Properties

Label 864.2.r.b.145.1
Level $864$
Weight $2$
Character 864.145
Analytic conductor $6.899$
Analytic rank $0$
Dimension $16$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [864,2,Mod(145,864)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(864, base_ring=CyclotomicField(6))
 
chi = DirichletCharacter(H, H._module([0, 3, 2]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("864.145");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 864 = 2^{5} \cdot 3^{3} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 864.r (of order \(6\), degree \(2\), not minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(6.89907473464\)
Analytic rank: \(0\)
Dimension: \(16\)
Relative dimension: \(8\) over \(\Q(\zeta_{6})\)
Coefficient field: \(\mathbb{Q}[x]/(x^{16} - \cdots)\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{16} - x^{15} + x^{14} + 2 x^{12} - 4 x^{11} - 8 x^{9} + 4 x^{8} - 16 x^{7} - 32 x^{5} + 32 x^{4} + \cdots + 256 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{11}]\)
Coefficient ring index: \( 2^{8}\cdot 3^{4} \)
Twist minimal: no (minimal twist has level 72)
Sato-Tate group: $\mathrm{SU}(2)[C_{6}]$

Embedding invariants

Embedding label 145.1
Root \(1.41411 + 0.0174668i\) of defining polynomial
Character \(\chi\) \(=\) 864.145
Dual form 864.2.r.b.721.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-3.17262 - 1.83171i) q^{5} +(0.191926 + 0.332426i) q^{7} +O(q^{10})\) \(q+(-3.17262 - 1.83171i) q^{5} +(0.191926 + 0.332426i) q^{7} +(-1.73849 + 1.00372i) q^{11} +(-0.397799 - 0.229669i) q^{13} +4.08495 q^{17} +4.72398i q^{19} +(-2.97594 + 5.15447i) q^{23} +(4.21034 + 7.29252i) q^{25} +(2.03783 - 1.17654i) q^{29} +(-0.592083 + 1.02552i) q^{31} -1.40621i q^{35} +5.74432i q^{37} +(-4.75281 + 8.23212i) q^{41} +(-1.03633 + 0.598327i) q^{43} +(3.27688 + 5.67572i) q^{47} +(3.42633 - 5.93458i) q^{49} +7.63807i q^{53} +7.35407 q^{55} +(0.603703 + 0.348548i) q^{59} +(4.23774 - 2.44666i) q^{61} +(0.841376 + 1.45731i) q^{65} +(-8.87932 - 5.12648i) q^{67} -3.73792 q^{71} -2.68275 q^{73} +(-0.667322 - 0.385279i) q^{77} +(5.35979 + 9.28342i) q^{79} +(-5.49039 + 3.16988i) q^{83} +(-12.9600 - 7.48246i) q^{85} -7.56802 q^{89} -0.176318i q^{91} +(8.65297 - 14.9874i) q^{95} +(-2.98511 - 5.17036i) q^{97} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 16 q - 6 q^{7}+O(q^{10}) \) Copy content Toggle raw display \( 16 q - 6 q^{7} + 28 q^{17} - 10 q^{23} + 2 q^{25} + 10 q^{31} + 8 q^{41} + 6 q^{47} + 18 q^{49} + 4 q^{55} + 14 q^{65} + 72 q^{71} - 44 q^{73} + 30 q^{79} - 64 q^{89} + 44 q^{95}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/864\mathbb{Z}\right)^\times\).

\(n\) \(325\) \(353\) \(703\)
\(\chi(n)\) \(-1\) \(e\left(\frac{1}{3}\right)\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 0 0
\(4\) 0 0
\(5\) −3.17262 1.83171i −1.41884 0.819167i −0.422641 0.906297i \(-0.638897\pi\)
−0.996197 + 0.0871306i \(0.972230\pi\)
\(6\) 0 0
\(7\) 0.191926 + 0.332426i 0.0725413 + 0.125645i 0.900014 0.435860i \(-0.143556\pi\)
−0.827473 + 0.561505i \(0.810222\pi\)
\(8\) 0 0
\(9\) 0 0
\(10\) 0 0
\(11\) −1.73849 + 1.00372i −0.524173 + 0.302632i −0.738640 0.674100i \(-0.764532\pi\)
0.214467 + 0.976731i \(0.431199\pi\)
\(12\) 0 0
\(13\) −0.397799 0.229669i −0.110330 0.0636988i 0.443820 0.896116i \(-0.353623\pi\)
−0.554149 + 0.832417i \(0.686956\pi\)
\(14\) 0 0
\(15\) 0 0
\(16\) 0 0
\(17\) 4.08495 0.990747 0.495373 0.868680i \(-0.335031\pi\)
0.495373 + 0.868680i \(0.335031\pi\)
\(18\) 0 0
\(19\) 4.72398i 1.08376i 0.840457 + 0.541878i \(0.182286\pi\)
−0.840457 + 0.541878i \(0.817714\pi\)
\(20\) 0 0
\(21\) 0 0
\(22\) 0 0
\(23\) −2.97594 + 5.15447i −0.620525 + 1.07478i 0.368863 + 0.929484i \(0.379747\pi\)
−0.989388 + 0.145298i \(0.953586\pi\)
\(24\) 0 0
\(25\) 4.21034 + 7.29252i 0.842068 + 1.45850i
\(26\) 0 0
\(27\) 0 0
\(28\) 0 0
\(29\) 2.03783 1.17654i 0.378416 0.218479i −0.298713 0.954343i \(-0.596557\pi\)
0.677129 + 0.735864i \(0.263224\pi\)
\(30\) 0 0
\(31\) −0.592083 + 1.02552i −0.106341 + 0.184188i −0.914285 0.405071i \(-0.867247\pi\)
0.807944 + 0.589259i \(0.200580\pi\)
\(32\) 0 0
\(33\) 0 0
\(34\) 0 0
\(35\) 1.40621i 0.237693i
\(36\) 0 0
\(37\) 5.74432i 0.944360i 0.881502 + 0.472180i \(0.156533\pi\)
−0.881502 + 0.472180i \(0.843467\pi\)
\(38\) 0 0
\(39\) 0 0
\(40\) 0 0
\(41\) −4.75281 + 8.23212i −0.742265 + 1.28564i 0.209197 + 0.977874i \(0.432915\pi\)
−0.951462 + 0.307767i \(0.900418\pi\)
\(42\) 0 0
\(43\) −1.03633 + 0.598327i −0.158039 + 0.0912440i −0.576934 0.816791i \(-0.695751\pi\)
0.418895 + 0.908035i \(0.362418\pi\)
\(44\) 0 0
\(45\) 0 0
\(46\) 0 0
\(47\) 3.27688 + 5.67572i 0.477982 + 0.827889i 0.999681 0.0252403i \(-0.00803510\pi\)
−0.521699 + 0.853129i \(0.674702\pi\)
\(48\) 0 0
\(49\) 3.42633 5.93458i 0.489476 0.847796i
\(50\) 0 0
\(51\) 0 0
\(52\) 0 0
\(53\) 7.63807i 1.04917i 0.851358 + 0.524585i \(0.175779\pi\)
−0.851358 + 0.524585i \(0.824221\pi\)
\(54\) 0 0
\(55\) 7.35407 0.991623
\(56\) 0 0
\(57\) 0 0
\(58\) 0 0
\(59\) 0.603703 + 0.348548i 0.0785954 + 0.0453771i 0.538783 0.842445i \(-0.318884\pi\)
−0.460187 + 0.887822i \(0.652218\pi\)
\(60\) 0 0
\(61\) 4.23774 2.44666i 0.542587 0.313263i −0.203540 0.979067i \(-0.565245\pi\)
0.746127 + 0.665804i \(0.231911\pi\)
\(62\) 0 0
\(63\) 0 0
\(64\) 0 0
\(65\) 0.841376 + 1.45731i 0.104360 + 0.180757i
\(66\) 0 0
\(67\) −8.87932 5.12648i −1.08478 0.626299i −0.152599 0.988288i \(-0.548764\pi\)
−0.932182 + 0.361989i \(0.882098\pi\)
\(68\) 0 0
\(69\) 0 0
\(70\) 0 0
\(71\) −3.73792 −0.443610 −0.221805 0.975091i \(-0.571195\pi\)
−0.221805 + 0.975091i \(0.571195\pi\)
\(72\) 0 0
\(73\) −2.68275 −0.313992 −0.156996 0.987599i \(-0.550181\pi\)
−0.156996 + 0.987599i \(0.550181\pi\)
\(74\) 0 0
\(75\) 0 0
\(76\) 0 0
\(77\) −0.667322 0.385279i −0.0760484 0.0439066i
\(78\) 0 0
\(79\) 5.35979 + 9.28342i 0.603023 + 1.04447i 0.992361 + 0.123372i \(0.0393707\pi\)
−0.389337 + 0.921095i \(0.627296\pi\)
\(80\) 0 0
\(81\) 0 0
\(82\) 0 0
\(83\) −5.49039 + 3.16988i −0.602648 + 0.347939i −0.770083 0.637944i \(-0.779785\pi\)
0.167434 + 0.985883i \(0.446452\pi\)
\(84\) 0 0
\(85\) −12.9600 7.48246i −1.40571 0.811586i
\(86\) 0 0
\(87\) 0 0
\(88\) 0 0
\(89\) −7.56802 −0.802208 −0.401104 0.916032i \(-0.631373\pi\)
−0.401104 + 0.916032i \(0.631373\pi\)
\(90\) 0 0
\(91\) 0.176318i 0.0184832i
\(92\) 0 0
\(93\) 0 0
\(94\) 0 0
\(95\) 8.65297 14.9874i 0.887776 1.53767i
\(96\) 0 0
\(97\) −2.98511 5.17036i −0.303092 0.524971i 0.673743 0.738966i \(-0.264686\pi\)
−0.976835 + 0.213995i \(0.931352\pi\)
\(98\) 0 0
\(99\) 0 0
\(100\) 0 0
\(101\) −4.81265 + 2.77859i −0.478877 + 0.276480i −0.719948 0.694028i \(-0.755835\pi\)
0.241071 + 0.970507i \(0.422501\pi\)
\(102\) 0 0
\(103\) 6.14380 10.6414i 0.605366 1.04853i −0.386627 0.922236i \(-0.626360\pi\)
0.991993 0.126289i \(-0.0403067\pi\)
\(104\) 0 0
\(105\) 0 0
\(106\) 0 0
\(107\) 6.61773i 0.639760i −0.947458 0.319880i \(-0.896357\pi\)
0.947458 0.319880i \(-0.103643\pi\)
\(108\) 0 0
\(109\) 7.01563i 0.671975i 0.941866 + 0.335988i \(0.109070\pi\)
−0.941866 + 0.335988i \(0.890930\pi\)
\(110\) 0 0
\(111\) 0 0
\(112\) 0 0
\(113\) 4.09419 7.09135i 0.385149 0.667098i −0.606641 0.794976i \(-0.707483\pi\)
0.991790 + 0.127878i \(0.0408167\pi\)
\(114\) 0 0
\(115\) 18.8830 10.9021i 1.76085 1.01663i
\(116\) 0 0
\(117\) 0 0
\(118\) 0 0
\(119\) 0.784009 + 1.35794i 0.0718700 + 0.124483i
\(120\) 0 0
\(121\) −3.48511 + 6.03639i −0.316828 + 0.548762i
\(122\) 0 0
\(123\) 0 0
\(124\) 0 0
\(125\) 12.5314i 1.12084i
\(126\) 0 0
\(127\) −21.0113 −1.86445 −0.932224 0.361882i \(-0.882134\pi\)
−0.932224 + 0.361882i \(0.882134\pi\)
\(128\) 0 0
\(129\) 0 0
\(130\) 0 0
\(131\) 5.49039 + 3.16988i 0.479697 + 0.276953i 0.720290 0.693673i \(-0.244009\pi\)
−0.240593 + 0.970626i \(0.577342\pi\)
\(132\) 0 0
\(133\) −1.57037 + 0.906655i −0.136169 + 0.0786170i
\(134\) 0 0
\(135\) 0 0
\(136\) 0 0
\(137\) −0.483695 0.837785i −0.0413249 0.0715768i 0.844623 0.535361i \(-0.179825\pi\)
−0.885948 + 0.463784i \(0.846491\pi\)
\(138\) 0 0
\(139\) 5.18167 + 2.99164i 0.439503 + 0.253747i 0.703387 0.710807i \(-0.251670\pi\)
−0.263884 + 0.964554i \(0.585004\pi\)
\(140\) 0 0
\(141\) 0 0
\(142\) 0 0
\(143\) 0.922090 0.0771091
\(144\) 0 0
\(145\) −8.62036 −0.715882
\(146\) 0 0
\(147\) 0 0
\(148\) 0 0
\(149\) 6.43764 + 3.71678i 0.527392 + 0.304490i 0.739954 0.672658i \(-0.234847\pi\)
−0.212562 + 0.977148i \(0.568181\pi\)
\(150\) 0 0
\(151\) 0.492870 + 0.853676i 0.0401092 + 0.0694711i 0.885383 0.464862i \(-0.153896\pi\)
−0.845274 + 0.534333i \(0.820563\pi\)
\(152\) 0 0
\(153\) 0 0
\(154\) 0 0
\(155\) 3.75691 2.16905i 0.301762 0.174222i
\(156\) 0 0
\(157\) 15.2336 + 8.79510i 1.21577 + 0.701925i 0.964010 0.265864i \(-0.0856573\pi\)
0.251760 + 0.967790i \(0.418991\pi\)
\(158\) 0 0
\(159\) 0 0
\(160\) 0 0
\(161\) −2.28464 −0.180055
\(162\) 0 0
\(163\) 17.8852i 1.40088i 0.713711 + 0.700440i \(0.247013\pi\)
−0.713711 + 0.700440i \(0.752987\pi\)
\(164\) 0 0
\(165\) 0 0
\(166\) 0 0
\(167\) −1.04037 + 1.80197i −0.0805062 + 0.139441i −0.903467 0.428657i \(-0.858987\pi\)
0.822961 + 0.568097i \(0.192320\pi\)
\(168\) 0 0
\(169\) −6.39450 11.0756i −0.491885 0.851970i
\(170\) 0 0
\(171\) 0 0
\(172\) 0 0
\(173\) 16.4718 9.51000i 1.25233 0.723032i 0.280757 0.959779i \(-0.409415\pi\)
0.971571 + 0.236747i \(0.0760813\pi\)
\(174\) 0 0
\(175\) −1.61615 + 2.79925i −0.122169 + 0.211603i
\(176\) 0 0
\(177\) 0 0
\(178\) 0 0
\(179\) 2.12111i 0.158539i −0.996853 0.0792697i \(-0.974741\pi\)
0.996853 0.0792697i \(-0.0252588\pi\)
\(180\) 0 0
\(181\) 1.66297i 0.123608i −0.998088 0.0618039i \(-0.980315\pi\)
0.998088 0.0618039i \(-0.0196853\pi\)
\(182\) 0 0
\(183\) 0 0
\(184\) 0 0
\(185\) 10.5219 18.2245i 0.773588 1.33989i
\(186\) 0 0
\(187\) −7.10164 + 4.10013i −0.519323 + 0.299831i
\(188\) 0 0
\(189\) 0 0
\(190\) 0 0
\(191\) −8.69755 15.0646i −0.629333 1.09004i −0.987686 0.156450i \(-0.949995\pi\)
0.358353 0.933586i \(-0.383338\pi\)
\(192\) 0 0
\(193\) −1.41709 + 2.45447i −0.102004 + 0.176677i −0.912510 0.409054i \(-0.865859\pi\)
0.810506 + 0.585730i \(0.199192\pi\)
\(194\) 0 0
\(195\) 0 0
\(196\) 0 0
\(197\) 12.5991i 0.897646i 0.893621 + 0.448823i \(0.148157\pi\)
−0.893621 + 0.448823i \(0.851843\pi\)
\(198\) 0 0
\(199\) −17.2733 −1.22447 −0.612237 0.790674i \(-0.709730\pi\)
−0.612237 + 0.790674i \(0.709730\pi\)
\(200\) 0 0
\(201\) 0 0
\(202\) 0 0
\(203\) 0.782227 + 0.451619i 0.0549016 + 0.0316975i
\(204\) 0 0
\(205\) 30.1577 17.4116i 2.10631 1.21608i
\(206\) 0 0
\(207\) 0 0
\(208\) 0 0
\(209\) −4.74153 8.21258i −0.327979 0.568076i
\(210\) 0 0
\(211\) −15.2192 8.78678i −1.04773 0.604907i −0.125717 0.992066i \(-0.540123\pi\)
−0.922013 + 0.387159i \(0.873456\pi\)
\(212\) 0 0
\(213\) 0 0
\(214\) 0 0
\(215\) 4.38385 0.298976
\(216\) 0 0
\(217\) −0.454545 −0.0308565
\(218\) 0 0
\(219\) 0 0
\(220\) 0 0
\(221\) −1.62499 0.938188i −0.109309 0.0631094i
\(222\) 0 0
\(223\) −12.3137 21.3280i −0.824587 1.42823i −0.902235 0.431245i \(-0.858074\pi\)
0.0776484 0.996981i \(-0.475259\pi\)
\(224\) 0 0
\(225\) 0 0
\(226\) 0 0
\(227\) 16.9918 9.81024i 1.12779 0.651128i 0.184410 0.982849i \(-0.440963\pi\)
0.943378 + 0.331721i \(0.107629\pi\)
\(228\) 0 0
\(229\) −21.3431 12.3224i −1.41039 0.814289i −0.414965 0.909837i \(-0.636206\pi\)
−0.995425 + 0.0955486i \(0.969539\pi\)
\(230\) 0 0
\(231\) 0 0
\(232\) 0 0
\(233\) 20.9222 1.37066 0.685330 0.728233i \(-0.259658\pi\)
0.685330 + 0.728233i \(0.259658\pi\)
\(234\) 0 0
\(235\) 24.0092i 1.56619i
\(236\) 0 0
\(237\) 0 0
\(238\) 0 0
\(239\) −5.14584 + 8.91286i −0.332857 + 0.576525i −0.983071 0.183226i \(-0.941346\pi\)
0.650214 + 0.759751i \(0.274679\pi\)
\(240\) 0 0
\(241\) 10.2379 + 17.7326i 0.659483 + 1.14226i 0.980750 + 0.195269i \(0.0625579\pi\)
−0.321267 + 0.946989i \(0.604109\pi\)
\(242\) 0 0
\(243\) 0 0
\(244\) 0 0
\(245\) −21.7409 + 12.5521i −1.38897 + 0.801924i
\(246\) 0 0
\(247\) 1.08495 1.87919i 0.0690339 0.119570i
\(248\) 0 0
\(249\) 0 0
\(250\) 0 0
\(251\) 28.0987i 1.77358i 0.462177 + 0.886788i \(0.347068\pi\)
−0.462177 + 0.886788i \(0.652932\pi\)
\(252\) 0 0
\(253\) 11.9480i 0.751163i
\(254\) 0 0
\(255\) 0 0
\(256\) 0 0
\(257\) −5.53682 + 9.59006i −0.345378 + 0.598211i −0.985422 0.170126i \(-0.945582\pi\)
0.640045 + 0.768338i \(0.278916\pi\)
\(258\) 0 0
\(259\) −1.90956 + 1.10248i −0.118654 + 0.0685050i
\(260\) 0 0
\(261\) 0 0
\(262\) 0 0
\(263\) −12.7620 22.1044i −0.786938 1.36302i −0.927834 0.372992i \(-0.878332\pi\)
0.140897 0.990024i \(-0.455002\pi\)
\(264\) 0 0
\(265\) 13.9907 24.2327i 0.859444 1.48860i
\(266\) 0 0
\(267\) 0 0
\(268\) 0 0
\(269\) 18.3998i 1.12185i −0.827865 0.560927i \(-0.810445\pi\)
0.827865 0.560927i \(-0.189555\pi\)
\(270\) 0 0
\(271\) 22.4135 1.36152 0.680760 0.732506i \(-0.261650\pi\)
0.680760 + 0.732506i \(0.261650\pi\)
\(272\) 0 0
\(273\) 0 0
\(274\) 0 0
\(275\) −14.6392 8.45196i −0.882779 0.509673i
\(276\) 0 0
\(277\) −20.2421 + 11.6868i −1.21623 + 0.702190i −0.964109 0.265506i \(-0.914461\pi\)
−0.252119 + 0.967696i \(0.581128\pi\)
\(278\) 0 0
\(279\) 0 0
\(280\) 0 0
\(281\) −5.29466 9.17062i −0.315853 0.547073i 0.663765 0.747941i \(-0.268957\pi\)
−0.979618 + 0.200867i \(0.935624\pi\)
\(282\) 0 0
\(283\) 7.69029 + 4.43999i 0.457140 + 0.263930i 0.710841 0.703353i \(-0.248314\pi\)
−0.253701 + 0.967283i \(0.581648\pi\)
\(284\) 0 0
\(285\) 0 0
\(286\) 0 0
\(287\) −3.64876 −0.215379
\(288\) 0 0
\(289\) −0.313160 −0.0184212
\(290\) 0 0
\(291\) 0 0
\(292\) 0 0
\(293\) 9.82117 + 5.67026i 0.573759 + 0.331260i 0.758649 0.651499i \(-0.225860\pi\)
−0.184890 + 0.982759i \(0.559193\pi\)
\(294\) 0 0
\(295\) −1.27688 2.21162i −0.0743428 0.128765i
\(296\) 0 0
\(297\) 0 0
\(298\) 0 0
\(299\) 2.36765 1.36696i 0.136925 0.0790534i
\(300\) 0 0
\(301\) −0.397799 0.229669i −0.0229287 0.0132379i
\(302\) 0 0
\(303\) 0 0
\(304\) 0 0
\(305\) −17.9263 −1.02646
\(306\) 0 0
\(307\) 0.628678i 0.0358805i −0.999839 0.0179403i \(-0.994289\pi\)
0.999839 0.0179403i \(-0.00571087\pi\)
\(308\) 0 0
\(309\) 0 0
\(310\) 0 0
\(311\) −9.64443 + 16.7046i −0.546885 + 0.947233i 0.451600 + 0.892220i \(0.350853\pi\)
−0.998486 + 0.0550127i \(0.982480\pi\)
\(312\) 0 0
\(313\) −2.86959 4.97028i −0.162199 0.280937i 0.773458 0.633847i \(-0.218525\pi\)
−0.935657 + 0.352911i \(0.885192\pi\)
\(314\) 0 0
\(315\) 0 0
\(316\) 0 0
\(317\) 10.8187 6.24618i 0.607639 0.350821i −0.164402 0.986393i \(-0.552569\pi\)
0.772041 + 0.635573i \(0.219236\pi\)
\(318\) 0 0
\(319\) −2.36183 + 4.09081i −0.132237 + 0.229042i
\(320\) 0 0
\(321\) 0 0
\(322\) 0 0
\(323\) 19.2972i 1.07373i
\(324\) 0 0
\(325\) 3.86794i 0.214555i
\(326\) 0 0
\(327\) 0 0
\(328\) 0 0
\(329\) −1.25784 + 2.17864i −0.0693468 + 0.120112i
\(330\) 0 0
\(331\) 3.00014 1.73213i 0.164902 0.0952065i −0.415278 0.909695i \(-0.636316\pi\)
0.580180 + 0.814488i \(0.302982\pi\)
\(332\) 0 0
\(333\) 0 0
\(334\) 0 0
\(335\) 18.7805 + 32.5287i 1.02609 + 1.77723i
\(336\) 0 0
\(337\) −9.30453 + 16.1159i −0.506850 + 0.877890i 0.493119 + 0.869962i \(0.335857\pi\)
−0.999969 + 0.00792778i \(0.997476\pi\)
\(338\) 0 0
\(339\) 0 0
\(340\) 0 0
\(341\) 2.37713i 0.128729i
\(342\) 0 0
\(343\) 5.31737 0.287111
\(344\) 0 0
\(345\) 0 0
\(346\) 0 0
\(347\) −0.0408752 0.0235993i −0.00219430 0.00126688i 0.498902 0.866658i \(-0.333737\pi\)
−0.501097 + 0.865391i \(0.667070\pi\)
\(348\) 0 0
\(349\) −12.8884 + 7.44113i −0.689901 + 0.398314i −0.803575 0.595204i \(-0.797071\pi\)
0.113674 + 0.993518i \(0.463738\pi\)
\(350\) 0 0
\(351\) 0 0
\(352\) 0 0
\(353\) 9.25423 + 16.0288i 0.492553 + 0.853127i 0.999963 0.00857792i \(-0.00273047\pi\)
−0.507410 + 0.861705i \(0.669397\pi\)
\(354\) 0 0
\(355\) 11.8590 + 6.84680i 0.629411 + 0.363390i
\(356\) 0 0
\(357\) 0 0
\(358\) 0 0
\(359\) 31.3426 1.65420 0.827101 0.562054i \(-0.189989\pi\)
0.827101 + 0.562054i \(0.189989\pi\)
\(360\) 0 0
\(361\) −3.31599 −0.174526
\(362\) 0 0
\(363\) 0 0
\(364\) 0 0
\(365\) 8.51135 + 4.91403i 0.445504 + 0.257212i
\(366\) 0 0
\(367\) 10.2308 + 17.7203i 0.534043 + 0.924990i 0.999209 + 0.0397663i \(0.0126613\pi\)
−0.465166 + 0.885224i \(0.654005\pi\)
\(368\) 0 0
\(369\) 0 0
\(370\) 0 0
\(371\) −2.53909 + 1.46594i −0.131823 + 0.0761081i
\(372\) 0 0
\(373\) 20.6021 + 11.8946i 1.06674 + 0.615880i 0.927288 0.374349i \(-0.122134\pi\)
0.139448 + 0.990229i \(0.455467\pi\)
\(374\) 0 0
\(375\) 0 0
\(376\) 0 0
\(377\) −1.08086 −0.0556673
\(378\) 0 0
\(379\) 24.0988i 1.23787i 0.785441 + 0.618937i \(0.212436\pi\)
−0.785441 + 0.618937i \(0.787564\pi\)
\(380\) 0 0
\(381\) 0 0
\(382\) 0 0
\(383\) 9.39161 16.2667i 0.479889 0.831192i −0.519845 0.854261i \(-0.674010\pi\)
0.999734 + 0.0230686i \(0.00734361\pi\)
\(384\) 0 0
\(385\) 1.41144 + 2.44468i 0.0719336 + 0.124593i
\(386\) 0 0
\(387\) 0 0
\(388\) 0 0
\(389\) −15.0467 + 8.68720i −0.762897 + 0.440459i −0.830335 0.557265i \(-0.811851\pi\)
0.0674382 + 0.997723i \(0.478517\pi\)
\(390\) 0 0
\(391\) −12.1566 + 21.0558i −0.614783 + 1.06484i
\(392\) 0 0
\(393\) 0 0
\(394\) 0 0
\(395\) 39.2703i 1.97591i
\(396\) 0 0
\(397\) 26.2401i 1.31696i 0.752600 + 0.658478i \(0.228799\pi\)
−0.752600 + 0.658478i \(0.771201\pi\)
\(398\) 0 0
\(399\) 0 0
\(400\) 0 0
\(401\) −10.8194 + 18.7398i −0.540296 + 0.935820i 0.458591 + 0.888648i \(0.348354\pi\)
−0.998887 + 0.0471725i \(0.984979\pi\)
\(402\) 0 0
\(403\) 0.471060 0.271967i 0.0234652 0.0135476i
\(404\) 0 0
\(405\) 0 0
\(406\) 0 0
\(407\) −5.76566 9.98642i −0.285793 0.495008i
\(408\) 0 0
\(409\) −6.00563 + 10.4021i −0.296959 + 0.514348i −0.975439 0.220271i \(-0.929306\pi\)
0.678480 + 0.734619i \(0.262639\pi\)
\(410\) 0 0
\(411\) 0 0
\(412\) 0 0
\(413\) 0.267582i 0.0131668i
\(414\) 0 0
\(415\) 23.2252 1.14008
\(416\) 0 0
\(417\) 0 0
\(418\) 0 0
\(419\) −1.38092 0.797277i −0.0674625 0.0389495i 0.465889 0.884843i \(-0.345734\pi\)
−0.533352 + 0.845893i \(0.679068\pi\)
\(420\) 0 0
\(421\) −15.6612 + 9.04197i −0.763278 + 0.440679i −0.830471 0.557061i \(-0.811929\pi\)
0.0671934 + 0.997740i \(0.478596\pi\)
\(422\) 0 0
\(423\) 0 0
\(424\) 0 0
\(425\) 17.1990 + 29.7896i 0.834276 + 1.44501i
\(426\) 0 0
\(427\) 1.62667 + 0.939156i 0.0787199 + 0.0454489i
\(428\) 0 0
\(429\) 0 0
\(430\) 0 0
\(431\) −34.7451 −1.67361 −0.836806 0.547499i \(-0.815580\pi\)
−0.836806 + 0.547499i \(0.815580\pi\)
\(432\) 0 0
\(433\) 12.7197 0.611270 0.305635 0.952149i \(-0.401131\pi\)
0.305635 + 0.952149i \(0.401131\pi\)
\(434\) 0 0
\(435\) 0 0
\(436\) 0 0
\(437\) −24.3496 14.0583i −1.16480 0.672498i
\(438\) 0 0
\(439\) 7.45900 + 12.9194i 0.355999 + 0.616608i 0.987288 0.158939i \(-0.0508074\pi\)
−0.631290 + 0.775547i \(0.717474\pi\)
\(440\) 0 0
\(441\) 0 0
\(442\) 0 0
\(443\) −3.48405 + 2.01152i −0.165532 + 0.0955702i −0.580478 0.814276i \(-0.697134\pi\)
0.414945 + 0.909846i \(0.363801\pi\)
\(444\) 0 0
\(445\) 24.0104 + 13.8624i 1.13820 + 0.657142i
\(446\) 0 0
\(447\) 0 0
\(448\) 0 0
\(449\) −10.9179 −0.515246 −0.257623 0.966245i \(-0.582939\pi\)
−0.257623 + 0.966245i \(0.582939\pi\)
\(450\) 0 0
\(451\) 19.0819i 0.898531i
\(452\) 0 0
\(453\) 0 0
\(454\) 0 0
\(455\) −0.322964 + 0.559390i −0.0151408 + 0.0262246i
\(456\) 0 0
\(457\) −0.815204 1.41197i −0.0381336 0.0660494i 0.846329 0.532661i \(-0.178808\pi\)
−0.884462 + 0.466612i \(0.845475\pi\)
\(458\) 0 0
\(459\) 0 0
\(460\) 0 0
\(461\) −10.1812 + 5.87811i −0.474185 + 0.273771i −0.717990 0.696054i \(-0.754938\pi\)
0.243805 + 0.969824i \(0.421604\pi\)
\(462\) 0 0
\(463\) 10.6473 18.4416i 0.494820 0.857053i −0.505162 0.863024i \(-0.668567\pi\)
0.999982 + 0.00597113i \(0.00190068\pi\)
\(464\) 0 0
\(465\) 0 0
\(466\) 0 0
\(467\) 18.9230i 0.875650i −0.899060 0.437825i \(-0.855749\pi\)
0.899060 0.437825i \(-0.144251\pi\)
\(468\) 0 0
\(469\) 3.93562i 0.181730i
\(470\) 0 0
\(471\) 0 0
\(472\) 0 0
\(473\) 1.20110 2.08037i 0.0552267 0.0956554i
\(474\) 0 0
\(475\) −34.4497 + 19.8896i −1.58066 + 0.912595i
\(476\) 0 0
\(477\) 0 0
\(478\) 0 0
\(479\) 14.9759 + 25.9391i 0.684268 + 1.18519i 0.973666 + 0.227978i \(0.0732115\pi\)
−0.289398 + 0.957209i \(0.593455\pi\)
\(480\) 0 0
\(481\) 1.31929 2.28508i 0.0601546 0.104191i
\(482\) 0 0
\(483\) 0 0
\(484\) 0 0
\(485\) 21.8714i 0.993131i
\(486\) 0 0
\(487\) 17.3370 0.785614 0.392807 0.919621i \(-0.371504\pi\)
0.392807 + 0.919621i \(0.371504\pi\)
\(488\) 0 0
\(489\) 0 0
\(490\) 0 0
\(491\) −31.1204 17.9674i −1.40444 0.810856i −0.409599 0.912265i \(-0.634332\pi\)
−0.994845 + 0.101409i \(0.967665\pi\)
\(492\) 0 0
\(493\) 8.32446 4.80613i 0.374915 0.216457i
\(494\) 0 0
\(495\) 0 0
\(496\) 0 0
\(497\) −0.717405 1.24258i −0.0321800 0.0557374i
\(498\) 0 0
\(499\) 10.4956 + 6.05962i 0.469846 + 0.271266i 0.716175 0.697920i \(-0.245891\pi\)
−0.246329 + 0.969186i \(0.579224\pi\)
\(500\) 0 0
\(501\) 0 0
\(502\) 0 0
\(503\) 32.3442 1.44215 0.721077 0.692855i \(-0.243647\pi\)
0.721077 + 0.692855i \(0.243647\pi\)
\(504\) 0 0
\(505\) 20.3583 0.905932
\(506\) 0 0
\(507\) 0 0
\(508\) 0 0
\(509\) 2.90310 + 1.67610i 0.128677 + 0.0742919i 0.562957 0.826486i \(-0.309664\pi\)
−0.434280 + 0.900778i \(0.642997\pi\)
\(510\) 0 0
\(511\) −0.514890 0.891816i −0.0227774 0.0394516i
\(512\) 0 0
\(513\) 0 0
\(514\) 0 0
\(515\) −38.9838 + 22.5073i −1.71783 + 0.991792i
\(516\) 0 0
\(517\) −11.3936 6.57811i −0.501091 0.289305i
\(518\) 0 0
\(519\) 0 0
\(520\) 0 0
\(521\) −21.5651 −0.944786 −0.472393 0.881388i \(-0.656610\pi\)
−0.472393 + 0.881388i \(0.656610\pi\)
\(522\) 0 0
\(523\) 24.9549i 1.09120i −0.838046 0.545600i \(-0.816302\pi\)
0.838046 0.545600i \(-0.183698\pi\)
\(524\) 0 0
\(525\) 0 0
\(526\) 0 0
\(527\) −2.41863 + 4.18919i −0.105357 + 0.182484i
\(528\) 0 0
\(529\) −6.21238 10.7602i −0.270104 0.467833i
\(530\) 0 0
\(531\) 0 0
\(532\) 0 0
\(533\) 3.78133 2.18315i 0.163787 0.0945627i
\(534\) 0 0
\(535\) −12.1218 + 20.9955i −0.524070 + 0.907716i
\(536\) 0 0
\(537\) 0 0
\(538\) 0 0
\(539\) 13.7562i 0.592523i
\(540\) 0 0
\(541\) 41.9065i 1.80170i −0.434131 0.900850i \(-0.642945\pi\)
0.434131 0.900850i \(-0.357055\pi\)
\(542\) 0 0
\(543\) 0 0
\(544\) 0 0
\(545\) 12.8506 22.2579i 0.550460 0.953424i
\(546\) 0 0
\(547\) −25.7251 + 14.8524i −1.09993 + 0.635043i −0.936202 0.351462i \(-0.885684\pi\)
−0.163726 + 0.986506i \(0.552351\pi\)
\(548\) 0 0
\(549\) 0 0
\(550\) 0 0
\(551\) 5.55797 + 9.62669i 0.236778 + 0.410111i
\(552\) 0 0
\(553\) −2.05737 + 3.56346i −0.0874881 + 0.151534i
\(554\) 0 0
\(555\) 0 0
\(556\) 0 0
\(557\) 21.9632i 0.930609i −0.885151 0.465305i \(-0.845945\pi\)
0.885151 0.465305i \(-0.154055\pi\)
\(558\) 0 0
\(559\) 0.549669 0.0232485
\(560\) 0 0
\(561\) 0 0
\(562\) 0 0
\(563\) 23.8394 + 13.7637i 1.00471 + 0.580069i 0.909638 0.415401i \(-0.136359\pi\)
0.0950710 + 0.995470i \(0.469692\pi\)
\(564\) 0 0
\(565\) −25.9786 + 14.9988i −1.09293 + 0.631002i
\(566\) 0 0
\(567\) 0 0
\(568\) 0 0
\(569\) −8.83572 15.3039i −0.370413 0.641574i 0.619216 0.785221i \(-0.287450\pi\)
−0.989629 + 0.143647i \(0.954117\pi\)
\(570\) 0 0
\(571\) 3.92630 + 2.26685i 0.164311 + 0.0948648i 0.579900 0.814687i \(-0.303091\pi\)
−0.415590 + 0.909552i \(0.636425\pi\)
\(572\) 0 0
\(573\) 0 0
\(574\) 0 0
\(575\) −50.1188 −2.09010
\(576\) 0 0
\(577\) 23.3909 0.973776 0.486888 0.873464i \(-0.338132\pi\)
0.486888 + 0.873464i \(0.338132\pi\)
\(578\) 0 0
\(579\) 0 0
\(580\) 0 0
\(581\) −2.10750 1.21676i −0.0874337 0.0504799i
\(582\) 0 0
\(583\) −7.66645 13.2787i −0.317512 0.549947i
\(584\) 0 0
\(585\) 0 0
\(586\) 0 0
\(587\) −7.18259 + 4.14687i −0.296457 + 0.171160i −0.640850 0.767666i \(-0.721418\pi\)
0.344393 + 0.938826i \(0.388085\pi\)
\(588\) 0 0
\(589\) −4.84453 2.79699i −0.199615 0.115248i
\(590\) 0 0
\(591\) 0 0
\(592\) 0 0
\(593\) 43.5169 1.78702 0.893512 0.449039i \(-0.148234\pi\)
0.893512 + 0.449039i \(0.148234\pi\)
\(594\) 0 0
\(595\) 5.74432i 0.235494i
\(596\) 0 0
\(597\) 0 0
\(598\) 0 0
\(599\) 0.527649 0.913915i 0.0215592 0.0373416i −0.855045 0.518555i \(-0.826470\pi\)
0.876604 + 0.481213i \(0.159804\pi\)
\(600\) 0 0
\(601\) 17.9922 + 31.1633i 0.733915 + 1.27118i 0.955198 + 0.295969i \(0.0956424\pi\)
−0.221282 + 0.975210i \(0.571024\pi\)
\(602\) 0 0
\(603\) 0 0
\(604\) 0 0
\(605\) 22.1138 12.7674i 0.899056 0.519070i
\(606\) 0 0
\(607\) 9.81512 17.0003i 0.398383 0.690020i −0.595143 0.803620i \(-0.702905\pi\)
0.993527 + 0.113599i \(0.0362381\pi\)
\(608\) 0 0
\(609\) 0 0
\(610\) 0 0
\(611\) 3.01039i 0.121787i
\(612\) 0 0
\(613\) 0.0630655i 0.00254719i −0.999999 0.00127360i \(-0.999595\pi\)
0.999999 0.00127360i \(-0.000405399\pi\)
\(614\) 0 0
\(615\) 0 0
\(616\) 0 0
\(617\) −15.0926 + 26.1412i −0.607606 + 1.05240i 0.384028 + 0.923322i \(0.374537\pi\)
−0.991634 + 0.129083i \(0.958797\pi\)
\(618\) 0 0
\(619\) 38.2663 22.0930i 1.53805 0.887994i 0.539099 0.842243i \(-0.318765\pi\)
0.998953 0.0457517i \(-0.0145683\pi\)
\(620\) 0 0
\(621\) 0 0
\(622\) 0 0
\(623\) −1.45250 2.51580i −0.0581932 0.100794i
\(624\) 0 0
\(625\) −1.90220 + 3.29471i −0.0760881 + 0.131788i
\(626\) 0 0
\(627\) 0 0
\(628\) 0 0
\(629\) 23.4653i 0.935621i
\(630\) 0 0
\(631\) −19.6743 −0.783221 −0.391610 0.920131i \(-0.628082\pi\)
−0.391610 + 0.920131i \(0.628082\pi\)
\(632\) 0 0
\(633\) 0 0
\(634\) 0 0
\(635\) 66.6607 + 38.4866i 2.64535 + 1.52729i
\(636\) 0 0
\(637\) −2.72598 + 1.57384i −0.108007 + 0.0623580i
\(638\) 0 0
\(639\) 0 0
\(640\) 0 0
\(641\) 0.994371 + 1.72230i 0.0392753 + 0.0680268i 0.884995 0.465601i \(-0.154162\pi\)
−0.845720 + 0.533628i \(0.820828\pi\)
\(642\) 0 0
\(643\) 12.9370 + 7.46917i 0.510185 + 0.294555i 0.732910 0.680326i \(-0.238162\pi\)
−0.222725 + 0.974881i \(0.571495\pi\)
\(644\) 0 0
\(645\) 0 0
\(646\) 0 0
\(647\) −8.81283 −0.346468 −0.173234 0.984881i \(-0.555422\pi\)
−0.173234 + 0.984881i \(0.555422\pi\)
\(648\) 0 0
\(649\) −1.39937 −0.0549302
\(650\) 0 0
\(651\) 0 0
\(652\) 0 0
\(653\) −18.1802 10.4964i −0.711447 0.410754i 0.100150 0.994972i \(-0.468068\pi\)
−0.811597 + 0.584218i \(0.801401\pi\)
\(654\) 0 0
\(655\) −11.6126 20.1136i −0.453742 0.785904i
\(656\) 0 0
\(657\) 0 0
\(658\) 0 0
\(659\) 40.6209 23.4525i 1.58237 0.913580i 0.587853 0.808968i \(-0.299973\pi\)
0.994513 0.104612i \(-0.0333601\pi\)
\(660\) 0 0
\(661\) −0.736985 0.425498i −0.0286654 0.0165500i 0.485599 0.874182i \(-0.338602\pi\)
−0.514264 + 0.857632i \(0.671935\pi\)
\(662\) 0 0
\(663\) 0 0
\(664\) 0 0
\(665\) 6.64293 0.257602
\(666\) 0 0
\(667\) 14.0053i 0.542287i
\(668\) 0 0
\(669\) 0 0
\(670\) 0 0
\(671\) −4.91150 + 8.50697i −0.189606 + 0.328408i
\(672\) 0 0
\(673\) −22.4873 38.9491i −0.866820 1.50138i −0.865229 0.501378i \(-0.832827\pi\)
−0.00159139 0.999999i \(-0.500507\pi\)
\(674\) 0 0
\(675\) 0 0
\(676\) 0 0
\(677\) 7.29713 4.21300i 0.280451 0.161919i −0.353176 0.935557i \(-0.614898\pi\)
0.633628 + 0.773638i \(0.281565\pi\)
\(678\) 0 0
\(679\) 1.14584 1.98466i 0.0439733 0.0761641i
\(680\) 0 0
\(681\) 0 0
\(682\) 0 0
\(683\) 23.3602i 0.893853i 0.894571 + 0.446926i \(0.147481\pi\)
−0.894571 + 0.446926i \(0.852519\pi\)
\(684\) 0 0
\(685\) 3.54396i 0.135408i
\(686\) 0 0
\(687\) 0 0
\(688\) 0 0
\(689\) 1.75423 3.03841i 0.0668308 0.115754i
\(690\) 0 0
\(691\) −25.9304 + 14.9709i −0.986439 + 0.569521i −0.904208 0.427092i \(-0.859538\pi\)
−0.0822311 + 0.996613i \(0.526205\pi\)
\(692\) 0 0
\(693\) 0 0
\(694\) 0 0
\(695\) −10.9596 18.9826i −0.415722 0.720052i
\(696\) 0 0
\(697\) −19.4150 + 33.6278i −0.735396 + 1.27374i
\(698\) 0 0
\(699\) 0 0
\(700\) 0 0
\(701\) 0.718775i 0.0271478i 0.999908 + 0.0135739i \(0.00432083\pi\)
−0.999908 + 0.0135739i \(0.995679\pi\)
\(702\) 0 0
\(703\) −27.1360 −1.02346
\(704\) 0 0
\(705\) 0 0
\(706\) 0 0
\(707\) −1.84735 1.06657i −0.0694767 0.0401124i
\(708\) 0 0
\(709\) 10.9918 6.34613i 0.412807 0.238334i −0.279188 0.960236i \(-0.590065\pi\)
0.691995 + 0.721902i \(0.256732\pi\)
\(710\) 0 0
\(711\) 0 0
\(712\) 0 0
\(713\) −3.52400 6.10375i −0.131975 0.228587i
\(714\) 0 0
\(715\) −2.92544 1.68900i −0.109405 0.0631652i
\(716\) 0 0
\(717\) 0 0
\(718\) 0 0
\(719\) 7.74226 0.288738 0.144369 0.989524i \(-0.453885\pi\)
0.144369 + 0.989524i \(0.453885\pi\)
\(720\) 0 0
\(721\) 4.71662 0.175656
\(722\) 0 0
\(723\) 0 0
\(724\) 0 0
\(725\) 17.1599 + 9.90730i 0.637304 + 0.367948i
\(726\) 0 0
\(727\) −9.91355 17.1708i −0.367673 0.636828i 0.621528 0.783392i \(-0.286512\pi\)
−0.989201 + 0.146563i \(0.953179\pi\)
\(728\) 0 0
\(729\) 0 0
\(730\) 0 0
\(731\) −4.23337 + 2.44414i −0.156577 + 0.0903997i
\(732\) 0 0
\(733\) 32.7535 + 18.9102i 1.20978 + 0.698466i 0.962711 0.270532i \(-0.0871997\pi\)
0.247068 + 0.968998i \(0.420533\pi\)
\(734\) 0 0
\(735\) 0 0
\(736\) 0 0
\(737\) 20.5821 0.758152
\(738\) 0 0
\(739\) 6.61431i 0.243311i −0.992572 0.121656i \(-0.961180\pi\)
0.992572 0.121656i \(-0.0388204\pi\)
\(740\) 0 0
\(741\) 0 0
\(742\) 0 0
\(743\) −3.30245 + 5.72000i −0.121155 + 0.209847i −0.920223 0.391394i \(-0.871993\pi\)
0.799068 + 0.601240i \(0.205326\pi\)
\(744\) 0 0
\(745\) −13.6161 23.5838i −0.498856 0.864044i
\(746\) 0 0
\(747\) 0 0
\(748\) 0 0
\(749\) 2.19990 1.27012i 0.0803828 0.0464090i
\(750\) 0 0
\(751\) −12.8675 + 22.2871i −0.469540 + 0.813268i −0.999394 0.0348217i \(-0.988914\pi\)
0.529853 + 0.848089i \(0.322247\pi\)
\(752\) 0 0
\(753\) 0 0
\(754\) 0 0
\(755\) 3.61118i 0.131424i
\(756\) 0 0
\(757\) 48.0424i 1.74613i −0.487602 0.873066i \(-0.662128\pi\)
0.487602 0.873066i \(-0.337872\pi\)
\(758\) 0 0
\(759\) 0 0
\(760\) 0 0
\(761\) 1.20688 2.09038i 0.0437493 0.0757761i −0.843322 0.537409i \(-0.819403\pi\)
0.887071 + 0.461633i \(0.152736\pi\)
\(762\) 0 0
\(763\) −2.33218 + 1.34648i −0.0844305 + 0.0487459i
\(764\) 0 0
\(765\) 0 0
\(766\) 0 0
\(767\) −0.160101 0.277304i −0.00578093 0.0100129i
\(768\) 0 0
\(769\) 16.8464 29.1788i 0.607496 1.05221i −0.384156 0.923268i \(-0.625507\pi\)
0.991652 0.128945i \(-0.0411592\pi\)
\(770\) 0 0
\(771\) 0 0
\(772\) 0 0
\(773\) 18.8545i 0.678149i −0.940759 0.339075i \(-0.889886\pi\)
0.940759 0.339075i \(-0.110114\pi\)
\(774\) 0 0
\(775\) −9.97148 −0.358186
\(776\) 0 0
\(777\) 0 0
\(778\) 0 0
\(779\) −38.8884 22.4522i −1.39332 0.804434i
\(780\) 0 0
\(781\) 6.49833 3.75181i 0.232529 0.134250i
\(782\) 0 0
\(783\) 0 0
\(784\) 0 0
\(785\) −32.2202 55.8070i −1.14999 1.99184i
\(786\) 0 0
\(787\) 14.8124 + 8.55193i 0.528004 + 0.304843i 0.740203 0.672383i \(-0.234729\pi\)
−0.212199 + 0.977226i \(0.568063\pi\)
\(788\) 0 0
\(789\) 0 0
\(790\) 0 0
\(791\) 3.14313 0.111757
\(792\) 0 0
\(793\) −2.24769 −0.0798178
\(794\) 0 0
\(795\) 0 0
\(796\) 0 0
\(797\) −3.11800 1.80018i −0.110445 0.0637656i 0.443760 0.896146i \(-0.353644\pi\)
−0.554205 + 0.832380i \(0.686978\pi\)
\(798\) 0 0
\(799\) 13.3859 + 23.1851i 0.473559 + 0.820228i
\(800\) 0 0
\(801\) 0 0
\(802\) 0 0
\(803\) 4.66393 2.69272i 0.164586 0.0950240i
\(804\) 0 0
\(805\) 7.24829 + 4.18480i 0.255469 + 0.147495i
\(806\) 0 0
\(807\) 0 0
\(808\) 0 0
\(809\) −13.5918 −0.477864 −0.238932 0.971036i \(-0.576797\pi\)
−0.238932 + 0.971036i \(0.576797\pi\)
\(810\) 0 0
\(811\) 10.0627i 0.353349i −0.984269 0.176674i \(-0.943466\pi\)
0.984269 0.176674i \(-0.0565339\pi\)
\(812\) 0 0
\(813\) 0 0
\(814\) 0 0
\(815\) 32.7606 56.7430i 1.14755 1.98762i
\(816\) 0 0
\(817\) −2.82649 4.89562i −0.0988862 0.171276i
\(818\) 0 0
\(819\) 0 0
\(820\) 0 0
\(821\) 33.4098 19.2891i 1.16601 0.673196i 0.213273 0.976993i \(-0.431588\pi\)
0.952737 + 0.303797i \(0.0982544\pi\)
\(822\) 0 0
\(823\) 16.1120 27.9068i 0.561628 0.972768i −0.435727 0.900079i \(-0.643509\pi\)
0.997355 0.0726892i \(-0.0231581\pi\)
\(824\) 0 0
\(825\) 0 0
\(826\) 0 0
\(827\) 27.7190i 0.963886i −0.876203 0.481943i \(-0.839931\pi\)
0.876203 0.481943i \(-0.160069\pi\)
\(828\) 0 0
\(829\) 10.3137i 0.358208i 0.983830 + 0.179104i \(0.0573199\pi\)
−0.983830 + 0.179104i \(0.942680\pi\)
\(830\) 0 0
\(831\) 0 0
\(832\) 0 0
\(833\) 13.9964 24.2425i 0.484946 0.839951i
\(834\) 0 0
\(835\) 6.60139 3.81131i 0.228451 0.131896i
\(836\) 0 0
\(837\) 0 0
\(838\) 0 0
\(839\) −19.1961 33.2487i −0.662724 1.14787i −0.979897 0.199504i \(-0.936067\pi\)
0.317173 0.948368i \(-0.397267\pi\)
\(840\) 0 0
\(841\) −11.7315 + 20.3195i −0.404534 + 0.700673i
\(842\) 0 0
\(843\) 0 0
\(844\) 0 0
\(845\) 46.8516i 1.61174i
\(846\) 0 0
\(847\) −2.67553 −0.0919325
\(848\) 0 0
\(849\) 0 0
\(850\) 0 0
\(851\) −29.6089 17.0947i −1.01498 0.585999i
\(852\) 0 0
\(853\) 24.4212 14.0996i 0.836166 0.482761i −0.0197931 0.999804i \(-0.506301\pi\)
0.855959 + 0.517043i \(0.172967\pi\)
\(854\) 0 0
\(855\) 0 0
\(856\) 0 0
\(857\) −15.7011 27.1951i −0.536339 0.928966i −0.999097 0.0424814i \(-0.986474\pi\)
0.462759 0.886484i \(-0.346860\pi\)
\(858\) 0 0
\(859\) −41.6368 24.0390i −1.42063 0.820201i −0.424278 0.905532i \(-0.639472\pi\)
−0.996353 + 0.0853309i \(0.972805\pi\)
\(860\) 0 0
\(861\) 0 0
\(862\) 0 0
\(863\) 37.6968 1.28321 0.641607 0.767034i \(-0.278268\pi\)
0.641607 + 0.767034i \(0.278268\pi\)
\(864\) 0 0
\(865\) −69.6783 −2.36913
\(866\) 0 0
\(867\) 0 0
\(868\) 0 0
\(869\) −18.6358 10.7594i −0.632177 0.364988i
\(870\) 0 0
\(871\) 2.35479 + 4.07861i 0.0797890 + 0.138199i
\(872\) 0 0
\(873\) 0 0
\(874\) 0 0
\(875\) 4.16576 2.40510i 0.140828 0.0813072i
\(876\) 0 0
\(877\) −21.6823 12.5183i −0.732158 0.422711i 0.0870533 0.996204i \(-0.472255\pi\)
−0.819211 + 0.573492i \(0.805588\pi\)
\(878\) 0 0
\(879\) 0 0
\(880\) 0 0
\(881\) 21.0382 0.708795 0.354398 0.935095i \(-0.384686\pi\)
0.354398 + 0.935095i \(0.384686\pi\)
\(882\) 0 0
\(883\) 55.5904i 1.87077i −0.353636 0.935383i \(-0.615055\pi\)
0.353636 0.935383i \(-0.384945\pi\)
\(884\) 0 0
\(885\) 0 0
\(886\) 0 0
\(887\) 0.695385 1.20444i 0.0233487 0.0404412i −0.854115 0.520084i \(-0.825901\pi\)
0.877464 + 0.479643i \(0.159234\pi\)
\(888\) 0 0
\(889\) −4.03261 6.98468i −0.135249 0.234259i
\(890\) 0 0
\(891\) 0 0
\(892\) 0 0
\(893\) −26.8120 + 15.4799i −0.897229 + 0.518015i
\(894\) 0 0
\(895\) −3.88527 + 6.72948i −0.129870 + 0.224942i
\(896\) 0 0
\(897\) 0 0
\(898\) 0 0
\(899\) 2.78645i 0.0929332i
\(900\) 0 0
\(901\) 31.2011i 1.03946i
\(902\) 0 0
\(903\) 0 0
\(904\) 0 0
\(905\) −3.04608 + 5.27597i −0.101255 + 0.175379i
\(906\) 0 0
\(907\) 37.3197 21.5465i 1.23918 0.715440i 0.270252 0.962789i \(-0.412893\pi\)
0.968926 + 0.247349i \(0.0795595\pi\)
\(908\) 0 0
\(909\) 0 0
\(910\) 0 0
\(911\) −3.96463 6.86694i −0.131354 0.227512i 0.792845 0.609424i \(-0.208599\pi\)
−0.924199 + 0.381912i \(0.875266\pi\)
\(912\) 0 0
\(913\) 6.36331 11.0216i 0.210595 0.364761i
\(914\) 0 0
\(915\) 0 0
\(916\) 0 0
\(917\) 2.43353i 0.0803622i
\(918\) 0 0
\(919\) −1.66862 −0.0550426 −0.0275213 0.999621i \(-0.508761\pi\)
−0.0275213 + 0.999621i \(0.508761\pi\)
\(920\) 0 0
\(921\) 0 0
\(922\) 0 0
\(923\) 1.48694 + 0.858486i 0.0489433 + 0.0282574i
\(924\) 0 0
\(925\) −41.8905 + 24.1855i −1.37735 + 0.795215i
\(926\) 0 0
\(927\) 0 0
\(928\) 0 0
\(929\) 23.3838 + 40.5020i 0.767199 + 1.32883i 0.939076 + 0.343709i \(0.111683\pi\)
−0.171878 + 0.985118i \(0.554983\pi\)
\(930\) 0 0
\(931\) 28.0348 + 16.1859i 0.918804 + 0.530472i
\(932\) 0 0
\(933\) 0 0
\(934\) 0 0
\(935\) 30.0410 0.982447
\(936\) 0 0
\(937\) −9.30185 −0.303878 −0.151939 0.988390i \(-0.548552\pi\)
−0.151939 + 0.988390i \(0.548552\pi\)
\(938\) 0 0
\(939\) 0 0
\(940\) 0 0
\(941\) 5.42009 + 3.12929i 0.176690 + 0.102012i 0.585736 0.810502i \(-0.300805\pi\)
−0.409047 + 0.912513i \(0.634139\pi\)
\(942\) 0 0
\(943\) −28.2881 48.9965i −0.921188 1.59555i
\(944\) 0 0
\(945\) 0 0
\(946\) 0 0
\(947\) −38.4243 + 22.1843i −1.24862 + 0.720893i −0.970835 0.239749i \(-0.922935\pi\)
−0.277789 + 0.960642i \(0.589601\pi\)
\(948\) 0 0
\(949\) 1.06720 + 0.616146i 0.0346426 + 0.0200009i
\(950\) 0 0
\(951\) 0 0
\(952\) 0 0
\(953\) −6.11599 −0.198116 −0.0990582 0.995082i \(-0.531583\pi\)
−0.0990582 + 0.995082i \(0.531583\pi\)
\(954\) 0 0
\(955\) 63.7257i 2.06211i
\(956\) 0 0
\(957\) 0 0
\(958\) 0 0
\(959\) 0.185668 0.321586i 0.00599552 0.0103845i
\(960\) 0 0
\(961\) 14.7989 + 25.6324i 0.477383 + 0.826852i
\(962\) 0 0
\(963\) 0 0
\(964\) 0 0
\(965\) 8.99178 5.19141i 0.289456 0.167117i
\(966\) 0 0
\(967\) −16.9985 + 29.4423i −0.546635 + 0.946799i 0.451867 + 0.892085i \(0.350758\pi\)
−0.998502 + 0.0547141i \(0.982575\pi\)
\(968\) 0 0
\(969\) 0 0
\(970\) 0 0
\(971\) 42.4798i 1.36324i −0.731706 0.681621i \(-0.761275\pi\)
0.731706 0.681621i \(-0.238725\pi\)
\(972\) 0 0
\(973\) 2.29669i 0.0736286i
\(974\) 0 0
\(975\) 0 0
\(976\) 0 0
\(977\) −7.66569 + 13.2774i −0.245247 + 0.424781i −0.962201 0.272340i \(-0.912202\pi\)
0.716954 + 0.697121i \(0.245536\pi\)
\(978\) 0 0
\(979\) 13.1569 7.59614i 0.420496 0.242774i
\(980\) 0 0
\(981\) 0 0
\(982\) 0 0
\(983\) −14.8653 25.7474i −0.474129 0.821216i 0.525432 0.850836i \(-0.323904\pi\)
−0.999561 + 0.0296198i \(0.990570\pi\)
\(984\) 0 0
\(985\) 23.0779 39.9720i 0.735322 1.27361i
\(986\) 0 0
\(987\) 0 0
\(988\) 0 0
\(989\) 7.12233i 0.226477i
\(990\) 0 0
\(991\) 49.5495 1.57399 0.786996 0.616958i \(-0.211635\pi\)
0.786996 + 0.616958i \(0.211635\pi\)
\(992\) 0 0
\(993\) 0 0
\(994\) 0 0
\(995\) 54.8017 + 31.6398i 1.73733 + 1.00305i
\(996\) 0 0
\(997\) 34.4541 19.8921i 1.09117 0.629988i 0.157284 0.987553i \(-0.449726\pi\)
0.933888 + 0.357565i \(0.116393\pi\)
\(998\) 0 0
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 864.2.r.b.145.1 16
3.2 odd 2 288.2.r.b.49.4 16
4.3 odd 2 216.2.n.b.37.6 16
8.3 odd 2 216.2.n.b.37.1 16
8.5 even 2 inner 864.2.r.b.145.8 16
9.2 odd 6 288.2.r.b.241.5 16
9.4 even 3 2592.2.d.k.1297.8 8
9.5 odd 6 2592.2.d.j.1297.1 8
9.7 even 3 inner 864.2.r.b.721.8 16
12.11 even 2 72.2.n.b.13.3 16
24.5 odd 2 288.2.r.b.49.5 16
24.11 even 2 72.2.n.b.13.8 yes 16
36.7 odd 6 216.2.n.b.181.1 16
36.11 even 6 72.2.n.b.61.8 yes 16
36.23 even 6 648.2.d.j.325.3 8
36.31 odd 6 648.2.d.k.325.6 8
72.5 odd 6 2592.2.d.j.1297.8 8
72.11 even 6 72.2.n.b.61.3 yes 16
72.13 even 6 2592.2.d.k.1297.1 8
72.29 odd 6 288.2.r.b.241.4 16
72.43 odd 6 216.2.n.b.181.6 16
72.59 even 6 648.2.d.j.325.4 8
72.61 even 6 inner 864.2.r.b.721.1 16
72.67 odd 6 648.2.d.k.325.5 8
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
72.2.n.b.13.3 16 12.11 even 2
72.2.n.b.13.8 yes 16 24.11 even 2
72.2.n.b.61.3 yes 16 72.11 even 6
72.2.n.b.61.8 yes 16 36.11 even 6
216.2.n.b.37.1 16 8.3 odd 2
216.2.n.b.37.6 16 4.3 odd 2
216.2.n.b.181.1 16 36.7 odd 6
216.2.n.b.181.6 16 72.43 odd 6
288.2.r.b.49.4 16 3.2 odd 2
288.2.r.b.49.5 16 24.5 odd 2
288.2.r.b.241.4 16 72.29 odd 6
288.2.r.b.241.5 16 9.2 odd 6
648.2.d.j.325.3 8 36.23 even 6
648.2.d.j.325.4 8 72.59 even 6
648.2.d.k.325.5 8 72.67 odd 6
648.2.d.k.325.6 8 36.31 odd 6
864.2.r.b.145.1 16 1.1 even 1 trivial
864.2.r.b.145.8 16 8.5 even 2 inner
864.2.r.b.721.1 16 72.61 even 6 inner
864.2.r.b.721.8 16 9.7 even 3 inner
2592.2.d.j.1297.1 8 9.5 odd 6
2592.2.d.j.1297.8 8 72.5 odd 6
2592.2.d.k.1297.1 8 72.13 even 6
2592.2.d.k.1297.8 8 9.4 even 3