171\pi\)
−0.961888 + 0.273442i \(0.911838\pi\)
\(152\) 0 0
\(153\) 0 0
\(154\) 0 0
\(155\) −6.92820 + 4.00000i −0.556487 + 0.321288i
\(156\) 0 0
\(157\) −3.46410 2.00000i −0.276465 0.159617i 0.355357 0.934731i \(-0.384359\pi\)
−0.631822 + 0.775113i \(0.717693\pi\)
\(158\) 0 0
\(159\) 0 0
\(160\) 0 0
\(161\) −8.00000 −0.630488
\(162\) 0 0
\(163\) 4.00000i 0.313304i −0.987654 0.156652i \(-0.949930\pi\)
0.987654 0.156652i \(-0.0500701\pi\)
\(164\) 0 0
\(165\) 0 0
\(166\) 0 0
\(167\) 1.00000 1.73205i 0.0773823 0.134030i −0.824737 0.565516i \(-0.808677\pi\)
0.902120 + 0.431486i \(0.142010\pi\)
\(168\) 0 0
\(169\) −4.50000 7.79423i −0.346154 0.599556i
\(170\) 0 0
\(171\) 0 0
\(172\) 0 0
\(173\) 20.7846 12.0000i 1.58022 0.912343i 0.585399 0.810745i \(-0.300938\pi\)
0.994826 0.101598i \(-0.0323955\pi\)
\(174\) 0 0
\(175\) 2.00000 3.46410i 0.151186 0.261861i
\(176\) 0 0
\(177\) 0 0
\(178\) 0 0
\(179\) 20.0000i 1.49487i −0.664335 0.747435i \(-0.731285\pi\)
0.664335 0.747435i \(-0.268715\pi\)
\(180\) 0 0
\(181\) 10.0000i 0.743294i −0.928374 0.371647i \(-0.878793\pi\)
0.928374 0.371647i \(-0.121207\pi\)
\(182\) 0 0
\(183\) 0 0
\(184\) 0 0
\(185\) 2.00000 3.46410i 0.147043 0.254686i
\(186\) 0 0
\(187\) −12.9904 + 7.50000i −0.949951 + 0.548454i
\(188\) 0 0
\(189\) 0 0
\(190\) 0 0
\(191\) 8.00000 + 13.8564i 0.578860 + 1.00261i 0.995610 + 0.0935936i \(0.0298354\pi\)
−0.416751 + 0.909021i \(0.636831\pi\)
\(192\) 0 0
\(193\) 7.50000 12.9904i 0.539862 0.935068i −0.459049 0.888411i \(-0.651810\pi\)
0.998911 0.0466572i \(-0.0148568\pi\)
\(194\) 0 0
\(195\) 0 0
\(196\) 0 0
\(197\) 8.00000i 0.569976i 0.958531 + 0.284988i \(0.0919897\pi\)
−0.958531 + 0.284988i \(0.908010\pi\)
\(198\) 0 0
\(199\) 8.00000 0.567105 0.283552 0.958957i \(-0.408487\pi\)
0.283552 + 0.958957i \(0.408487\pi\)
\(200\) 0 0
\(201\) 0 0
\(202\) 0 0
\(203\) 0 0
\(204\) 0 0
\(205\) −8.66025 + 5.00000i −0.604858 + 0.349215i
\(206\) 0 0
\(207\) 0 0
\(208\) 0 0
\(209\) 1.50000 + 2.59808i 0.103757 + 0.179713i
\(210\) 0 0
\(211\) 13.8564 + 8.00000i 0.953914 + 0.550743i 0.894295 0.447478i \(-0.147678\pi\)
0.0596196 + 0.998221i \(0.481011\pi\)
\(212\) 0 0
\(213\) 0 0
\(214\) 0 0
\(215\) 22.0000 1.50039
\(216\) 0 0
\(217\) −16.0000 −1.08615
\(218\) 0 0
\(219\) 0 0
\(220\) 0 0
\(221\) −8.66025 5.00000i −0.582552 0.336336i
\(222\) 0 0
\(223\) 1.00000 + 1.73205i 0.0669650 + 0.115987i 0.897564 0.440884i \(-0.145335\pi\)
−0.830599 + 0.556871i \(0.812002\pi\)
\(224\) 0 0
\(225\) 0 0
\(226\) 0 0
\(227\) −6.06218 + 3.50000i −0.402361 + 0.232303i −0.687502 0.726182i \(-0.741293\pi\)
0.285141 + 0.958485i \(0.407959\pi\)
\(228\) 0 0
\(229\) −17.3205 10.0000i −1.14457 0.660819i −0.197013 0.980401i \(-0.563124\pi\)
−0.947559 + 0.319582i \(0.896457\pi\)
\(230\) 0 0
\(231\) 0 0
\(232\) 0 0
\(233\) −13.0000 −0.851658 −0.425829 0.904804i \(-0.640018\pi\)
−0.425829 + 0.904804i \(0.640018\pi\)
\(234\) 0 0
\(235\) 12.0000i 0.782794i
\(236\) 0 0
\(237\) 0 0
\(238\) 0 0
\(239\) 15.0000 25.9808i 0.970269 1.68056i 0.275533 0.961292i \(-0.411146\pi\)
0.694737 0.719264i \(-0.255521\pi\)
\(240\) 0 0
\(241\) −8.50000 14.7224i −0.547533 0.948355i −0.998443 0.0557856i \(-0.982234\pi\)
0.450910 0.892570i \(-0.351100\pi\)
\(242\) 0 0
\(243\) 0 0
\(244\) 0 0
\(245\) −15.5885 + 9.00000i −0.995910 + 0.574989i
\(246\) 0 0
\(247\) −1.00000 + 1.73205i −0.0636285 + 0.110208i
\(248\) 0 0
\(249\) 0 0
\(250\) 0 0
\(251\) 15.0000i 0.946792i 0.880850 + 0.473396i \(0.156972\pi\)
−0.880850 + 0.473396i \(0.843028\pi\)
\(252\) 0 0
\(253\) 6.00000i 0.377217i
\(254\) 0 0
\(255\) 0 0
\(256\) 0 0
\(257\) 7.50000 12.9904i 0.467837 0.810318i −0.531487 0.847066i \(-0.678367\pi\)
0.999325 + 0.0367485i \(0.0117000\pi\)
\(258\) 0 0
\(259\) 6.92820 4.00000i 0.430498 0.248548i
\(260\) 0 0
\(261\) 0 0
\(262\) 0 0
\(263\) 4.00000 + 6.92820i 0.246651 + 0.427211i 0.962594 0.270947i \(-0.0873367\pi\)
−0.715944 + 0.698158i \(0.754003\pi\)
\(264\) 0 0
\(265\) 0 0
\(266\) 0 0
\(267\) 0 0
\(268\) 0 0
\(269\) 12.0000i 0.731653i 0.930683 + 0.365826i \(0.119214\pi\)
−0.930683 + 0.365826i \(0.880786\pi\)
\(270\) 0 0
\(271\) −12.0000 −0.728948 −0.364474 0.931214i \(-0.618751\pi\)
−0.364474 + 0.931214i \(0.618751\pi\)
\(272\) 0 0
\(273\) 0 0
\(274\) 0 0
\(275\) −2.59808 1.50000i −0.156670 0.0904534i
\(276\) 0 0
\(277\) 1.73205 1.00000i 0.104069 0.0600842i −0.447062 0.894503i \(-0.647530\pi\)
0.551131 + 0.834419i \(0.314196\pi\)
\(278\) 0 0
\(279\) 0 0
\(280\) 0 0
\(281\) −3.00000 5.19615i −0.178965 0.309976i 0.762561 0.646916i \(-0.223942\pi\)
−0.941526 + 0.336939i \(0.890608\pi\)
\(282\) 0 0
\(283\) −17.3205 10.0000i −1.02960 0.594438i −0.112728 0.993626i \(-0.535959\pi\)
−0.916869 + 0.399188i \(0.869292\pi\)
\(284\) 0 0
\(285\) 0 0
\(286\) 0 0
\(287\) −20.0000 −1.18056
\(288\) 0 0
\(289\) 8.00000 0.470588
\(290\) 0 0
\(291\) 0 0
\(292\) 0 0
\(293\) −10.3923 6.00000i −0.607125 0.350524i 0.164714 0.986341i \(-0.447330\pi\)
−0.771839 + 0.635818i \(0.780663\pi\)
\(294\) 0 0
\(295\) −1.00000 1.73205i −0.0582223 0.100844i
\(296\) 0 0
\(297\) 0 0
\(298\) 0 0
\(299\) −3.46410 + 2.00000i −0.200334 + 0.115663i
\(300\) 0 0
\(301\) 38.1051 + 22.0000i 2.19634 + 1.26806i
\(302\) 0 0
\(303\) 0 0
\(304\) 0 0
\(305\) 24.0000 1.37424
\(306\) 0 0
\(307\) 9.00000i 0.513657i −0.966457 0.256829i \(-0.917322\pi\)
0.966457 0.256829i \(-0.0826776\pi\)
\(308\) 0 0
\(309\) 0 0
\(310\) 0 0
\(311\) −10.0000 + 17.3205i −0.567048 + 0.982156i 0.429808 + 0.902920i \(0.358581\pi\)
−0.996856 + 0.0792356i \(0.974752\pi\)
\(312\) 0 0
\(313\) 0.500000 + 0.866025i 0.0282617 + 0.0489506i 0.879810 0.475325i \(-0.157669\pi\)
−0.851549 + 0.524276i \(0.824336\pi\)
\(314\) 0 0
\(315\) 0 0
\(316\) 0 0
\(317\) 19.0526 11.0000i 1.07010 0.617822i 0.141890 0.989882i \(-0.454682\pi\)
0.928208 + 0.372061i \(0.121349\pi\)
\(318\) 0 0
\(319\) 0 0
\(320\) 0 0
\(321\) 0 0
\(322\) 0 0
\(323\) 5.00000i 0.278207i
\(324\) 0 0
\(325\) 2.00000i 0.110940i
\(326\) 0 0
\(327\) 0 0
\(328\) 0 0
\(329\) −12.0000 + 20.7846i −0.661581 + 1.14589i
\(330\) 0 0
\(331\) 17.3205 10.0000i 0.952021 0.549650i 0.0583130 0.998298i \(-0.481428\pi\)
0.893708 + 0.448649i \(0.148095\pi\)
\(332\) 0 0
\(333\) 0 0
\(334\) 0 0
\(335\) −3.00000 5.19615i −0.163908 0.283896i
\(336\) 0 0
\(337\) −3.50000 + 6.06218i −0.190657 + 0.330228i −0.945468 0.325714i \(-0.894395\pi\)
0.754811 + 0.655942i \(0.227729\pi\)
\(338\) 0 0
\(339\) 0 0
\(340\) 0 0
\(341\) 12.0000i 0.649836i
\(342\) 0 0
\(343\) −8.00000 −0.431959
\(344\) 0 0
\(345\) 0 0
\(346\) 0 0
\(347\) 11.2583 + 6.50000i 0.604379 + 0.348938i 0.770762 0.637123i \(-0.219876\pi\)
−0.166383 + 0.986061i \(0.553209\pi\)
\(348\) 0 0
\(349\) 13.8564 8.00000i 0.741716 0.428230i −0.0809766 0.996716i \(-0.525804\pi\)
0.822693 + 0.568486i \(0.192471\pi\)
\(350\) 0 0
\(351\) 0 0
\(352\) 0 0
\(353\) 7.50000 + 12.9904i 0.399185 + 0.691408i 0.993626 0.112731i \(-0.0359599\pi\)
−0.594441 + 0.804139i \(0.702627\pi\)
\(354\) 0 0
\(355\) −10.3923 6.00000i −0.551566 0.318447i
\(356\) 0 0
\(357\) 0 0
\(358\) 0 0
\(359\) −4.00000 −0.211112 −0.105556 0.994413i \(-0.533662\pi\)
−0.105556 + 0.994413i \(0.533662\pi\)
\(360\) 0 0
\(361\) 18.0000 0.947368
\(362\) 0 0
\(363\) 0 0
\(364\) 0 0
\(365\) 15.5885 + 9.00000i 0.815937 + 0.471082i
\(366\) 0 0
\(367\) 9.00000 + 15.5885i 0.469796 + 0.813711i 0.999404 0.0345320i \(-0.0109941\pi\)
−0.529607 + 0.848243i \(0.677661\pi\)
\(368\) 0 0
\(369\) 0 0
\(370\) 0 0
\(371\) 0 0
\(372\) 0 0
\(373\) −22.5167 13.0000i −1.16587 0.673114i −0.213165 0.977016i \(-0.568377\pi\)
−0.952703 + 0.303902i \(0.901711\pi\)
\(374\) 0 0
\(375\) 0 0
\(376\) 0 0
\(377\) 0 0
\(378\) 0 0
\(379\) 5.00000i 0.256833i −0.991720 0.128416i \(-0.959011\pi\)
0.991720 0.128416i \(-0.0409894\pi\)
\(380\) 0 0
\(381\) 0 0
\(382\) 0 0
\(383\) −9.00000 + 15.5885i −0.459879 + 0.796533i −0.998954 0.0457244i \(-0.985440\pi\)
0.539076 + 0.842257i \(0.318774\pi\)
\(384\) 0 0
\(385\) 12.0000 + 20.7846i 0.611577 + 1.05928i
\(386\) 0 0
\(387\) 0 0
\(388\) 0 0
\(389\) 6.92820 4.00000i 0.351274 0.202808i −0.313972 0.949432i \(-0.601660\pi\)
0.665246 + 0.746624i \(0.268327\pi\)
\(390\) 0 0
\(391\) 5.00000 8.66025i 0.252861 0.437968i
\(392\) 0 0
\(393\) 0 0
\(394\) 0 0
\(395\) 28.0000i 1.40883i
\(396\) 0 0
\(397\) 22.0000i 1.10415i −0.833795 0.552074i \(-0.813837\pi\)
0.833795 0.552074i \(-0.186163\pi\)
\(398\) 0 0
\(399\) 0 0
\(400\) 0 0
\(401\) −7.50000 + 12.9904i −0.374532 + 0.648709i −0.990257 0.139253i \(-0.955530\pi\)
0.615725 + 0.787961i \(0.288863\pi\)
\(402\) 0 0
\(403\) −6.92820 + 4.00000i −0.345118 + 0.199254i
\(404\) 0 0
\(405\) 0 0
\(406\) 0 0
\(407\) −3.00000 5.19615i −0.148704 0.257564i
\(408\) 0 0
\(409\) −15.5000 + 26.8468i −0.766426 + 1.32749i 0.173064 + 0.984911i \(0.444633\pi\)
−0.939490 + 0.342578i \(0.888700\pi\)
\(410\) 0 0
\(411\) 0 0
\(412\) 0 0
\(413\) 4.00000i 0.196827i
\(414\) 0 0
\(415\) 8.00000 0.392705
\(416\) 0 0
\(417\) 0 0
\(418\) 0 0
\(419\) 31.1769 + 18.0000i 1.52309 + 0.879358i 0.999627 + 0.0273103i \(0.00869423\pi\)
0.523465 + 0.852047i \(0.324639\pi\)
\(420\) 0 0
\(421\) −19.0526 + 11.0000i −0.928565 + 0.536107i −0.886357 0.463002i \(-0.846772\pi\)
−0.0422075 + 0.999109i \(0.513439\pi\)
\(422\) 0 0
\(423\) 0 0
\(424\) 0 0
\(425\) 2.50000 + 4.33013i 0.121268 + 0.210042i
\(426\) 0 0
\(427\) 41.5692 + 24.0000i 2.01168 + 1.16144i
\(428\) 0 0
\(429\) 0 0
\(430\) 0 0
\(431\) −36.0000 −1.73406 −0.867029 0.498257i \(-0.833974\pi\)
−0.867029 + 0.498257i \(0.833974\pi\)
\(432\) 0 0
\(433\) 5.00000 0.240285 0.120142 0.992757i \(-0.461665\pi\)
0.120142 + 0.992757i \(0.461665\pi\)
\(434\) 0 0
\(435\) 0 0
\(436\) 0 0
\(437\) −1.73205 1.00000i −0.0828552 0.0478365i
\(438\) 0 0
\(439\) 0 0 0.866025 0.500000i \(-0.166667\pi\)
−0.866025 + 0.500000i \(0.833333\pi\)
\(440\) 0 0
\(441\) 0 0
\(442\) 0 0
\(443\) 7.79423 4.50000i 0.370315 0.213801i −0.303281 0.952901i \(-0.598082\pi\)
0.673596 + 0.739100i \(0.264749\pi\)
\(444\) 0 0
\(445\) 24.2487 + 14.0000i 1.14950 + 0.663664i
\(446\) 0 0
\(447\) 0 0
\(448\) 0 0
\(449\) −21.0000 −0.991051 −0.495526 0.868593i \(-0.665025\pi\)
−0.495526 + 0.868593i \(0.665025\pi\)
\(450\) 0 0
\(451\) 15.0000i 0.706322i
\(452\) 0 0
\(453\) 0 0
\(454\) 0 0
\(455\) −8.00000 + 13.8564i −0.375046 + 0.649598i
\(456\) 0 0
\(457\) 18.5000 + 32.0429i 0.865393 + 1.49891i 0.866656 + 0.498906i \(0.166265\pi\)
−0.00126243 + 0.999999i \(0.500402\pi\)
\(458\) 0 0
\(459\) 0 0
\(460\) 0 0
\(461\) −5.19615 + 3.00000i −0.242009 + 0.139724i −0.616100 0.787668i \(-0.711288\pi\)
0.374091 + 0.927392i \(0.377955\pi\)
\(462\) 0 0
\(463\) 5.00000 8.66025i 0.232370 0.402476i −0.726135 0.687552i \(-0.758685\pi\)
0.958505 + 0.285076i \(0.0920187\pi\)
\(464\) 0 0
\(465\) 0 0
\(466\) 0 0
\(467\) 29.0000i 1.34196i 0.741475 + 0.670980i \(0.234126\pi\)
−0.741475 + 0.670980i \(0.765874\pi\)
\(468\) 0 0
\(469\) 12.0000i 0.554109i
\(470\) 0 0
\(471\) 0 0
\(472\) 0 0
\(473\) 16.5000 28.5788i 0.758671 1.31406i
\(474\) 0 0
\(475\) 0.866025 0.500000i 0.0397360 0.0229416i
\(476\) 0 0
\(477\) 0 0
\(478\) 0 0
\(479\) −8.00000 13.8564i −0.365529 0.633115i 0.623332 0.781958i \(-0.285779\pi\)
−0.988861 + 0.148842i \(0.952445\pi\)
\(480\) 0 0
\(481\) 2.00000 3.46410i 0.0911922 0.157949i
\(482\) 0 0
\(483\) 0 0
\(484\) 0 0
\(485\) 2.00000i 0.0908153i
\(486\) 0 0
\(487\) −20.0000 −0.906287 −0.453143 0.891438i \(-0.649697\pi\)
−0.453143 + 0.891438i \(0.649697\pi\)
\(488\) 0 0
\(489\) 0 0
\(490\) 0 0
\(491\) −16.4545 9.50000i −0.742580 0.428729i 0.0804264 0.996761i \(-0.474372\pi\)
−0.823007 + 0.568032i \(0.807705\pi\)
\(492\) 0 0
\(493\) 0 0
\(494\) 0 0
\(495\) 0 0
\(496\) 0 0
\(497\) −12.0000 20.7846i −0.538274 0.932317i
\(498\) 0 0
\(499\) 12.9904 + 7.50000i 0.581529 + 0.335746i 0.761741 0.647882i \(-0.224345\pi\)
−0.180212 + 0.983628i \(0.557678\pi\)
\(500\) 0 0
\(501\) 0 0
\(502\) 0 0
\(503\) 36.0000 1.60516 0.802580 0.596544i \(-0.203460\pi\)
0.802580 + 0.596544i \(0.203460\pi\)
\(504\) 0 0
\(505\) −28.0000 −1.24598
\(506\) 0 0
\(507\) 0 0
\(508\) 0 0
\(509\) 31.1769 + 18.0000i 1.38189 + 0.797836i 0.992384 0.123187i \(-0.0393114\pi\)
0.389509 + 0.921023i \(0.372645\pi\)
\(510\) 0 0
\(511\) 18.0000 + 31.1769i 0.796273 + 1.37919i
\(512\) 0 0
\(513\) 0 0
\(514\) 0 0
\(515\) −10.3923 + 6.00000i −0.457940 + 0.264392i
\(516\) 0 0
\(517\) 15.5885 + 9.00000i 0.685580 + 0.395820i
\(518\) 0 0
\(519\) 0 0
\(520\) 0 0
\(521\) −15.0000 −0.657162 −0.328581 0.944476i \(-0.606570\pi\)
−0.328581 + 0.944476i \(0.606570\pi\)
\(522\) 0 0
\(523\) 36.0000i 1.57417i −0.616844 0.787085i \(-0.711589\pi\)
0.616844 0.787085i \(-0.288411\pi\)
\(524\) 0 0
\(525\) 0 0
\(526\) 0 0
\(527\) 10.0000 17.3205i 0.435607 0.754493i
\(528\) 0 0
\(529\) 9.50000 + 16.4545i 0.413043 + 0.715412i
\(530\) 0 0
\(531\) 0 0
\(532\) 0 0
\(533\) −8.66025 + 5.00000i −0.375117 + 0.216574i
\(534\) 0 0
\(535\) 3.00000 5.19615i 0.129701 0.224649i
\(536\) 0 0
\(537\) 0 0
\(538\) 0 0
\(539\) 27.0000i 1.16297i
\(540\) 0 0
\(541\) 22.0000i 0.945854i 0.881102 + 0.472927i \(0.156803\pi\)
−0.881102 + 0.472927i \(0.843197\pi\)
\(542\) 0 0
\(543\) 0 0
\(544\) 0 0
\(545\) −20.0000 + 34.6410i −0.856706 + 1.48386i
\(546\) 0 0
\(547\) −30.3109 + 17.5000i −1.29600 + 0.748246i −0.979711 0.200417i \(-0.935770\pi\)
−0.316289 + 0.948663i \(0.602437\pi\)
\(548\) 0 0
\(549\) 0 0
\(550\) 0 0
\(551\) 0 0
\(552\) 0 0
\(553\) 28.0000 48.4974i 1.19068 2.06232i
\(554\) 0 0
\(555\) 0 0
\(556\) 0 0
\(557\) 24.0000i 1.01691i −0.861088 0.508456i \(-0.830216\pi\)
0.861088 0.508456i \(-0.169784\pi\)
\(558\) 0 0
\(559\) 22.0000 0.930501
\(560\) 0 0
\(561\) 0 0
\(562\) 0 0
\(563\) −7.79423 4.50000i −0.328488 0.189652i 0.326682 0.945134i \(-0.394069\pi\)
−0.655169 + 0.755482i \(0.727403\pi\)
\(564\) 0 0
\(565\) 10.3923 6.00000i 0.437208 0.252422i
\(566\) 0 0
\(567\) 0 0
\(568\) 0 0
\(569\) 19.5000 + 33.7750i 0.817483 + 1.41592i 0.907532 + 0.419984i \(0.137964\pi\)
−0.0900490 + 0.995937i \(0.528702\pi\)
\(570\) 0 0
\(571\) 4.33013 + 2.50000i 0.181210 + 0.104622i 0.587861 0.808962i \(-0.299970\pi\)
−0.406651 + 0.913584i \(0.633303\pi\)
\(572\) 0 0
\(573\) 0 0
\(574\) 0 0
\(575\) 2.00000 0.0834058
\(576\) 0 0
\(577\) −33.0000 −1.37381 −0.686904 0.726748i \(-0.741031\pi\)
−0.686904 + 0.726748i \(0.741031\pi\)
\(578\) 0 0
\(579\) 0 0
\(580\) 0 0
\(581\) 13.8564 + 8.00000i 0.574861 + 0.331896i
\(582\) 0 0
\(583\) 0 0
\(584\) 0 0
\(585\) 0 0
\(586\) 0 0
\(587\) 32.0429 18.5000i 1.32255 0.763577i 0.338418 0.940996i \(-0.390108\pi\)
0.984135 + 0.177419i \(0.0567748\pi\)
\(588\) 0 0
\(589\) −3.46410 2.00000i −0.142736 0.0824086i
\(590\) 0 0
\(591\) 0 0
\(592\) 0 0
\(593\) 30.0000 1.23195 0.615976 0.787765i \(-0.288762\pi\)
0.615976 + 0.787765i \(0.288762\pi\)
\(594\) 0 0
\(595\) 40.0000i 1.63984i
\(596\) 0 0
\(597\) 0 0
\(598\) 0 0
\(599\) −19.0000 + 32.9090i −0.776319 + 1.34462i 0.157731 + 0.987482i \(0.449582\pi\)
−0.934050 + 0.357142i \(0.883751\pi\)
\(600\) 0 0
\(601\) −2.50000 4.33013i −0.101977 0.176630i 0.810522 0.585708i \(-0.199184\pi\)
−0.912499 + 0.409079i \(0.865850\pi\)
\(602\) 0 0
\(603\) 0 0
\(604\) 0 0
\(605\) −3.46410 + 2.00000i −0.140836 + 0.0813116i
\(606\) 0 0
\(607\) −10.0000 + 17.3205i −0.405887 + 0.703018i −0.994424 0.105453i \(-0.966371\pi\)
0.588537 + 0.808470i \(0.299704\pi\)
\(608\) 0 0
\(609\) 0 0
\(610\) 0 0
\(611\) 12.0000i 0.485468i
\(612\) 0 0
\(613\) 34.0000i 1.37325i −0.727013 0.686624i \(-0.759092\pi\)
0.727013 0.686624i \(-0.240908\pi\)
\(614\) 0 0
\(615\) 0 0
\(616\) 0 0
\(617\) 2.50000 4.33013i 0.100646 0.174324i −0.811305 0.584623i \(-0.801242\pi\)
0.911951 + 0.410299i \(0.134576\pi\)
\(618\) 0 0
\(619\) 2.59808 1.50000i 0.104425 0.0602901i −0.446878 0.894595i \(-0.647464\pi\)
0.551303 + 0.834305i \(0.314131\pi\)
\(620\) 0 0
\(621\) 0 0
\(622\) 0 0
\(623\) 28.0000 + 48.4974i 1.12180 + 1.94301i
\(624\) 0 0
\(625\) 9.50000 16.4545i 0.380000 0.658179i
\(626\) 0 0
\(627\) 0 0
\(628\) 0 0
\(629\) 10.0000i 0.398726i
\(630\) 0 0
\(631\) −34.0000 −1.35352 −0.676759 0.736204i \(-0.736616\pi\)
−0.676759 + 0.736204i \(0.736616\pi\)
\(632\) 0 0
\(633\) 0 0
\(634\) 0 0
\(635\) 3.46410 + 2.00000i 0.137469 + 0.0793676i
\(636\) 0 0
\(637\) −15.5885 + 9.00000i −0.617637 + 0.356593i
\(638\) 0 0
\(639\) 0 0
\(640\) 0 0
\(641\) −15.5000 26.8468i −0.612213 1.06038i −0.990867 0.134846i \(-0.956946\pi\)
0.378653 0.925539i \(-0.376387\pi\)
\(642\) 0 0
\(643\) −4.33013 2.50000i −0.170764 0.0985904i 0.412182 0.911101i \(-0.364767\pi\)
−0.582946 + 0.812511i \(0.698100\pi\)
\(644\) 0 0
\(645\) 0 0
\(646\) 0 0
\(647\) 24.0000 0.943537 0.471769 0.881722i \(-0.343616\pi\)
0.471769 + 0.881722i \(0.343616\pi\)
\(648\) 0 0
\(649\) −3.00000 −0.117760
\(650\) 0 0
\(651\) 0 0
\(652\) 0 0
\(653\) −31.1769 18.0000i −1.22005 0.704394i −0.255119 0.966910i \(-0.582115\pi\)
−0.964928 + 0.262515i \(0.915448\pi\)
\(654\) 0 0
\(655\) −4.00000 6.92820i −0.156293 0.270707i
\(656\) 0 0
\(657\) 0 0
\(658\) 0 0
\(659\) 10.3923 6.00000i 0.404827 0.233727i −0.283738 0.958902i \(-0.591575\pi\)
0.688565 + 0.725175i \(0.258241\pi\)
\(660\) 0 0
\(661\) 12.1244 + 7.00000i 0.471583 + 0.272268i 0.716902 0.697174i \(-0.245559\pi\)
−0.245319 + 0.969442i \(0.578893\pi\)
\(662\) 0 0
\(663\) 0 0
\(664\) 0 0
\(665\) −8.00000 −0.310227
\(666\) 0 0
\(667\) 0 0
\(668\) 0 0
\(669\) 0 0
\(670\) 0 0
\(671\) 18.0000 31.1769i 0.694882 1.20357i
\(672\) 0 0
\(673\) −13.0000 22.5167i −0.501113 0.867953i −0.999999 0.00128586i \(-0.999591\pi\)
0.498886 0.866668i \(-0.333743\pi\)
\(674\) 0 0
\(675\) 0 0
\(676\) 0 0
\(677\) −41.5692 + 24.0000i −1.59763 + 0.922395i −0.605693 + 0.795698i \(0.707104\pi\)
−0.991941 + 0.126697i \(0.959562\pi\)
\(678\) 0 0
\(679\) 2.00000 3.46410i 0.0767530 0.132940i
\(680\) 0 0
\(681\) 0 0
\(682\) 0 0
\(683\) 35.0000i 1.33924i −0.742705 0.669619i \(-0.766457\pi\)
0.742705 0.669619i \(-0.233543\pi\)
\(684\) 0 0
\(685\) 18.0000i 0.687745i
\(686\) 0 0
\(687\) 0 0
\(688\) 0 0
\(689\) 0 0
\(690\) 0 0
\(691\) 24.2487 14.0000i 0.922464 0.532585i 0.0380440 0.999276i \(-0.487887\pi\)
0.884420 + 0.466691i \(0.154554\pi\)
\(692\) 0 0
\(693\) 0 0
\(694\) 0 0
\(695\) −13.0000 22.5167i −0.493118 0.854106i
\(696\) 0 0
\(697\) 12.5000 21.6506i 0.473471 0.820076i
\(698\) 0 0
\(699\) 0 0
\(700\) 0 0
\(701\) 10.0000i 0.377695i 0.982006 + 0.188847i \(0.0604752\pi\)
−0.982006 + 0.188847i \(0.939525\pi\)
\(702\) 0 0
\(703\) 2.00000 0.0754314
\(704\) 0 0
\(705\) 0 0
\(706\) 0 0
\(707\) −48.4974 28.0000i −1.82393 1.05305i
\(708\) 0 0
\(709\) 6.92820 4.00000i 0.260194 0.150223i −0.364229 0.931309i \(-0.618667\pi\)
0.624423 + 0.781086i \(0.285334\pi\)
\(710\) 0 0
\(711\) 0 0
\(712\) 0 0
\(713\) −4.00000 6.92820i −0.149801 0.259463i
\(714\) 0 0
\(715\) 10.3923 + 6.00000i 0.388650 + 0.224387i
\(716\) 0 0
\(717\) 0 0
\(718\) 0 0
\(719\) −34.0000 −1.26799 −0.633993 0.773339i \(-0.718585\pi\)
−0.633993 + 0.773339i \(0.718585\pi\)
\(720\) 0 0
\(721\) −24.0000 −0.893807
\(722\) 0 0
\(723\) 0 0
\(724\) 0 0
\(725\) 0 0
\(726\) 0 0
\(727\) 3.00000 + 5.19615i 0.111264 + 0.192715i 0.916280 0.400538i \(-0.131177\pi\)
−0.805016 + 0.593253i \(0.797843\pi\)
\(728\) 0 0
\(729\) 0 0
\(730\) 0 0
\(731\) −47.6314 + 27.5000i −1.76171 + 1.01712i
\(732\) 0 0
\(733\) −24.2487 14.0000i −0.895647 0.517102i −0.0198613 0.999803i \(-0.506322\pi\)
−0.875785 + 0.482701i \(0.839656\pi\)
\(734\) 0 0
\(735\) 0 0
\(736\) 0 0
\(737\) −9.00000 −0.331519
\(738\) 0 0
\(739\) 41.0000i 1.50821i 0.656754 + 0.754105i \(0.271929\pi\)
−0.656754 + 0.754105i \(0.728071\pi\)
\(740\) 0 0
\(741\) 0 0
\(742\) 0 0
\(743\) 22.0000 38.1051i 0.807102 1.39794i −0.107761 0.994177i \(-0.534368\pi\)
0.914863 0.403764i \(-0.132298\pi\)
\(744\) 0 0
\(745\) −18.0000 31.1769i −0.659469 1.14223i
\(746\) 0 0
\(747\) 0 0
\(748\) 0 0
\(749\) 10.3923 6.00000i 0.379727 0.219235i
\(750\) 0 0
\(751\) 1.00000 1.73205i 0.0364905 0.0632034i −0.847203 0.531269i \(-0.821715\pi\)
0.883694 + 0.468065i \(0.155049\pi\)
\(752\) 0 0
\(753\) 0 0
\(754\) 0 0
\(755\) 12.0000i 0.436725i
\(756\) 0 0
\(757\) 36.0000i 1.30844i 0.756303 + 0.654221i \(0.227003\pi\)
−0.756303 + 0.654221i \(0.772997\pi\)
\(758\) 0 0
\(759\) 0 0
\(760\) 0 0
\(761\) 7.00000 12.1244i 0.253750 0.439508i −0.710805 0.703389i \(-0.751669\pi\)
0.964555 + 0.263881i \(0.0850027\pi\)
\(762\) 0 0
\(763\) −69.2820 + 40.0000i −2.50818 + 1.44810i
\(764\) 0 0
\(765\) 0 0
\(766\) 0 0
\(767\) −1.00000 1.73205i −0.0361079 0.0625407i
\(768\) 0 0
\(769\) −17.0000 + 29.4449i −0.613036 + 1.06181i 0.377690 + 0.925932i \(0.376718\pi\)
−0.990726 + 0.135877i \(0.956615\pi\)
\(770\) 0 0
\(771\) 0 0
\(772\) 0 0
\(773\) 38.0000i 1.36677i −0.730061 0.683383i \(-0.760508\pi\)
0.730061 0.683383i \(-0.239492\pi\)
\(774\) 0 0
\(775\) 4.00000 0.143684
\(776\) 0 0
\(777\) 0 0
\(778\) 0 0
\(779\) −4.33013 2.50000i −0.155143 0.0895718i
\(780\) 0 0
\(781\) −15.5885 + 9.00000i −0.557799 + 0.322045i
\(782\) 0 0
\(783\) 0 0
\(784\) 0 0
\(785\) −4.00000 6.92820i −0.142766 0.247278i
\(786\) 0 0
\(787\) −10.3923 6.00000i −0.370446 0.213877i 0.303207 0.952925i \(-0.401942\pi\)
−0.673653 + 0.739048i \(0.735276\pi\)
\(788\) 0 0
\(789\) 0 0
\(790\) 0 0
\(791\) 24.0000 0.853342
\(792\) 0 0
\(793\) 24.0000 0.852265
\(794\) 0 0
\(795\) 0 0
\(796\) 0 0
\(797\) 19.0526 + 11.0000i 0.674876 + 0.389640i 0.797922 0.602761i \(-0.205933\pi\)
−0.123045 + 0.992401i \(0.539266\pi\)
\(798\) 0 0
\(799\) −15.0000 25.9808i −0.530662 0.919133i
\(800\) 0 0
\(801\) 0 0
\(802\) 0 0
\(803\) 23.3827 13.5000i 0.825157 0.476405i
\(804\) 0 0
\(805\) −13.8564 8.00000i −0.488374 0.281963i
\(806\) 0 0
\(807\) 0 0
\(808\) 0 0
\(809\) 9.00000 0.316423 0.158212 0.987405i \(-0.449427\pi\)
0.158212 + 0.987405i \(0.449427\pi\)
\(810\) 0 0
\(811\) 7.00000i 0.245803i −0.992419 0.122902i \(-0.960780\pi\)
0.992419 0.122902i \(-0.0392200\pi\)
\(812\) 0 0
\(813\) 0 0
\(814\) 0 0
\(815\) 4.00000 6.92820i 0.140114 0.242684i
\(816\) 0 0
\(817\) 5.50000 + 9.52628i 0.192421 + 0.333282i
\(818\) 0 0
\(819\) 0 0
\(820\) 0 0
\(821\) 24.2487 14.0000i 0.846286 0.488603i −0.0131101 0.999914i \(-0.504173\pi\)
0.859396 + 0.511311i \(0.170840\pi\)
\(822\) 0 0
\(823\) 13.0000 22.5167i 0.453152 0.784881i −0.545428 0.838157i \(-0.683633\pi\)
0.998580 + 0.0532760i \(0.0169663\pi\)
\(824\) 0 0
\(825\) 0 0
\(826\) 0 0
\(827\) 48.0000i 1.66912i 0.550914 + 0.834562i \(0.314279\pi\)
−0.550914 + 0.834562i \(0.685721\pi\)
\(828\) 0 0
\(829\) 32.0000i 1.11141i 0.831381 + 0.555703i \(0.187551\pi\)
−0.831381 + 0.555703i \(0.812449\pi\)
\(830\) 0 0
\(831\) 0 0
\(832\) 0 0
\(833\) 22.5000 38.9711i 0.779579 1.35027i
\(834\) 0 0
\(835\) 3.46410 2.00000i 0.119880 0.0692129i
\(836\) 0 0
\(837\) 0 0
\(838\) 0 0
\(839\) −2.00000 3.46410i −0.0690477 0.119594i 0.829435 0.558604i \(-0.188663\pi\)
−0.898482 + 0.439010i \(0.855329\pi\)
\(840\) 0 0
\(841\) −14.5000 + 25.1147i −0.500000 + 0.866025i
\(842\) 0 0
\(843\) 0 0
\(844\) 0 0
\(845\) 18.0000i 0.619219i
\(846\) 0 0
\(847\) −8.00000 −0.274883
\(848\) 0 0
\(849\) 0 0
\(850\) 0 0
\(851\) 3.46410 + 2.00000i 0.118748 + 0.0685591i
\(852\) 0 0
\(853\) −36.3731 + 21.0000i −1.24539 + 0.719026i −0.970186 0.242360i \(-0.922079\pi\)
−0.275204 + 0.961386i \(0.588745\pi\)
\(854\) 0 0
\(855\) 0 0
\(856\) 0 0
\(857\) 3.00000 + 5.19615i 0.102478 + 0.177497i 0.912705 0.408619i \(-0.133990\pi\)
−0.810227 + 0.586116i \(0.800656\pi\)
\(858\) 0 0
\(859\) −30.3109 17.5000i −1.03419 0.597092i −0.116011 0.993248i \(-0.537011\pi\)
−0.918183 + 0.396156i \(0.870344\pi\)
\(860\) 0 0
\(861\) 0 0
\(862\) 0 0
\(863\) 6.00000 0.204242 0.102121 0.994772i \(-0.467437\pi\)
0.102121 + 0.994772i \(0.467437\pi\)
\(864\) 0 0
\(865\) 48.0000 1.63205
\(866\) 0 0
\(867\) 0 0
\(868\) 0 0
\(869\) −36.3731 21.0000i −1.23387 0.712376i
\(870\) 0 0
\(871\) −3.00000 5.19615i −0.101651 0.176065i
\(872\) 0 0
\(873\) 0 0
\(874\) 0 0
\(875\) 41.5692 24.0000i 1.40530 0.811348i
\(876\) 0 0
\(877\) −6.92820 4.00000i −0.233949 0.135070i 0.378444 0.925624i \(-0.376459\pi\)
−0.612392 + 0.790554i \(0.709793\pi\)
\(878\) 0 0
\(879\) 0 0
\(880\) 0 0
\(881\) 2.00000 0.0673817 0.0336909 0.999432i \(-0.489274\pi\)
0.0336909 + 0.999432i \(0.489274\pi\)
\(882\) 0 0
\(883\) 23.0000i 0.774012i 0.922077 + 0.387006i \(0.126491\pi\)
−0.922077 + 0.387006i \(0.873509\pi\)
\(884\) 0 0
\(885\) 0 0
\(886\) 0 0
\(887\) −15.0000 + 25.9808i −0.503651 + 0.872349i 0.496340 + 0.868128i \(0.334677\pi\)
−0.999991 + 0.00422062i \(0.998657\pi\)
\(888\) 0 0
\(889\) 4.00000 + 6.92820i 0.134156 + 0.232364i
\(890\) 0 0
\(891\) 0 0
\(892\) 0 0
\(893\) −5.19615 + 3.00000i −0.173883 + 0.100391i
\(894\) 0 0
\(895\) 20.0000 34.6410i 0.668526 1.15792i
\(896\) 0 0
\(897\) 0 0
\(898\) 0 0
\(899\) 0 0
\(900\) 0 0
\(901\) 0 0
\(902\) 0 0
\(903\) 0 0
\(904\) 0 0
\(905\) 10.0000 17.3205i 0.332411 0.575753i
\(906\) 0 0
\(907\) 21.6506 12.5000i 0.718898 0.415056i −0.0954492 0.995434i \(-0.530429\pi\)
0.814347 + 0.580379i \(0.197095\pi\)
\(908\) 0 0
\(909\) 0 0
\(910\) 0 0
\(911\) −6.00000 10.3923i −0.198789 0.344312i 0.749347 0.662177i \(-0.230367\pi\)
−0.948136 + 0.317865i \(0.897034\pi\)
\(912\) 0 0
\(913\) 6.00000 10.3923i 0.198571 0.343935i
\(914\) 0 0
\(915\) 0 0
\(916\) 0 0
\(917\) 16.0000i 0.528367i
\(918\) 0 0
\(919\) 42.0000 1.38545 0.692726 0.721201i \(-0.256409\pi\)
0.692726 + 0.721201i \(0.256409\pi\)
\(920\) 0 0
\(921\) 0 0
\(922\) 0 0
\(923\) −10.3923 6.00000i −0.342067 0.197492i
\(924\) 0 0
\(925\) −1.73205 + 1.00000i −0.0569495 + 0.0328798i
\(926\) 0 0
\(927\) 0 0
\(928\) 0 0
\(929\) 7.00000 + 12.1244i 0.229663 + 0.397787i 0.957708 0.287742i \(-0.0929044\pi\)
−0.728046 + 0.685529i \(0.759571\pi\)
\(930\) 0 0
\(931\) −7.79423 4.50000i −0.255446 0.147482i
\(932\) 0 0
\(933\) 0 0
\(934\) 0 0
\(935\) −30.0000 −0.981105
\(936\) 0 0
\(937\) 2.00000 0.0653372 0.0326686 0.999466i \(-0.489599\pi\)
0.0326686 + 0.999466i \(0.489599\pi\)
\(938\) 0 0
\(939\) 0 0
\(940\) 0 0
\(941\) −20.7846 12.0000i −0.677559 0.391189i 0.121376 0.992607i \(-0.461269\pi\)
−0.798935 + 0.601418i \(0.794603\pi\)
\(942\) 0 0
\(943\) −5.00000 8.66025i −0.162822 0.282017i
\(944\) 0 0
\(945\) 0 0
\(946\) 0 0
\(947\) 2.59808 1.50000i 0.0844261 0.0487435i −0.457193 0.889368i \(-0.651145\pi\)
0.541619 + 0.840624i \(0.317812\pi\)
\(948\) 0 0
\(949\) 15.5885 + 9.00000i 0.506023 + 0.292152i
\(950\) 0 0
\(951\) 0 0
\(952\) 0 0
\(953\) 21.0000 0.680257 0.340128 0.940379i \(-0.389529\pi\)
0.340128 + 0.940379i \(0.389529\pi\)
\(954\) 0 0
\(955\) 32.0000i 1.03550i
\(956\) 0 0
\(957\) 0 0
\(958\) 0 0
\(959\) 18.0000 31.1769i 0.581250 1.00676i
\(960\) 0 0
\(961\) 7.50000 + 12.9904i 0.241935 + 0.419045i
\(962\) 0 0
\(963\) 0 0
\(964\) 0 0
\(965\) 25.9808 15.0000i 0.836350 0.482867i
\(966\) 0 0
\(967\) −2.00000 + 3.46410i −0.0643157 + 0.111398i −0.896390 0.443266i \(-0.853820\pi\)
0.832075 + 0.554664i \(0.187153\pi\)
\(968\) 0 0
\(969\) 0 0
\(970\) 0 0
\(971\) 12.0000i 0.385098i −0.981287 0.192549i \(-0.938325\pi\)
0.981287 0.192549i \(-0.0616755\pi\)
\(972\) 0 0
\(973\) 52.0000i 1.66704i
\(974\) 0 0
\(975\) 0 0
\(976\) 0 0
\(977\) −15.5000 + 26.8468i −0.495889 + 0.858905i −0.999989 0.00474056i \(-0.998491\pi\)
0.504100 + 0.863645i \(0.331824\pi\)
\(978\) 0 0
\(979\) 36.3731 21.0000i 1.16249 0.671163i
\(980\) 0 0
\(981\) 0 0
\(982\) 0 0
\(983\) −23.0000 39.8372i −0.733586 1.27061i −0.955341 0.295506i \(-0.904512\pi\)
0.221755 0.975102i \(-0.428822\pi\)
\(984\) 0 0
\(985\) −8.00000 + 13.8564i −0.254901 + 0.441502i
\(986\) 0 0
\(987\) 0 0
\(988\) 0 0
\(989\) 22.0000i 0.699559i
\(990\) 0 0
\(991\) −56.0000 −1.77890 −0.889449 0.457034i \(-0.848912\pi\)
−0.889449 + 0.457034i \(0.848912\pi\)
\(992\) 0 0
\(993\) 0 0
\(994\) 0 0
\(995\) 13.8564 + 8.00000i 0.439278 + 0.253617i
\(996\) 0 0
\(997\) 10.3923 6.00000i 0.329128 0.190022i −0.326326 0.945257i \(-0.605811\pi\)
0.655454 + 0.755235i \(0.272477\pi\)
\(998\) 0 0
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 864.2.r.a.145.2 4
3.2 odd 2 288.2.r.a.49.2 4
4.3 odd 2 216.2.n.a.37.2 4
8.3 odd 2 216.2.n.a.37.1 4
8.5 even 2 inner 864.2.r.a.145.1 4
9.2 odd 6 288.2.r.a.241.1 4
9.4 even 3 2592.2.d.a.1297.1 2
9.5 odd 6 2592.2.d.b.1297.2 2
9.7 even 3 inner 864.2.r.a.721.1 4
12.11 even 2 72.2.n.a.13.1 4
24.5 odd 2 288.2.r.a.49.1 4
24.11 even 2 72.2.n.a.13.2 yes 4
36.7 odd 6 216.2.n.a.181.1 4
36.11 even 6 72.2.n.a.61.2 yes 4
36.23 even 6 648.2.d.d.325.1 2
36.31 odd 6 648.2.d.a.325.2 2
72.5 odd 6 2592.2.d.b.1297.1 2
72.11 even 6 72.2.n.a.61.1 yes 4
72.13 even 6 2592.2.d.a.1297.2 2
72.29 odd 6 288.2.r.a.241.2 4
72.43 odd 6 216.2.n.a.181.2 4
72.59 even 6 648.2.d.d.325.2 2
72.61 even 6 inner 864.2.r.a.721.2 4
72.67 odd 6 648.2.d.a.325.1 2
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
72.2.n.a.13.1 4 12.11 even 2
72.2.n.a.13.2 yes 4 24.11 even 2
72.2.n.a.61.1 yes 4 72.11 even 6
72.2.n.a.61.2 yes 4 36.11 even 6
216.2.n.a.37.1 4 8.3 odd 2
216.2.n.a.37.2 4 4.3 odd 2
216.2.n.a.181.1 4 36.7 odd 6
216.2.n.a.181.2 4 72.43 odd 6
288.2.r.a.49.1 4 24.5 odd 2
288.2.r.a.49.2 4 3.2 odd 2
288.2.r.a.241.1 4 9.2 odd 6
288.2.r.a.241.2 4 72.29 odd 6
648.2.d.a.325.1 2 72.67 odd 6
648.2.d.a.325.2 2 36.31 odd 6
648.2.d.d.325.1 2 36.23 even 6
648.2.d.d.325.2 2 72.59 even 6
864.2.r.a.145.1 4 8.5 even 2 inner
864.2.r.a.145.2 4 1.1 even 1 trivial
864.2.r.a.721.1 4 9.7 even 3 inner
864.2.r.a.721.2 4 72.61 even 6 inner
2592.2.d.a.1297.1 2 9.4 even 3
2592.2.d.a.1297.2 2 72.13 even 6
2592.2.d.b.1297.1 2 72.5 odd 6
2592.2.d.b.1297.2 2 9.5 odd 6