Properties

Label 72.4.i.a.25.4
Level $72$
Weight $4$
Character 72.25
Analytic conductor $4.248$
Analytic rank $0$
Dimension $8$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [72,4,Mod(25,72)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(72, base_ring=CyclotomicField(6))
 
chi = DirichletCharacter(H, H._module([0, 0, 4]))
 
N = Newforms(chi, 4, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("72.25");
 
S:= CuspForms(chi, 4);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 72 = 2^{3} \cdot 3^{2} \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 72.i (of order \(3\), degree \(2\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(4.24813752041\)
Analytic rank: \(0\)
Dimension: \(8\)
Relative dimension: \(4\) over \(\Q(\zeta_{3})\)
Coefficient field: 8.0.5206055409.1
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{8} - 3x^{7} + x^{6} + 9x^{5} - 23x^{4} + 27x^{3} + 9x^{2} - 81x + 81 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{23}]\)
Coefficient ring index: \( 2^{6}\cdot 3^{4} \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{3}]$

Embedding invariants

Embedding label 25.4
Root \(1.35516 + 1.07868i\) of defining polynomial
Character \(\chi\) \(=\) 72.25
Dual form 72.4.i.a.49.4

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(3.96518 + 3.35817i) q^{3} +(4.00813 + 6.94228i) q^{5} +(-0.468615 + 0.811666i) q^{7} +(4.44536 + 26.6315i) q^{9} +(-2.66835 + 4.62171i) q^{11} +(1.55794 + 2.69842i) q^{13} +(-7.42041 + 40.9874i) q^{15} +132.704 q^{17} -86.6565 q^{19} +(-4.58386 + 1.64471i) q^{21} +(-20.6212 - 35.7170i) q^{23} +(30.3698 - 52.6021i) q^{25} +(-71.8066 + 120.527i) q^{27} +(101.397 - 175.625i) q^{29} +(-159.367 - 276.031i) q^{31} +(-26.1010 + 9.36517i) q^{33} -7.51308 q^{35} -363.510 q^{37} +(-2.88427 + 15.9316i) q^{39} +(-4.91729 - 8.51700i) q^{41} +(181.230 - 313.899i) q^{43} +(-167.066 + 137.604i) q^{45} +(37.5880 - 65.1043i) q^{47} +(171.061 + 296.286i) q^{49} +(526.197 + 445.644i) q^{51} +403.981 q^{53} -42.7803 q^{55} +(-343.609 - 291.007i) q^{57} +(215.351 + 372.999i) q^{59} +(-160.783 + 278.484i) q^{61} +(-23.6991 - 8.87180i) q^{63} +(-12.4888 + 21.6313i) q^{65} +(363.324 + 629.296i) q^{67} +(38.1769 - 210.874i) q^{69} -829.702 q^{71} -160.106 q^{73} +(297.069 - 106.590i) q^{75} +(-2.50086 - 4.33161i) q^{77} +(462.314 - 800.752i) q^{79} +(-689.478 + 236.773i) q^{81} +(-255.843 + 443.134i) q^{83} +(531.896 + 921.271i) q^{85} +(991.838 - 355.876i) q^{87} -320.459 q^{89} -2.92029 q^{91} +(295.042 - 1629.69i) q^{93} +(-347.330 - 601.594i) q^{95} +(300.821 - 521.038i) q^{97} +(-134.945 - 50.5170i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 8 q - 3 q^{3} - 5 q^{5} + 3 q^{7} - 15 q^{9} + 16 q^{11} + 29 q^{13} + 141 q^{15} - 34 q^{17} - 218 q^{19} + 27 q^{21} + 37 q^{23} + 97 q^{25} - 216 q^{27} - 3 q^{29} + 331 q^{31} + 468 q^{33} - 342 q^{35}+ \cdots - 5133 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/72\mathbb{Z}\right)^\times\).

\(n\) \(37\) \(55\) \(65\)
\(\chi(n)\) \(1\) \(1\) \(e\left(\frac{2}{3}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 3.96518 + 3.35817i 0.763100 + 0.646281i
\(4\) 0 0
\(5\) 4.00813 + 6.94228i 0.358498 + 0.620937i 0.987710 0.156297i \(-0.0499557\pi\)
−0.629212 + 0.777234i \(0.716622\pi\)
\(6\) 0 0
\(7\) −0.468615 + 0.811666i −0.0253028 + 0.0438258i −0.878400 0.477927i \(-0.841388\pi\)
0.853097 + 0.521753i \(0.174722\pi\)
\(8\) 0 0
\(9\) 4.44536 + 26.6315i 0.164643 + 0.986353i
\(10\) 0 0
\(11\) −2.66835 + 4.62171i −0.0731397 + 0.126682i −0.900276 0.435320i \(-0.856635\pi\)
0.827136 + 0.562002i \(0.189969\pi\)
\(12\) 0 0
\(13\) 1.55794 + 2.69842i 0.0332380 + 0.0575699i 0.882166 0.470939i \(-0.156085\pi\)
−0.848928 + 0.528509i \(0.822751\pi\)
\(14\) 0 0
\(15\) −7.42041 + 40.9874i −0.127730 + 0.705527i
\(16\) 0 0
\(17\) 132.704 1.89327 0.946634 0.322311i \(-0.104460\pi\)
0.946634 + 0.322311i \(0.104460\pi\)
\(18\) 0 0
\(19\) −86.6565 −1.04634 −0.523168 0.852230i \(-0.675250\pi\)
−0.523168 + 0.852230i \(0.675250\pi\)
\(20\) 0 0
\(21\) −4.58386 + 1.64471i −0.0476324 + 0.0170907i
\(22\) 0 0
\(23\) −20.6212 35.7170i −0.186949 0.323805i 0.757283 0.653087i \(-0.226526\pi\)
−0.944231 + 0.329282i \(0.893193\pi\)
\(24\) 0 0
\(25\) 30.3698 52.6021i 0.242959 0.420817i
\(26\) 0 0
\(27\) −71.8066 + 120.527i −0.511822 + 0.859092i
\(28\) 0 0
\(29\) 101.397 175.625i 0.649275 1.12458i −0.334021 0.942566i \(-0.608406\pi\)
0.983296 0.182012i \(-0.0582610\pi\)
\(30\) 0 0
\(31\) −159.367 276.031i −0.923325 1.59925i −0.794233 0.607614i \(-0.792127\pi\)
−0.129093 0.991633i \(-0.541206\pi\)
\(32\) 0 0
\(33\) −26.1010 + 9.36517i −0.137685 + 0.0494020i
\(34\) 0 0
\(35\) −7.51308 −0.0362841
\(36\) 0 0
\(37\) −363.510 −1.61515 −0.807577 0.589762i \(-0.799222\pi\)
−0.807577 + 0.589762i \(0.799222\pi\)
\(38\) 0 0
\(39\) −2.88427 + 15.9316i −0.0118424 + 0.0654126i
\(40\) 0 0
\(41\) −4.91729 8.51700i −0.0187305 0.0324423i 0.856508 0.516133i \(-0.172629\pi\)
−0.875239 + 0.483691i \(0.839296\pi\)
\(42\) 0 0
\(43\) 181.230 313.899i 0.642728 1.11324i −0.342094 0.939666i \(-0.611136\pi\)
0.984821 0.173571i \(-0.0555307\pi\)
\(44\) 0 0
\(45\) −167.066 + 137.604i −0.553439 + 0.455838i
\(46\) 0 0
\(47\) 37.5880 65.1043i 0.116655 0.202052i −0.801785 0.597612i \(-0.796116\pi\)
0.918440 + 0.395560i \(0.129450\pi\)
\(48\) 0 0
\(49\) 171.061 + 296.286i 0.498720 + 0.863808i
\(50\) 0 0
\(51\) 526.197 + 445.644i 1.44475 + 1.22358i
\(52\) 0 0
\(53\) 403.981 1.04700 0.523501 0.852025i \(-0.324626\pi\)
0.523501 + 0.852025i \(0.324626\pi\)
\(54\) 0 0
\(55\) −42.7803 −0.104882
\(56\) 0 0
\(57\) −343.609 291.007i −0.798458 0.676226i
\(58\) 0 0
\(59\) 215.351 + 372.999i 0.475192 + 0.823057i 0.999596 0.0284128i \(-0.00904529\pi\)
−0.524404 + 0.851469i \(0.675712\pi\)
\(60\) 0 0
\(61\) −160.783 + 278.484i −0.337477 + 0.584527i −0.983957 0.178403i \(-0.942907\pi\)
0.646480 + 0.762931i \(0.276240\pi\)
\(62\) 0 0
\(63\) −23.6991 8.87180i −0.0473937 0.0177419i
\(64\) 0 0
\(65\) −12.4888 + 21.6313i −0.0238315 + 0.0412774i
\(66\) 0 0
\(67\) 363.324 + 629.296i 0.662494 + 1.14747i 0.979958 + 0.199203i \(0.0638353\pi\)
−0.317464 + 0.948270i \(0.602831\pi\)
\(68\) 0 0
\(69\) 38.1769 210.874i 0.0666081 0.367917i
\(70\) 0 0
\(71\) −829.702 −1.38687 −0.693433 0.720521i \(-0.743903\pi\)
−0.693433 + 0.720521i \(0.743903\pi\)
\(72\) 0 0
\(73\) −160.106 −0.256699 −0.128349 0.991729i \(-0.540968\pi\)
−0.128349 + 0.991729i \(0.540968\pi\)
\(74\) 0 0
\(75\) 297.069 106.590i 0.457367 0.164106i
\(76\) 0 0
\(77\) −2.50086 4.33161i −0.00370129 0.00641081i
\(78\) 0 0
\(79\) 462.314 800.752i 0.658410 1.14040i −0.322617 0.946530i \(-0.604563\pi\)
0.981027 0.193870i \(-0.0621041\pi\)
\(80\) 0 0
\(81\) −689.478 + 236.773i −0.945785 + 0.324792i
\(82\) 0 0
\(83\) −255.843 + 443.134i −0.338343 + 0.586027i −0.984121 0.177498i \(-0.943200\pi\)
0.645778 + 0.763525i \(0.276533\pi\)
\(84\) 0 0
\(85\) 531.896 + 921.271i 0.678732 + 1.17560i
\(86\) 0 0
\(87\) 991.838 355.876i 1.22225 0.438551i
\(88\) 0 0
\(89\) −320.459 −0.381669 −0.190835 0.981622i \(-0.561119\pi\)
−0.190835 + 0.981622i \(0.561119\pi\)
\(90\) 0 0
\(91\) −2.92029 −0.00336406
\(92\) 0 0
\(93\) 295.042 1629.69i 0.328972 1.81711i
\(94\) 0 0
\(95\) −347.330 601.594i −0.375109 0.649708i
\(96\) 0 0
\(97\) 300.821 521.038i 0.314884 0.545396i −0.664529 0.747263i \(-0.731368\pi\)
0.979413 + 0.201867i \(0.0647009\pi\)
\(98\) 0 0
\(99\) −134.945 50.5170i −0.136995 0.0512843i
\(100\) 0 0
\(101\) −438.162 + 758.920i −0.431671 + 0.747676i −0.997017 0.0771773i \(-0.975409\pi\)
0.565346 + 0.824854i \(0.308743\pi\)
\(102\) 0 0
\(103\) 111.719 + 193.502i 0.106873 + 0.185110i 0.914502 0.404581i \(-0.132583\pi\)
−0.807629 + 0.589691i \(0.799249\pi\)
\(104\) 0 0
\(105\) −29.7907 25.2302i −0.0276884 0.0234497i
\(106\) 0 0
\(107\) −1265.34 −1.14322 −0.571612 0.820524i \(-0.693682\pi\)
−0.571612 + 0.820524i \(0.693682\pi\)
\(108\) 0 0
\(109\) −213.009 −0.187180 −0.0935898 0.995611i \(-0.529834\pi\)
−0.0935898 + 0.995611i \(0.529834\pi\)
\(110\) 0 0
\(111\) −1441.39 1220.73i −1.23252 1.04384i
\(112\) 0 0
\(113\) −806.988 1397.74i −0.671814 1.16362i −0.977389 0.211449i \(-0.932182\pi\)
0.305575 0.952168i \(-0.401151\pi\)
\(114\) 0 0
\(115\) 165.305 286.317i 0.134041 0.232167i
\(116\) 0 0
\(117\) −64.9376 + 53.4857i −0.0513118 + 0.0422629i
\(118\) 0 0
\(119\) −62.1873 + 107.712i −0.0479051 + 0.0829740i
\(120\) 0 0
\(121\) 651.260 + 1128.02i 0.489301 + 0.847494i
\(122\) 0 0
\(123\) 9.10359 50.2846i 0.00667352 0.0368619i
\(124\) 0 0
\(125\) 1488.94 1.06540
\(126\) 0 0
\(127\) −1234.19 −0.862333 −0.431167 0.902272i \(-0.641898\pi\)
−0.431167 + 0.902272i \(0.641898\pi\)
\(128\) 0 0
\(129\) 1772.74 636.067i 1.20993 0.434129i
\(130\) 0 0
\(131\) 723.720 + 1253.52i 0.482685 + 0.836034i 0.999802 0.0198800i \(-0.00632843\pi\)
−0.517118 + 0.855914i \(0.672995\pi\)
\(132\) 0 0
\(133\) 40.6086 70.3361i 0.0264753 0.0458565i
\(134\) 0 0
\(135\) −1124.54 15.4133i −0.716928 0.00982643i
\(136\) 0 0
\(137\) −276.891 + 479.589i −0.172674 + 0.299081i −0.939354 0.342949i \(-0.888574\pi\)
0.766680 + 0.642030i \(0.221907\pi\)
\(138\) 0 0
\(139\) 794.528 + 1376.16i 0.484827 + 0.839745i 0.999848 0.0174326i \(-0.00554925\pi\)
−0.515021 + 0.857178i \(0.672216\pi\)
\(140\) 0 0
\(141\) 367.675 131.924i 0.219601 0.0787941i
\(142\) 0 0
\(143\) −16.6285 −0.00972406
\(144\) 0 0
\(145\) 1625.65 0.931055
\(146\) 0 0
\(147\) −316.692 + 1749.28i −0.177689 + 0.981484i
\(148\) 0 0
\(149\) 606.406 + 1050.33i 0.333414 + 0.577490i 0.983179 0.182645i \(-0.0584660\pi\)
−0.649765 + 0.760135i \(0.725133\pi\)
\(150\) 0 0
\(151\) −265.929 + 460.603i −0.143318 + 0.248234i −0.928744 0.370721i \(-0.879110\pi\)
0.785426 + 0.618955i \(0.212444\pi\)
\(152\) 0 0
\(153\) 589.919 + 3534.12i 0.311713 + 1.86743i
\(154\) 0 0
\(155\) 1277.52 2212.74i 0.662020 1.14665i
\(156\) 0 0
\(157\) −1081.47 1873.16i −0.549749 0.952194i −0.998291 0.0584320i \(-0.981390\pi\)
0.448542 0.893762i \(-0.351943\pi\)
\(158\) 0 0
\(159\) 1601.86 + 1356.64i 0.798967 + 0.676657i
\(160\) 0 0
\(161\) 38.6537 0.0189213
\(162\) 0 0
\(163\) −1602.11 −0.769859 −0.384930 0.922946i \(-0.625774\pi\)
−0.384930 + 0.922946i \(0.625774\pi\)
\(164\) 0 0
\(165\) −169.632 143.664i −0.0800352 0.0677830i
\(166\) 0 0
\(167\) 866.800 + 1501.34i 0.401647 + 0.695673i 0.993925 0.110061i \(-0.0351046\pi\)
−0.592278 + 0.805734i \(0.701771\pi\)
\(168\) 0 0
\(169\) 1093.65 1894.25i 0.497790 0.862198i
\(170\) 0 0
\(171\) −385.219 2307.80i −0.172272 1.03206i
\(172\) 0 0
\(173\) −937.323 + 1623.49i −0.411927 + 0.713478i −0.995100 0.0988692i \(-0.968477\pi\)
0.583173 + 0.812348i \(0.301811\pi\)
\(174\) 0 0
\(175\) 28.4635 + 49.3003i 0.0122951 + 0.0212957i
\(176\) 0 0
\(177\) −398.688 + 2202.20i −0.169307 + 0.935182i
\(178\) 0 0
\(179\) 2058.01 0.859344 0.429672 0.902985i \(-0.358629\pi\)
0.429672 + 0.902985i \(0.358629\pi\)
\(180\) 0 0
\(181\) −3938.45 −1.61736 −0.808681 0.588248i \(-0.799818\pi\)
−0.808681 + 0.588248i \(0.799818\pi\)
\(182\) 0 0
\(183\) −1572.73 + 564.303i −0.635297 + 0.227948i
\(184\) 0 0
\(185\) −1457.00 2523.59i −0.579030 1.00291i
\(186\) 0 0
\(187\) −354.101 + 613.322i −0.138473 + 0.239842i
\(188\) 0 0
\(189\) −64.1781 114.764i −0.0246998 0.0441685i
\(190\) 0 0
\(191\) 2232.54 3866.88i 0.845765 1.46491i −0.0391899 0.999232i \(-0.512478\pi\)
0.884955 0.465676i \(-0.154189\pi\)
\(192\) 0 0
\(193\) −2075.02 3594.03i −0.773901 1.34044i −0.935410 0.353564i \(-0.884970\pi\)
0.161509 0.986871i \(-0.448364\pi\)
\(194\) 0 0
\(195\) −122.162 + 43.8323i −0.0448626 + 0.0160969i
\(196\) 0 0
\(197\) 536.823 0.194148 0.0970738 0.995277i \(-0.469052\pi\)
0.0970738 + 0.995277i \(0.469052\pi\)
\(198\) 0 0
\(199\) 1953.59 0.695911 0.347956 0.937511i \(-0.386876\pi\)
0.347956 + 0.937511i \(0.386876\pi\)
\(200\) 0 0
\(201\) −672.637 + 3715.38i −0.236040 + 1.30379i
\(202\) 0 0
\(203\) 95.0325 + 164.601i 0.0328570 + 0.0569100i
\(204\) 0 0
\(205\) 39.4183 68.2745i 0.0134297 0.0232610i
\(206\) 0 0
\(207\) 859.530 707.950i 0.288606 0.237710i
\(208\) 0 0
\(209\) 231.230 400.501i 0.0765286 0.132551i
\(210\) 0 0
\(211\) −1613.64 2794.91i −0.526482 0.911894i −0.999524 0.0308540i \(-0.990177\pi\)
0.473042 0.881040i \(-0.343156\pi\)
\(212\) 0 0
\(213\) −3289.92 2786.28i −1.05832 0.896305i
\(214\) 0 0
\(215\) 2905.57 0.921666
\(216\) 0 0
\(217\) 298.726 0.0934510
\(218\) 0 0
\(219\) −634.850 537.664i −0.195887 0.165899i
\(220\) 0 0
\(221\) 206.745 + 358.093i 0.0629284 + 0.108995i
\(222\) 0 0
\(223\) −2327.99 + 4032.19i −0.699075 + 1.21083i 0.269713 + 0.962941i \(0.413071\pi\)
−0.968788 + 0.247892i \(0.920262\pi\)
\(224\) 0 0
\(225\) 1535.88 + 574.960i 0.455075 + 0.170359i
\(226\) 0 0
\(227\) 2040.40 3534.08i 0.596592 1.03333i −0.396728 0.917936i \(-0.629854\pi\)
0.993320 0.115391i \(-0.0368122\pi\)
\(228\) 0 0
\(229\) −649.220 1124.48i −0.187344 0.324489i 0.757020 0.653391i \(-0.226654\pi\)
−0.944364 + 0.328903i \(0.893321\pi\)
\(230\) 0 0
\(231\) 4.62994 25.5739i 0.00131873 0.00728416i
\(232\) 0 0
\(233\) −3073.26 −0.864103 −0.432052 0.901849i \(-0.642210\pi\)
−0.432052 + 0.901849i \(0.642210\pi\)
\(234\) 0 0
\(235\) 602.630 0.167282
\(236\) 0 0
\(237\) 4522.22 1622.60i 1.23945 0.444721i
\(238\) 0 0
\(239\) 1787.76 + 3096.49i 0.483852 + 0.838056i 0.999828 0.0185469i \(-0.00590399\pi\)
−0.515976 + 0.856603i \(0.672571\pi\)
\(240\) 0 0
\(241\) 1358.79 2353.50i 0.363185 0.629055i −0.625298 0.780386i \(-0.715023\pi\)
0.988483 + 0.151331i \(0.0483560\pi\)
\(242\) 0 0
\(243\) −3529.03 1376.53i −0.931636 0.363394i
\(244\) 0 0
\(245\) −1371.27 + 2375.10i −0.357580 + 0.619346i
\(246\) 0 0
\(247\) −135.005 233.836i −0.0347781 0.0602374i
\(248\) 0 0
\(249\) −2502.59 + 897.941i −0.636928 + 0.228533i
\(250\) 0 0
\(251\) −4583.36 −1.15259 −0.576293 0.817243i \(-0.695501\pi\)
−0.576293 + 0.817243i \(0.695501\pi\)
\(252\) 0 0
\(253\) 220.098 0.0546935
\(254\) 0 0
\(255\) −984.722 + 5439.21i −0.241826 + 1.33575i
\(256\) 0 0
\(257\) −2987.71 5174.87i −0.725169 1.25603i −0.958904 0.283730i \(-0.908428\pi\)
0.233735 0.972300i \(-0.424905\pi\)
\(258\) 0 0
\(259\) 170.346 295.049i 0.0408680 0.0707855i
\(260\) 0 0
\(261\) 5127.91 + 1919.65i 1.21613 + 0.455261i
\(262\) 0 0
\(263\) −3087.59 + 5347.86i −0.723912 + 1.25385i 0.235509 + 0.971872i \(0.424324\pi\)
−0.959420 + 0.281980i \(0.909009\pi\)
\(264\) 0 0
\(265\) 1619.21 + 2804.55i 0.375348 + 0.650121i
\(266\) 0 0
\(267\) −1270.68 1076.16i −0.291252 0.246665i
\(268\) 0 0
\(269\) 6580.02 1.49142 0.745708 0.666273i \(-0.232111\pi\)
0.745708 + 0.666273i \(0.232111\pi\)
\(270\) 0 0
\(271\) 5817.31 1.30397 0.651986 0.758231i \(-0.273936\pi\)
0.651986 + 0.758231i \(0.273936\pi\)
\(272\) 0 0
\(273\) −11.5795 9.80684i −0.00256712 0.00217413i
\(274\) 0 0
\(275\) 162.074 + 280.721i 0.0355398 + 0.0615568i
\(276\) 0 0
\(277\) −4325.53 + 7492.03i −0.938252 + 1.62510i −0.169521 + 0.985527i \(0.554222\pi\)
−0.768730 + 0.639573i \(0.779111\pi\)
\(278\) 0 0
\(279\) 6642.69 5471.23i 1.42540 1.17403i
\(280\) 0 0
\(281\) −3648.14 + 6318.76i −0.774483 + 1.34144i 0.160602 + 0.987019i \(0.448656\pi\)
−0.935085 + 0.354424i \(0.884677\pi\)
\(282\) 0 0
\(283\) 405.958 + 703.140i 0.0852710 + 0.147694i 0.905507 0.424332i \(-0.139491\pi\)
−0.820236 + 0.572026i \(0.806158\pi\)
\(284\) 0 0
\(285\) 643.027 3551.82i 0.133648 0.738217i
\(286\) 0 0
\(287\) 9.21728 0.00189574
\(288\) 0 0
\(289\) 12697.5 2.58446
\(290\) 0 0
\(291\) 2942.55 1055.80i 0.592767 0.212688i
\(292\) 0 0
\(293\) 2400.96 + 4158.58i 0.478722 + 0.829170i 0.999702 0.0243984i \(-0.00776702\pi\)
−0.520981 + 0.853568i \(0.674434\pi\)
\(294\) 0 0
\(295\) −1726.31 + 2990.06i −0.340711 + 0.590128i
\(296\) 0 0
\(297\) −365.437 653.478i −0.0713967 0.127672i
\(298\) 0 0
\(299\) 64.2531 111.290i 0.0124276 0.0215252i
\(300\) 0 0
\(301\) 169.854 + 294.196i 0.0325257 + 0.0563361i
\(302\) 0 0
\(303\) −4285.98 + 1537.83i −0.812617 + 0.291571i
\(304\) 0 0
\(305\) −2577.75 −0.483939
\(306\) 0 0
\(307\) −755.147 −0.140386 −0.0701930 0.997533i \(-0.522362\pi\)
−0.0701930 + 0.997533i \(0.522362\pi\)
\(308\) 0 0
\(309\) −206.829 + 1142.44i −0.0380780 + 0.210328i
\(310\) 0 0
\(311\) −2633.03 4560.55i −0.480082 0.831527i 0.519657 0.854375i \(-0.326060\pi\)
−0.999739 + 0.0228482i \(0.992727\pi\)
\(312\) 0 0
\(313\) −697.053 + 1207.33i −0.125878 + 0.218027i −0.922076 0.387009i \(-0.873508\pi\)
0.796198 + 0.605036i \(0.206841\pi\)
\(314\) 0 0
\(315\) −33.3983 200.085i −0.00597391 0.0357889i
\(316\) 0 0
\(317\) 2558.55 4431.55i 0.453321 0.785175i −0.545269 0.838261i \(-0.683572\pi\)
0.998590 + 0.0530862i \(0.0169058\pi\)
\(318\) 0 0
\(319\) 541.126 + 937.257i 0.0949756 + 0.164503i
\(320\) 0 0
\(321\) −5017.30 4249.23i −0.872394 0.738843i
\(322\) 0 0
\(323\) −11499.7 −1.98099
\(324\) 0 0
\(325\) 189.257 0.0323018
\(326\) 0 0
\(327\) −844.620 715.321i −0.142837 0.120970i
\(328\) 0 0
\(329\) 35.2286 + 61.0177i 0.00590339 + 0.0102250i
\(330\) 0 0
\(331\) 121.400 210.271i 0.0201593 0.0349170i −0.855770 0.517357i \(-0.826916\pi\)
0.875929 + 0.482440i \(0.160249\pi\)
\(332\) 0 0
\(333\) −1615.93 9680.84i −0.265924 1.59311i
\(334\) 0 0
\(335\) −2912.50 + 5044.59i −0.475005 + 0.822733i
\(336\) 0 0
\(337\) 25.6472 + 44.4223i 0.00414568 + 0.00718052i 0.868091 0.496405i \(-0.165347\pi\)
−0.863945 + 0.503586i \(0.832014\pi\)
\(338\) 0 0
\(339\) 1494.01 8252.31i 0.239361 1.32214i
\(340\) 0 0
\(341\) 1700.98 0.270127
\(342\) 0 0
\(343\) −642.117 −0.101082
\(344\) 0 0
\(345\) 1616.96 580.175i 0.252332 0.0905379i
\(346\) 0 0
\(347\) 430.722 + 746.032i 0.0666350 + 0.115415i 0.897418 0.441181i \(-0.145440\pi\)
−0.830783 + 0.556596i \(0.812107\pi\)
\(348\) 0 0
\(349\) −1562.68 + 2706.64i −0.239680 + 0.415138i −0.960623 0.277857i \(-0.910376\pi\)
0.720942 + 0.692995i \(0.243709\pi\)
\(350\) 0 0
\(351\) −437.104 5.99107i −0.0664697 0.000911053i
\(352\) 0 0
\(353\) 4162.36 7209.43i 0.627593 1.08702i −0.360440 0.932782i \(-0.617374\pi\)
0.988033 0.154241i \(-0.0492931\pi\)
\(354\) 0 0
\(355\) −3325.55 5760.02i −0.497189 0.861156i
\(356\) 0 0
\(357\) −608.298 + 218.261i −0.0901808 + 0.0323573i
\(358\) 0 0
\(359\) −5819.46 −0.855542 −0.427771 0.903887i \(-0.640701\pi\)
−0.427771 + 0.903887i \(0.640701\pi\)
\(360\) 0 0
\(361\) 650.350 0.0948170
\(362\) 0 0
\(363\) −1205.70 + 6659.83i −0.174334 + 0.962949i
\(364\) 0 0
\(365\) −641.725 1111.50i −0.0920259 0.159393i
\(366\) 0 0
\(367\) 3129.64 5420.69i 0.445138 0.771002i −0.552924 0.833232i \(-0.686488\pi\)
0.998062 + 0.0622299i \(0.0198212\pi\)
\(368\) 0 0
\(369\) 204.962 168.816i 0.0289157 0.0238163i
\(370\) 0 0
\(371\) −189.312 + 327.898i −0.0264921 + 0.0458857i
\(372\) 0 0
\(373\) −240.335 416.273i −0.0333622 0.0577850i 0.848862 0.528614i \(-0.177288\pi\)
−0.882224 + 0.470829i \(0.843955\pi\)
\(374\) 0 0
\(375\) 5903.91 + 5000.11i 0.813004 + 0.688545i
\(376\) 0 0
\(377\) 631.881 0.0863224
\(378\) 0 0
\(379\) 7321.57 0.992305 0.496152 0.868235i \(-0.334746\pi\)
0.496152 + 0.868235i \(0.334746\pi\)
\(380\) 0 0
\(381\) −4893.77 4144.61i −0.658046 0.557309i
\(382\) 0 0
\(383\) −1323.45 2292.28i −0.176567 0.305823i 0.764135 0.645056i \(-0.223166\pi\)
−0.940702 + 0.339233i \(0.889833\pi\)
\(384\) 0 0
\(385\) 20.0475 34.7233i 0.00265381 0.00459653i
\(386\) 0 0
\(387\) 9165.25 + 3431.03i 1.20387 + 0.450670i
\(388\) 0 0
\(389\) −2430.72 + 4210.12i −0.316818 + 0.548745i −0.979822 0.199871i \(-0.935948\pi\)
0.663004 + 0.748616i \(0.269281\pi\)
\(390\) 0 0
\(391\) −2736.53 4739.80i −0.353944 0.613049i
\(392\) 0 0
\(393\) −1339.85 + 7400.81i −0.171976 + 0.949927i
\(394\) 0 0
\(395\) 7412.06 0.944155
\(396\) 0 0
\(397\) −7253.21 −0.916948 −0.458474 0.888708i \(-0.651604\pi\)
−0.458474 + 0.888708i \(0.651604\pi\)
\(398\) 0 0
\(399\) 397.221 142.525i 0.0498394 0.0178826i
\(400\) 0 0
\(401\) 1150.69 + 1993.05i 0.143298 + 0.248200i 0.928737 0.370740i \(-0.120896\pi\)
−0.785438 + 0.618940i \(0.787562\pi\)
\(402\) 0 0
\(403\) 496.566 860.078i 0.0613789 0.106311i
\(404\) 0 0
\(405\) −4407.26 3837.53i −0.540737 0.470835i
\(406\) 0 0
\(407\) 969.971 1680.04i 0.118132 0.204611i
\(408\) 0 0
\(409\) 902.216 + 1562.68i 0.109075 + 0.188924i 0.915396 0.402555i \(-0.131878\pi\)
−0.806321 + 0.591479i \(0.798544\pi\)
\(410\) 0 0
\(411\) −2708.47 + 971.811i −0.325058 + 0.116632i
\(412\) 0 0
\(413\) −403.667 −0.0480948
\(414\) 0 0
\(415\) −4101.81 −0.485181
\(416\) 0 0
\(417\) −1470.94 + 8124.90i −0.172739 + 0.954143i
\(418\) 0 0
\(419\) 3738.18 + 6474.71i 0.435852 + 0.754917i 0.997365 0.0725506i \(-0.0231139\pi\)
−0.561513 + 0.827468i \(0.689781\pi\)
\(420\) 0 0
\(421\) −6443.01 + 11159.6i −0.745875 + 1.29189i 0.203910 + 0.978990i \(0.434635\pi\)
−0.949785 + 0.312903i \(0.898698\pi\)
\(422\) 0 0
\(423\) 1900.92 + 711.614i 0.218501 + 0.0817963i
\(424\) 0 0
\(425\) 4030.21 6980.53i 0.459986 0.796718i
\(426\) 0 0
\(427\) −150.690 261.003i −0.0170783 0.0295804i
\(428\) 0 0
\(429\) −65.9349 55.8412i −0.00742043 0.00628447i
\(430\) 0 0
\(431\) 13065.8 1.46022 0.730110 0.683329i \(-0.239469\pi\)
0.730110 + 0.683329i \(0.239469\pi\)
\(432\) 0 0
\(433\) −6190.38 −0.687046 −0.343523 0.939144i \(-0.611620\pi\)
−0.343523 + 0.939144i \(0.611620\pi\)
\(434\) 0 0
\(435\) 6446.01 + 5459.22i 0.710488 + 0.601723i
\(436\) 0 0
\(437\) 1786.96 + 3095.11i 0.195611 + 0.338808i
\(438\) 0 0
\(439\) 7271.78 12595.1i 0.790576 1.36932i −0.135034 0.990841i \(-0.543114\pi\)
0.925610 0.378478i \(-0.123552\pi\)
\(440\) 0 0
\(441\) −7130.13 + 5872.71i −0.769909 + 0.634133i
\(442\) 0 0
\(443\) 426.857 739.339i 0.0457802 0.0792935i −0.842227 0.539123i \(-0.818756\pi\)
0.888007 + 0.459829i \(0.152089\pi\)
\(444\) 0 0
\(445\) −1284.44 2224.71i −0.136828 0.236992i
\(446\) 0 0
\(447\) −1122.66 + 6201.15i −0.118792 + 0.656162i
\(448\) 0 0
\(449\) 6187.67 0.650366 0.325183 0.945651i \(-0.394574\pi\)
0.325183 + 0.945651i \(0.394574\pi\)
\(450\) 0 0
\(451\) 52.4842 0.00547979
\(452\) 0 0
\(453\) −2601.24 + 933.339i −0.269795 + 0.0968037i
\(454\) 0 0
\(455\) −11.7049 20.2735i −0.00120601 0.00208887i
\(456\) 0 0
\(457\) −2389.06 + 4137.98i −0.244542 + 0.423559i −0.962003 0.273040i \(-0.911971\pi\)
0.717461 + 0.696599i \(0.245304\pi\)
\(458\) 0 0
\(459\) −9529.06 + 15994.5i −0.969016 + 1.62649i
\(460\) 0 0
\(461\) 4544.60 7871.47i 0.459139 0.795252i −0.539777 0.841808i \(-0.681491\pi\)
0.998916 + 0.0465564i \(0.0148247\pi\)
\(462\) 0 0
\(463\) 3674.11 + 6363.74i 0.368791 + 0.638765i 0.989377 0.145374i \(-0.0464385\pi\)
−0.620586 + 0.784139i \(0.713105\pi\)
\(464\) 0 0
\(465\) 12496.4 4483.76i 1.24625 0.447160i
\(466\) 0 0
\(467\) 948.436 0.0939794 0.0469897 0.998895i \(-0.485037\pi\)
0.0469897 + 0.998895i \(0.485037\pi\)
\(468\) 0 0
\(469\) −681.037 −0.0670519
\(470\) 0 0
\(471\) 2002.17 11059.2i 0.195871 1.08191i
\(472\) 0 0
\(473\) 967.168 + 1675.18i 0.0940178 + 0.162844i
\(474\) 0 0
\(475\) −2631.74 + 4558.31i −0.254216 + 0.440315i
\(476\) 0 0
\(477\) 1795.84 + 10758.6i 0.172381 + 1.03271i
\(478\) 0 0
\(479\) −1493.94 + 2587.58i −0.142505 + 0.246826i −0.928439 0.371484i \(-0.878849\pi\)
0.785934 + 0.618310i \(0.212182\pi\)
\(480\) 0 0
\(481\) −566.326 980.905i −0.0536845 0.0929843i
\(482\) 0 0
\(483\) 153.269 + 129.806i 0.0144389 + 0.0122285i
\(484\) 0 0
\(485\) 4822.92 0.451542
\(486\) 0 0
\(487\) −19555.8 −1.81963 −0.909814 0.415017i \(-0.863776\pi\)
−0.909814 + 0.415017i \(0.863776\pi\)
\(488\) 0 0
\(489\) −6352.66 5380.16i −0.587479 0.497545i
\(490\) 0 0
\(491\) −429.064 743.160i −0.0394366 0.0683062i 0.845633 0.533764i \(-0.179223\pi\)
−0.885070 + 0.465458i \(0.845890\pi\)
\(492\) 0 0
\(493\) 13455.9 23306.2i 1.22925 2.12913i
\(494\) 0 0
\(495\) −190.174 1139.30i −0.0172680 0.103450i
\(496\) 0 0
\(497\) 388.811 673.440i 0.0350917 0.0607806i
\(498\) 0 0
\(499\) −1844.70 3195.12i −0.165491 0.286640i 0.771338 0.636425i \(-0.219588\pi\)
−0.936830 + 0.349786i \(0.886254\pi\)
\(500\) 0 0
\(501\) −1604.74 + 8863.96i −0.143103 + 0.790444i
\(502\) 0 0
\(503\) 9034.08 0.800814 0.400407 0.916337i \(-0.368869\pi\)
0.400407 + 0.916337i \(0.368869\pi\)
\(504\) 0 0
\(505\) −7024.84 −0.619013
\(506\) 0 0
\(507\) 10697.7 3838.40i 0.937086 0.336231i
\(508\) 0 0
\(509\) 3145.21 + 5447.66i 0.273888 + 0.474387i 0.969854 0.243687i \(-0.0783570\pi\)
−0.695966 + 0.718075i \(0.745024\pi\)
\(510\) 0 0
\(511\) 75.0281 129.953i 0.00649520 0.0112500i
\(512\) 0 0
\(513\) 6222.51 10444.5i 0.535537 0.898898i
\(514\) 0 0
\(515\) −895.565 + 1551.16i −0.0766278 + 0.132723i
\(516\) 0 0
\(517\) 200.595 + 347.442i 0.0170642 + 0.0295560i
\(518\) 0 0
\(519\) −9168.62 + 3289.75i −0.775449 + 0.278235i
\(520\) 0 0
\(521\) −13010.4 −1.09404 −0.547019 0.837120i \(-0.684238\pi\)
−0.547019 + 0.837120i \(0.684238\pi\)
\(522\) 0 0
\(523\) 1108.69 0.0926956 0.0463478 0.998925i \(-0.485242\pi\)
0.0463478 + 0.998925i \(0.485242\pi\)
\(524\) 0 0
\(525\) −52.6957 + 291.070i −0.00438063 + 0.0241968i
\(526\) 0 0
\(527\) −21148.7 36630.5i −1.74810 3.02780i
\(528\) 0 0
\(529\) 5233.03 9063.88i 0.430100 0.744956i
\(530\) 0 0
\(531\) −8976.22 + 7393.25i −0.733588 + 0.604218i
\(532\) 0 0
\(533\) 15.3217 26.5379i 0.00124513 0.00215663i
\(534\) 0 0
\(535\) −5071.64 8784.34i −0.409843 0.709869i
\(536\) 0 0
\(537\) 8160.37 + 6911.14i 0.655765 + 0.555377i
\(538\) 0 0
\(539\) −1825.80 −0.145905
\(540\) 0 0
\(541\) −38.8964 −0.00309110 −0.00154555 0.999999i \(-0.500492\pi\)
−0.00154555 + 0.999999i \(0.500492\pi\)
\(542\) 0 0
\(543\) −15616.7 13226.0i −1.23421 1.04527i
\(544\) 0 0
\(545\) −853.768 1478.77i −0.0671035 0.116227i
\(546\) 0 0
\(547\) −5014.91 + 8686.08i −0.391997 + 0.678958i −0.992713 0.120504i \(-0.961549\pi\)
0.600716 + 0.799462i \(0.294882\pi\)
\(548\) 0 0
\(549\) −8131.18 3043.93i −0.632114 0.236633i
\(550\) 0 0
\(551\) −8786.73 + 15219.1i −0.679359 + 1.17669i
\(552\) 0 0
\(553\) 433.295 + 750.489i 0.0333193 + 0.0577107i
\(554\) 0 0
\(555\) 2697.40 14899.3i 0.206303 1.13953i
\(556\) 0 0
\(557\) −7355.74 −0.559556 −0.279778 0.960065i \(-0.590261\pi\)
−0.279778 + 0.960065i \(0.590261\pi\)
\(558\) 0 0
\(559\) 1129.38 0.0854519
\(560\) 0 0
\(561\) −3463.72 + 1242.80i −0.260674 + 0.0935312i
\(562\) 0 0
\(563\) 10729.9 + 18584.8i 0.803220 + 1.39122i 0.917486 + 0.397767i \(0.130215\pi\)
−0.114267 + 0.993450i \(0.536452\pi\)
\(564\) 0 0
\(565\) 6469.02 11204.7i 0.481688 0.834308i
\(566\) 0 0
\(567\) 130.919 670.581i 0.00969678 0.0496680i
\(568\) 0 0
\(569\) 728.962 1262.60i 0.0537077 0.0930245i −0.837922 0.545791i \(-0.816229\pi\)
0.891629 + 0.452766i \(0.149563\pi\)
\(570\) 0 0
\(571\) 11200.0 + 19399.0i 0.820853 + 1.42176i 0.905048 + 0.425310i \(0.139835\pi\)
−0.0841950 + 0.996449i \(0.526832\pi\)
\(572\) 0 0
\(573\) 21838.1 7835.62i 1.59215 0.571270i
\(574\) 0 0
\(575\) −2505.05 −0.181683
\(576\) 0 0
\(577\) −12833.5 −0.925936 −0.462968 0.886375i \(-0.653215\pi\)
−0.462968 + 0.886375i \(0.653215\pi\)
\(578\) 0 0
\(579\) 3841.56 21219.3i 0.275734 1.52304i
\(580\) 0 0
\(581\) −239.784 415.319i −0.0171221 0.0296563i
\(582\) 0 0
\(583\) −1077.96 + 1867.08i −0.0765774 + 0.132636i
\(584\) 0 0
\(585\) −631.591 236.438i −0.0446377 0.0167102i
\(586\) 0 0
\(587\) 10377.4 17974.2i 0.729677 1.26384i −0.227343 0.973815i \(-0.573004\pi\)
0.957020 0.290023i \(-0.0936629\pi\)
\(588\) 0 0
\(589\) 13810.2 + 23919.9i 0.966108 + 1.67335i
\(590\) 0 0
\(591\) 2128.60 + 1802.75i 0.148154 + 0.125474i
\(592\) 0 0
\(593\) 113.272 0.00784406 0.00392203 0.999992i \(-0.498752\pi\)
0.00392203 + 0.999992i \(0.498752\pi\)
\(594\) 0 0
\(595\) −997.019 −0.0686955
\(596\) 0 0
\(597\) 7746.34 + 6560.49i 0.531050 + 0.449754i
\(598\) 0 0
\(599\) 5581.01 + 9666.59i 0.380691 + 0.659376i 0.991161 0.132663i \(-0.0423529\pi\)
−0.610470 + 0.792039i \(0.709020\pi\)
\(600\) 0 0
\(601\) 939.910 1627.97i 0.0637932 0.110493i −0.832365 0.554228i \(-0.813014\pi\)
0.896158 + 0.443735i \(0.146347\pi\)
\(602\) 0 0
\(603\) −15144.0 + 12473.3i −1.02274 + 0.842376i
\(604\) 0 0
\(605\) −5220.67 + 9042.46i −0.350827 + 0.607650i
\(606\) 0 0
\(607\) 10662.2 + 18467.4i 0.712956 + 1.23488i 0.963743 + 0.266834i \(0.0859774\pi\)
−0.250787 + 0.968042i \(0.580689\pi\)
\(608\) 0 0
\(609\) −175.938 + 971.810i −0.0117067 + 0.0646629i
\(610\) 0 0
\(611\) 234.239 0.0155095
\(612\) 0 0
\(613\) 26096.2 1.71944 0.859720 0.510765i \(-0.170638\pi\)
0.859720 + 0.510765i \(0.170638\pi\)
\(614\) 0 0
\(615\) 385.578 138.347i 0.0252813 0.00907107i
\(616\) 0 0
\(617\) 9590.63 + 16611.5i 0.625777 + 1.08388i 0.988390 + 0.151937i \(0.0485512\pi\)
−0.362614 + 0.931940i \(0.618116\pi\)
\(618\) 0 0
\(619\) 1681.58 2912.58i 0.109190 0.189122i −0.806253 0.591571i \(-0.798508\pi\)
0.915442 + 0.402450i \(0.131841\pi\)
\(620\) 0 0
\(621\) 5785.61 + 79.2993i 0.373862 + 0.00512427i
\(622\) 0 0
\(623\) 150.172 260.105i 0.00965731 0.0167270i
\(624\) 0 0
\(625\) 2171.62 + 3761.36i 0.138984 + 0.240727i
\(626\) 0 0
\(627\) 2261.82 811.553i 0.144064 0.0516911i
\(628\) 0 0
\(629\) −48239.4 −3.05792
\(630\) 0 0
\(631\) 1485.04 0.0936900 0.0468450 0.998902i \(-0.485083\pi\)
0.0468450 + 0.998902i \(0.485083\pi\)
\(632\) 0 0
\(633\) 2987.40 16501.2i 0.187581 1.03612i
\(634\) 0 0
\(635\) −4946.78 8568.07i −0.309145 0.535454i
\(636\) 0 0
\(637\) −533.004 + 923.189i −0.0331529 + 0.0574224i
\(638\) 0 0
\(639\) −3688.32 22096.2i −0.228338 1.36794i
\(640\) 0 0
\(641\) −8208.10 + 14216.8i −0.505773 + 0.876024i 0.494205 + 0.869345i \(0.335459\pi\)
−0.999978 + 0.00667861i \(0.997874\pi\)
\(642\) 0 0
\(643\) 10200.0 + 17666.9i 0.625580 + 1.08354i 0.988428 + 0.151688i \(0.0484710\pi\)
−0.362848 + 0.931848i \(0.618196\pi\)
\(644\) 0 0
\(645\) 11521.1 + 9757.40i 0.703323 + 0.595655i
\(646\) 0 0
\(647\) 25011.7 1.51980 0.759900 0.650040i \(-0.225248\pi\)
0.759900 + 0.650040i \(0.225248\pi\)
\(648\) 0 0
\(649\) −2298.53 −0.139022
\(650\) 0 0
\(651\) 1184.51 + 1003.17i 0.0713125 + 0.0603956i
\(652\) 0 0
\(653\) −3763.77 6519.03i −0.225555 0.390673i 0.730931 0.682452i \(-0.239086\pi\)
−0.956486 + 0.291779i \(0.905753\pi\)
\(654\) 0 0
\(655\) −5801.52 + 10048.5i −0.346083 + 0.599433i
\(656\) 0 0
\(657\) −711.729 4263.87i −0.0422636 0.253195i
\(658\) 0 0
\(659\) −14984.0 + 25953.0i −0.885725 + 1.53412i −0.0408452 + 0.999165i \(0.513005\pi\)
−0.844880 + 0.534956i \(0.820328\pi\)
\(660\) 0 0
\(661\) −6153.81 10658.7i −0.362111 0.627195i 0.626197 0.779665i \(-0.284611\pi\)
−0.988308 + 0.152470i \(0.951277\pi\)
\(662\) 0 0
\(663\) −382.756 + 2114.19i −0.0224208 + 0.123844i
\(664\) 0 0
\(665\) 651.057 0.0379653
\(666\) 0 0
\(667\) −8363.73 −0.485525
\(668\) 0 0
\(669\) −22771.7 + 8170.60i −1.31600 + 0.472188i
\(670\) 0 0
\(671\) −858.047 1486.18i −0.0493659 0.0855043i
\(672\) 0 0
\(673\) −1385.42 + 2399.61i −0.0793521 + 0.137442i −0.902971 0.429702i \(-0.858618\pi\)
0.823618 + 0.567144i \(0.191952\pi\)
\(674\) 0 0
\(675\) 4159.23 + 7437.57i 0.237168 + 0.424107i
\(676\) 0 0
\(677\) 11232.5 19455.2i 0.637666 1.10447i −0.348278 0.937391i \(-0.613233\pi\)
0.985944 0.167078i \(-0.0534332\pi\)
\(678\) 0 0
\(679\) 281.939 + 488.333i 0.0159349 + 0.0276001i
\(680\) 0 0
\(681\) 19958.6 7161.26i 1.12308 0.402966i
\(682\) 0 0
\(683\) −7924.28 −0.443945 −0.221972 0.975053i \(-0.571249\pi\)
−0.221972 + 0.975053i \(0.571249\pi\)
\(684\) 0 0
\(685\) −4439.25 −0.247613
\(686\) 0 0
\(687\) 1201.93 6638.97i 0.0667488 0.368694i
\(688\) 0 0
\(689\) 629.377 + 1090.11i 0.0348002 + 0.0602757i
\(690\) 0 0
\(691\) 11390.2 19728.4i 0.627067 1.08611i −0.361070 0.932539i \(-0.617589\pi\)
0.988137 0.153573i \(-0.0490780\pi\)
\(692\) 0 0
\(693\) 104.240 85.8572i 0.00571394 0.00470627i
\(694\) 0 0
\(695\) −6369.14 + 11031.7i −0.347619 + 0.602094i
\(696\) 0 0
\(697\) −652.547 1130.24i −0.0354619 0.0614219i
\(698\) 0 0
\(699\) −12186.0 10320.5i −0.659397 0.558453i
\(700\) 0 0
\(701\) −13999.0 −0.754256 −0.377128 0.926161i \(-0.623088\pi\)
−0.377128 + 0.926161i \(0.623088\pi\)
\(702\) 0 0
\(703\) 31500.5 1.68999
\(704\) 0 0
\(705\) 2389.54 + 2023.73i 0.127653 + 0.108111i
\(706\) 0 0
\(707\) −410.659 711.283i −0.0218450 0.0378367i
\(708\) 0 0
\(709\) 4513.32 7817.30i 0.239071 0.414083i −0.721377 0.692543i \(-0.756490\pi\)
0.960448 + 0.278459i \(0.0898238\pi\)
\(710\) 0 0
\(711\) 23380.4 + 8752.51i 1.23324 + 0.461666i
\(712\) 0 0
\(713\) −6572.67 + 11384.2i −0.345229 + 0.597954i
\(714\) 0 0
\(715\) −66.6490 115.439i −0.00348606 0.00603803i
\(716\) 0 0
\(717\) −3309.76 + 18281.8i −0.172392 + 0.952225i
\(718\) 0 0
\(719\) 18206.9 0.944371 0.472186 0.881499i \(-0.343465\pi\)
0.472186 + 0.881499i \(0.343465\pi\)
\(720\) 0 0
\(721\) −209.412 −0.0108168
\(722\) 0 0
\(723\) 13291.3 4768.99i 0.683692 0.245312i
\(724\) 0 0
\(725\) −6158.83 10667.4i −0.315494 0.546452i
\(726\) 0 0
\(727\) −5167.05 + 8949.60i −0.263598 + 0.456564i −0.967195 0.254034i \(-0.918242\pi\)
0.703598 + 0.710599i \(0.251576\pi\)
\(728\) 0 0
\(729\) −9370.62 17309.3i −0.476077 0.879404i
\(730\) 0 0
\(731\) 24050.0 41655.8i 1.21686 2.10766i
\(732\) 0 0
\(733\) −11176.3 19358.0i −0.563176 0.975449i −0.997217 0.0745557i \(-0.976246\pi\)
0.434041 0.900893i \(-0.357087\pi\)
\(734\) 0 0
\(735\) −13413.3 + 4812.77i −0.673141 + 0.241526i
\(736\) 0 0
\(737\) −3877.90 −0.193818
\(738\) 0 0
\(739\) −22423.2 −1.11617 −0.558086 0.829783i \(-0.688464\pi\)
−0.558086 + 0.829783i \(0.688464\pi\)
\(740\) 0 0
\(741\) 249.941 1380.57i 0.0123911 0.0684435i
\(742\) 0 0
\(743\) −5827.69 10093.9i −0.287749 0.498395i 0.685523 0.728051i \(-0.259573\pi\)
−0.973272 + 0.229655i \(0.926240\pi\)
\(744\) 0 0
\(745\) −4861.10 + 8419.68i −0.239056 + 0.414058i
\(746\) 0 0
\(747\) −12938.7 4843.62i −0.633736 0.237240i
\(748\) 0 0
\(749\) 592.957 1027.03i 0.0289268 0.0501027i
\(750\) 0 0
\(751\) −1319.06 2284.68i −0.0640923 0.111011i 0.832199 0.554478i \(-0.187082\pi\)
−0.896291 + 0.443466i \(0.853749\pi\)
\(752\) 0 0
\(753\) −18173.9 15391.7i −0.879539 0.744895i
\(754\) 0 0
\(755\) −4263.51 −0.205517
\(756\) 0 0
\(757\) −19939.5 −0.957350 −0.478675 0.877992i \(-0.658883\pi\)
−0.478675 + 0.877992i \(0.658883\pi\)
\(758\) 0 0
\(759\) 872.730 + 739.128i 0.0417366 + 0.0353473i
\(760\) 0 0
\(761\) 13380.7 + 23176.0i 0.637385 + 1.10398i 0.986005 + 0.166719i \(0.0533172\pi\)
−0.348620 + 0.937264i \(0.613349\pi\)
\(762\) 0 0
\(763\) 99.8193 172.892i 0.00473618 0.00820330i
\(764\) 0 0
\(765\) −22170.4 + 18260.6i −1.04781 + 0.863024i
\(766\) 0 0
\(767\) −671.007 + 1162.22i −0.0315888 + 0.0547135i
\(768\) 0 0
\(769\) −3788.40 6561.71i −0.177651 0.307700i 0.763425 0.645897i \(-0.223516\pi\)
−0.941075 + 0.338197i \(0.890183\pi\)
\(770\) 0 0
\(771\) 5531.28 30552.6i 0.258371 1.42714i
\(772\) 0 0
\(773\) 27041.3 1.25823 0.629113 0.777314i \(-0.283418\pi\)
0.629113 + 0.777314i \(0.283418\pi\)
\(774\) 0 0
\(775\) −19359.7 −0.897319
\(776\) 0 0
\(777\) 1666.28 597.870i 0.0769337 0.0276042i
\(778\) 0 0
\(779\) 426.116 + 738.054i 0.0195984 + 0.0339455i
\(780\) 0 0
\(781\) 2213.93 3834.64i 0.101435 0.175691i
\(782\) 0 0
\(783\) 13886.6 + 24832.2i 0.633802 + 1.13337i
\(784\) 0 0
\(785\) 8669.33 15015.7i 0.394168 0.682719i
\(786\) 0 0
\(787\) −16802.1 29102.2i −0.761031 1.31814i −0.942320 0.334714i \(-0.891360\pi\)
0.181289 0.983430i \(-0.441973\pi\)
\(788\) 0 0
\(789\) −30201.9 + 10836.6i −1.36276 + 0.488964i
\(790\) 0 0
\(791\) 1512.67 0.0679953
\(792\) 0 0
\(793\) −1001.96 −0.0448682
\(794\) 0 0
\(795\) −2997.71 + 16558.1i −0.133733 + 0.738688i
\(796\) 0 0
\(797\) −21603.1 37417.7i −0.960127 1.66299i −0.722172 0.691714i \(-0.756856\pi\)
−0.237955 0.971276i \(-0.576477\pi\)
\(798\) 0 0
\(799\) 4988.09 8639.63i 0.220859 0.382538i
\(800\) 0 0
\(801\) −1424.55 8534.30i −0.0628391 0.376460i
\(802\) 0 0
\(803\) 427.218 739.964i 0.0187749 0.0325190i
\(804\) 0 0
\(805\) 154.929 + 268.345i 0.00678326 + 0.0117490i
\(806\) 0 0
\(807\) 26091.0 + 22096.8i 1.13810 + 0.963873i
\(808\) 0 0
\(809\) 33276.5 1.44616 0.723078 0.690766i \(-0.242727\pi\)
0.723078 + 0.690766i \(0.242727\pi\)
\(810\) 0 0
\(811\) 21917.4 0.948980 0.474490 0.880261i \(-0.342633\pi\)
0.474490 + 0.880261i \(0.342633\pi\)
\(812\) 0 0
\(813\) 23066.7 + 19535.5i 0.995061 + 0.842732i
\(814\) 0 0
\(815\) −6421.47 11122.3i −0.275993 0.478034i
\(816\) 0 0
\(817\) −15704.7 + 27201.4i −0.672509 + 1.16482i
\(818\) 0 0
\(819\) −12.9817 77.7718i −0.000553869 0.00331815i
\(820\) 0 0
\(821\) 536.732 929.647i 0.0228162 0.0395188i −0.854392 0.519629i \(-0.826070\pi\)
0.877208 + 0.480110i \(0.159403\pi\)
\(822\) 0 0
\(823\) −6229.21 10789.3i −0.263835 0.456976i 0.703422 0.710772i \(-0.251654\pi\)
−0.967258 + 0.253796i \(0.918321\pi\)
\(824\) 0 0
\(825\) −300.055 + 1657.38i −0.0126625 + 0.0699427i
\(826\) 0 0
\(827\) −902.282 −0.0379388 −0.0189694 0.999820i \(-0.506039\pi\)
−0.0189694 + 0.999820i \(0.506039\pi\)
\(828\) 0 0
\(829\) 29605.8 1.24035 0.620176 0.784462i \(-0.287061\pi\)
0.620176 + 0.784462i \(0.287061\pi\)
\(830\) 0 0
\(831\) −42311.0 + 15181.4i −1.76625 + 0.633740i
\(832\) 0 0
\(833\) 22700.5 + 39318.5i 0.944210 + 1.63542i
\(834\) 0 0
\(835\) −6948.49 + 12035.1i −0.287979 + 0.498794i
\(836\) 0 0
\(837\) 44712.8 + 612.847i 1.84648 + 0.0253084i
\(838\) 0 0
\(839\) −22726.8 + 39363.9i −0.935178 + 1.61978i −0.160863 + 0.986977i \(0.551428\pi\)
−0.774316 + 0.632799i \(0.781906\pi\)
\(840\) 0 0
\(841\) −8368.28 14494.3i −0.343117 0.594296i
\(842\) 0 0
\(843\) −35685.0 + 12804.0i −1.45796 + 0.523122i
\(844\) 0 0
\(845\) 17533.9 0.713827
\(846\) 0 0
\(847\) −1220.76 −0.0495229
\(848\) 0 0
\(849\) −751.567 + 4151.36i −0.0303813 + 0.167814i
\(850\) 0 0
\(851\) 7496.02 + 12983.5i 0.301951 + 0.522995i
\(852\) 0 0
\(853\) −2795.92 + 4842.68i −0.112228 + 0.194385i −0.916668 0.399649i \(-0.869132\pi\)
0.804440 + 0.594034i \(0.202465\pi\)
\(854\) 0 0
\(855\) 14477.4 11924.2i 0.579082 0.476960i
\(856\) 0 0
\(857\) 20490.8 35491.1i 0.816747 1.41465i −0.0913204 0.995822i \(-0.529109\pi\)
0.908067 0.418825i \(-0.137558\pi\)
\(858\) 0 0
\(859\) −21149.0 36631.2i −0.840040 1.45499i −0.889860 0.456234i \(-0.849198\pi\)
0.0498192 0.998758i \(-0.484135\pi\)
\(860\) 0 0
\(861\) 36.5482 + 30.9532i 0.00144664 + 0.00122518i
\(862\) 0 0
\(863\) 19236.0 0.758749 0.379374 0.925243i \(-0.376139\pi\)
0.379374 + 0.925243i \(0.376139\pi\)
\(864\) 0 0
\(865\) −15027.6 −0.590700
\(866\) 0 0
\(867\) 50347.8 + 42640.3i 1.97220 + 1.67029i
\(868\) 0 0
\(869\) 2467.23 + 4273.36i 0.0963118 + 0.166817i
\(870\) 0 0
\(871\) −1132.07 + 1960.80i −0.0440399 + 0.0762794i
\(872\) 0 0
\(873\) 15213.3 + 5695.14i 0.589796 + 0.220792i
\(874\) 0 0
\(875\) −697.738 + 1208.52i −0.0269576 + 0.0466919i
\(876\) 0 0
\(877\) 12060.4 + 20889.2i 0.464368 + 0.804308i 0.999173 0.0406670i \(-0.0129483\pi\)
−0.534805 + 0.844975i \(0.679615\pi\)
\(878\) 0 0
\(879\) −4444.99 + 24552.4i −0.170564 + 0.942128i
\(880\) 0 0
\(881\) 34292.4 1.31140 0.655698 0.755023i \(-0.272375\pi\)
0.655698 + 0.755023i \(0.272375\pi\)
\(882\) 0 0
\(883\) −15818.9 −0.602887 −0.301444 0.953484i \(-0.597469\pi\)
−0.301444 + 0.953484i \(0.597469\pi\)
\(884\) 0 0
\(885\) −16886.3 + 6058.87i −0.641384 + 0.230132i
\(886\) 0 0
\(887\) 10381.8 + 17981.8i 0.392995 + 0.680688i 0.992843 0.119426i \(-0.0381055\pi\)
−0.599848 + 0.800114i \(0.704772\pi\)
\(888\) 0 0
\(889\) 578.359 1001.75i 0.0218195 0.0377925i
\(890\) 0 0
\(891\) 745.466 3818.36i 0.0280292 0.143569i
\(892\) 0 0
\(893\) −3257.24 + 5641.71i −0.122060 + 0.211414i
\(894\) 0 0
\(895\) 8248.75 + 14287.3i 0.308073 + 0.533598i
\(896\) 0 0
\(897\) 628.505 225.511i 0.0233948 0.00839419i
\(898\) 0 0
\(899\) −64637.3 −2.39797
\(900\) 0 0
\(901\) 53610.1 1.98225
\(902\) 0 0
\(903\) −314.458 + 1736.94i −0.0115886 + 0.0640108i
\(904\) 0 0
\(905\) −15785.8 27341.8i −0.579821 1.00428i
\(906\) 0 0
\(907\) 6337.77 10977.3i 0.232020 0.401871i −0.726382 0.687291i \(-0.758800\pi\)
0.958402 + 0.285420i \(0.0921331\pi\)
\(908\) 0 0
\(909\) −22159.0 8295.27i −0.808545 0.302681i
\(910\) 0 0
\(911\) 9162.83 15870.5i 0.333236 0.577182i −0.649908 0.760013i \(-0.725193\pi\)
0.983144 + 0.182831i \(0.0585261\pi\)
\(912\) 0 0
\(913\) −1365.36 2364.87i −0.0494926 0.0857237i
\(914\) 0 0
\(915\) −10221.2 8656.52i −0.369294 0.312760i
\(916\) 0 0
\(917\) −1356.58 −0.0488532
\(918\) 0 0
\(919\) 2706.30 0.0971409 0.0485705 0.998820i \(-0.484533\pi\)
0.0485705 + 0.998820i \(0.484533\pi\)
\(920\) 0 0
\(921\) −2994.30 2535.91i −0.107129 0.0907288i
\(922\) 0 0
\(923\) −1292.62 2238.89i −0.0460966 0.0798417i
\(924\) 0 0
\(925\) −11039.7 + 19121.4i −0.392416 + 0.679684i
\(926\) 0 0
\(927\) −4656.64 + 3835.43i −0.164988 + 0.135892i
\(928\) 0 0
\(929\) −12442.9 + 21551.7i −0.439437 + 0.761127i −0.997646 0.0685731i \(-0.978155\pi\)
0.558209 + 0.829700i \(0.311489\pi\)
\(930\) 0 0
\(931\) −14823.5 25675.1i −0.521828 0.903832i
\(932\) 0 0
\(933\) 4874.64 26925.6i 0.171049 0.944806i
\(934\) 0 0
\(935\) −5677.13 −0.198569
\(936\) 0 0
\(937\) −33383.1 −1.16390 −0.581952 0.813223i \(-0.697711\pi\)
−0.581952 + 0.813223i \(0.697711\pi\)
\(938\) 0 0
\(939\) −6818.37 + 2446.47i −0.236964 + 0.0850238i
\(940\) 0 0
\(941\) 14589.7 + 25270.1i 0.505431 + 0.875433i 0.999980 + 0.00628300i \(0.00199996\pi\)
−0.494549 + 0.869150i \(0.664667\pi\)
\(942\) 0 0
\(943\) −202.801 + 351.262i −0.00700330 + 0.0121301i
\(944\) 0 0
\(945\) 539.489 905.531i 0.0185710 0.0311713i
\(946\) 0 0
\(947\) 19442.0 33674.6i 0.667140 1.15552i −0.311561 0.950226i \(-0.600852\pi\)
0.978700 0.205294i \(-0.0658149\pi\)
\(948\) 0 0
\(949\) −249.435 432.034i −0.00853214 0.0147781i
\(950\) 0 0
\(951\) 25027.0 8979.83i 0.853372 0.306194i
\(952\) 0 0
\(953\) −5321.13 −0.180869 −0.0904345 0.995902i \(-0.528826\pi\)
−0.0904345 + 0.995902i \(0.528826\pi\)
\(954\) 0 0
\(955\) 35793.3 1.21282
\(956\) 0 0
\(957\) −1001.81 + 5533.59i −0.0338389 + 0.186913i
\(958\) 0 0
\(959\) −259.511 449.485i −0.00873830 0.0151352i
\(960\) 0 0
\(961\) −35899.9 + 62180.5i −1.20506 + 2.08722i
\(962\) 0 0
\(963\) −5624.88 33697.9i −0.188224 1.12762i
\(964\) 0 0
\(965\) 16633.9 28810.7i 0.554884 0.961087i
\(966\) 0 0
\(967\) −24510.2 42453.0i −0.815094 1.41178i −0.909261 0.416227i \(-0.863352\pi\)
0.0941669 0.995556i \(-0.469981\pi\)
\(968\) 0 0
\(969\) −45598.4 38618.0i −1.51170 1.28028i
\(970\) 0 0
\(971\) −11409.6 −0.377087 −0.188544 0.982065i \(-0.560377\pi\)
−0.188544 + 0.982065i \(0.560377\pi\)
\(972\) 0 0
\(973\) −1489.31 −0.0490700
\(974\) 0 0
\(975\) 750.439 + 635.558i 0.0246495 + 0.0208760i
\(976\) 0 0
\(977\) −9228.33 15983.9i −0.302191 0.523410i 0.674441 0.738329i \(-0.264385\pi\)
−0.976632 + 0.214919i \(0.931051\pi\)
\(978\) 0 0
\(979\) 855.094 1481.07i 0.0279152 0.0483505i
\(980\) 0 0
\(981\) −946.902 5672.76i −0.0308178 0.184625i
\(982\) 0 0
\(983\) −17803.6 + 30836.8i −0.577668 + 1.00055i 0.418078 + 0.908411i \(0.362704\pi\)
−0.995746 + 0.0921393i \(0.970629\pi\)
\(984\) 0 0
\(985\) 2151.66 + 3726.78i 0.0696015 + 0.120553i
\(986\) 0 0
\(987\) −65.2202 + 360.250i −0.00210332 + 0.0116179i
\(988\) 0 0
\(989\) −14948.7 −0.480629
\(990\) 0 0
\(991\) 31299.9 1.00330 0.501652 0.865070i \(-0.332726\pi\)
0.501652 + 0.865070i \(0.332726\pi\)
\(992\) 0 0
\(993\) 1187.50 426.080i 0.0379497 0.0136166i
\(994\) 0 0
\(995\) 7830.24 + 13562.4i 0.249483 + 0.432117i
\(996\) 0 0
\(997\) 14389.2 24922.9i 0.457083 0.791691i −0.541722 0.840557i \(-0.682228\pi\)
0.998805 + 0.0488666i \(0.0155609\pi\)
\(998\) 0 0
\(999\) 26102.4 43812.9i 0.826672 1.38757i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 72.4.i.a.25.4 8
3.2 odd 2 216.4.i.a.73.1 8
4.3 odd 2 144.4.i.e.97.1 8
9.2 odd 6 648.4.a.h.1.4 4
9.4 even 3 inner 72.4.i.a.49.4 yes 8
9.5 odd 6 216.4.i.a.145.1 8
9.7 even 3 648.4.a.i.1.1 4
12.11 even 2 432.4.i.e.289.1 8
36.7 odd 6 1296.4.a.ba.1.1 4
36.11 even 6 1296.4.a.y.1.4 4
36.23 even 6 432.4.i.e.145.1 8
36.31 odd 6 144.4.i.e.49.1 8
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
72.4.i.a.25.4 8 1.1 even 1 trivial
72.4.i.a.49.4 yes 8 9.4 even 3 inner
144.4.i.e.49.1 8 36.31 odd 6
144.4.i.e.97.1 8 4.3 odd 2
216.4.i.a.73.1 8 3.2 odd 2
216.4.i.a.145.1 8 9.5 odd 6
432.4.i.e.145.1 8 36.23 even 6
432.4.i.e.289.1 8 12.11 even 2
648.4.a.h.1.4 4 9.2 odd 6
648.4.a.i.1.1 4 9.7 even 3
1296.4.a.y.1.4 4 36.11 even 6
1296.4.a.ba.1.1 4 36.7 odd 6