Properties

Label 72.2.n.b.13.3
Level $72$
Weight $2$
Character 72.13
Analytic conductor $0.575$
Analytic rank $0$
Dimension $16$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [72,2,Mod(13,72)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(72, base_ring=CyclotomicField(6))
 
chi = DirichletCharacter(H, H._module([0, 3, 2]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("72.13");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 72 = 2^{3} \cdot 3^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 72.n (of order \(6\), degree \(2\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(0.574922894553\)
Analytic rank: \(0\)
Dimension: \(16\)
Relative dimension: \(8\) over \(\Q(\zeta_{6})\)
Coefficient field: \(\mathbb{Q}[x]/(x^{16} - \cdots)\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{16} - x^{15} + x^{14} + 2 x^{12} - 4 x^{11} - 8 x^{9} + 4 x^{8} - 16 x^{7} - 32 x^{5} + 32 x^{4} + \cdots + 256 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{7}]\)
Coefficient ring index: \( 2^{2}\cdot 3^{2} \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{6}]$

Embedding invariants

Embedding label 13.3
Root \(1.41411 - 0.0174668i\) of defining polynomial
Character \(\chi\) \(=\) 72.13
Dual form 72.2.n.b.61.3

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-0.722180 + 1.21592i) q^{2} +(0.294546 - 1.70682i) q^{3} +(-0.956913 - 1.75622i) q^{4} +(3.17262 + 1.83171i) q^{5} +(1.86264 + 1.59078i) q^{6} +(-0.191926 - 0.332426i) q^{7} +(2.82649 + 0.104780i) q^{8} +(-2.82649 - 1.00547i) q^{9} +O(q^{10})\) \(q+(-0.722180 + 1.21592i) q^{2} +(0.294546 - 1.70682i) q^{3} +(-0.956913 - 1.75622i) q^{4} +(3.17262 + 1.83171i) q^{5} +(1.86264 + 1.59078i) q^{6} +(-0.191926 - 0.332426i) q^{7} +(2.82649 + 0.104780i) q^{8} +(-2.82649 - 1.00547i) q^{9} +(-4.51841 + 2.53482i) q^{10} +(-1.73849 + 1.00372i) q^{11} +(-3.27941 + 1.11599i) q^{12} +(-0.397799 - 0.229669i) q^{13} +(0.542808 + 0.00670468i) q^{14} +(4.06089 - 4.87557i) q^{15} +(-2.16863 + 3.36111i) q^{16} -4.08495 q^{17} +(3.26380 - 2.71064i) q^{18} -4.72398i q^{19} +(0.180973 - 7.32461i) q^{20} +(-0.623923 + 0.229669i) q^{21} +(0.0350635 - 2.83872i) q^{22} +(-2.97594 + 5.15447i) q^{23} +(1.01137 - 4.79345i) q^{24} +(4.21034 + 7.29252i) q^{25} +(0.566541 - 0.317828i) q^{26} +(-2.54870 + 4.52815i) q^{27} +(-0.400157 + 0.655168i) q^{28} +(-2.03783 + 1.17654i) q^{29} +(2.99561 + 8.45875i) q^{30} +(0.592083 - 1.02552i) q^{31} +(-2.52069 - 5.06420i) q^{32} +(1.20110 + 3.26293i) q^{33} +(2.95007 - 4.96697i) q^{34} -1.40621i q^{35} +(0.938865 + 5.92609i) q^{36} +5.74432i q^{37} +(5.74397 + 3.41156i) q^{38} +(-0.509175 + 0.611324i) q^{39} +(8.77543 + 5.50973i) q^{40} +(4.75281 - 8.23212i) q^{41} +(0.171325 - 0.924501i) q^{42} +(1.03633 - 0.598327i) q^{43} +(3.42633 + 2.09270i) q^{44} +(-7.12562 - 8.36729i) q^{45} +(-4.11825 - 7.34095i) q^{46} +(3.27688 + 5.67572i) q^{47} +(5.09805 + 4.69147i) q^{48} +(3.42633 - 5.93458i) q^{49} +(-11.9077 - 0.147082i) q^{50} +(-1.20321 + 6.97229i) q^{51} +(-0.0226913 + 0.918397i) q^{52} -7.63807i q^{53} +(-3.66524 - 6.36914i) q^{54} -7.35407 q^{55} +(-0.507645 - 0.959707i) q^{56} +(-8.06300 - 1.39143i) q^{57} +(0.0411010 - 3.32752i) q^{58} +(0.603703 + 0.348548i) q^{59} +(-12.4485 - 2.46632i) q^{60} +(4.23774 - 2.44666i) q^{61} +(0.819356 + 1.46053i) q^{62} +(0.208231 + 1.13257i) q^{63} +(7.97804 + 0.592316i) q^{64} +(-0.841376 - 1.45731i) q^{65} +(-4.83486 - 0.895980i) q^{66} +(8.87932 + 5.12648i) q^{67} +(3.90895 + 7.17409i) q^{68} +(7.92122 + 6.59762i) q^{69} +(1.70984 + 1.01554i) q^{70} -3.73792 q^{71} +(-7.88367 - 3.13812i) q^{72} -2.68275 q^{73} +(-6.98462 - 4.14843i) q^{74} +(13.6872 - 5.03832i) q^{75} +(-8.29636 + 4.52044i) q^{76} +(0.667322 + 0.385279i) q^{77} +(-0.375604 - 1.06060i) q^{78} +(-5.35979 - 9.28342i) q^{79} +(-13.0368 + 6.69119i) q^{80} +(6.97804 + 5.68392i) q^{81} +(6.57719 + 11.7241i) q^{82} +(-5.49039 + 3.16988i) q^{83} +(1.00039 + 0.875974i) q^{84} +(-12.9600 - 7.48246i) q^{85} +(-0.0209018 + 1.69220i) q^{86} +(1.40792 + 3.82477i) q^{87} +(-5.01898 + 2.65483i) q^{88} +7.56802 q^{89} +(15.3199 - 2.62148i) q^{90} +0.176318i q^{91} +(11.9001 + 0.294022i) q^{92} +(-1.57598 - 1.31264i) q^{93} +(-9.26771 - 0.114473i) q^{94} +(8.65297 - 14.9874i) q^{95} +(-9.38615 + 2.81072i) q^{96} +(-2.98511 - 5.17036i) q^{97} +(4.74153 + 8.45196i) q^{98} +(5.92302 - 1.08898i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 16 q + q^{2} - q^{4} - 7 q^{6} + 6 q^{7} - 2 q^{8} + 2 q^{9}+O(q^{10}) \) Copy content Toggle raw display \( 16 q + q^{2} - q^{4} - 7 q^{6} + 6 q^{7} - 2 q^{8} + 2 q^{9} - 16 q^{10} - 16 q^{12} + 16 q^{14} - 10 q^{15} - 9 q^{16} - 28 q^{17} + 4 q^{18} - 8 q^{20} + q^{22} - 10 q^{23} + 7 q^{24} + 2 q^{25} + 28 q^{26} + 4 q^{28} + 22 q^{30} - 10 q^{31} + 11 q^{32} + q^{34} + 27 q^{36} + 23 q^{38} + 2 q^{39} + 6 q^{40} - 8 q^{41} + 8 q^{42} + 18 q^{44} - 20 q^{46} + 6 q^{47} + 39 q^{48} + 18 q^{49} - 23 q^{50} - 8 q^{52} - 29 q^{54} - 4 q^{55} + 10 q^{56} + 10 q^{57} - 14 q^{58} + 6 q^{60} - 52 q^{62} + 2 q^{63} + 26 q^{64} - 14 q^{65} - 72 q^{66} - 39 q^{68} + 72 q^{71} - 77 q^{72} - 44 q^{73} - 38 q^{74} + 5 q^{76} + 10 q^{78} - 30 q^{79} - 96 q^{80} + 10 q^{81} + 38 q^{82} - 28 q^{84} + 7 q^{86} + 42 q^{87} + 31 q^{88} + 64 q^{89} + 64 q^{90} - 30 q^{92} - 12 q^{94} + 44 q^{95} - 26 q^{96} + 66 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/72\mathbb{Z}\right)^\times\).

\(n\) \(37\) \(55\) \(65\)
\(\chi(n)\) \(-1\) \(1\) \(e\left(\frac{1}{3}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −0.722180 + 1.21592i −0.510658 + 0.859784i
\(3\) 0.294546 1.70682i 0.170056 0.985434i
\(4\) −0.956913 1.75622i −0.478457 0.878111i
\(5\) 3.17262 + 1.83171i 1.41884 + 0.819167i 0.996197 0.0871306i \(-0.0277697\pi\)
0.422641 + 0.906297i \(0.361103\pi\)
\(6\) 1.86264 + 1.59078i 0.760420 + 0.649431i
\(7\) −0.191926 0.332426i −0.0725413 0.125645i 0.827473 0.561505i \(-0.189778\pi\)
−0.900014 + 0.435860i \(0.856444\pi\)
\(8\) 2.82649 + 0.104780i 0.999314 + 0.0370452i
\(9\) −2.82649 1.00547i −0.942162 0.335158i
\(10\) −4.51841 + 2.53482i −1.42885 + 0.801580i
\(11\) −1.73849 + 1.00372i −0.524173 + 0.302632i −0.738640 0.674100i \(-0.764532\pi\)
0.214467 + 0.976731i \(0.431199\pi\)
\(12\) −3.27941 + 1.11599i −0.946685 + 0.322160i
\(13\) −0.397799 0.229669i −0.110330 0.0636988i 0.443820 0.896116i \(-0.353623\pi\)
−0.554149 + 0.832417i \(0.686956\pi\)
\(14\) 0.542808 + 0.00670468i 0.145071 + 0.00179190i
\(15\) 4.06089 4.87557i 1.04852 1.25887i
\(16\) −2.16863 + 3.36111i −0.542158 + 0.840276i
\(17\) −4.08495 −0.990747 −0.495373 0.868680i \(-0.664969\pi\)
−0.495373 + 0.868680i \(0.664969\pi\)
\(18\) 3.26380 2.71064i 0.769286 0.638904i
\(19\) 4.72398i 1.08376i −0.840457 0.541878i \(-0.817714\pi\)
0.840457 0.541878i \(-0.182286\pi\)
\(20\) 0.180973 7.32461i 0.0404667 1.63783i
\(21\) −0.623923 + 0.229669i −0.136151 + 0.0501179i
\(22\) 0.0350635 2.83872i 0.00747555 0.605217i
\(23\) −2.97594 + 5.15447i −0.620525 + 1.07478i 0.368863 + 0.929484i \(0.379747\pi\)
−0.989388 + 0.145298i \(0.953586\pi\)
\(24\) 1.01137 4.79345i 0.206445 0.978458i
\(25\) 4.21034 + 7.29252i 0.842068 + 1.45850i
\(26\) 0.566541 0.317828i 0.111108 0.0623313i
\(27\) −2.54870 + 4.52815i −0.490497 + 0.871443i
\(28\) −0.400157 + 0.655168i −0.0756226 + 0.123815i
\(29\) −2.03783 + 1.17654i −0.378416 + 0.218479i −0.677129 0.735864i \(-0.736776\pi\)
0.298713 + 0.954343i \(0.403443\pi\)
\(30\) 2.99561 + 8.45875i 0.546920 + 1.54435i
\(31\) 0.592083 1.02552i 0.106341 0.184188i −0.807944 0.589259i \(-0.799420\pi\)
0.914285 + 0.405071i \(0.132753\pi\)
\(32\) −2.52069 5.06420i −0.445598 0.895233i
\(33\) 1.20110 + 3.26293i 0.209085 + 0.568003i
\(34\) 2.95007 4.96697i 0.505933 0.851828i
\(35\) 1.40621i 0.237693i
\(36\) 0.938865 + 5.92609i 0.156478 + 0.987682i
\(37\) 5.74432i 0.944360i 0.881502 + 0.472180i \(0.156533\pi\)
−0.881502 + 0.472180i \(0.843467\pi\)
\(38\) 5.74397 + 3.41156i 0.931795 + 0.553428i
\(39\) −0.509175 + 0.611324i −0.0815332 + 0.0978902i
\(40\) 8.77543 + 5.50973i 1.38752 + 0.871165i
\(41\) 4.75281 8.23212i 0.742265 1.28564i −0.209197 0.977874i \(-0.567085\pi\)
0.951462 0.307767i \(-0.0995817\pi\)
\(42\) 0.171325 0.924501i 0.0264361 0.142654i
\(43\) 1.03633 0.598327i 0.158039 0.0912440i −0.418895 0.908035i \(-0.637582\pi\)
0.576934 + 0.816791i \(0.304249\pi\)
\(44\) 3.42633 + 2.09270i 0.516538 + 0.315486i
\(45\) −7.12562 8.36729i −1.06222 1.24732i
\(46\) −4.11825 7.34095i −0.607204 1.08236i
\(47\) 3.27688 + 5.67572i 0.477982 + 0.827889i 0.999681 0.0252403i \(-0.00803510\pi\)
−0.521699 + 0.853129i \(0.674702\pi\)
\(48\) 5.09805 + 4.69147i 0.735840 + 0.677156i
\(49\) 3.42633 5.93458i 0.489476 0.847796i
\(50\) −11.9077 0.147082i −1.68401 0.0208006i
\(51\) −1.20321 + 6.97229i −0.168482 + 0.976316i
\(52\) −0.0226913 + 0.918397i −0.00314671 + 0.127359i
\(53\) 7.63807i 1.04917i −0.851358 0.524585i \(-0.824221\pi\)
0.851358 0.524585i \(-0.175779\pi\)
\(54\) −3.66524 6.36914i −0.498777 0.866731i
\(55\) −7.35407 −0.991623
\(56\) −0.507645 0.959707i −0.0678369 0.128246i
\(57\) −8.06300 1.39143i −1.06797 0.184299i
\(58\) 0.0411010 3.32752i 0.00539682 0.436924i
\(59\) 0.603703 + 0.348548i 0.0785954 + 0.0453771i 0.538783 0.842445i \(-0.318884\pi\)
−0.460187 + 0.887822i \(0.652218\pi\)
\(60\) −12.4485 2.46632i −1.60710 0.318401i
\(61\) 4.23774 2.44666i 0.542587 0.313263i −0.203540 0.979067i \(-0.565245\pi\)
0.746127 + 0.665804i \(0.231911\pi\)
\(62\) 0.819356 + 1.46053i 0.104058 + 0.185488i
\(63\) 0.208231 + 1.13257i 0.0262346 + 0.142691i
\(64\) 7.97804 + 0.592316i 0.997255 + 0.0740395i
\(65\) −0.841376 1.45731i −0.104360 0.180757i
\(66\) −4.83486 0.895980i −0.595131 0.110287i
\(67\) 8.87932 + 5.12648i 1.08478 + 0.626299i 0.932182 0.361989i \(-0.117902\pi\)
0.152599 + 0.988288i \(0.451236\pi\)
\(68\) 3.90895 + 7.17409i 0.474029 + 0.869986i
\(69\) 7.92122 + 6.59762i 0.953603 + 0.794260i
\(70\) 1.70984 + 1.01554i 0.204365 + 0.121380i
\(71\) −3.73792 −0.443610 −0.221805 0.975091i \(-0.571195\pi\)
−0.221805 + 0.975091i \(0.571195\pi\)
\(72\) −7.88367 3.13812i −0.929099 0.369831i
\(73\) −2.68275 −0.313992 −0.156996 0.987599i \(-0.550181\pi\)
−0.156996 + 0.987599i \(0.550181\pi\)
\(74\) −6.98462 4.14843i −0.811945 0.482245i
\(75\) 13.6872 5.03832i 1.58046 0.581775i
\(76\) −8.29636 + 4.52044i −0.951658 + 0.518530i
\(77\) 0.667322 + 0.385279i 0.0760484 + 0.0439066i
\(78\) −0.375604 1.06060i −0.0425288 0.120089i
\(79\) −5.35979 9.28342i −0.603023 1.04447i −0.992361 0.123372i \(-0.960629\pi\)
0.389337 0.921095i \(-0.372704\pi\)
\(80\) −13.0368 + 6.69119i −1.45756 + 0.748098i
\(81\) 6.97804 + 5.68392i 0.775338 + 0.631546i
\(82\) 6.57719 + 11.7241i 0.726329 + 1.29471i
\(83\) −5.49039 + 3.16988i −0.602648 + 0.347939i −0.770083 0.637944i \(-0.779785\pi\)
0.167434 + 0.985883i \(0.446452\pi\)
\(84\) 1.00039 + 0.875974i 0.109152 + 0.0955766i
\(85\) −12.9600 7.48246i −1.40571 0.811586i
\(86\) −0.0209018 + 1.69220i −0.00225389 + 0.182474i
\(87\) 1.40792 + 3.82477i 0.150945 + 0.410058i
\(88\) −5.01898 + 2.65483i −0.535025 + 0.283006i
\(89\) 7.56802 0.802208 0.401104 0.916032i \(-0.368627\pi\)
0.401104 + 0.916032i \(0.368627\pi\)
\(90\) 15.3199 2.62148i 1.61486 0.276328i
\(91\) 0.176318i 0.0184832i
\(92\) 11.9001 + 0.294022i 1.24067 + 0.0306539i
\(93\) −1.57598 1.31264i −0.163422 0.136115i
\(94\) −9.26771 0.114473i −0.955891 0.0118070i
\(95\) 8.65297 14.9874i 0.887776 1.53767i
\(96\) −9.38615 + 2.81072i −0.957970 + 0.286868i
\(97\) −2.98511 5.17036i −0.303092 0.524971i 0.673743 0.738966i \(-0.264686\pi\)
−0.976835 + 0.213995i \(0.931352\pi\)
\(98\) 4.74153 + 8.45196i 0.478967 + 0.853777i
\(99\) 5.92302 1.08898i 0.595286 0.109447i
\(100\) 8.77836 14.3726i 0.877836 1.43726i
\(101\) 4.81265 2.77859i 0.478877 0.276480i −0.241071 0.970507i \(-0.577499\pi\)
0.719948 + 0.694028i \(0.244165\pi\)
\(102\) −7.60880 6.49824i −0.753384 0.643422i
\(103\) −6.14380 + 10.6414i −0.605366 + 1.04853i 0.386627 + 0.922236i \(0.373640\pi\)
−0.991993 + 0.126289i \(0.959693\pi\)
\(104\) −1.10031 0.690838i −0.107894 0.0677422i
\(105\) −2.40016 0.414194i −0.234231 0.0404212i
\(106\) 9.28726 + 5.51606i 0.902059 + 0.535767i
\(107\) 6.61773i 0.639760i −0.947458 0.319880i \(-0.896357\pi\)
0.947458 0.319880i \(-0.103643\pi\)
\(108\) 10.3913 + 0.143028i 0.999905 + 0.0137628i
\(109\) 7.01563i 0.671975i 0.941866 + 0.335988i \(0.109070\pi\)
−0.941866 + 0.335988i \(0.890930\pi\)
\(110\) 5.31096 8.94195i 0.506380 0.852581i
\(111\) 9.80453 + 1.69196i 0.930605 + 0.160594i
\(112\) 1.53354 + 0.0758259i 0.144905 + 0.00716487i
\(113\) −4.09419 + 7.09135i −0.385149 + 0.667098i −0.991790 0.127878i \(-0.959183\pi\)
0.606641 + 0.794976i \(0.292517\pi\)
\(114\) 7.51479 8.79908i 0.703825 0.824109i
\(115\) −18.8830 + 10.9021i −1.76085 + 1.01663i
\(116\) 4.01630 + 2.45304i 0.372905 + 0.227759i
\(117\) 0.893446 + 1.04913i 0.0825991 + 0.0969924i
\(118\) −0.859788 + 0.482339i −0.0791499 + 0.0444029i
\(119\) 0.784009 + 1.35794i 0.0718700 + 0.124483i
\(120\) 11.9889 13.3552i 1.09443 1.21916i
\(121\) −3.48511 + 6.03639i −0.316828 + 0.548762i
\(122\) −0.0854708 + 6.91967i −0.00773816 + 0.626478i
\(123\) −12.6508 10.5369i −1.14069 0.950084i
\(124\) −2.36761 0.0584977i −0.212618 0.00525325i
\(125\) 12.5314i 1.12084i
\(126\) −1.52750 0.564730i −0.136080 0.0503101i
\(127\) 21.0113 1.86445 0.932224 0.361882i \(-0.117866\pi\)
0.932224 + 0.361882i \(0.117866\pi\)
\(128\) −6.48179 + 9.27289i −0.572914 + 0.819615i
\(129\) −0.715991 1.94507i −0.0630395 0.171254i
\(130\) 2.37959 + 0.0293923i 0.208704 + 0.00257788i
\(131\) 5.49039 + 3.16988i 0.479697 + 0.276953i 0.720290 0.693673i \(-0.244009\pi\)
−0.240593 + 0.970626i \(0.577342\pi\)
\(132\) 4.58108 5.23174i 0.398732 0.455364i
\(133\) −1.57037 + 0.906655i −0.136169 + 0.0786170i
\(134\) −12.6458 + 7.09429i −1.09243 + 0.612853i
\(135\) −16.3803 + 9.69762i −1.40979 + 0.834638i
\(136\) −11.5461 0.428020i −0.990067 0.0367024i
\(137\) 0.483695 + 0.837785i 0.0413249 + 0.0715768i 0.885948 0.463784i \(-0.153509\pi\)
−0.844623 + 0.535361i \(0.820175\pi\)
\(138\) −13.7427 + 4.86689i −1.16986 + 0.414297i
\(139\) −5.18167 2.99164i −0.439503 0.253747i 0.263884 0.964554i \(-0.414996\pi\)
−0.703387 + 0.710807i \(0.748330\pi\)
\(140\) −2.46962 + 1.34562i −0.208721 + 0.113726i
\(141\) 10.6526 3.92129i 0.897114 0.330232i
\(142\) 2.69945 4.54501i 0.226533 0.381409i
\(143\) 0.922090 0.0771091
\(144\) 9.50912 7.31961i 0.792426 0.609968i
\(145\) −8.62036 −0.715882
\(146\) 1.93743 3.26201i 0.160343 0.269966i
\(147\) −9.12006 7.59614i −0.752210 0.626519i
\(148\) 10.0883 5.49681i 0.829253 0.451835i
\(149\) −6.43764 3.71678i −0.527392 0.304490i 0.212562 0.977148i \(-0.431819\pi\)
−0.739954 + 0.672658i \(0.765153\pi\)
\(150\) −3.75841 + 20.2811i −0.306873 + 1.65594i
\(151\) −0.492870 0.853676i −0.0401092 0.0694711i 0.845274 0.534333i \(-0.179437\pi\)
−0.885383 + 0.464862i \(0.846104\pi\)
\(152\) 0.494977 13.3523i 0.0401479 1.08301i
\(153\) 11.5461 + 4.10732i 0.933444 + 0.332057i
\(154\) −0.950393 + 0.533169i −0.0765849 + 0.0429639i
\(155\) 3.75691 2.16905i 0.301762 0.174222i
\(156\) 1.56086 + 0.309240i 0.124969 + 0.0247590i
\(157\) 15.2336 + 8.79510i 1.21577 + 0.701925i 0.964010 0.265864i \(-0.0856573\pi\)
0.251760 + 0.967790i \(0.418991\pi\)
\(158\) 15.1586 + 0.187237i 1.20595 + 0.0148958i
\(159\) −13.0368 2.24976i −1.03389 0.178418i
\(160\) 1.27899 20.6840i 0.101113 1.63521i
\(161\) 2.28464 0.180055
\(162\) −11.9506 + 4.37992i −0.938926 + 0.344119i
\(163\) 17.8852i 1.40088i −0.713711 0.700440i \(-0.752987\pi\)
0.713711 0.700440i \(-0.247013\pi\)
\(164\) −19.0055 0.469577i −1.48408 0.0366678i
\(165\) −2.16611 + 12.5521i −0.168631 + 0.977179i
\(166\) 0.110735 8.96508i 0.00859473 0.695825i
\(167\) −1.04037 + 1.80197i −0.0805062 + 0.139441i −0.903467 0.428657i \(-0.858987\pi\)
0.822961 + 0.568097i \(0.192320\pi\)
\(168\) −1.78757 + 0.583782i −0.137914 + 0.0450398i
\(169\) −6.39450 11.0756i −0.491885 0.851970i
\(170\) 18.4575 10.3546i 1.41563 0.794163i
\(171\) −4.74984 + 13.3523i −0.363229 + 1.02107i
\(172\) −2.04248 1.24748i −0.155737 0.0951198i
\(173\) −16.4718 + 9.51000i −1.25233 + 0.723032i −0.971571 0.236747i \(-0.923919\pi\)
−0.280757 + 0.959779i \(0.590585\pi\)
\(174\) −5.66737 1.05026i −0.429642 0.0796198i
\(175\) 1.61615 2.79925i 0.122169 0.211603i
\(176\) 0.396546 8.01993i 0.0298908 0.604525i
\(177\) 0.772728 0.927750i 0.0580818 0.0697340i
\(178\) −5.46547 + 9.20209i −0.409654 + 0.689726i
\(179\) 2.12111i 0.158539i −0.996853 0.0792697i \(-0.974741\pi\)
0.996853 0.0792697i \(-0.0252588\pi\)
\(180\) −7.87623 + 20.5209i −0.587059 + 1.52954i
\(181\) 1.66297i 0.123608i −0.998088 0.0618039i \(-0.980315\pi\)
0.998088 0.0618039i \(-0.0196853\pi\)
\(182\) −0.214388 0.127333i −0.0158915 0.00943857i
\(183\) −2.92781 7.95372i −0.216430 0.587956i
\(184\) −8.95152 + 14.2572i −0.659915 + 1.05106i
\(185\) −10.5219 + 18.2245i −0.773588 + 1.33989i
\(186\) 2.73421 0.968301i 0.200482 0.0709993i
\(187\) 7.10164 4.10013i 0.519323 0.299831i
\(188\) 6.83214 11.1861i 0.498285 0.815830i
\(189\) 1.99444 0.0218184i 0.145074 0.00158705i
\(190\) 11.9744 + 21.3449i 0.868717 + 1.54852i
\(191\) −8.69755 15.0646i −0.629333 1.09004i −0.987686 0.156450i \(-0.949995\pi\)
0.358353 0.933586i \(-0.383338\pi\)
\(192\) 3.36088 13.4426i 0.242550 0.970139i
\(193\) −1.41709 + 2.45447i −0.102004 + 0.176677i −0.912510 0.409054i \(-0.865859\pi\)
0.810506 + 0.585730i \(0.199192\pi\)
\(194\) 8.44252 + 0.104281i 0.606138 + 0.00748692i
\(195\) −2.73519 + 1.00684i −0.195871 + 0.0721010i
\(196\) −13.7011 0.338520i −0.978652 0.0241800i
\(197\) 12.5991i 0.897646i −0.893621 0.448823i \(-0.851843\pi\)
0.893621 0.448823i \(-0.148157\pi\)
\(198\) −2.95337 + 7.98835i −0.209887 + 0.567707i
\(199\) 17.2733 1.22447 0.612237 0.790674i \(-0.290270\pi\)
0.612237 + 0.790674i \(0.290270\pi\)
\(200\) 11.1364 + 21.0534i 0.787459 + 1.48870i
\(201\) 11.3654 13.6454i 0.801650 0.962475i
\(202\) −0.0970662 + 7.85843i −0.00682955 + 0.552917i
\(203\) 0.782227 + 0.451619i 0.0549016 + 0.0316975i
\(204\) 13.3963 4.55878i 0.937925 0.319178i
\(205\) 30.1577 17.4116i 2.10631 1.21608i
\(206\) −8.50211 15.1553i −0.592370 1.05592i
\(207\) 13.5941 11.5768i 0.944857 0.804644i
\(208\) 1.63462 0.838975i 0.113341 0.0581725i
\(209\) 4.74153 + 8.21258i 0.327979 + 0.568076i
\(210\) 2.23697 2.61927i 0.154366 0.180747i
\(211\) 15.2192 + 8.78678i 1.04773 + 0.604907i 0.922013 0.387159i \(-0.126544\pi\)
0.125717 + 0.992066i \(0.459877\pi\)
\(212\) −13.4141 + 7.30897i −0.921287 + 0.501982i
\(213\) −1.10099 + 6.37997i −0.0754386 + 0.437149i
\(214\) 8.04662 + 4.77919i 0.550055 + 0.326699i
\(215\) 4.38385 0.298976
\(216\) −7.67831 + 12.5317i −0.522443 + 0.852674i
\(217\) −0.454545 −0.0308565
\(218\) −8.53043 5.06654i −0.577754 0.343150i
\(219\) −0.790193 + 4.57898i −0.0533963 + 0.309419i
\(220\) 7.03721 + 12.9154i 0.474449 + 0.870755i
\(221\) 1.62499 + 0.938188i 0.109309 + 0.0631094i
\(222\) −9.13792 + 10.6996i −0.613297 + 0.718110i
\(223\) 12.3137 + 21.3280i 0.824587 + 1.42823i 0.902235 + 0.431245i \(0.141926\pi\)
−0.0776484 + 0.996981i \(0.524741\pi\)
\(224\) −1.19969 + 1.80989i −0.0801574 + 0.120929i
\(225\) −4.56802 24.8456i −0.304535 1.65637i
\(226\) −5.66575 10.0994i −0.376880 0.671804i
\(227\) 16.9918 9.81024i 1.12779 0.651128i 0.184410 0.982849i \(-0.440963\pi\)
0.943378 + 0.331721i \(0.107629\pi\)
\(228\) 5.27193 + 15.4919i 0.349142 + 1.02598i
\(229\) −21.3431 12.3224i −1.41039 0.814289i −0.414965 0.909837i \(-0.636206\pi\)
−0.995425 + 0.0955486i \(0.969539\pi\)
\(230\) 0.380851 30.8335i 0.0251125 2.03310i
\(231\) 0.854159 1.02552i 0.0561995 0.0674741i
\(232\) −5.88319 + 3.11196i −0.386250 + 0.204310i
\(233\) −20.9222 −1.37066 −0.685330 0.728233i \(-0.740342\pi\)
−0.685330 + 0.728233i \(0.740342\pi\)
\(234\) −1.92089 + 0.328695i −0.125572 + 0.0214874i
\(235\) 24.0092i 1.56619i
\(236\) 0.0344365 1.39377i 0.00224162 0.0907265i
\(237\) −17.4239 + 6.41381i −1.13180 + 0.416622i
\(238\) −2.21734 0.0273883i −0.143729 0.00177532i
\(239\) −5.14584 + 8.91286i −0.332857 + 0.576525i −0.983071 0.183226i \(-0.941346\pi\)
0.650214 + 0.759751i \(0.274679\pi\)
\(240\) 7.58074 + 24.2224i 0.489334 + 1.56355i
\(241\) 10.2379 + 17.7326i 0.659483 + 1.14226i 0.980750 + 0.195269i \(0.0625579\pi\)
−0.321267 + 0.946989i \(0.604109\pi\)
\(242\) −4.82288 8.59696i −0.310026 0.552634i
\(243\) 11.7568 10.2361i 0.754199 0.656646i
\(244\) −8.35203 5.10117i −0.534684 0.326569i
\(245\) 21.7409 12.5521i 1.38897 0.801924i
\(246\) 21.9482 7.77282i 1.39937 0.495577i
\(247\) −1.08495 + 1.87919i −0.0690339 + 0.119570i
\(248\) 1.78097 2.83657i 0.113092 0.180123i
\(249\) 3.79325 + 10.3048i 0.240387 + 0.653040i
\(250\) −15.2371 9.04991i −0.963681 0.572367i
\(251\) 28.0987i 1.77358i 0.462177 + 0.886788i \(0.347068\pi\)
−0.462177 + 0.886788i \(0.652932\pi\)
\(252\) 1.78979 1.44947i 0.112746 0.0913083i
\(253\) 11.9480i 0.751163i
\(254\) −15.1739 + 25.5480i −0.952095 + 1.60302i
\(255\) −16.5885 + 19.9165i −1.03881 + 1.24722i
\(256\) −6.59406 14.5780i −0.412129 0.911126i
\(257\) 5.53682 9.59006i 0.345378 0.598211i −0.640045 0.768338i \(-0.721084\pi\)
0.985422 + 0.170126i \(0.0544175\pi\)
\(258\) 2.88212 + 0.534105i 0.179433 + 0.0332519i
\(259\) 1.90956 1.10248i 0.118654 0.0685050i
\(260\) −1.75423 + 2.87216i −0.108793 + 0.178124i
\(261\) 6.94290 1.27650i 0.429754 0.0790131i
\(262\) −7.81936 + 4.38664i −0.483081 + 0.271008i
\(263\) −12.7620 22.1044i −0.786938 1.36302i −0.927834 0.372992i \(-0.878332\pi\)
0.140897 0.990024i \(-0.455002\pi\)
\(264\) 3.05301 + 9.34847i 0.187899 + 0.575359i
\(265\) 13.9907 24.2327i 0.859444 1.48860i
\(266\) 0.0316728 2.56421i 0.00194198 0.157222i
\(267\) 2.22913 12.9173i 0.136420 0.790524i
\(268\) 0.506495 20.4997i 0.0309391 1.25222i
\(269\) 18.3998i 1.12185i 0.827865 + 0.560927i \(0.189555\pi\)
−0.827865 + 0.560927i \(0.810445\pi\)
\(270\) 0.0380132 26.9205i 0.00231341 1.63833i
\(271\) −22.4135 −1.36152 −0.680760 0.732506i \(-0.738350\pi\)
−0.680760 + 0.732506i \(0.738350\pi\)
\(272\) 8.85877 13.7300i 0.537142 0.832501i
\(273\) 0.300944 + 0.0519337i 0.0182139 + 0.00314317i
\(274\) −1.36799 0.0168972i −0.0826435 0.00102080i
\(275\) −14.6392 8.45196i −0.882779 0.509673i
\(276\) 4.00697 20.2248i 0.241191 1.21739i
\(277\) −20.2421 + 11.6868i −1.21623 + 0.702190i −0.964109 0.265506i \(-0.914461\pi\)
−0.252119 + 0.967696i \(0.581128\pi\)
\(278\) 7.37968 4.13998i 0.442604 0.248300i
\(279\) −2.70465 + 2.30329i −0.161923 + 0.137894i
\(280\) 0.147343 3.97464i 0.00880540 0.237530i
\(281\) 5.29466 + 9.17062i 0.315853 + 0.547073i 0.979618 0.200867i \(-0.0643760\pi\)
−0.663765 + 0.747941i \(0.731043\pi\)
\(282\) −2.92515 + 15.7846i −0.174190 + 0.939960i
\(283\) −7.69029 4.43999i −0.457140 0.263930i 0.253701 0.967283i \(-0.418352\pi\)
−0.710841 + 0.703353i \(0.751686\pi\)
\(284\) 3.57687 + 6.56463i 0.212248 + 0.389539i
\(285\) −23.0321 19.1836i −1.36430 1.13634i
\(286\) −0.665915 + 1.12119i −0.0393764 + 0.0662971i
\(287\) −3.64876 −0.215379
\(288\) 2.03276 + 16.8484i 0.119781 + 0.992800i
\(289\) −0.313160 −0.0184212
\(290\) 6.22545 10.4817i 0.365571 0.615504i
\(291\) −9.70414 + 3.57214i −0.568867 + 0.209403i
\(292\) 2.56716 + 4.71151i 0.150232 + 0.275720i
\(293\) −9.82117 5.67026i −0.573759 0.331260i 0.184890 0.982759i \(-0.440807\pi\)
−0.758649 + 0.651499i \(0.774140\pi\)
\(294\) 15.8226 5.60346i 0.922793 0.326801i
\(295\) 1.27688 + 2.21162i 0.0743428 + 0.128765i
\(296\) −0.601887 + 16.2362i −0.0349840 + 0.943712i
\(297\) −0.114103 10.4303i −0.00662095 0.605227i
\(298\) 9.16843 5.14347i 0.531113 0.297953i
\(299\) 2.36765 1.36696i 0.136925 0.0790534i
\(300\) −21.9458 19.2165i −1.26704 1.10946i
\(301\) −0.397799 0.229669i −0.0229287 0.0132379i
\(302\) 1.39394 + 0.0172177i 0.0802122 + 0.000990770i
\(303\) −3.32501 9.03277i −0.191017 0.518919i
\(304\) 15.8778 + 10.2446i 0.910654 + 0.587567i
\(305\) 17.9263 1.02646
\(306\) −13.3325 + 11.0728i −0.762168 + 0.632992i
\(307\) 0.628678i 0.0358805i 0.999839 + 0.0179403i \(0.00571087\pi\)
−0.999839 + 0.0179403i \(0.994289\pi\)
\(308\) 0.0380654 1.54064i 0.00216898 0.0877863i
\(309\) 16.3533 + 13.6207i 0.930307 + 0.774857i
\(310\) −0.0757729 + 6.13454i −0.00430361 + 0.348418i
\(311\) −9.64443 + 16.7046i −0.546885 + 0.947233i 0.451600 + 0.892220i \(0.350853\pi\)
−0.998486 + 0.0550127i \(0.982480\pi\)
\(312\) −1.50323 + 1.67455i −0.0851036 + 0.0948025i
\(313\) −2.86959 4.97028i −0.162199 0.280937i 0.773458 0.633847i \(-0.218525\pi\)
−0.935657 + 0.352911i \(0.885192\pi\)
\(314\) −21.6955 + 12.1711i −1.22435 + 0.686856i
\(315\) −1.41391 + 3.97464i −0.0796649 + 0.223946i
\(316\) −11.1749 + 18.2964i −0.628638 + 1.02925i
\(317\) −10.8187 + 6.24618i −0.607639 + 0.350821i −0.772041 0.635573i \(-0.780764\pi\)
0.164402 + 0.986393i \(0.447431\pi\)
\(318\) 12.1505 14.2270i 0.681363 0.797809i
\(319\) 2.36183 4.09081i 0.132237 0.229042i
\(320\) 24.2263 + 16.4927i 1.35429 + 0.921968i
\(321\) −11.2953 1.94922i −0.630442 0.108795i
\(322\) −1.64992 + 2.77793i −0.0919464 + 0.154808i
\(323\) 19.2972i 1.07373i
\(324\) 3.30484 17.6940i 0.183602 0.983001i
\(325\) 3.86794i 0.214555i
\(326\) 21.7470 + 12.9164i 1.20445 + 0.715371i
\(327\) 11.9744 + 2.06642i 0.662188 + 0.114273i
\(328\) 14.2963 22.7700i 0.789382 1.25726i
\(329\) 1.25784 2.17864i 0.0693468 0.120112i
\(330\) −13.6980 11.6987i −0.754050 0.643991i
\(331\) −3.00014 + 1.73213i −0.164902 + 0.0952065i −0.580180 0.814488i \(-0.697018\pi\)
0.415278 + 0.909695i \(0.363684\pi\)
\(332\) 10.8208 + 6.60904i 0.593870 + 0.362718i
\(333\) 5.77576 16.2362i 0.316510 0.889740i
\(334\) −1.43972 2.56635i −0.0787778 0.140425i
\(335\) 18.7805 + 32.5287i 1.02609 + 1.77723i
\(336\) 0.581118 2.59514i 0.0317026 0.141576i
\(337\) −9.30453 + 16.1159i −0.506850 + 0.877890i 0.493119 + 0.869962i \(0.335857\pi\)
−0.999969 + 0.00792778i \(0.997476\pi\)
\(338\) 18.0850 + 0.223383i 0.983695 + 0.0121505i
\(339\) 10.8977 + 9.07678i 0.591884 + 0.492983i
\(340\) −0.739265 + 29.9207i −0.0400923 + 1.62268i
\(341\) 2.37713i 0.128729i
\(342\) −12.8050 15.4181i −0.692416 0.833718i
\(343\) −5.31737 −0.287111
\(344\) 2.99187 1.58258i 0.161311 0.0853268i
\(345\) 13.0461 + 35.4411i 0.702376 + 1.90809i
\(346\) 0.332219 26.8963i 0.0178602 1.44595i
\(347\) −0.0408752 0.0235993i −0.00219430 0.00126688i 0.498902 0.866658i \(-0.333737\pi\)
−0.501097 + 0.865391i \(0.667070\pi\)
\(348\) 5.36989 6.13259i 0.287856 0.328741i
\(349\) −12.8884 + 7.44113i −0.689901 + 0.398314i −0.803575 0.595204i \(-0.797071\pi\)
0.113674 + 0.993518i \(0.463738\pi\)
\(350\) 2.23651 + 3.98666i 0.119546 + 0.213096i
\(351\) 2.05384 1.21594i 0.109626 0.0649019i
\(352\) 9.46520 + 6.27400i 0.504497 + 0.334405i
\(353\) −9.25423 16.0288i −0.492553 0.853127i 0.507410 0.861705i \(-0.330603\pi\)
−0.999963 + 0.00857792i \(0.997270\pi\)
\(354\) 0.570020 + 1.60958i 0.0302962 + 0.0855480i
\(355\) −11.8590 6.84680i −0.629411 0.363390i
\(356\) −7.24194 13.2911i −0.383822 0.704428i
\(357\) 2.54870 0.938188i 0.134891 0.0496542i
\(358\) 2.57910 + 1.53182i 0.136310 + 0.0809594i
\(359\) 31.3426 1.65420 0.827101 0.562054i \(-0.189989\pi\)
0.827101 + 0.562054i \(0.189989\pi\)
\(360\) −19.2637 24.3967i −1.01529 1.28582i
\(361\) −3.31599 −0.174526
\(362\) 2.02204 + 1.20096i 0.106276 + 0.0631213i
\(363\) 9.27652 + 7.72646i 0.486891 + 0.405534i
\(364\) 0.309654 0.168721i 0.0162303 0.00884339i
\(365\) −8.51135 4.91403i −0.445504 0.257212i
\(366\) 11.7855 + 2.18404i 0.616037 + 0.114162i
\(367\) −10.2308 17.7203i −0.534043 0.924990i −0.999209 0.0397663i \(-0.987339\pi\)
0.465166 0.885224i \(-0.345995\pi\)
\(368\) −10.8710 21.1806i −0.566690 1.10411i
\(369\) −21.7109 + 18.4891i −1.13023 + 0.962505i
\(370\) −14.5608 25.9552i −0.756980 1.34935i
\(371\) −2.53909 + 1.46594i −0.131823 + 0.0761081i
\(372\) −0.797214 + 4.02386i −0.0413336 + 0.208627i
\(373\) 20.6021 + 11.8946i 1.06674 + 0.615880i 0.927288 0.374349i \(-0.122134\pi\)
0.139448 + 0.990229i \(0.455467\pi\)
\(374\) −0.143233 + 11.5960i −0.00740638 + 0.599617i
\(375\) 21.3889 + 3.69107i 1.10452 + 0.190606i
\(376\) 8.66735 + 16.3857i 0.446985 + 0.845028i
\(377\) 1.08086 0.0556673
\(378\) −1.41381 + 2.44083i −0.0727186 + 0.125543i
\(379\) 24.0988i 1.23787i −0.785441 0.618937i \(-0.787564\pi\)
0.785441 0.618937i \(-0.212436\pi\)
\(380\) −34.6013 0.854911i −1.77501 0.0438560i
\(381\) 6.18878 35.8625i 0.317061 1.83729i
\(382\) 24.5985 + 0.303837i 1.25857 + 0.0155457i
\(383\) 9.39161 16.2667i 0.479889 0.831192i −0.519845 0.854261i \(-0.674010\pi\)
0.999734 + 0.0230686i \(0.00734361\pi\)
\(384\) 13.9180 + 13.7945i 0.710249 + 0.703950i
\(385\) 1.41144 + 2.44468i 0.0719336 + 0.124593i
\(386\) −1.96105 3.49564i −0.0998146 0.177923i
\(387\) −3.53078 + 0.649157i −0.179480 + 0.0329985i
\(388\) −6.22381 + 10.1901i −0.315966 + 0.517324i
\(389\) 15.0467 8.68720i 0.762897 0.440459i −0.0674382 0.997723i \(-0.521483\pi\)
0.830335 + 0.557265i \(0.188149\pi\)
\(390\) 0.751065 4.05288i 0.0380317 0.205225i
\(391\) 12.1566 21.0558i 0.614783 1.06484i
\(392\) 10.3063 16.4150i 0.520546 0.829082i
\(393\) 7.02759 8.43744i 0.354495 0.425613i
\(394\) 15.3194 + 9.09879i 0.771782 + 0.458390i
\(395\) 39.2703i 1.97591i
\(396\) −7.58031 9.36007i −0.380925 0.470361i
\(397\) 26.2401i 1.31696i 0.752600 + 0.658478i \(0.228799\pi\)
−0.752600 + 0.658478i \(0.771201\pi\)
\(398\) −12.4744 + 21.0030i −0.625288 + 1.05278i
\(399\) 1.08495 + 2.94740i 0.0543156 + 0.147555i
\(400\) −33.6416 1.66341i −1.68208 0.0831707i
\(401\) 10.8194 18.7398i 0.540296 0.935820i −0.458591 0.888648i \(-0.651646\pi\)
0.998887 0.0471725i \(-0.0150210\pi\)
\(402\) 8.38391 + 23.6738i 0.418152 + 1.18074i
\(403\) −0.471060 + 0.271967i −0.0234652 + 0.0135476i
\(404\) −9.48511 5.79322i −0.471902 0.288224i
\(405\) 11.7274 + 30.8147i 0.582737 + 1.53119i
\(406\) −1.11404 + 0.624974i −0.0552889 + 0.0310170i
\(407\) −5.76566 9.98642i −0.285793 0.495008i
\(408\) −4.13140 + 19.5810i −0.204535 + 0.969404i
\(409\) −6.00563 + 10.4021i −0.296959 + 0.514348i −0.975439 0.220271i \(-0.929306\pi\)
0.678480 + 0.734619i \(0.262639\pi\)
\(410\) −0.608250 + 49.2436i −0.0300393 + 2.43197i
\(411\) 1.57242 0.578816i 0.0775618 0.0285509i
\(412\) 24.5677 + 0.607006i 1.21036 + 0.0299050i
\(413\) 0.267582i 0.0131668i
\(414\) 4.25905 + 24.8899i 0.209321 + 1.22327i
\(415\) −23.2252 −1.14008
\(416\) −0.160366 + 2.59346i −0.00786258 + 0.127155i
\(417\) −6.63243 + 7.96301i −0.324791 + 0.389950i
\(418\) −13.4101 0.165639i −0.655907 0.00810167i
\(419\) −1.38092 0.797277i −0.0674625 0.0389495i 0.465889 0.884843i \(-0.345734\pi\)
−0.533352 + 0.845893i \(0.679068\pi\)
\(420\) 1.56933 + 4.61156i 0.0765752 + 0.225021i
\(421\) −15.6612 + 9.04197i −0.763278 + 0.440679i −0.830471 0.557061i \(-0.811929\pi\)
0.0671934 + 0.997740i \(0.478596\pi\)
\(422\) −21.6750 + 12.1596i −1.05512 + 0.591920i
\(423\) −3.55526 19.3372i −0.172863 0.940205i
\(424\) 0.800314 21.5889i 0.0388667 1.04845i
\(425\) −17.1990 29.7896i −0.834276 1.44501i
\(426\) −6.96241 5.94620i −0.337330 0.288094i
\(427\) −1.62667 0.939156i −0.0787199 0.0454489i
\(428\) −11.6222 + 6.33259i −0.561781 + 0.306098i
\(429\) 0.271598 1.57384i 0.0131129 0.0759859i
\(430\) −3.16593 + 5.33041i −0.152675 + 0.257055i
\(431\) −34.7451 −1.67361 −0.836806 0.547499i \(-0.815580\pi\)
−0.836806 + 0.547499i \(0.815580\pi\)
\(432\) −9.69241 18.3863i −0.466326 0.884613i
\(433\) 12.7197 0.611270 0.305635 0.952149i \(-0.401131\pi\)
0.305635 + 0.952149i \(0.401131\pi\)
\(434\) 0.328263 0.552689i 0.0157571 0.0265299i
\(435\) −2.53909 + 14.7134i −0.121740 + 0.705455i
\(436\) 12.3210 6.71335i 0.590069 0.321511i
\(437\) 24.3496 + 14.0583i 1.16480 + 0.672498i
\(438\) −4.99700 4.26766i −0.238766 0.203916i
\(439\) −7.45900 12.9194i −0.355999 0.616608i 0.631290 0.775547i \(-0.282526\pi\)
−0.987288 + 0.158939i \(0.949193\pi\)
\(440\) −20.7862 0.770557i −0.990942 0.0367349i
\(441\) −15.6515 + 13.3289i −0.745311 + 0.634710i
\(442\) −2.31429 + 1.29831i −0.110080 + 0.0617545i
\(443\) −3.48405 + 2.01152i −0.165532 + 0.0955702i −0.580478 0.814276i \(-0.697134\pi\)
0.414945 + 0.909846i \(0.363801\pi\)
\(444\) −6.41062 18.8380i −0.304235 0.894012i
\(445\) 24.0104 + 13.8624i 1.13820 + 0.657142i
\(446\) −34.8258 0.430163i −1.64905 0.0203688i
\(447\) −8.24006 + 9.89315i −0.389741 + 0.467930i
\(448\) −1.33429 2.76579i −0.0630394 0.130671i
\(449\) 10.9179 0.515246 0.257623 0.966245i \(-0.417061\pi\)
0.257623 + 0.966245i \(0.417061\pi\)
\(450\) 33.5091 + 12.3886i 1.57964 + 0.584006i
\(451\) 19.0819i 0.898531i
\(452\) 16.3718 + 0.404505i 0.770063 + 0.0190263i
\(453\) −1.60225 + 0.589795i −0.0752801 + 0.0277110i
\(454\) −0.342707 + 27.7454i −0.0160841 + 1.30216i
\(455\) −0.322964 + 0.559390i −0.0151408 + 0.0262246i
\(456\) −22.6441 4.77769i −1.06041 0.223736i
\(457\) −0.815204 1.41197i −0.0381336 0.0660494i 0.846329 0.532661i \(-0.178808\pi\)
−0.884462 + 0.466612i \(0.845475\pi\)
\(458\) 30.3966 17.0524i 1.42034 0.796807i
\(459\) 10.4113 18.4973i 0.485958 0.863379i
\(460\) 37.2159 + 22.7304i 1.73520 + 1.05981i
\(461\) 10.1812 5.87811i 0.474185 0.273771i −0.243805 0.969824i \(-0.578396\pi\)
0.717990 + 0.696054i \(0.245062\pi\)
\(462\) 0.630090 + 1.77920i 0.0293144 + 0.0827757i
\(463\) −10.6473 + 18.4416i −0.494820 + 0.857053i −0.999982 0.00597113i \(-0.998099\pi\)
0.505162 + 0.863024i \(0.331433\pi\)
\(464\) 0.464827 9.40087i 0.0215791 0.436424i
\(465\) −2.59560 7.05126i −0.120368 0.326994i
\(466\) 15.1096 25.4397i 0.699939 1.17847i
\(467\) 18.9230i 0.875650i −0.899060 0.437825i \(-0.855749\pi\)
0.899060 0.437825i \(-0.144251\pi\)
\(468\) 0.987561 2.57302i 0.0456500 0.118938i
\(469\) 3.93562i 0.181730i
\(470\) −29.1932 17.3389i −1.34658 0.799786i
\(471\) 19.4987 23.4104i 0.898451 1.07870i
\(472\) 1.66984 + 1.04842i 0.0768605 + 0.0482575i
\(473\) −1.20110 + 2.08037i −0.0552267 + 0.0956554i
\(474\) 4.78448 25.8179i 0.219759 1.18586i
\(475\) 34.4497 19.8896i 1.58066 0.912595i
\(476\) 1.63462 2.67633i 0.0749228 0.122669i
\(477\) −7.67988 + 21.5889i −0.351638 + 0.988487i
\(478\) −7.12108 12.6936i −0.325711 0.580592i
\(479\) 14.9759 + 25.9391i 0.684268 + 1.18519i 0.973666 + 0.227978i \(0.0732115\pi\)
−0.289398 + 0.957209i \(0.593455\pi\)
\(480\) −34.9271 8.27537i −1.59420 0.377717i
\(481\) 1.31929 2.28508i 0.0601546 0.104191i
\(482\) −28.9550 0.357648i −1.31886 0.0162904i
\(483\) 0.672931 3.89947i 0.0306194 0.177432i
\(484\) 13.9362 + 0.344328i 0.633463 + 0.0156513i
\(485\) 21.8714i 0.993131i
\(486\) 3.95575 + 21.6876i 0.179437 + 0.983770i
\(487\) −17.3370 −0.785614 −0.392807 0.919621i \(-0.628496\pi\)
−0.392807 + 0.919621i \(0.628496\pi\)
\(488\) 12.2343 6.47142i 0.553819 0.292947i
\(489\) −30.5269 5.26802i −1.38048 0.238228i
\(490\) −0.438491 + 35.5000i −0.0198090 + 1.60373i
\(491\) −31.1204 17.9674i −1.40444 0.810856i −0.409599 0.912265i \(-0.634332\pi\)
−0.994845 + 0.101409i \(0.967665\pi\)
\(492\) −6.39946 + 32.3006i −0.288510 + 1.45622i
\(493\) 8.32446 4.80613i 0.374915 0.216457i
\(494\) −1.50141 2.67633i −0.0675518 0.120414i
\(495\) 20.7862 + 7.39433i 0.934269 + 0.332350i
\(496\) 2.16286 + 4.21403i 0.0971154 + 0.189215i
\(497\) 0.717405 + 1.24258i 0.0321800 + 0.0557374i
\(498\) −15.2692 2.82963i −0.684229 0.126799i
\(499\) −10.4956 6.05962i −0.469846 0.271266i 0.246329 0.969186i \(-0.420776\pi\)
−0.716175 + 0.697920i \(0.754109\pi\)
\(500\) 22.0079 11.9915i 0.984223 0.536274i
\(501\) 2.76921 + 2.30649i 0.123719 + 0.103046i
\(502\) −34.1657 20.2923i −1.52489 0.905691i
\(503\) 32.3442 1.44215 0.721077 0.692855i \(-0.243647\pi\)
0.721077 + 0.692855i \(0.243647\pi\)
\(504\) 0.469891 + 3.22302i 0.0209306 + 0.143565i
\(505\) 20.3583 0.905932
\(506\) 14.5278 + 8.62858i 0.645837 + 0.383587i
\(507\) −20.7876 + 7.65201i −0.923208 + 0.339838i
\(508\) −20.1060 36.9004i −0.892057 1.63719i
\(509\) −2.90310 1.67610i −0.128677 0.0742919i 0.434280 0.900778i \(-0.357003\pi\)
−0.562957 + 0.826486i \(0.690336\pi\)
\(510\) −12.2369 34.5536i −0.541860 1.53006i
\(511\) 0.514890 + 0.891816i 0.0227774 + 0.0394516i
\(512\) 22.4878 + 2.51011i 0.993828 + 0.110932i
\(513\) 21.3909 + 12.0400i 0.944431 + 0.531578i
\(514\) 7.66215 + 13.6581i 0.337963 + 0.602432i
\(515\) −38.9838 + 22.5073i −1.71783 + 0.991792i
\(516\) −2.73084 + 3.11870i −0.120218 + 0.137293i
\(517\) −11.3936 6.57811i −0.501091 0.289305i
\(518\) −0.0385138 + 3.11806i −0.00169220 + 0.137000i
\(519\) 11.3802 + 30.9156i 0.499535 + 1.35704i
\(520\) −2.22544 4.20721i −0.0975920 0.184498i
\(521\) 21.5651 0.944786 0.472393 0.881388i \(-0.343390\pi\)
0.472393 + 0.881388i \(0.343390\pi\)
\(522\) −3.46190 + 9.36385i −0.151523 + 0.409845i
\(523\) 24.9549i 1.09120i 0.838046 + 0.545600i \(0.183698\pi\)
−0.838046 + 0.545600i \(0.816302\pi\)
\(524\) 0.313183 12.6756i 0.0136815 0.553738i
\(525\) −4.30179 3.58298i −0.187746 0.156374i
\(526\) 36.0936 + 0.445823i 1.57376 + 0.0194388i
\(527\) −2.41863 + 4.18919i −0.105357 + 0.182484i
\(528\) −13.5718 3.03907i −0.590636 0.132259i
\(529\) −6.21238 10.7602i −0.270104 0.467833i
\(530\) 19.3611 + 34.5119i 0.840993 + 1.49910i
\(531\) −1.35590 1.59217i −0.0588411 0.0690944i
\(532\) 3.09500 + 1.89033i 0.134185 + 0.0819564i
\(533\) −3.78133 + 2.18315i −0.163787 + 0.0945627i
\(534\) 14.0965 + 12.0390i 0.610015 + 0.520979i
\(535\) 12.1218 20.9955i 0.524070 0.907716i
\(536\) 24.5601 + 15.4203i 1.06084 + 0.666055i
\(537\) −3.62036 0.624764i −0.156230 0.0269606i
\(538\) −22.3726 13.2879i −0.964552 0.572884i
\(539\) 13.7562i 0.592523i
\(540\) 32.7057 + 19.4877i 1.40743 + 0.838616i
\(541\) 41.9065i 1.80170i −0.434131 0.900850i \(-0.642945\pi\)
0.434131 0.900850i \(-0.357055\pi\)
\(542\) 16.1865 27.2529i 0.695272 1.17061i
\(543\) −2.83840 0.489821i −0.121807 0.0210202i
\(544\) 10.2969 + 20.6870i 0.441475 + 0.886949i
\(545\) −12.8506 + 22.2579i −0.550460 + 0.953424i
\(546\) −0.280483 + 0.328417i −0.0120035 + 0.0140550i
\(547\) 25.7251 14.8524i 1.09993 0.635043i 0.163726 0.986506i \(-0.447649\pi\)
0.936202 + 0.351462i \(0.114316\pi\)
\(548\) 1.00848 1.65116i 0.0430802 0.0705342i
\(549\) −14.4380 + 2.65451i −0.616197 + 0.113292i
\(550\) 20.8490 11.6963i 0.889006 0.498731i
\(551\) 5.55797 + 9.62669i 0.236778 + 0.410111i
\(552\) 21.6979 + 19.4781i 0.923525 + 0.829041i
\(553\) −2.05737 + 3.56346i −0.0874881 + 0.151534i
\(554\) 0.408262 33.0527i 0.0173454 1.40427i
\(555\) 28.0068 + 23.3270i 1.18882 + 0.990177i
\(556\) −0.295573 + 11.9629i −0.0125351 + 0.507340i
\(557\) 21.9632i 0.930609i 0.885151 + 0.465305i \(0.154055\pi\)
−0.885151 + 0.465305i \(0.845945\pi\)
\(558\) −0.847368 4.95202i −0.0358720 0.209636i
\(559\) −0.549669 −0.0232485
\(560\) 4.72643 + 3.04956i 0.199728 + 0.128868i
\(561\) −4.90644 13.3289i −0.207150 0.562747i
\(562\) −14.9744 0.184962i −0.631658 0.00780214i
\(563\) 23.8394 + 13.7637i 1.00471 + 0.580069i 0.909638 0.415401i \(-0.136359\pi\)
0.0950710 + 0.995470i \(0.469692\pi\)
\(564\) −17.0803 14.9561i −0.719211 0.629764i
\(565\) −25.9786 + 14.9988i −1.09293 + 0.631002i
\(566\) 10.9524 6.14429i 0.460365 0.258264i
\(567\) 0.550212 3.41057i 0.0231067 0.143231i
\(568\) −10.5652 0.391658i −0.443305 0.0164336i
\(569\) 8.83572 + 15.3039i 0.370413 + 0.641574i 0.989629 0.143647i \(-0.0458829\pi\)
−0.619216 + 0.785221i \(0.712550\pi\)
\(570\) 39.9590 14.1512i 1.67370 0.592728i
\(571\) −3.92630 2.26685i −0.164311 0.0948648i 0.415590 0.909552i \(-0.363575\pi\)
−0.579900 + 0.814687i \(0.696909\pi\)
\(572\) −0.882361 1.61940i −0.0368934 0.0677103i
\(573\) −28.2744 + 10.4080i −1.18118 + 0.434799i
\(574\) 2.63506 4.43659i 0.109985 0.185180i
\(575\) −50.1188 −2.09010
\(576\) −21.9543 9.69589i −0.914761 0.403995i
\(577\) 23.3909 0.973776 0.486888 0.873464i \(-0.338132\pi\)
0.486888 + 0.873464i \(0.338132\pi\)
\(578\) 0.226158 0.380776i 0.00940691 0.0158382i
\(579\) 3.77195 + 3.14168i 0.156757 + 0.130564i
\(580\) 8.24894 + 15.1393i 0.342519 + 0.628624i
\(581\) 2.10750 + 1.21676i 0.0874337 + 0.0504799i
\(582\) 2.66470 14.3792i 0.110455 0.596036i
\(583\) 7.66645 + 13.2787i 0.317512 + 0.549947i
\(584\) −7.58276 0.281098i −0.313777 0.0116319i
\(585\) 0.912853 + 4.96504i 0.0377418 + 0.205279i
\(586\) 13.9872 7.84680i 0.577807 0.324148i
\(587\) −7.18259 + 4.14687i −0.296457 + 0.171160i −0.640850 0.767666i \(-0.721418\pi\)
0.344393 + 0.938826i \(0.388085\pi\)
\(588\) −4.61340 + 23.2857i −0.190254 + 0.960286i
\(589\) −4.84453 2.79699i −0.199615 0.115248i
\(590\) −3.61128 0.0446060i −0.148674 0.00183640i
\(591\) −21.5044 3.71100i −0.884572 0.152650i
\(592\) −19.3073 12.4573i −0.793523 0.511993i
\(593\) −43.5169 −1.78702 −0.893512 0.449039i \(-0.851766\pi\)
−0.893512 + 0.449039i \(0.851766\pi\)
\(594\) 12.7648 + 7.39381i 0.523746 + 0.303372i
\(595\) 5.74432i 0.235494i
\(596\) −0.367216 + 14.8626i −0.0150418 + 0.608794i
\(597\) 5.08779 29.4825i 0.208229 1.20664i
\(598\) −0.0477530 + 3.86606i −0.00195276 + 0.158095i
\(599\) 0.527649 0.913915i 0.0215592 0.0373416i −0.855045 0.518555i \(-0.826470\pi\)
0.876604 + 0.481213i \(0.159804\pi\)
\(600\) 39.2145 12.8066i 1.60093 0.522827i
\(601\) 17.9922 + 31.1633i 0.733915 + 1.27118i 0.955198 + 0.295969i \(0.0956424\pi\)
−0.221282 + 0.975210i \(0.571024\pi\)
\(602\) 0.566541 0.317828i 0.0230905 0.0129537i
\(603\) −19.9427 23.4178i −0.812131 0.953648i
\(604\) −1.02761 + 1.68248i −0.0418129 + 0.0684592i
\(605\) −22.1138 + 12.7674i −0.899056 + 0.519070i
\(606\) 13.3844 + 2.48034i 0.543702 + 0.100757i
\(607\) −9.81512 + 17.0003i −0.398383 + 0.690020i −0.993527 0.113599i \(-0.963762\pi\)
0.595143 + 0.803620i \(0.297095\pi\)
\(608\) −23.9232 + 11.9077i −0.970214 + 0.482920i
\(609\) 1.00124 1.20210i 0.0405721 0.0487116i
\(610\) −12.9460 + 21.7969i −0.524169 + 0.882531i
\(611\) 3.01039i 0.121787i
\(612\) −3.83522 24.2078i −0.155030 0.978542i
\(613\) 0.0630655i 0.00254719i −0.999999 0.00127360i \(-0.999595\pi\)
0.999999 0.00127360i \(-0.000405399\pi\)
\(614\) −0.764421 0.454018i −0.0308495 0.0183227i
\(615\) −20.8356 56.6024i −0.840174 2.28243i
\(616\) 1.84581 + 1.15891i 0.0743697 + 0.0466937i
\(617\) 15.0926 26.1412i 0.607606 1.05240i −0.384028 0.923322i \(-0.625463\pi\)
0.991634 0.129083i \(-0.0412034\pi\)
\(618\) −28.3717 + 10.0476i −1.14128 + 0.404176i
\(619\) −38.2663 + 22.0930i −1.53805 + 0.887994i −0.539099 + 0.842243i \(0.681235\pi\)
−0.998953 + 0.0457517i \(0.985432\pi\)
\(620\) −7.40437 4.52237i −0.297367 0.181623i
\(621\) −15.7555 26.6127i −0.632245 1.06793i
\(622\) −13.3465 23.7906i −0.535144 0.953915i
\(623\) −1.45250 2.51580i −0.0581932 0.100794i
\(624\) −0.950511 3.03713i −0.0380509 0.121582i
\(625\) −1.90220 + 3.29471i −0.0760881 + 0.131788i
\(626\) 8.11581 + 0.100245i 0.324373 + 0.00400661i
\(627\) 15.4140 5.67398i 0.615576 0.226597i
\(628\) 0.868954 35.1697i 0.0346750 1.40342i
\(629\) 23.4653i 0.935621i
\(630\) −3.81174 4.58961i −0.151863 0.182854i
\(631\) 19.6743 0.783221 0.391610 0.920131i \(-0.371918\pi\)
0.391610 + 0.920131i \(0.371918\pi\)
\(632\) −14.1766 26.8011i −0.563917 1.06609i
\(633\) 19.4802 23.3883i 0.774269 0.929601i
\(634\) 0.218202 17.6655i 0.00866591 0.701588i
\(635\) 66.6607 + 38.4866i 2.64535 + 1.52729i
\(636\) 8.52403 + 25.0484i 0.338000 + 0.993233i
\(637\) −2.72598 + 1.57384i −0.108007 + 0.0623580i
\(638\) 3.26843 + 5.82610i 0.129398 + 0.230657i
\(639\) 10.5652 + 3.75839i 0.417952 + 0.148679i
\(640\) −37.5495 + 17.5466i −1.48427 + 0.693589i
\(641\) −0.994371 1.72230i −0.0392753 0.0680268i 0.845720 0.533628i \(-0.179172\pi\)
−0.884995 + 0.465601i \(0.845838\pi\)
\(642\) 10.5273 12.3265i 0.415480 0.486486i
\(643\) −12.9370 7.46917i −0.510185 0.294555i 0.222725 0.974881i \(-0.428505\pi\)
−0.732910 + 0.680326i \(0.761838\pi\)
\(644\) −2.18620 4.01233i −0.0861484 0.158108i
\(645\) 1.29124 7.48246i 0.0508427 0.294621i
\(646\) −23.4639 13.9361i −0.923173 0.548307i
\(647\) −8.81283 −0.346468 −0.173234 0.984881i \(-0.555422\pi\)
−0.173234 + 0.984881i \(0.555422\pi\)
\(648\) 19.1278 + 16.7967i 0.751410 + 0.659835i
\(649\) −1.39937 −0.0549302
\(650\) 4.70310 + 2.79335i 0.184471 + 0.109564i
\(651\) −0.133884 + 0.775827i −0.00524734 + 0.0304071i
\(652\) −31.4105 + 17.1146i −1.23013 + 0.670261i
\(653\) 18.1802 + 10.4964i 0.711447 + 0.410754i 0.811597 0.584218i \(-0.198599\pi\)
−0.100150 + 0.994972i \(0.531932\pi\)
\(654\) −11.1603 + 13.0676i −0.436402 + 0.510984i
\(655\) 11.6126 + 20.1136i 0.453742 + 0.785904i
\(656\) 17.3619 + 33.8272i 0.677868 + 1.32073i
\(657\) 7.58276 + 2.69744i 0.295832 + 0.105237i
\(658\) 1.74066 + 3.10280i 0.0678580 + 0.120960i
\(659\) 40.6209 23.4525i 1.58237 0.913580i 0.587853 0.808968i \(-0.299973\pi\)
0.994513 0.104612i \(-0.0333601\pi\)
\(660\) 24.1170 8.20710i 0.938755 0.319461i
\(661\) −0.736985 0.425498i −0.0286654 0.0165500i 0.485599 0.874182i \(-0.338602\pi\)
−0.514264 + 0.857632i \(0.671935\pi\)
\(662\) 0.0605096 4.89883i 0.00235177 0.190398i
\(663\) 2.07995 2.49723i 0.0807787 0.0969843i
\(664\) −15.8506 + 8.38433i −0.615124 + 0.325375i
\(665\) −6.64293 −0.257602
\(666\) 15.5708 + 18.7483i 0.603356 + 0.726483i
\(667\) 14.0053i 0.542287i
\(668\) 4.16021 + 0.102788i 0.160963 + 0.00397700i
\(669\) 40.0300 14.7352i 1.54765 0.569698i
\(670\) −53.1151 0.656070i −2.05202 0.0253462i
\(671\) −4.91150 + 8.50697i −0.189606 + 0.328408i
\(672\) 2.73580 + 2.58075i 0.105536 + 0.0995545i
\(673\) −22.4873 38.9491i −0.866820 1.50138i −0.865229 0.501378i \(-0.832827\pi\)
−0.00159139 0.999999i \(-0.500507\pi\)
\(674\) −12.8761 22.9521i −0.495969 0.884083i
\(675\) −43.7525 + 0.478635i −1.68403 + 0.0184227i
\(676\) −13.3322 + 21.8286i −0.512778 + 0.839560i
\(677\) −7.29713 + 4.21300i −0.280451 + 0.161919i −0.633628 0.773638i \(-0.718435\pi\)
0.353176 + 0.935557i \(0.385102\pi\)
\(678\) −18.9067 + 6.69569i −0.726109 + 0.257147i
\(679\) −1.14584 + 1.98466i −0.0439733 + 0.0761641i
\(680\) −35.8472 22.5070i −1.37468 0.863104i
\(681\) −11.7395 31.8916i −0.449857 1.22209i
\(682\) −2.89040 1.71672i −0.110679 0.0657365i
\(683\) 23.3602i 0.893853i 0.894571 + 0.446926i \(0.147481\pi\)
−0.894571 + 0.446926i \(0.852519\pi\)
\(684\) 27.9947 4.43518i 1.07041 0.169583i
\(685\) 3.54396i 0.135408i
\(686\) 3.84010 6.46549i 0.146616 0.246854i
\(687\) −27.3187 + 32.7993i −1.04227 + 1.25137i
\(688\) −0.236386 + 4.78078i −0.00901214 + 0.182265i
\(689\) −1.75423 + 3.03841i −0.0668308 + 0.115754i
\(690\) −52.5151 9.73191i −1.99922 0.370488i
\(691\) 25.9304 14.9709i 0.986439 0.569521i 0.0822311 0.996613i \(-0.473795\pi\)
0.904208 + 0.427092i \(0.140462\pi\)
\(692\) 32.4638 + 19.8279i 1.23409 + 0.753744i
\(693\) −1.49879 1.75996i −0.0569343 0.0668553i
\(694\) 0.0582141 0.0326580i 0.00220978 0.00123968i
\(695\) −10.9596 18.9826i −0.415722 0.720052i
\(696\) 3.57870 + 10.9582i 0.135650 + 0.415368i
\(697\) −19.4150 + 33.6278i −0.735396 + 1.27374i
\(698\) 0.259946 21.0451i 0.00983909 0.796568i
\(699\) −6.16255 + 35.7105i −0.233089 + 1.35070i
\(700\) −6.46262 0.159675i −0.244264 0.00603515i
\(701\) 0.718775i 0.0271478i −0.999908 0.0135739i \(-0.995679\pi\)
0.999908 0.0135739i \(-0.00432083\pi\)
\(702\) −0.00476628 + 3.37543i −0.000179892 + 0.127397i
\(703\) 27.1360 1.02346
\(704\) −14.4642 + 6.97795i −0.545141 + 0.262991i
\(705\) 40.9794 + 7.07181i 1.54337 + 0.266340i
\(706\) 26.1729 + 0.323284i 0.985031 + 0.0121670i
\(707\) −1.84735 1.06657i −0.0694767 0.0401124i
\(708\) −2.36877 0.469305i −0.0890238 0.0176376i
\(709\) 10.9918 6.34613i 0.412807 0.238334i −0.279188 0.960236i \(-0.590065\pi\)
0.691995 + 0.721902i \(0.256732\pi\)
\(710\) 16.8895 9.47496i 0.633851 0.355589i
\(711\) 5.81512 + 31.6286i 0.218084 + 1.18616i
\(712\) 21.3909 + 0.792974i 0.801658 + 0.0297180i
\(713\) 3.52400 + 6.10375i 0.131975 + 0.228587i
\(714\) −0.699856 + 3.77654i −0.0261915 + 0.141334i
\(715\) 2.92544 + 1.68900i 0.109405 + 0.0631652i
\(716\) −3.72514 + 2.02972i −0.139215 + 0.0758542i
\(717\) 13.6970 + 11.4083i 0.511523 + 0.426050i
\(718\) −22.6350 + 38.1101i −0.844731 + 1.42226i
\(719\) 7.74226 0.288738 0.144369 0.989524i \(-0.453885\pi\)
0.144369 + 0.989524i \(0.453885\pi\)
\(720\) 43.5762 5.80436i 1.62399 0.216316i
\(721\) 4.71662 0.175656
\(722\) 2.39474 4.03197i 0.0891230 0.150054i
\(723\) 33.2819 12.2513i 1.23777 0.455629i
\(724\) −2.92055 + 1.59132i −0.108541 + 0.0591409i
\(725\) −17.1599 9.90730i −0.637304 0.367948i
\(726\) −16.0940 + 5.69960i −0.597306 + 0.211532i
\(727\) 9.91355 + 17.1708i 0.367673 + 0.636828i 0.989201 0.146563i \(-0.0468212\pi\)
−0.621528 + 0.783392i \(0.713488\pi\)
\(728\) −0.0184745 + 0.498361i −0.000684712 + 0.0184705i
\(729\) −14.0083 23.0818i −0.518826 0.854880i
\(730\) 12.1218 6.80029i 0.448647 0.251690i
\(731\) −4.23337 + 2.44414i −0.156577 + 0.0903997i
\(732\) −11.1668 + 12.7529i −0.412739 + 0.471361i
\(733\) 32.7535 + 18.9102i 1.20978 + 0.698466i 0.962711 0.270532i \(-0.0871997\pi\)
0.247068 + 0.968998i \(0.420533\pi\)
\(734\) 28.9348 + 0.357399i 1.06800 + 0.0131918i
\(735\) −15.0205 40.8050i −0.554040 1.50511i
\(736\) 33.6047 + 2.07794i 1.23869 + 0.0765938i
\(737\) −20.5821 −0.758152
\(738\) −6.80206 39.7512i −0.250387 1.46326i
\(739\) 6.61431i 0.243311i 0.992572 + 0.121656i \(0.0388204\pi\)
−0.992572 + 0.121656i \(0.961180\pi\)
\(740\) 42.0749 + 1.03956i 1.54670 + 0.0382151i
\(741\) 2.88788 + 2.40533i 0.106089 + 0.0883620i
\(742\) 0.0512108 4.14600i 0.00188001 0.152204i
\(743\) −3.30245 + 5.72000i −0.121155 + 0.209847i −0.920223 0.391394i \(-0.871993\pi\)
0.799068 + 0.601240i \(0.205326\pi\)
\(744\) −4.31695 3.87530i −0.158267 0.142075i
\(745\) −13.6161 23.5838i −0.498856 0.864044i
\(746\) −29.3413 + 16.4604i −1.07426 + 0.602658i
\(747\) 18.7057 3.43917i 0.684407 0.125833i
\(748\) −13.9964 8.54858i −0.511759 0.312567i
\(749\) −2.19990 + 1.27012i −0.0803828 + 0.0464090i
\(750\) −19.9346 + 23.3415i −0.727910 + 0.852310i
\(751\) 12.8675 22.2871i 0.469540 0.813268i −0.529853 0.848089i \(-0.677753\pi\)
0.999394 + 0.0348217i \(0.0110863\pi\)
\(752\) −26.1830 1.29462i −0.954797 0.0472101i
\(753\) 47.9595 + 8.27636i 1.74774 + 0.301607i
\(754\) −0.780578 + 1.31424i −0.0284270 + 0.0478619i
\(755\) 3.61118i 0.131424i
\(756\) −1.94682 3.48179i −0.0708052 0.126632i
\(757\) 48.0424i 1.74613i −0.487602 0.873066i \(-0.662128\pi\)
0.487602 0.873066i \(-0.337872\pi\)
\(758\) 29.3022 + 17.4037i 1.06430 + 0.632130i
\(759\) −20.3931 3.51922i −0.740221 0.127740i
\(760\) 26.0279 41.4550i 0.944130 1.50373i
\(761\) −1.20688 + 2.09038i −0.0437493 + 0.0757761i −0.887071 0.461633i \(-0.847264\pi\)
0.843322 + 0.537409i \(0.180597\pi\)
\(762\) 39.1364 + 33.4242i 1.41776 + 1.21083i
\(763\) 2.33218 1.34648i 0.0844305 0.0487459i
\(764\) −18.1340 + 29.6904i −0.656065 + 1.07416i
\(765\) 29.1078 + 34.1800i 1.05240 + 1.23578i
\(766\) 12.9966 + 23.1669i 0.469586 + 0.837056i
\(767\) −0.160101 0.277304i −0.00578093 0.0100129i
\(768\) −26.8243 + 6.96099i −0.967940 + 0.251183i
\(769\) 16.8464 29.1788i 0.607496 1.05221i −0.384156 0.923268i \(-0.625507\pi\)
0.991652 0.128945i \(-0.0411592\pi\)
\(770\) −3.99185 0.0493067i −0.143856 0.00177689i
\(771\) −14.7377 12.2751i −0.530765 0.442076i
\(772\) 5.66664 + 0.140008i 0.203947 + 0.00503901i
\(773\) 18.8545i 0.678149i 0.940759 + 0.339075i \(0.110114\pi\)
−0.940759 + 0.339075i \(0.889886\pi\)
\(774\) 1.76054 4.76195i 0.0632812 0.171165i
\(775\) 9.97148 0.358186
\(776\) −7.89562 14.9267i −0.283436 0.535838i
\(777\) −1.31929 3.58401i −0.0473294 0.128576i
\(778\) −0.303476 + 24.5692i −0.0108801 + 0.880850i
\(779\) −38.8884 22.4522i −1.39332 0.804434i
\(780\) 4.38556 + 3.84014i 0.157028 + 0.137499i
\(781\) 6.49833 3.75181i 0.232529 0.134250i
\(782\) 16.8229 + 29.9874i 0.601585 + 1.07235i
\(783\) −0.133751 12.2263i −0.00477986 0.436931i
\(784\) 12.5163 + 24.3862i 0.447010 + 0.870935i
\(785\) 32.2202 + 55.8070i 1.14999 + 1.99184i
\(786\) 5.18406 + 14.6383i 0.184909 + 0.522131i
\(787\) −14.8124 8.55193i −0.528004 0.304843i 0.212199 0.977226i \(-0.431937\pi\)
−0.740203 + 0.672383i \(0.765271\pi\)
\(788\) −22.1268 + 12.0562i −0.788233 + 0.429485i
\(789\) −41.4873 + 15.2717i −1.47699 + 0.543687i
\(790\) 47.7495 + 28.3602i 1.69885 + 1.00901i
\(791\) 3.14313 0.111757
\(792\) 16.8554 2.45739i 0.598932 0.0873194i
\(793\) −2.24769 −0.0798178
\(794\) −31.9059 18.9501i −1.13230 0.672514i
\(795\) −37.2400 31.0173i −1.32077 1.10007i
\(796\) −16.5291 30.3358i −0.585858 1.07522i
\(797\) 3.11800 + 1.80018i 0.110445 + 0.0637656i 0.554205 0.832380i \(-0.313022\pi\)
−0.443760 + 0.896146i \(0.646356\pi\)
\(798\) −4.36733 0.809338i −0.154602 0.0286502i
\(799\) −13.3859 23.1851i −0.473559 0.820228i
\(800\) 26.3179 39.7042i 0.930477 1.40375i
\(801\) −21.3909 7.60945i −0.755810 0.268867i
\(802\) 14.9725 + 26.6890i 0.528697 + 0.942422i
\(803\) 4.66393 2.69272i 0.164586 0.0950240i
\(804\) −34.8401 6.90258i −1.22872 0.243435i
\(805\) 7.24829 + 4.18480i 0.255469 + 0.147495i
\(806\) 0.00950078 0.769179i 0.000334651 0.0270932i
\(807\) 31.4052 + 5.41958i 1.10551 + 0.190778i
\(808\) 13.8940 7.34937i 0.488791 0.258550i
\(809\) 13.5918 0.477864 0.238932 0.971036i \(-0.423203\pi\)
0.238932 + 0.971036i \(0.423203\pi\)
\(810\) −45.9374 7.99421i −1.61407 0.280888i
\(811\) 10.0627i 0.353349i 0.984269 + 0.176674i \(0.0565339\pi\)
−0.984269 + 0.176674i \(0.943466\pi\)
\(812\) 0.0446199 1.80593i 0.00156585 0.0633756i
\(813\) −6.60179 + 38.2558i −0.231535 + 1.34169i
\(814\) 16.3065 + 0.201416i 0.571543 + 0.00705961i
\(815\) 32.7606 56.7430i 1.14755 1.98762i
\(816\) −20.8253 19.1644i −0.729031 0.670890i
\(817\) −2.82649 4.89562i −0.0988862 0.171276i
\(818\) −8.31090 14.8145i −0.290584 0.517977i
\(819\) 0.177283 0.498361i 0.00619478 0.0174141i
\(820\) −59.4369 36.3023i −2.07563 1.26773i
\(821\) −33.4098 + 19.2891i −1.16601 + 0.673196i −0.952737 0.303797i \(-0.901746\pi\)
−0.213273 + 0.976993i \(0.568412\pi\)
\(822\) −0.431777 + 2.32994i −0.0150599 + 0.0812661i
\(823\) −16.1120 + 27.9068i −0.561628 + 0.972768i 0.435727 + 0.900079i \(0.356491\pi\)
−0.997355 + 0.0726892i \(0.976842\pi\)
\(824\) −18.4804 + 29.4339i −0.643794 + 1.02538i
\(825\) −18.7379 + 22.4971i −0.652371 + 0.783248i
\(826\) 0.325358 + 0.193242i 0.0113206 + 0.00672375i
\(827\) 27.7190i 0.963886i −0.876203 0.481943i \(-0.839931\pi\)
0.876203 0.481943i \(-0.160069\pi\)
\(828\) −33.3399 12.7963i −1.15864 0.444702i
\(829\) 10.3137i 0.358208i 0.983830 + 0.179104i \(0.0573199\pi\)
−0.983830 + 0.179104i \(0.942680\pi\)
\(830\) 16.7728 28.2399i 0.582191 0.980223i
\(831\) 13.9850 + 37.9919i 0.485135 + 1.31793i
\(832\) −3.03762 2.06793i −0.105310 0.0716927i
\(833\) −13.9964 + 24.2425i −0.484946 + 0.839951i
\(834\) −4.89256 13.8152i −0.169416 0.478382i
\(835\) −6.60139 + 3.81131i −0.228451 + 0.131896i
\(836\) 9.88587 16.1859i 0.341910 0.559801i
\(837\) 3.13466 + 5.29477i 0.108350 + 0.183014i
\(838\) 1.96670 1.10331i 0.0679385 0.0381133i
\(839\) −19.1961 33.2487i −0.662724 1.14787i −0.979897 0.199504i \(-0.936067\pi\)
0.317173 0.948368i \(-0.397267\pi\)
\(840\) −6.74061 1.42220i −0.232573 0.0490706i
\(841\) −11.7315 + 20.3195i −0.404534 + 0.700673i
\(842\) 0.315869 25.5726i 0.0108856 0.881290i
\(843\) 17.2121 6.33588i 0.592818 0.218219i
\(844\) 0.868132 35.1364i 0.0298823 1.20944i
\(845\) 46.8516i 1.61174i
\(846\) 26.0799 + 9.64200i 0.896647 + 0.331499i
\(847\) 2.67553 0.0919325
\(848\) 25.6723 + 16.5642i 0.881592 + 0.568816i
\(849\) −9.84342 + 11.8182i −0.337825 + 0.405599i
\(850\) 48.6425 + 0.600825i 1.66842 + 0.0206081i
\(851\) −29.6089 17.0947i −1.01498 0.585999i
\(852\) 12.2582 4.17150i 0.419959 0.142913i
\(853\) 24.4212 14.0996i 0.836166 0.482761i −0.0197931 0.999804i \(-0.506301\pi\)
0.855959 + 0.517043i \(0.172967\pi\)
\(854\) 2.31668 1.29965i 0.0792752 0.0444732i
\(855\) −39.5269 + 33.6613i −1.35179 + 1.15119i
\(856\) 0.693403 18.7049i 0.0237000 0.639321i
\(857\) 15.7011 + 27.1951i 0.536339 + 0.928966i 0.999097 + 0.0424814i \(0.0135263\pi\)
−0.462759 + 0.886484i \(0.653140\pi\)
\(858\) 1.71752 + 1.46684i 0.0586353 + 0.0500771i
\(859\) 41.6368 + 24.0390i 1.42063 + 0.820201i 0.996353 0.0853309i \(-0.0271947\pi\)
0.424278 + 0.905532i \(0.360528\pi\)
\(860\) −4.19497 7.69902i −0.143047 0.262534i
\(861\) −1.07473 + 6.22778i −0.0366266 + 0.212242i
\(862\) 25.0922 42.2472i 0.854644 1.43894i
\(863\) 37.6968 1.28321 0.641607 0.767034i \(-0.278268\pi\)
0.641607 + 0.767034i \(0.278268\pi\)
\(864\) 29.3559 + 1.49306i 0.998709 + 0.0507951i
\(865\) −69.6783 −2.36913
\(866\) −9.18591 + 15.4661i −0.312150 + 0.525560i
\(867\) −0.0922398 + 0.534508i −0.00313263 + 0.0181528i
\(868\) 0.434960 + 0.798282i 0.0147635 + 0.0270955i
\(869\) 18.6358 + 10.7594i 0.632177 + 0.364988i
\(870\) −16.0566 13.7131i −0.544371 0.464916i
\(871\) −2.35479 4.07861i −0.0797890 0.138199i
\(872\) −0.735095 + 19.8296i −0.0248935 + 0.671514i
\(873\) 3.23870 + 17.6154i 0.109614 + 0.596191i
\(874\) −34.6785 + 19.4546i −1.17302 + 0.658060i
\(875\) 4.16576 2.40510i 0.140828 0.0813072i
\(876\) 8.79785 2.99393i 0.297252 0.101156i
\(877\) −21.6823 12.5183i −0.732158 0.422711i 0.0870533 0.996204i \(-0.472255\pi\)
−0.819211 + 0.573492i \(0.805588\pi\)
\(878\) 21.0956 + 0.260570i 0.711943 + 0.00879382i
\(879\) −12.5709 + 15.0928i −0.424006 + 0.509069i
\(880\) 15.9483 24.7178i 0.537617 0.833237i
\(881\) −21.0382 −0.708795 −0.354398 0.935095i \(-0.615314\pi\)
−0.354398 + 0.935095i \(0.615314\pi\)
\(882\) −4.90364 28.6568i −0.165114 0.964926i
\(883\) 55.5904i 1.87077i 0.353636 + 0.935383i \(0.384945\pi\)
−0.353636 + 0.935383i \(0.615055\pi\)
\(884\) 0.0926927 3.75161i 0.00311759 0.126180i
\(885\) 4.15094 1.52798i 0.139532 0.0513626i
\(886\) 0.0702697 5.68900i 0.00236076 0.191126i
\(887\) 0.695385 1.20444i 0.0233487 0.0404412i −0.854115 0.520084i \(-0.825901\pi\)
0.877464 + 0.479643i \(0.159234\pi\)
\(888\) 27.5351 + 5.80963i 0.924017 + 0.194958i
\(889\) −4.03261 6.98468i −0.135249 0.234259i
\(890\) −34.1954 + 19.1836i −1.14623 + 0.643034i
\(891\) −17.8363 2.87744i −0.597538 0.0963980i
\(892\) 25.6735 42.0346i 0.859612 1.40742i
\(893\) 26.8120 15.4799i 0.897229 0.518015i
\(894\) −6.07847 17.1639i −0.203294 0.574046i
\(895\) 3.88527 6.72948i 0.129870 0.224942i
\(896\) 4.32657 + 0.375004i 0.144541 + 0.0125280i
\(897\) −1.63578 4.44379i −0.0546171 0.148374i
\(898\) −7.88467 + 13.2752i −0.263115 + 0.443001i
\(899\) 2.78645i 0.0929332i
\(900\) −39.2632 + 31.7975i −1.30877 + 1.05992i
\(901\) 31.2011i 1.03946i
\(902\) −23.2020 13.7806i −0.772543 0.458842i
\(903\) −0.509175 + 0.611324i −0.0169443 + 0.0203436i
\(904\) −12.3152 + 19.6146i −0.409597 + 0.652372i
\(905\) 3.04608 5.27597i 0.101255 0.175379i
\(906\) 0.439967 2.37414i 0.0146169 0.0788754i
\(907\) −37.3197 + 21.5465i −1.23918 + 0.715440i −0.968926 0.247349i \(-0.920441\pi\)
−0.270252 + 0.962789i \(0.587107\pi\)
\(908\) −33.4887 20.4539i −1.11136 0.678786i
\(909\) −16.3967 + 3.01464i −0.543844 + 0.0999892i
\(910\) −0.446934 0.796678i −0.0148157 0.0264096i
\(911\) −3.96463 6.86694i −0.131354 0.227512i 0.792845 0.609424i \(-0.208599\pi\)
−0.924199 + 0.381912i \(0.875266\pi\)
\(912\) 22.1624 24.0831i 0.733871 0.797470i
\(913\) 6.36331 11.0216i 0.210595 0.364761i
\(914\) 2.30557 + 0.0284781i 0.0762615 + 0.000941970i
\(915\) 5.28012 30.5970i 0.174555 1.01151i
\(916\) −1.21745 + 49.2747i −0.0402258 + 1.62808i
\(917\) 2.43353i 0.0803622i
\(918\) 14.9724 + 26.0176i 0.494161 + 0.858710i
\(919\) 1.66862 0.0550426 0.0275213 0.999621i \(-0.491239\pi\)
0.0275213 + 0.999621i \(0.491239\pi\)
\(920\) −54.5149 + 28.8361i −1.79730 + 0.950698i
\(921\) 1.07304 + 0.185174i 0.0353579 + 0.00610170i
\(922\) −0.205344 + 16.6245i −0.00676264 + 0.547500i
\(923\) 1.48694 + 0.858486i 0.0489433 + 0.0282574i
\(924\) −2.61839 0.518761i −0.0861388 0.0170660i
\(925\) −41.8905 + 24.1855i −1.37735 + 0.795215i
\(926\) −14.7342 26.2643i −0.484197 0.863099i
\(927\) 28.0650 23.9002i 0.921775 0.784987i
\(928\) 11.0950 + 7.35431i 0.364211 + 0.241417i
\(929\) −23.3838 40.5020i −0.767199 1.32883i −0.939076 0.343709i \(-0.888317\pi\)
0.171878 0.985118i \(-0.445017\pi\)
\(930\) 10.4482 + 1.93623i 0.342611 + 0.0634915i
\(931\) −28.0348 16.1859i −0.918804 0.530472i
\(932\) 20.0207 + 36.7441i 0.655801 + 1.20359i
\(933\) 25.6711 + 21.3816i 0.840435 + 0.700002i
\(934\) 23.0088 + 13.6658i 0.752870 + 0.447158i
\(935\) 30.0410 0.982447
\(936\) 2.41538 + 3.05898i 0.0789493 + 0.0999857i
\(937\) −9.30185 −0.303878 −0.151939 0.988390i \(-0.548552\pi\)
−0.151939 + 0.988390i \(0.548552\pi\)
\(938\) 4.78539 + 2.84222i 0.156249 + 0.0928019i
\(939\) −9.32861 + 3.43391i −0.304428 + 0.112061i
\(940\) 42.1655 22.9747i 1.37529 0.749353i
\(941\) −5.42009 3.12929i −0.176690 0.102012i 0.409047 0.912513i \(-0.365861\pi\)
−0.585736 + 0.810502i \(0.699195\pi\)
\(942\) 14.3836 + 40.6153i 0.468644 + 1.32332i
\(943\) 28.2881 + 48.9965i 0.921188 + 1.59555i
\(944\) −2.48072 + 1.27324i −0.0807404 + 0.0414403i
\(945\) 6.36755 + 3.58401i 0.207136 + 0.116588i
\(946\) −1.66215 2.96284i −0.0540410 0.0963302i
\(947\) −38.4243 + 22.1843i −1.24862 + 0.720893i −0.970835 0.239749i \(-0.922935\pi\)
−0.277789 + 0.960642i \(0.589601\pi\)
\(948\) 27.9372 + 24.4627i 0.907358 + 0.794512i
\(949\) 1.06720 + 0.616146i 0.0346426 + 0.0200009i
\(950\) −0.694815 + 56.2519i −0.0225428 + 1.82505i
\(951\) 7.47452 + 20.3054i 0.242378 + 0.658448i
\(952\) 2.07371 + 3.92036i 0.0672092 + 0.127059i
\(953\) 6.11599 0.198116 0.0990582 0.995082i \(-0.468417\pi\)
0.0990582 + 0.995082i \(0.468417\pi\)
\(954\) −20.7041 24.9292i −0.670319 0.807111i
\(955\) 63.7257i 2.06211i
\(956\) 20.5771 + 0.508408i 0.665510 + 0.0164431i
\(957\) −6.28662 5.23616i −0.203218 0.169261i
\(958\) −42.3551 0.523164i −1.36843 0.0169027i
\(959\) 0.185668 0.321586i 0.00599552 0.0103845i
\(960\) 35.2858 36.4922i 1.13884 1.17778i
\(961\) 14.7989 + 25.6324i 0.477383 + 0.826852i
\(962\) 1.82571 + 3.25439i 0.0588631 + 0.104926i
\(963\) −6.65396 + 18.7049i −0.214421 + 0.602758i
\(964\) 21.3456 34.9486i 0.687495 1.12562i
\(965\) −8.99178 + 5.19141i −0.289456 + 0.167117i
\(966\) 4.25546 + 3.63435i 0.136917 + 0.116933i
\(967\) 16.9985 29.4423i 0.546635 0.946799i −0.451867 0.892085i \(-0.649242\pi\)
0.998502 0.0547141i \(-0.0174248\pi\)
\(968\) −10.4831 + 16.6966i −0.336940 + 0.536649i
\(969\) 32.9370 + 5.68392i 1.05809 + 0.182594i
\(970\) 26.5939 + 15.7951i 0.853878 + 0.507150i
\(971\) 42.4798i 1.36324i −0.731706 0.681621i \(-0.761275\pi\)
0.731706 0.681621i \(-0.238725\pi\)
\(972\) −29.2271 10.8525i −0.937460 0.348093i
\(973\) 2.29669i 0.0736286i
\(974\) 12.5204 21.0803i 0.401180 0.675458i
\(975\) −6.60189 1.13929i −0.211430 0.0364863i
\(976\) −0.966623 + 19.5494i −0.0309408 + 0.625761i
\(977\) 7.66569 13.2774i 0.245247 0.424781i −0.716954 0.697121i \(-0.754464\pi\)
0.962201 + 0.272340i \(0.0877975\pi\)
\(978\) 28.4514 33.3138i 0.909776 1.06526i
\(979\) −13.1569 + 7.59614i −0.420496 + 0.242774i
\(980\) −42.8484 26.1705i −1.36874 0.835987i
\(981\) 7.05404 19.8296i 0.225218 0.633110i
\(982\) 44.3214 24.8642i 1.41435 0.793448i
\(983\) −14.8653 25.7474i −0.474129 0.821216i 0.525432 0.850836i \(-0.323904\pi\)
−0.999561 + 0.0296198i \(0.990570\pi\)
\(984\) −34.6534 31.1081i −1.10471 0.991689i
\(985\) 23.0779 39.9720i 0.735322 1.27361i
\(986\) −0.167896 + 13.5927i −0.00534689 + 0.432881i
\(987\) −3.34806 2.78861i −0.106570 0.0887626i
\(988\) 4.33849 + 0.107193i 0.138026 + 0.00341027i
\(989\) 7.12233i 0.226477i
\(990\) −24.0023 + 19.9343i −0.762842 + 0.633552i
\(991\) −49.5495 −1.57399 −0.786996 0.616958i \(-0.788365\pi\)
−0.786996 + 0.616958i \(0.788365\pi\)
\(992\) −6.68589 0.413420i −0.212277 0.0131261i
\(993\) 2.07276 + 5.63089i 0.0657771 + 0.178691i
\(994\) −2.02897 0.0250616i −0.0643551 0.000794905i
\(995\) 54.8017 + 31.6398i 1.73733 + 1.00305i
\(996\) 14.4677 16.5226i 0.458426 0.523538i
\(997\) 34.4541 19.8921i 1.09117 0.629988i 0.157284 0.987553i \(-0.449726\pi\)
0.933888 + 0.357565i \(0.116393\pi\)
\(998\) 14.9477 8.38562i 0.473161 0.265442i
\(999\) −26.0111 14.6405i −0.822956 0.463205i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 72.2.n.b.13.3 16
3.2 odd 2 216.2.n.b.37.6 16
4.3 odd 2 288.2.r.b.49.4 16
8.3 odd 2 288.2.r.b.49.5 16
8.5 even 2 inner 72.2.n.b.13.8 yes 16
9.2 odd 6 216.2.n.b.181.1 16
9.4 even 3 648.2.d.j.325.3 8
9.5 odd 6 648.2.d.k.325.6 8
9.7 even 3 inner 72.2.n.b.61.8 yes 16
12.11 even 2 864.2.r.b.145.1 16
24.5 odd 2 216.2.n.b.37.1 16
24.11 even 2 864.2.r.b.145.8 16
36.7 odd 6 288.2.r.b.241.5 16
36.11 even 6 864.2.r.b.721.8 16
36.23 even 6 2592.2.d.k.1297.8 8
36.31 odd 6 2592.2.d.j.1297.1 8
72.5 odd 6 648.2.d.k.325.5 8
72.11 even 6 864.2.r.b.721.1 16
72.13 even 6 648.2.d.j.325.4 8
72.29 odd 6 216.2.n.b.181.6 16
72.43 odd 6 288.2.r.b.241.4 16
72.59 even 6 2592.2.d.k.1297.1 8
72.61 even 6 inner 72.2.n.b.61.3 yes 16
72.67 odd 6 2592.2.d.j.1297.8 8
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
72.2.n.b.13.3 16 1.1 even 1 trivial
72.2.n.b.13.8 yes 16 8.5 even 2 inner
72.2.n.b.61.3 yes 16 72.61 even 6 inner
72.2.n.b.61.8 yes 16 9.7 even 3 inner
216.2.n.b.37.1 16 24.5 odd 2
216.2.n.b.37.6 16 3.2 odd 2
216.2.n.b.181.1 16 9.2 odd 6
216.2.n.b.181.6 16 72.29 odd 6
288.2.r.b.49.4 16 4.3 odd 2
288.2.r.b.49.5 16 8.3 odd 2
288.2.r.b.241.4 16 72.43 odd 6
288.2.r.b.241.5 16 36.7 odd 6
648.2.d.j.325.3 8 9.4 even 3
648.2.d.j.325.4 8 72.13 even 6
648.2.d.k.325.5 8 72.5 odd 6
648.2.d.k.325.6 8 9.5 odd 6
864.2.r.b.145.1 16 12.11 even 2
864.2.r.b.145.8 16 24.11 even 2
864.2.r.b.721.1 16 72.11 even 6
864.2.r.b.721.8 16 36.11 even 6
2592.2.d.j.1297.1 8 36.31 odd 6
2592.2.d.j.1297.8 8 72.67 odd 6
2592.2.d.k.1297.1 8 72.59 even 6
2592.2.d.k.1297.8 8 36.23 even 6