Newspace parameters
comment: Compute space of new eigenforms
[N,k,chi] = [720,2,Mod(109,720)]
mf = mfinit([N,k,chi],0)
lf = mfeigenbasis(mf)
from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(720, base_ring=CyclotomicField(4))
chi = DirichletCharacter(H, H._module([0, 3, 0, 2]))
N = Newforms(chi, 2, names="a")
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
chi := DirichletCharacter("720.109");
S:= CuspForms(chi, 2);
N := Newforms(S);
Level: | \( N \) | \(=\) | \( 720 = 2^{4} \cdot 3^{2} \cdot 5 \) |
Weight: | \( k \) | \(=\) | \( 2 \) |
Character orbit: | \([\chi]\) | \(=\) | 720.bm (of order \(4\), degree \(2\), minimal) |
Newform invariants
comment: select newform
sage: f = N[0] # Warning: the index may be different
gp: f = lf[1] \\ Warning: the index may be different
Self dual: | no |
Analytic conductor: | \(5.74922894553\) |
Analytic rank: | \(0\) |
Dimension: | \(32\) |
Relative dimension: | \(16\) over \(\Q(i)\) |
Twist minimal: | yes |
Sato-Tate group: | $\mathrm{SU}(2)[C_{4}]$ |
$q$-expansion
The algebraic \(q\)-expansion of this newform has not been computed, but we have computed the trace expansion.
Embeddings
For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.
For more information on an embedded modular form you can click on its label.
comment: embeddings in the coefficient field
gp: mfembed(f)
Label | \( a_{2} \) | \( a_{3} \) | \( a_{4} \) | \( a_{5} \) | \( a_{6} \) | \( a_{7} \) | \( a_{8} \) | \( a_{9} \) | \( a_{10} \) | ||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
109.1 | −1.29731 | − | 0.563016i | 0 | 1.36603 | + | 1.46081i | −0.496304 | + | 2.18029i | 0 | −0.862231 | −0.949697 | − | 2.66422i | 0 | 1.87140 | − | 2.54909i | ||||||||
109.2 | −1.29731 | − | 0.563016i | 0 | 1.36603 | + | 1.46081i | 2.18029 | − | 0.496304i | 0 | 0.862231 | −0.949697 | − | 2.66422i | 0 | −3.10794 | − | 0.583681i | ||||||||
109.3 | −1.29731 | + | 0.563016i | 0 | 1.36603 | − | 1.46081i | 0.679792 | + | 2.13023i | 0 | −3.29610 | −0.949697 | + | 2.66422i | 0 | −2.08126 | − | 2.38084i | ||||||||
109.4 | −1.29731 | + | 0.563016i | 0 | 1.36603 | − | 1.46081i | 2.13023 | + | 0.679792i | 0 | 3.29610 | −0.949697 | + | 2.66422i | 0 | −3.14630 | + | 0.317454i | ||||||||
109.5 | −0.903873 | − | 1.08766i | 0 | −0.366025 | + | 1.96622i | −2.18690 | − | 0.466314i | 0 | −4.79660 | 2.46943 | − | 1.37910i | 0 | 1.46949 | + | 2.80011i | ||||||||
109.6 | −0.903873 | − | 1.08766i | 0 | −0.366025 | + | 1.96622i | −0.466314 | − | 2.18690i | 0 | 4.79660 | 2.46943 | − | 1.37910i | 0 | −1.95713 | + | 2.48388i | ||||||||
109.7 | −0.903873 | + | 1.08766i | 0 | −0.366025 | − | 1.96622i | −1.80193 | + | 1.32403i | 0 | 3.06349 | 2.46943 | + | 1.37910i | 0 | 0.188608 | − | 3.15665i | ||||||||
109.8 | −0.903873 | + | 1.08766i | 0 | −0.366025 | − | 1.96622i | 1.32403 | − | 1.80193i | 0 | −3.06349 | 2.46943 | + | 1.37910i | 0 | 0.763129 | + | 3.06882i | ||||||||
109.9 | 0.903873 | − | 1.08766i | 0 | −0.366025 | − | 1.96622i | −1.32403 | + | 1.80193i | 0 | −3.06349 | −2.46943 | − | 1.37910i | 0 | 0.763129 | + | 3.06882i | ||||||||
109.10 | 0.903873 | − | 1.08766i | 0 | −0.366025 | − | 1.96622i | 1.80193 | − | 1.32403i | 0 | 3.06349 | −2.46943 | − | 1.37910i | 0 | 0.188608 | − | 3.15665i | ||||||||
109.11 | 0.903873 | + | 1.08766i | 0 | −0.366025 | + | 1.96622i | 0.466314 | + | 2.18690i | 0 | 4.79660 | −2.46943 | + | 1.37910i | 0 | −1.95713 | + | 2.48388i | ||||||||
109.12 | 0.903873 | + | 1.08766i | 0 | −0.366025 | + | 1.96622i | 2.18690 | + | 0.466314i | 0 | −4.79660 | −2.46943 | + | 1.37910i | 0 | 1.46949 | + | 2.80011i | ||||||||
109.13 | 1.29731 | − | 0.563016i | 0 | 1.36603 | − | 1.46081i | −2.13023 | − | 0.679792i | 0 | 3.29610 | 0.949697 | − | 2.66422i | 0 | −3.14630 | + | 0.317454i | ||||||||
109.14 | 1.29731 | − | 0.563016i | 0 | 1.36603 | − | 1.46081i | −0.679792 | − | 2.13023i | 0 | −3.29610 | 0.949697 | − | 2.66422i | 0 | −2.08126 | − | 2.38084i | ||||||||
109.15 | 1.29731 | + | 0.563016i | 0 | 1.36603 | + | 1.46081i | −2.18029 | + | 0.496304i | 0 | 0.862231 | 0.949697 | + | 2.66422i | 0 | −3.10794 | − | 0.583681i | ||||||||
109.16 | 1.29731 | + | 0.563016i | 0 | 1.36603 | + | 1.46081i | 0.496304 | − | 2.18029i | 0 | −0.862231 | 0.949697 | + | 2.66422i | 0 | 1.87140 | − | 2.54909i | ||||||||
469.1 | −1.29731 | − | 0.563016i | 0 | 1.36603 | + | 1.46081i | 0.679792 | − | 2.13023i | 0 | −3.29610 | −0.949697 | − | 2.66422i | 0 | −2.08126 | + | 2.38084i | ||||||||
469.2 | −1.29731 | − | 0.563016i | 0 | 1.36603 | + | 1.46081i | 2.13023 | − | 0.679792i | 0 | 3.29610 | −0.949697 | − | 2.66422i | 0 | −3.14630 | − | 0.317454i | ||||||||
469.3 | −1.29731 | + | 0.563016i | 0 | 1.36603 | − | 1.46081i | −0.496304 | − | 2.18029i | 0 | −0.862231 | −0.949697 | + | 2.66422i | 0 | 1.87140 | + | 2.54909i | ||||||||
469.4 | −1.29731 | + | 0.563016i | 0 | 1.36603 | − | 1.46081i | 2.18029 | + | 0.496304i | 0 | 0.862231 | −0.949697 | + | 2.66422i | 0 | −3.10794 | + | 0.583681i | ||||||||
See all 32 embeddings |
Inner twists
Char | Parity | Ord | Mult | Type |
---|---|---|---|---|
1.a | even | 1 | 1 | trivial |
3.b | odd | 2 | 1 | inner |
5.b | even | 2 | 1 | inner |
15.d | odd | 2 | 1 | inner |
16.e | even | 4 | 1 | inner |
48.i | odd | 4 | 1 | inner |
80.q | even | 4 | 1 | inner |
240.bm | odd | 4 | 1 | inner |
Twists
By twisting character orbit | |||||||
---|---|---|---|---|---|---|---|
Char | Parity | Ord | Mult | Type | Twist | Min | Dim |
1.a | even | 1 | 1 | trivial | 720.2.bm.g | ✓ | 32 |
3.b | odd | 2 | 1 | inner | 720.2.bm.g | ✓ | 32 |
5.b | even | 2 | 1 | inner | 720.2.bm.g | ✓ | 32 |
15.d | odd | 2 | 1 | inner | 720.2.bm.g | ✓ | 32 |
16.e | even | 4 | 1 | inner | 720.2.bm.g | ✓ | 32 |
48.i | odd | 4 | 1 | inner | 720.2.bm.g | ✓ | 32 |
80.q | even | 4 | 1 | inner | 720.2.bm.g | ✓ | 32 |
240.bm | odd | 4 | 1 | inner | 720.2.bm.g | ✓ | 32 |
By twisted newform orbit | |||||||
---|---|---|---|---|---|---|---|
Twist | Min | Dim | Char | Parity | Ord | Mult | Type |
720.2.bm.g | ✓ | 32 | 1.a | even | 1 | 1 | trivial |
720.2.bm.g | ✓ | 32 | 3.b | odd | 2 | 1 | inner |
720.2.bm.g | ✓ | 32 | 5.b | even | 2 | 1 | inner |
720.2.bm.g | ✓ | 32 | 15.d | odd | 2 | 1 | inner |
720.2.bm.g | ✓ | 32 | 16.e | even | 4 | 1 | inner |
720.2.bm.g | ✓ | 32 | 48.i | odd | 4 | 1 | inner |
720.2.bm.g | ✓ | 32 | 80.q | even | 4 | 1 | inner |
720.2.bm.g | ✓ | 32 | 240.bm | odd | 4 | 1 | inner |
Hecke kernels
This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on \(S_{2}^{\mathrm{new}}(720, [\chi])\):
\( T_{7}^{8} - 44T_{7}^{6} + 600T_{7}^{4} - 2768T_{7}^{2} + 1744 \) |
\( T_{11}^{16} + 1792T_{11}^{12} + 839616T_{11}^{8} + 55447552T_{11}^{4} + 48664576 \) |
\( T_{13}^{16} + 1696T_{13}^{12} + 86112T_{13}^{8} + 957952T_{13}^{4} + 3041536 \) |