Properties

Label 720.2.by.e.529.1
Level $720$
Weight $2$
Character 720.529
Analytic conductor $5.749$
Analytic rank $0$
Dimension $12$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [720,2,Mod(49,720)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(720, base_ring=CyclotomicField(6))
 
chi = DirichletCharacter(H, H._module([0, 0, 2, 3]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("720.49");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 720 = 2^{4} \cdot 3^{2} \cdot 5 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 720.by (of order \(6\), degree \(2\), not minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(5.74922894553\)
Analytic rank: \(0\)
Dimension: \(12\)
Relative dimension: \(6\) over \(\Q(\zeta_{6})\)
Coefficient field: \(\mathbb{Q}[x]/(x^{12} - \cdots)\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{12} - 4x^{10} + 10x^{8} - 6x^{6} + 90x^{4} - 324x^{2} + 729 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{7}]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 180)
Sato-Tate group: $\mathrm{SU}(2)[C_{6}]$

Embedding invariants

Embedding label 529.1
Root \(-1.62372 + 0.602950i\) of defining polynomial
Character \(\chi\) \(=\) 720.529
Dual form 720.2.by.e.49.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-1.62372 + 0.602950i) q^{3} +(-2.02621 - 0.945767i) q^{5} +(-3.26460 - 1.88482i) q^{7} +(2.27290 - 1.95804i) q^{9} +(-1.77290 + 3.07076i) q^{11} +(-0.869061 + 0.501753i) q^{13} +(3.86024 + 0.313951i) q^{15} +1.56023i q^{17} +7.21013 q^{19} +(6.43723 + 1.09201i) q^{21} +(5.35328 - 3.09072i) q^{23} +(3.21105 + 3.83264i) q^{25} +(-2.50994 + 4.54975i) q^{27} +(-1.50000 + 2.59808i) q^{29} +(-2.89142 - 5.00809i) q^{31} +(1.02717 - 6.05500i) q^{33} +(4.83216 + 6.90658i) q^{35} +0.851576i q^{37} +(1.10858 - 1.33870i) q^{39} +(1.55926 + 2.70072i) q^{41} +(2.34403 + 1.35333i) q^{43} +(-6.45722 + 1.81776i) q^{45} +(8.44260 + 4.87434i) q^{47} +(3.60506 + 6.24415i) q^{49} +(-0.940739 - 2.53336i) q^{51} +11.2494i q^{53} +(6.49649 - 4.54524i) q^{55} +(-11.7072 + 4.34735i) q^{57} +(4.83216 + 8.36955i) q^{59} +(4.10506 - 7.11018i) q^{61} +(-11.1107 + 2.10821i) q^{63} +(2.23544 - 0.194727i) q^{65} +(2.52711 - 1.45903i) q^{67} +(-6.82865 + 8.24621i) q^{69} -7.21013 q^{71} -16.7817i q^{73} +(-7.52473 - 4.28702i) q^{75} +(11.5756 - 6.68319i) q^{77} +(-5.49649 + 9.52020i) q^{79} +(1.33216 - 8.90086i) q^{81} +(-8.82952 - 5.09773i) q^{83} +(1.47561 - 3.16134i) q^{85} +(0.869061 - 5.12296i) q^{87} +5.33567 q^{89} +3.78285 q^{91} +(7.71448 + 6.38833i) q^{93} +(-14.6092 - 6.81910i) q^{95} +(3.34467 + 1.93105i) q^{97} +(1.98303 + 10.4509i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 12 q + q^{5} + 8 q^{9} - 2 q^{11} + 5 q^{15} + 10 q^{21} - 3 q^{25} - 18 q^{29} - 6 q^{31} + 34 q^{35} + 42 q^{39} + 14 q^{41} - 31 q^{45} - 16 q^{51} + 6 q^{55} + 34 q^{59} + 6 q^{61} + 15 q^{65} + 14 q^{69}+ \cdots - 82 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/720\mathbb{Z}\right)^\times\).

\(n\) \(181\) \(271\) \(577\) \(641\)
\(\chi(n)\) \(1\) \(1\) \(-1\) \(e\left(\frac{2}{3}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) −1.62372 + 0.602950i −0.937452 + 0.348114i
\(4\) 0 0
\(5\) −2.02621 0.945767i −0.906149 0.422960i
\(6\) 0 0
\(7\) −3.26460 1.88482i −1.23390 0.712394i −0.266061 0.963956i \(-0.585722\pi\)
−0.967841 + 0.251563i \(0.919056\pi\)
\(8\) 0 0
\(9\) 2.27290 1.95804i 0.757634 0.652680i
\(10\) 0 0
\(11\) −1.77290 + 3.07076i −0.534550 + 0.925868i 0.464635 + 0.885502i \(0.346186\pi\)
−0.999185 + 0.0403654i \(0.987148\pi\)
\(12\) 0 0
\(13\) −0.869061 + 0.501753i −0.241034 + 0.139161i −0.615652 0.788018i \(-0.711107\pi\)
0.374618 + 0.927179i \(0.377774\pi\)
\(14\) 0 0
\(15\) 3.86024 + 0.313951i 0.996709 + 0.0810619i
\(16\) 0 0
\(17\) 1.56023i 0.378410i 0.981938 + 0.189205i \(0.0605911\pi\)
−0.981938 + 0.189205i \(0.939409\pi\)
\(18\) 0 0
\(19\) 7.21013 1.65412 0.827058 0.562116i \(-0.190013\pi\)
0.827058 + 0.562116i \(0.190013\pi\)
\(20\) 0 0
\(21\) 6.43723 + 1.09201i 1.40472 + 0.238297i
\(22\) 0 0
\(23\) 5.35328 3.09072i 1.11624 0.644459i 0.175799 0.984426i \(-0.443749\pi\)
0.940437 + 0.339967i \(0.110416\pi\)
\(24\) 0 0
\(25\) 3.21105 + 3.83264i 0.642210 + 0.766529i
\(26\) 0 0
\(27\) −2.50994 + 4.54975i −0.483039 + 0.875599i
\(28\) 0 0
\(29\) −1.50000 + 2.59808i −0.278543 + 0.482451i −0.971023 0.238987i \(-0.923185\pi\)
0.692480 + 0.721437i \(0.256518\pi\)
\(30\) 0 0
\(31\) −2.89142 5.00809i −0.519315 0.899480i −0.999748 0.0224486i \(-0.992854\pi\)
0.480433 0.877031i \(-0.340480\pi\)
\(32\) 0 0
\(33\) 1.02717 6.05500i 0.178808 1.05404i
\(34\) 0 0
\(35\) 4.83216 + 6.90658i 0.816785 + 1.16743i
\(36\) 0 0
\(37\) 0.851576i 0.139998i 0.997547 + 0.0699991i \(0.0222996\pi\)
−0.997547 + 0.0699991i \(0.977700\pi\)
\(38\) 0 0
\(39\) 1.10858 1.33870i 0.177514 0.214364i
\(40\) 0 0
\(41\) 1.55926 + 2.70072i 0.243516 + 0.421782i 0.961713 0.274058i \(-0.0883659\pi\)
−0.718198 + 0.695839i \(0.755033\pi\)
\(42\) 0 0
\(43\) 2.34403 + 1.35333i 0.357462 + 0.206381i 0.667967 0.744191i \(-0.267165\pi\)
−0.310505 + 0.950572i \(0.600498\pi\)
\(44\) 0 0
\(45\) −6.45722 + 1.81776i −0.962586 + 0.270976i
\(46\) 0 0
\(47\) 8.44260 + 4.87434i 1.23148 + 0.710995i 0.967338 0.253489i \(-0.0815782\pi\)
0.264141 + 0.964484i \(0.414912\pi\)
\(48\) 0 0
\(49\) 3.60506 + 6.24415i 0.515009 + 0.892022i
\(50\) 0 0
\(51\) −0.940739 2.53336i −0.131730 0.354742i
\(52\) 0 0
\(53\) 11.2494i 1.54523i 0.634876 + 0.772614i \(0.281051\pi\)
−0.634876 + 0.772614i \(0.718949\pi\)
\(54\) 0 0
\(55\) 6.49649 4.54524i 0.875986 0.612881i
\(56\) 0 0
\(57\) −11.7072 + 4.34735i −1.55066 + 0.575821i
\(58\) 0 0
\(59\) 4.83216 + 8.36955i 0.629094 + 1.08962i 0.987734 + 0.156147i \(0.0499073\pi\)
−0.358640 + 0.933476i \(0.616759\pi\)
\(60\) 0 0
\(61\) 4.10506 7.11018i 0.525600 0.910365i −0.473956 0.880549i \(-0.657174\pi\)
0.999555 0.0298166i \(-0.00949232\pi\)
\(62\) 0 0
\(63\) −11.1107 + 2.10821i −1.39981 + 0.265609i
\(64\) 0 0
\(65\) 2.23544 0.194727i 0.277272 0.0241529i
\(66\) 0 0
\(67\) 2.52711 1.45903i 0.308736 0.178249i −0.337625 0.941281i \(-0.609624\pi\)
0.646361 + 0.763032i \(0.276290\pi\)
\(68\) 0 0
\(69\) −6.82865 + 8.24621i −0.822073 + 0.992727i
\(70\) 0 0
\(71\) −7.21013 −0.855685 −0.427842 0.903853i \(-0.640726\pi\)
−0.427842 + 0.903853i \(0.640726\pi\)
\(72\) 0 0
\(73\) 16.7817i 1.96415i −0.188498 0.982074i \(-0.560362\pi\)
0.188498 0.982074i \(-0.439638\pi\)
\(74\) 0 0
\(75\) −7.52473 4.28702i −0.868881 0.495022i
\(76\) 0 0
\(77\) 11.5756 6.68319i 1.31916 0.761620i
\(78\) 0 0
\(79\) −5.49649 + 9.52020i −0.618403 + 1.07111i 0.371374 + 0.928483i \(0.378887\pi\)
−0.989777 + 0.142622i \(0.954447\pi\)
\(80\) 0 0
\(81\) 1.33216 8.90086i 0.148018 0.988985i
\(82\) 0 0
\(83\) −8.82952 5.09773i −0.969166 0.559548i −0.0701843 0.997534i \(-0.522359\pi\)
−0.898982 + 0.437986i \(0.855692\pi\)
\(84\) 0 0
\(85\) 1.47561 3.16134i 0.160052 0.342896i
\(86\) 0 0
\(87\) 0.869061 5.12296i 0.0931732 0.549239i
\(88\) 0 0
\(89\) 5.33567 0.565580 0.282790 0.959182i \(-0.408740\pi\)
0.282790 + 0.959182i \(0.408740\pi\)
\(90\) 0 0
\(91\) 3.78285 0.396550
\(92\) 0 0
\(93\) 7.71448 + 6.38833i 0.799954 + 0.662439i
\(94\) 0 0
\(95\) −14.6092 6.81910i −1.49888 0.699625i
\(96\) 0 0
\(97\) 3.34467 + 1.93105i 0.339600 + 0.196068i 0.660095 0.751182i \(-0.270516\pi\)
−0.320495 + 0.947250i \(0.603849\pi\)
\(98\) 0 0
\(99\) 1.98303 + 10.4509i 0.199302 + 1.05036i
\(100\) 0 0
\(101\) −2.37797 + 4.11876i −0.236616 + 0.409832i −0.959741 0.280886i \(-0.909372\pi\)
0.723125 + 0.690717i \(0.242705\pi\)
\(102\) 0 0
\(103\) 15.6656 9.04452i 1.54357 0.891183i 0.544966 0.838458i \(-0.316543\pi\)
0.998609 0.0527251i \(-0.0167907\pi\)
\(104\) 0 0
\(105\) −12.0104 8.30076i −1.17209 0.810072i
\(106\) 0 0
\(107\) 3.61770i 0.349737i 0.984592 + 0.174868i \(0.0559500\pi\)
−0.984592 + 0.174868i \(0.944050\pi\)
\(108\) 0 0
\(109\) 9.63741 0.923096 0.461548 0.887115i \(-0.347294\pi\)
0.461548 + 0.887115i \(0.347294\pi\)
\(110\) 0 0
\(111\) −0.513458 1.38272i −0.0487353 0.131242i
\(112\) 0 0
\(113\) −3.08152 + 1.77912i −0.289885 + 0.167365i −0.637890 0.770127i \(-0.720193\pi\)
0.348005 + 0.937493i \(0.386859\pi\)
\(114\) 0 0
\(115\) −13.7700 + 1.19949i −1.28406 + 0.111853i
\(116\) 0 0
\(117\) −0.992839 + 2.84209i −0.0917880 + 0.262751i
\(118\) 0 0
\(119\) 2.94074 5.09351i 0.269577 0.466921i
\(120\) 0 0
\(121\) −0.786360 1.36201i −0.0714872 0.123820i
\(122\) 0 0
\(123\) −4.16020 3.44504i −0.375112 0.310629i
\(124\) 0 0
\(125\) −2.88148 10.8026i −0.257727 0.966218i
\(126\) 0 0
\(127\) 6.78015i 0.601641i 0.953681 + 0.300820i \(0.0972605\pi\)
−0.953681 + 0.300820i \(0.902739\pi\)
\(128\) 0 0
\(129\) −4.62203 0.784084i −0.406947 0.0690347i
\(130\) 0 0
\(131\) −1.71364 2.96811i −0.149721 0.259325i 0.781403 0.624027i \(-0.214504\pi\)
−0.931124 + 0.364702i \(0.881171\pi\)
\(132\) 0 0
\(133\) −23.5382 13.5898i −2.04102 1.17838i
\(134\) 0 0
\(135\) 9.38867 6.84492i 0.808048 0.589117i
\(136\) 0 0
\(137\) 12.9268 + 7.46330i 1.10441 + 0.637633i 0.937376 0.348318i \(-0.113247\pi\)
0.167036 + 0.985951i \(0.446580\pi\)
\(138\) 0 0
\(139\) 2.71364 + 4.70016i 0.230168 + 0.398663i 0.957857 0.287244i \(-0.0927391\pi\)
−0.727689 + 0.685907i \(0.759406\pi\)
\(140\) 0 0
\(141\) −16.6474 2.82406i −1.40196 0.237829i
\(142\) 0 0
\(143\) 3.55823i 0.297554i
\(144\) 0 0
\(145\) 5.49649 3.84560i 0.456458 0.319359i
\(146\) 0 0
\(147\) −9.61851 7.96505i −0.793322 0.656946i
\(148\) 0 0
\(149\) 2.76939 + 4.79672i 0.226877 + 0.392963i 0.956881 0.290480i \(-0.0938150\pi\)
−0.730004 + 0.683443i \(0.760482\pi\)
\(150\) 0 0
\(151\) 0.108576 0.188059i 0.00883580 0.0153041i −0.861574 0.507633i \(-0.830521\pi\)
0.870409 + 0.492328i \(0.163854\pi\)
\(152\) 0 0
\(153\) 3.05498 + 3.54624i 0.246981 + 0.286696i
\(154\) 0 0
\(155\) 1.12214 + 12.8821i 0.0901328 + 1.03471i
\(156\) 0 0
\(157\) 1.86970 1.07947i 0.149218 0.0861511i −0.423532 0.905881i \(-0.639210\pi\)
0.572750 + 0.819730i \(0.305877\pi\)
\(158\) 0 0
\(159\) −6.78285 18.2659i −0.537915 1.44858i
\(160\) 0 0
\(161\) −23.3017 −1.83643
\(162\) 0 0
\(163\) 8.39084i 0.657221i 0.944465 + 0.328611i \(0.106580\pi\)
−0.944465 + 0.328611i \(0.893420\pi\)
\(164\) 0 0
\(165\) −7.80789 + 11.2972i −0.607843 + 0.879489i
\(166\) 0 0
\(167\) 4.00208 2.31060i 0.309691 0.178800i −0.337097 0.941470i \(-0.609445\pi\)
0.646788 + 0.762670i \(0.276112\pi\)
\(168\) 0 0
\(169\) −5.99649 + 10.3862i −0.461268 + 0.798940i
\(170\) 0 0
\(171\) 16.3879 14.1177i 1.25321 1.07961i
\(172\) 0 0
\(173\) 1.25599 + 0.725146i 0.0954911 + 0.0551318i 0.546985 0.837142i \(-0.315775\pi\)
−0.451494 + 0.892274i \(0.649109\pi\)
\(174\) 0 0
\(175\) −3.25896 18.5643i −0.246354 1.40333i
\(176\) 0 0
\(177\) −12.8925 10.6762i −0.969058 0.802473i
\(178\) 0 0
\(179\) −19.4472 −1.45355 −0.726775 0.686876i \(-0.758982\pi\)
−0.726775 + 0.686876i \(0.758982\pi\)
\(180\) 0 0
\(181\) −10.4273 −0.775054 −0.387527 0.921858i \(-0.626671\pi\)
−0.387527 + 0.921858i \(0.626671\pi\)
\(182\) 0 0
\(183\) −2.37837 + 14.0201i −0.175814 + 1.03639i
\(184\) 0 0
\(185\) 0.805392 1.72547i 0.0592136 0.126859i
\(186\) 0 0
\(187\) −4.79107 2.76613i −0.350358 0.202279i
\(188\) 0 0
\(189\) 16.7694 10.1223i 1.21979 0.736289i
\(190\) 0 0
\(191\) −1.89142 + 3.27604i −0.136859 + 0.237046i −0.926306 0.376772i \(-0.877034\pi\)
0.789447 + 0.613818i \(0.210367\pi\)
\(192\) 0 0
\(193\) 12.1893 7.03751i 0.877407 0.506571i 0.00760445 0.999971i \(-0.497579\pi\)
0.869803 + 0.493400i \(0.164246\pi\)
\(194\) 0 0
\(195\) −3.51231 + 1.66404i −0.251522 + 0.119165i
\(196\) 0 0
\(197\) 21.5044i 1.53212i −0.642768 0.766061i \(-0.722214\pi\)
0.642768 0.766061i \(-0.277786\pi\)
\(198\) 0 0
\(199\) 7.21013 0.511112 0.255556 0.966794i \(-0.417741\pi\)
0.255556 + 0.966794i \(0.417741\pi\)
\(200\) 0 0
\(201\) −3.22359 + 3.89277i −0.227374 + 0.274575i
\(202\) 0 0
\(203\) 9.79379 5.65445i 0.687389 0.396864i
\(204\) 0 0
\(205\) −0.605140 6.94692i −0.0422648 0.485194i
\(206\) 0 0
\(207\) 6.11573 17.5068i 0.425073 1.21681i
\(208\) 0 0
\(209\) −12.7828 + 22.1405i −0.884208 + 1.53149i
\(210\) 0 0
\(211\) 1.89142 + 3.27604i 0.130211 + 0.225532i 0.923758 0.382977i \(-0.125101\pi\)
−0.793547 + 0.608509i \(0.791768\pi\)
\(212\) 0 0
\(213\) 11.7072 4.34735i 0.802164 0.297876i
\(214\) 0 0
\(215\) −3.46957 4.95904i −0.236623 0.338204i
\(216\) 0 0
\(217\) 21.7992i 1.47983i
\(218\) 0 0
\(219\) 10.1185 + 27.2487i 0.683746 + 1.84129i
\(220\) 0 0
\(221\) −0.782848 1.35593i −0.0526600 0.0912099i
\(222\) 0 0
\(223\) −2.52711 1.45903i −0.169228 0.0977038i 0.412994 0.910734i \(-0.364483\pi\)
−0.582222 + 0.813030i \(0.697816\pi\)
\(224\) 0 0
\(225\) 14.8029 + 2.42385i 0.986858 + 0.161590i
\(226\) 0 0
\(227\) 4.43272 + 2.55923i 0.294210 + 0.169862i 0.639839 0.768509i \(-0.279001\pi\)
−0.345629 + 0.938371i \(0.612334\pi\)
\(228\) 0 0
\(229\) −4.71013 8.15818i −0.311254 0.539108i 0.667380 0.744717i \(-0.267416\pi\)
−0.978634 + 0.205609i \(0.934082\pi\)
\(230\) 0 0
\(231\) −14.7659 + 17.8311i −0.971523 + 1.17320i
\(232\) 0 0
\(233\) 26.1850i 1.71544i 0.514118 + 0.857719i \(0.328119\pi\)
−0.514118 + 0.857719i \(0.671881\pi\)
\(234\) 0 0
\(235\) −12.4965 17.8612i −0.815181 1.16513i
\(236\) 0 0
\(237\) 3.18452 18.7722i 0.206857 1.21939i
\(238\) 0 0
\(239\) 11.3780 + 19.7072i 0.735979 + 1.27475i 0.954292 + 0.298875i \(0.0966113\pi\)
−0.218313 + 0.975879i \(0.570055\pi\)
\(240\) 0 0
\(241\) −8.31519 + 14.4023i −0.535629 + 0.927736i 0.463504 + 0.886095i \(0.346592\pi\)
−0.999133 + 0.0416412i \(0.986741\pi\)
\(242\) 0 0
\(243\) 3.20373 + 15.2557i 0.205519 + 0.978653i
\(244\) 0 0
\(245\) −1.39910 16.0615i −0.0893854 1.02613i
\(246\) 0 0
\(247\) −6.26604 + 3.61770i −0.398699 + 0.230189i
\(248\) 0 0
\(249\) 17.4103 + 2.95349i 1.10333 + 0.187170i
\(250\) 0 0
\(251\) 20.7758 1.31136 0.655679 0.755040i \(-0.272382\pi\)
0.655679 + 0.755040i \(0.272382\pi\)
\(252\) 0 0
\(253\) 21.9181i 1.37798i
\(254\) 0 0
\(255\) −0.489835 + 6.02284i −0.0306747 + 0.377165i
\(256\) 0 0
\(257\) −16.5061 + 9.52978i −1.02962 + 0.594451i −0.916876 0.399173i \(-0.869297\pi\)
−0.112744 + 0.993624i \(0.535964\pi\)
\(258\) 0 0
\(259\) 1.60506 2.78005i 0.0997338 0.172744i
\(260\) 0 0
\(261\) 1.67778 + 8.84223i 0.103852 + 0.547320i
\(262\) 0 0
\(263\) 7.04770 + 4.06899i 0.434580 + 0.250905i 0.701296 0.712870i \(-0.252605\pi\)
−0.266716 + 0.963775i \(0.585939\pi\)
\(264\) 0 0
\(265\) 10.6393 22.7937i 0.653569 1.40021i
\(266\) 0 0
\(267\) −8.66362 + 3.21715i −0.530205 + 0.196886i
\(268\) 0 0
\(269\) 25.6374 1.56314 0.781570 0.623817i \(-0.214419\pi\)
0.781570 + 0.623817i \(0.214419\pi\)
\(270\) 0 0
\(271\) 3.21013 0.195001 0.0975007 0.995235i \(-0.468915\pi\)
0.0975007 + 0.995235i \(0.468915\pi\)
\(272\) 0 0
\(273\) −6.14227 + 2.28087i −0.371747 + 0.138045i
\(274\) 0 0
\(275\) −17.4620 + 3.06546i −1.05300 + 0.184854i
\(276\) 0 0
\(277\) 0.605911 + 0.349823i 0.0364057 + 0.0210188i 0.518092 0.855325i \(-0.326642\pi\)
−0.481687 + 0.876343i \(0.659976\pi\)
\(278\) 0 0
\(279\) −16.3780 5.72138i −0.980523 0.342530i
\(280\) 0 0
\(281\) 15.3152 26.5267i 0.913628 1.58245i 0.104730 0.994501i \(-0.466602\pi\)
0.808898 0.587949i \(-0.200064\pi\)
\(282\) 0 0
\(283\) −8.31882 + 4.80287i −0.494502 + 0.285501i −0.726440 0.687229i \(-0.758827\pi\)
0.231938 + 0.972731i \(0.425493\pi\)
\(284\) 0 0
\(285\) 27.8328 + 2.26363i 1.64867 + 0.134086i
\(286\) 0 0
\(287\) 11.7557i 0.693916i
\(288\) 0 0
\(289\) 14.5657 0.856806
\(290\) 0 0
\(291\) −6.59512 1.11880i −0.386613 0.0655851i
\(292\) 0 0
\(293\) 2.60718 1.50526i 0.152313 0.0879381i −0.421906 0.906639i \(-0.638639\pi\)
0.574220 + 0.818701i \(0.305306\pi\)
\(294\) 0 0
\(295\) −1.87533 21.5286i −0.109186 1.25344i
\(296\) 0 0
\(297\) −9.52127 15.7737i −0.552480 0.915281i
\(298\) 0 0
\(299\) −3.10155 + 5.37205i −0.179367 + 0.310673i
\(300\) 0 0
\(301\) −5.10155 8.83615i −0.294049 0.509307i
\(302\) 0 0
\(303\) 1.37773 8.12148i 0.0791487 0.466567i
\(304\) 0 0
\(305\) −15.0423 + 10.5243i −0.861319 + 0.602619i
\(306\) 0 0
\(307\) 14.8671i 0.848512i 0.905542 + 0.424256i \(0.139464\pi\)
−0.905542 + 0.424256i \(0.860536\pi\)
\(308\) 0 0
\(309\) −19.9830 + 24.1313i −1.13679 + 1.37278i
\(310\) 0 0
\(311\) 1.53586 + 2.66018i 0.0870905 + 0.150845i 0.906280 0.422678i \(-0.138910\pi\)
−0.819190 + 0.573523i \(0.805576\pi\)
\(312\) 0 0
\(313\) 19.9303 + 11.5068i 1.12653 + 0.650402i 0.943060 0.332623i \(-0.107934\pi\)
0.183470 + 0.983025i \(0.441267\pi\)
\(314\) 0 0
\(315\) 24.5064 + 6.23641i 1.38078 + 0.351382i
\(316\) 0 0
\(317\) −0.00779729 0.00450177i −0.000437939 0.000252844i 0.499781 0.866152i \(-0.333414\pi\)
−0.500219 + 0.865899i \(0.666747\pi\)
\(318\) 0 0
\(319\) −5.31870 9.21227i −0.297790 0.515788i
\(320\) 0 0
\(321\) −2.18130 5.87412i −0.121748 0.327861i
\(322\) 0 0
\(323\) 11.2494i 0.625935i
\(324\) 0 0
\(325\) −4.71364 1.71965i −0.261466 0.0953889i
\(326\) 0 0
\(327\) −15.6484 + 5.81088i −0.865359 + 0.321342i
\(328\) 0 0
\(329\) −18.3745 31.8255i −1.01302 1.75460i
\(330\) 0 0
\(331\) 4.49649 7.78815i 0.247149 0.428075i −0.715584 0.698526i \(-0.753840\pi\)
0.962734 + 0.270451i \(0.0871728\pi\)
\(332\) 0 0
\(333\) 1.66742 + 1.93555i 0.0913740 + 0.106067i
\(334\) 0 0
\(335\) −6.50036 + 0.566240i −0.355152 + 0.0309370i
\(336\) 0 0
\(337\) −4.55649 + 2.63069i −0.248208 + 0.143303i −0.618943 0.785436i \(-0.712439\pi\)
0.370735 + 0.928739i \(0.379106\pi\)
\(338\) 0 0
\(339\) 3.93079 4.74678i 0.213491 0.257810i
\(340\) 0 0
\(341\) 20.5048 1.11040
\(342\) 0 0
\(343\) 0.792107i 0.0427698i
\(344\) 0 0
\(345\) 21.6353 10.2502i 1.16480 0.551854i
\(346\) 0 0
\(347\) 18.6155 10.7477i 0.999333 0.576965i 0.0912825 0.995825i \(-0.470903\pi\)
0.908051 + 0.418860i \(0.137570\pi\)
\(348\) 0 0
\(349\) −6.28285 + 10.8822i −0.336313 + 0.582511i −0.983736 0.179619i \(-0.942513\pi\)
0.647423 + 0.762131i \(0.275847\pi\)
\(350\) 0 0
\(351\) −0.101552 5.21338i −0.00542046 0.278270i
\(352\) 0 0
\(353\) −21.7048 12.5313i −1.15523 0.666973i −0.205075 0.978746i \(-0.565744\pi\)
−0.950157 + 0.311773i \(0.899077\pi\)
\(354\) 0 0
\(355\) 14.6092 + 6.81910i 0.775378 + 0.361920i
\(356\) 0 0
\(357\) −1.70379 + 10.0435i −0.0901741 + 0.531560i
\(358\) 0 0
\(359\) 23.1961 1.22424 0.612121 0.790764i \(-0.290316\pi\)
0.612121 + 0.790764i \(0.290316\pi\)
\(360\) 0 0
\(361\) 32.9860 1.73610
\(362\) 0 0
\(363\) 2.09805 + 1.73739i 0.110119 + 0.0911892i
\(364\) 0 0
\(365\) −15.8716 + 34.0032i −0.830755 + 1.77981i
\(366\) 0 0
\(367\) 15.4024 + 8.89259i 0.804000 + 0.464190i 0.844868 0.534975i \(-0.179679\pi\)
−0.0408679 + 0.999165i \(0.513012\pi\)
\(368\) 0 0
\(369\) 8.83216 + 3.08537i 0.459784 + 0.160618i
\(370\) 0 0
\(371\) 21.2031 36.7249i 1.10081 1.90666i
\(372\) 0 0
\(373\) −11.1887 + 6.45979i −0.579328 + 0.334475i −0.760866 0.648908i \(-0.775226\pi\)
0.181538 + 0.983384i \(0.441892\pi\)
\(374\) 0 0
\(375\) 11.1922 + 15.8030i 0.577960 + 0.816065i
\(376\) 0 0
\(377\) 3.01052i 0.155050i
\(378\) 0 0
\(379\) −5.56570 −0.285891 −0.142945 0.989731i \(-0.545657\pi\)
−0.142945 + 0.989731i \(0.545657\pi\)
\(380\) 0 0
\(381\) −4.08809 11.0090i −0.209439 0.564010i
\(382\) 0 0
\(383\) −25.7584 + 14.8716i −1.31619 + 0.759905i −0.983114 0.182994i \(-0.941421\pi\)
−0.333080 + 0.942899i \(0.608088\pi\)
\(384\) 0 0
\(385\) −29.7754 + 2.59370i −1.51749 + 0.132187i
\(386\) 0 0
\(387\) 7.97763 1.51373i 0.405526 0.0769471i
\(388\) 0 0
\(389\) −3.77641 + 6.54094i −0.191472 + 0.331639i −0.945738 0.324930i \(-0.894659\pi\)
0.754266 + 0.656568i \(0.227993\pi\)
\(390\) 0 0
\(391\) 4.82222 + 8.35232i 0.243870 + 0.422395i
\(392\) 0 0
\(393\) 4.57209 + 3.78613i 0.230631 + 0.190985i
\(394\) 0 0
\(395\) 20.1409 14.0915i 1.01340 0.709021i
\(396\) 0 0
\(397\) 30.1571i 1.51354i 0.653682 + 0.756770i \(0.273224\pi\)
−0.653682 + 0.756770i \(0.726776\pi\)
\(398\) 0 0
\(399\) 46.4132 + 7.87356i 2.32357 + 0.394171i
\(400\) 0 0
\(401\) 10.8322 + 18.7619i 0.540932 + 0.936922i 0.998851 + 0.0479282i \(0.0152619\pi\)
−0.457918 + 0.888994i \(0.651405\pi\)
\(402\) 0 0
\(403\) 5.02565 + 2.90156i 0.250345 + 0.144537i
\(404\) 0 0
\(405\) −11.1174 + 16.7751i −0.552427 + 0.833561i
\(406\) 0 0
\(407\) −2.61498 1.50976i −0.129620 0.0748360i
\(408\) 0 0
\(409\) −4.06921 7.04807i −0.201209 0.348505i 0.747709 0.664027i \(-0.231154\pi\)
−0.948918 + 0.315522i \(0.897820\pi\)
\(410\) 0 0
\(411\) −25.4895 4.32404i −1.25730 0.213289i
\(412\) 0 0
\(413\) 36.4310i 1.79265i
\(414\) 0 0
\(415\) 13.0692 + 18.6797i 0.641542 + 0.916952i
\(416\) 0 0
\(417\) −7.24014 5.99553i −0.354551 0.293603i
\(418\) 0 0
\(419\) −6.64736 11.5136i −0.324745 0.562474i 0.656716 0.754138i \(-0.271945\pi\)
−0.981461 + 0.191664i \(0.938612\pi\)
\(420\) 0 0
\(421\) −10.0692 + 17.4404i −0.490743 + 0.849992i −0.999943 0.0106561i \(-0.996608\pi\)
0.509200 + 0.860648i \(0.329941\pi\)
\(422\) 0 0
\(423\) 28.7333 5.45205i 1.39706 0.265088i
\(424\) 0 0
\(425\) −5.97979 + 5.00996i −0.290062 + 0.243019i
\(426\) 0 0
\(427\) −26.8028 + 15.4746i −1.29708 + 0.748868i
\(428\) 0 0
\(429\) 2.14544 + 5.77756i 0.103583 + 0.278943i
\(430\) 0 0
\(431\) −25.8027 −1.24287 −0.621437 0.783464i \(-0.713451\pi\)
−0.621437 + 0.783464i \(0.713451\pi\)
\(432\) 0 0
\(433\) 6.38383i 0.306787i 0.988165 + 0.153394i \(0.0490202\pi\)
−0.988165 + 0.153394i \(0.950980\pi\)
\(434\) 0 0
\(435\) −6.60603 + 9.55826i −0.316735 + 0.458284i
\(436\) 0 0
\(437\) 38.5978 22.2845i 1.84638 1.06601i
\(438\) 0 0
\(439\) −5.49649 + 9.52020i −0.262333 + 0.454374i −0.966861 0.255302i \(-0.917825\pi\)
0.704528 + 0.709676i \(0.251159\pi\)
\(440\) 0 0
\(441\) 20.4203 + 7.13349i 0.972393 + 0.339690i
\(442\) 0 0
\(443\) −21.8515 12.6160i −1.03820 0.599404i −0.118876 0.992909i \(-0.537929\pi\)
−0.919322 + 0.393505i \(0.871262\pi\)
\(444\) 0 0
\(445\) −10.8112 5.04630i −0.512500 0.239218i
\(446\) 0 0
\(447\) −7.38889 6.11871i −0.349482 0.289405i
\(448\) 0 0
\(449\) 19.5657 0.923362 0.461681 0.887046i \(-0.347246\pi\)
0.461681 + 0.887046i \(0.347246\pi\)
\(450\) 0 0
\(451\) −11.0577 −0.520685
\(452\) 0 0
\(453\) −0.0629062 + 0.370821i −0.00295559 + 0.0174227i
\(454\) 0 0
\(455\) −7.66484 3.57769i −0.359333 0.167725i
\(456\) 0 0
\(457\) −5.66013 3.26788i −0.264770 0.152865i 0.361739 0.932280i \(-0.382183\pi\)
−0.626508 + 0.779415i \(0.715517\pi\)
\(458\) 0 0
\(459\) −7.09863 3.91608i −0.331336 0.182787i
\(460\) 0 0
\(461\) 17.7101 30.6748i 0.824843 1.42867i −0.0771964 0.997016i \(-0.524597\pi\)
0.902039 0.431654i \(-0.142070\pi\)
\(462\) 0 0
\(463\) −14.0876 + 8.13348i −0.654706 + 0.377995i −0.790257 0.612776i \(-0.790053\pi\)
0.135551 + 0.990770i \(0.456720\pi\)
\(464\) 0 0
\(465\) −9.58929 20.2402i −0.444692 0.938617i
\(466\) 0 0
\(467\) 15.8112i 0.731654i −0.930683 0.365827i \(-0.880786\pi\)
0.930683 0.365827i \(-0.119214\pi\)
\(468\) 0 0
\(469\) −11.0000 −0.507933
\(470\) 0 0
\(471\) −2.38499 + 2.88009i −0.109895 + 0.132707i
\(472\) 0 0
\(473\) −8.31148 + 4.79864i −0.382162 + 0.220642i
\(474\) 0 0
\(475\) 23.1521 + 27.6338i 1.06229 + 1.26793i
\(476\) 0 0
\(477\) 22.0268 + 25.5688i 1.00854 + 1.17072i
\(478\) 0 0
\(479\) 16.3709 28.3553i 0.748007 1.29559i −0.200769 0.979639i \(-0.564344\pi\)
0.948776 0.315948i \(-0.102323\pi\)
\(480\) 0 0
\(481\) −0.427281 0.740072i −0.0194823 0.0337444i
\(482\) 0 0
\(483\) 37.8354 14.0498i 1.72157 0.639288i
\(484\) 0 0
\(485\) −4.95069 7.07598i −0.224799 0.321304i
\(486\) 0 0
\(487\) 36.4220i 1.65044i 0.564814 + 0.825218i \(0.308948\pi\)
−0.564814 + 0.825218i \(0.691052\pi\)
\(488\) 0 0
\(489\) −5.05926 13.6243i −0.228788 0.616114i
\(490\) 0 0
\(491\) −1.71364 2.96811i −0.0773355 0.133949i 0.824764 0.565477i \(-0.191308\pi\)
−0.902100 + 0.431528i \(0.857975\pi\)
\(492\) 0 0
\(493\) −4.05359 2.34034i −0.182564 0.105404i
\(494\) 0 0
\(495\) 5.86611 23.0513i 0.263662 1.03608i
\(496\) 0 0
\(497\) 23.5382 + 13.5898i 1.05583 + 0.609584i
\(498\) 0 0
\(499\) −1.71364 2.96811i −0.0767131 0.132871i 0.825117 0.564962i \(-0.191109\pi\)
−0.901830 + 0.432091i \(0.857776\pi\)
\(500\) 0 0
\(501\) −5.10506 + 6.16482i −0.228077 + 0.275424i
\(502\) 0 0
\(503\) 17.4219i 0.776802i 0.921490 + 0.388401i \(0.126973\pi\)
−0.921490 + 0.388401i \(0.873027\pi\)
\(504\) 0 0
\(505\) 8.71364 6.09647i 0.387752 0.271289i
\(506\) 0 0
\(507\) 3.47421 20.4799i 0.154295 0.909542i
\(508\) 0 0
\(509\) −7.07272 12.2503i −0.313493 0.542985i 0.665623 0.746288i \(-0.268166\pi\)
−0.979116 + 0.203303i \(0.934832\pi\)
\(510\) 0 0
\(511\) −31.6304 + 54.7854i −1.39925 + 2.42356i
\(512\) 0 0
\(513\) −18.0970 + 32.8042i −0.799003 + 1.44834i
\(514\) 0 0
\(515\) −40.2957 + 3.51012i −1.77564 + 0.154675i
\(516\) 0 0
\(517\) −29.9358 + 17.2834i −1.31657 + 0.760125i
\(518\) 0 0
\(519\) −2.47660 0.420131i −0.108710 0.0184417i
\(520\) 0 0
\(521\) −20.2300 −0.886293 −0.443147 0.896449i \(-0.646138\pi\)
−0.443147 + 0.896449i \(0.646138\pi\)
\(522\) 0 0
\(523\) 36.3295i 1.58858i −0.607540 0.794289i \(-0.707844\pi\)
0.607540 0.794289i \(-0.292156\pi\)
\(524\) 0 0
\(525\) 16.4850 + 28.1781i 0.719463 + 1.22979i
\(526\) 0 0
\(527\) 7.81376 4.51127i 0.340373 0.196514i
\(528\) 0 0
\(529\) 7.60506 13.1724i 0.330655 0.572711i
\(530\) 0 0
\(531\) 27.3709 + 9.56160i 1.18780 + 0.414938i
\(532\) 0 0
\(533\) −2.71019 1.56473i −0.117391 0.0677759i
\(534\) 0 0
\(535\) 3.42150 7.33022i 0.147924 0.316913i
\(536\) 0 0
\(537\) 31.5767 11.7257i 1.36263 0.506001i
\(538\) 0 0
\(539\) −25.5657 −1.10119
\(540\) 0 0
\(541\) 24.8475 1.06828 0.534140 0.845396i \(-0.320636\pi\)
0.534140 + 0.845396i \(0.320636\pi\)
\(542\) 0 0
\(543\) 16.9309 6.28713i 0.726576 0.269807i
\(544\) 0 0
\(545\) −19.5274 9.11474i −0.836462 0.390433i
\(546\) 0 0
\(547\) 27.8034 + 16.0523i 1.18879 + 0.686347i 0.958031 0.286665i \(-0.0925466\pi\)
0.230757 + 0.973012i \(0.425880\pi\)
\(548\) 0 0
\(549\) −4.59161 24.1986i −0.195965 1.03277i
\(550\) 0 0
\(551\) −10.8152 + 18.7325i −0.460743 + 0.798030i
\(552\) 0 0
\(553\) 35.8876 20.7197i 1.52610 0.881093i
\(554\) 0 0
\(555\) −0.267354 + 3.28729i −0.0113485 + 0.139538i
\(556\) 0 0
\(557\) 17.3894i 0.736813i 0.929665 + 0.368406i \(0.120096\pi\)
−0.929665 + 0.368406i \(0.879904\pi\)
\(558\) 0 0
\(559\) −2.71615 −0.114881
\(560\) 0 0
\(561\) 9.44717 + 1.60262i 0.398860 + 0.0676628i
\(562\) 0 0
\(563\) −23.6771 + 13.6700i −0.997870 + 0.576120i −0.907617 0.419799i \(-0.862101\pi\)
−0.0902525 + 0.995919i \(0.528767\pi\)
\(564\) 0 0
\(565\) 7.92644 0.690464i 0.333468 0.0290481i
\(566\) 0 0
\(567\) −21.1255 + 26.5468i −0.887186 + 1.11486i
\(568\) 0 0
\(569\) −7.59512 + 13.1551i −0.318404 + 0.551492i −0.980155 0.198232i \(-0.936480\pi\)
0.661751 + 0.749723i \(0.269813\pi\)
\(570\) 0 0
\(571\) −19.3510 33.5170i −0.809816 1.40264i −0.912991 0.407980i \(-0.866233\pi\)
0.103175 0.994663i \(-0.467100\pi\)
\(572\) 0 0
\(573\) 1.09584 6.45979i 0.0457795 0.269862i
\(574\) 0 0
\(575\) 29.0353 + 10.5928i 1.21085 + 0.441748i
\(576\) 0 0
\(577\) 3.82910i 0.159408i −0.996819 0.0797038i \(-0.974603\pi\)
0.996819 0.0797038i \(-0.0253974\pi\)
\(578\) 0 0
\(579\) −15.5487 + 18.7765i −0.646183 + 0.780324i
\(580\) 0 0
\(581\) 19.2166 + 33.2841i 0.797237 + 1.38086i
\(582\) 0 0
\(583\) −34.5442 19.9441i −1.43068 0.826001i
\(584\) 0 0
\(585\) 4.69966 4.81968i 0.194307 0.199269i
\(586\) 0 0
\(587\) 21.3772 + 12.3421i 0.882332 + 0.509415i 0.871427 0.490526i \(-0.163195\pi\)
0.0109053 + 0.999941i \(0.496529\pi\)
\(588\) 0 0
\(589\) −20.8475 36.1090i −0.859008 1.48785i
\(590\) 0 0
\(591\) 12.9661 + 34.9169i 0.533352 + 1.43629i
\(592\) 0 0
\(593\) 38.4290i 1.57809i −0.614336 0.789044i \(-0.710576\pi\)
0.614336 0.789044i \(-0.289424\pi\)
\(594\) 0 0
\(595\) −10.7758 + 7.53926i −0.441766 + 0.309080i
\(596\) 0 0
\(597\) −11.7072 + 4.34735i −0.479144 + 0.177925i
\(598\) 0 0
\(599\) −7.71364 13.3604i −0.315171 0.545892i 0.664303 0.747463i \(-0.268728\pi\)
−0.979474 + 0.201572i \(0.935395\pi\)
\(600\) 0 0
\(601\) 0.286360 0.495989i 0.0116809 0.0202318i −0.860126 0.510082i \(-0.829615\pi\)
0.871807 + 0.489850i \(0.162948\pi\)
\(602\) 0 0
\(603\) 2.88704 8.26441i 0.117569 0.336553i
\(604\) 0 0
\(605\) 0.305181 + 3.50344i 0.0124074 + 0.142435i
\(606\) 0 0
\(607\) 7.84448 4.52901i 0.318398 0.183827i −0.332280 0.943181i \(-0.607818\pi\)
0.650678 + 0.759354i \(0.274485\pi\)
\(608\) 0 0
\(609\) −12.4930 + 15.0864i −0.506241 + 0.611331i
\(610\) 0 0
\(611\) −9.78285 −0.395772
\(612\) 0 0
\(613\) 6.99155i 0.282386i −0.989982 0.141193i \(-0.954906\pi\)
0.989982 0.141193i \(-0.0450938\pi\)
\(614\) 0 0
\(615\) 5.17122 + 10.9150i 0.208524 + 0.440133i
\(616\) 0 0
\(617\) 17.1769 9.91710i 0.691517 0.399247i −0.112663 0.993633i \(-0.535938\pi\)
0.804180 + 0.594386i \(0.202605\pi\)
\(618\) 0 0
\(619\) 14.1016 24.4246i 0.566789 0.981708i −0.430092 0.902785i \(-0.641519\pi\)
0.996881 0.0789225i \(-0.0251480\pi\)
\(620\) 0 0
\(621\) 0.625546 + 32.1136i 0.0251023 + 1.28867i
\(622\) 0 0
\(623\) −17.4188 10.0568i −0.697871 0.402916i
\(624\) 0 0
\(625\) −4.37830 + 24.6136i −0.175132 + 0.984545i
\(626\) 0 0
\(627\) 7.40605 43.6574i 0.295769 1.74351i
\(628\) 0 0
\(629\) −1.32865 −0.0529768
\(630\) 0 0
\(631\) 7.27482 0.289606 0.144803 0.989461i \(-0.453745\pi\)
0.144803 + 0.989461i \(0.453745\pi\)
\(632\) 0 0
\(633\) −5.04642 4.17892i −0.200577 0.166097i
\(634\) 0 0
\(635\) 6.41244 13.7380i 0.254470 0.545176i
\(636\) 0 0
\(637\) −6.26604 3.61770i −0.248270 0.143339i
\(638\) 0 0
\(639\) −16.3879 + 14.1177i −0.648296 + 0.558488i
\(640\) 0 0
\(641\) −6.43372 + 11.1435i −0.254116 + 0.440143i −0.964655 0.263515i \(-0.915118\pi\)
0.710539 + 0.703658i \(0.248451\pi\)
\(642\) 0 0
\(643\) 21.8515 12.6160i 0.861741 0.497526i −0.00285403 0.999996i \(-0.500908\pi\)
0.864595 + 0.502470i \(0.167575\pi\)
\(644\) 0 0
\(645\) 8.62365 + 5.96008i 0.339556 + 0.234678i
\(646\) 0 0
\(647\) 23.5618i 0.926311i −0.886277 0.463156i \(-0.846717\pi\)
0.886277 0.463156i \(-0.153283\pi\)
\(648\) 0 0
\(649\) −34.2678 −1.34513
\(650\) 0 0
\(651\) −13.1438 35.3957i −0.515148 1.38727i
\(652\) 0 0
\(653\) 15.0519 8.69020i 0.589025 0.340074i −0.175687 0.984446i \(-0.556215\pi\)
0.764712 + 0.644372i \(0.222881\pi\)
\(654\) 0 0
\(655\) 0.665053 + 7.63472i 0.0259858 + 0.298313i
\(656\) 0 0
\(657\) −32.8592 38.1431i −1.28196 1.48810i
\(658\) 0 0
\(659\) 7.83216 13.5657i 0.305098 0.528445i −0.672185 0.740383i \(-0.734644\pi\)
0.977283 + 0.211938i \(0.0679775\pi\)
\(660\) 0 0
\(661\) −11.7136 20.2886i −0.455608 0.789136i 0.543115 0.839658i \(-0.317245\pi\)
−0.998723 + 0.0505224i \(0.983911\pi\)
\(662\) 0 0
\(663\) 2.08868 + 1.72963i 0.0811177 + 0.0671732i
\(664\) 0 0
\(665\) 34.8405 + 49.7973i 1.35106 + 1.93106i
\(666\) 0 0
\(667\) 18.5443i 0.718038i
\(668\) 0 0
\(669\) 4.98303 + 0.845323i 0.192655 + 0.0326821i
\(670\) 0 0
\(671\) 14.5557 + 25.2113i 0.561918 + 0.973271i
\(672\) 0 0
\(673\) 24.8816 + 14.3654i 0.959114 + 0.553745i 0.895900 0.444255i \(-0.146532\pi\)
0.0632136 + 0.998000i \(0.479865\pi\)
\(674\) 0 0
\(675\) −25.4971 + 4.98975i −0.981384 + 0.192055i
\(676\) 0 0
\(677\) −43.6079 25.1770i −1.67599 0.967632i −0.964177 0.265260i \(-0.914542\pi\)
−0.711810 0.702372i \(-0.752124\pi\)
\(678\) 0 0
\(679\) −7.27934 12.6082i −0.279355 0.483858i
\(680\) 0 0
\(681\) −8.74056 1.48275i −0.334939 0.0568192i
\(682\) 0 0
\(683\) 11.5953i 0.443681i 0.975083 + 0.221841i \(0.0712065\pi\)
−0.975083 + 0.221841i \(0.928794\pi\)
\(684\) 0 0
\(685\) −19.1339 27.3480i −0.731069 1.04491i
\(686\) 0 0
\(687\) 12.5669 + 10.4066i 0.479457 + 0.397036i
\(688\) 0 0
\(689\) −5.64443 9.77644i −0.215036 0.372453i
\(690\) 0 0
\(691\) 22.9238 39.7051i 0.872061 1.51045i 0.0122006 0.999926i \(-0.496116\pi\)
0.859861 0.510529i \(-0.170550\pi\)
\(692\) 0 0
\(693\) 13.2243 37.8557i 0.502350 1.43802i
\(694\) 0 0
\(695\) −1.05315 12.0900i −0.0399482 0.458599i
\(696\) 0 0
\(697\) −4.21373 + 2.43280i −0.159606 + 0.0921489i
\(698\) 0 0
\(699\) −15.7883 42.5170i −0.597167 1.60814i
\(700\) 0 0
\(701\) −38.1115 −1.43945 −0.719726 0.694259i \(-0.755732\pi\)
−0.719726 + 0.694259i \(0.755732\pi\)
\(702\) 0 0
\(703\) 6.13997i 0.231573i
\(704\) 0 0
\(705\) 31.0601 + 21.4667i 1.16979 + 0.808481i
\(706\) 0 0
\(707\) 15.5262 8.96406i 0.583923 0.337128i
\(708\) 0 0
\(709\) −1.14443 + 1.98222i −0.0429801 + 0.0744437i −0.886715 0.462316i \(-0.847019\pi\)
0.843735 + 0.536760i \(0.180352\pi\)
\(710\) 0 0
\(711\) 6.14794 + 32.4008i 0.230566 + 1.21513i
\(712\) 0 0
\(713\) −30.9572 17.8731i −1.15936 0.669355i
\(714\) 0 0
\(715\) −3.36526 + 7.20973i −0.125854 + 0.269629i
\(716\) 0 0
\(717\) −30.3570 25.1386i −1.13370 0.938816i
\(718\) 0 0
\(719\) −16.6035 −0.619205 −0.309602 0.950866i \(-0.600196\pi\)
−0.309602 + 0.950866i \(0.600196\pi\)
\(720\) 0 0
\(721\) −68.1891 −2.53949
\(722\) 0 0
\(723\) 4.81761 28.3989i 0.179169 1.05617i
\(724\) 0 0
\(725\) −14.7741 + 2.59359i −0.548695 + 0.0963236i
\(726\) 0 0
\(727\) −33.4350 19.3037i −1.24003 0.715934i −0.270933 0.962598i \(-0.587332\pi\)
−0.969101 + 0.246664i \(0.920666\pi\)
\(728\) 0 0
\(729\) −14.4004 22.8392i −0.533347 0.845897i
\(730\) 0 0
\(731\) −2.11150 + 3.65722i −0.0780966 + 0.135267i
\(732\) 0 0
\(733\) −29.3584 + 16.9501i −1.08438 + 0.626066i −0.932074 0.362267i \(-0.882003\pi\)
−0.152305 + 0.988334i \(0.548669\pi\)
\(734\) 0 0
\(735\) 11.9560 + 25.2357i 0.441005 + 0.930834i
\(736\) 0 0
\(737\) 10.3469i 0.381131i
\(738\) 0 0
\(739\) −36.8405 −1.35520 −0.677600 0.735431i \(-0.736980\pi\)
−0.677600 + 0.735431i \(0.736980\pi\)
\(740\) 0 0
\(741\) 7.99298 9.65223i 0.293629 0.354584i
\(742\) 0 0
\(743\) 9.89680 5.71392i 0.363078 0.209623i −0.307352 0.951596i \(-0.599443\pi\)
0.670430 + 0.741973i \(0.266110\pi\)
\(744\) 0 0
\(745\) −1.07478 12.3384i −0.0393770 0.452043i
\(746\) 0 0
\(747\) −30.0502 + 5.70192i −1.09948 + 0.208622i
\(748\) 0 0
\(749\) 6.81870 11.8103i 0.249150 0.431541i
\(750\) 0 0
\(751\) −8.10155 14.0323i −0.295630 0.512046i 0.679501 0.733674i \(-0.262196\pi\)
−0.975131 + 0.221628i \(0.928863\pi\)
\(752\) 0 0
\(753\) −33.7340 + 12.5268i −1.22934 + 0.456502i
\(754\) 0 0
\(755\) −0.397858 + 0.278360i −0.0144795 + 0.0101306i
\(756\) 0 0
\(757\) 8.08698i 0.293926i 0.989142 + 0.146963i \(0.0469499\pi\)
−0.989142 + 0.146963i \(0.953050\pi\)
\(758\) 0 0
\(759\) −13.2156 35.5888i −0.479694 1.29179i
\(760\) 0 0
\(761\) −10.7031 18.5383i −0.387987 0.672014i 0.604191 0.796839i \(-0.293496\pi\)
−0.992179 + 0.124826i \(0.960163\pi\)
\(762\) 0 0
\(763\) −31.4623 18.1647i −1.13901 0.657608i
\(764\) 0 0
\(765\) −2.83612 10.0747i −0.102540 0.364252i
\(766\) 0 0
\(767\) −8.39889 4.84910i −0.303266 0.175091i
\(768\) 0 0
\(769\) 25.7031 + 44.5191i 0.926878 + 1.60540i 0.788513 + 0.615018i \(0.210851\pi\)
0.138364 + 0.990381i \(0.455815\pi\)
\(770\) 0 0
\(771\) 21.0552 25.4260i 0.758283 0.915695i
\(772\) 0 0
\(773\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(774\) 0 0
\(775\) 9.90972 27.1630i 0.355968 0.975725i
\(776\) 0 0
\(777\) −0.929933 + 5.48179i −0.0333612 + 0.196658i
\(778\) 0 0
\(779\) 11.2425 + 19.4725i 0.402803 + 0.697676i
\(780\) 0 0
\(781\) 12.7828 22.1405i 0.457406 0.792251i
\(782\) 0 0
\(783\) −8.05567 13.3456i −0.287886 0.476934i
\(784\) 0 0
\(785\) −4.80933 + 0.418936i −0.171652 + 0.0149525i
\(786\) 0 0
\(787\) 4.08216 2.35683i 0.145513 0.0840121i −0.425476 0.904970i \(-0.639893\pi\)
0.570989 + 0.820958i \(0.306560\pi\)
\(788\) 0 0
\(789\) −13.8969 2.35747i −0.494741 0.0839281i
\(790\) 0 0
\(791\) 13.4132 0.476920
\(792\) 0 0
\(793\) 8.23891i 0.292572i
\(794\) 0 0
\(795\) −3.53177 + 43.4255i −0.125259 + 1.54014i
\(796\) 0 0
\(797\) −8.88882 + 5.13196i −0.314858 + 0.181784i −0.649098 0.760704i \(-0.724854\pi\)
0.334240 + 0.942488i \(0.391520\pi\)
\(798\) 0 0
\(799\) −7.60506 + 13.1724i −0.269048 + 0.466005i
\(800\) 0 0
\(801\) 12.1275 10.4475i 0.428503 0.369143i
\(802\) 0 0
\(803\) 51.5324 + 29.7523i 1.81854 + 1.04993i
\(804\) 0 0
\(805\) 47.2142 + 22.0380i 1.66408 + 0.776737i
\(806\) 0 0
\(807\) −41.6278 + 15.4581i −1.46537 + 0.544150i
\(808\) 0 0
\(809\) −21.9860 −0.772985 −0.386492 0.922293i \(-0.626313\pi\)
−0.386492 + 0.922293i \(0.626313\pi\)
\(810\) 0 0
\(811\) 25.6951 0.902276 0.451138 0.892454i \(-0.351018\pi\)
0.451138 + 0.892454i \(0.351018\pi\)
\(812\) 0 0
\(813\) −5.21233 + 1.93555i −0.182805 + 0.0678826i
\(814\) 0 0
\(815\) 7.93578 17.0016i 0.277978 0.595540i
\(816\) 0 0
\(817\) 16.9008 + 9.75767i 0.591284 + 0.341378i
\(818\) 0 0
\(819\) 8.59804 7.40697i 0.300440 0.258820i
\(820\) 0 0
\(821\) −12.1967 + 21.1253i −0.425667 + 0.737276i −0.996482 0.0838018i \(-0.973294\pi\)
0.570816 + 0.821078i \(0.306627\pi\)
\(822\) 0 0
\(823\) −2.26396 + 1.30710i −0.0789167 + 0.0455626i −0.538939 0.842345i \(-0.681175\pi\)
0.460022 + 0.887907i \(0.347841\pi\)
\(824\) 0 0
\(825\) 26.5050 15.5061i 0.922785 0.539854i
\(826\) 0 0
\(827\) 0.0684725i 0.00238102i −0.999999 0.00119051i \(-0.999621\pi\)
0.999999 0.00119051i \(-0.000378951\pi\)
\(828\) 0 0
\(829\) 24.7828 0.860744 0.430372 0.902652i \(-0.358382\pi\)
0.430372 + 0.902652i \(0.358382\pi\)
\(830\) 0 0
\(831\) −1.19475 0.202679i −0.0414455 0.00703084i
\(832\) 0 0
\(833\) −9.74229 + 5.62471i −0.337550 + 0.194885i
\(834\) 0 0
\(835\) −10.2944 + 0.896731i −0.356251 + 0.0310327i
\(836\) 0 0
\(837\) 30.0429 0.585210i 1.03843 0.0202278i
\(838\) 0 0
\(839\) −22.6204 + 39.1797i −0.780944 + 1.35264i 0.150448 + 0.988618i \(0.451928\pi\)
−0.931392 + 0.364017i \(0.881405\pi\)
\(840\) 0 0
\(841\) 10.0000 + 17.3205i 0.344828 + 0.597259i
\(842\) 0 0
\(843\) −8.87323 + 52.3061i −0.305610 + 1.80152i
\(844\) 0 0
\(845\) 21.9731 15.3734i 0.755897 0.528861i
\(846\) 0 0
\(847\) 5.92857i 0.203708i
\(848\) 0 0
\(849\) 10.6115 12.8143i 0.364186 0.439787i
\(850\) 0 0
\(851\) 2.63198 + 4.55872i 0.0902231 + 0.156271i
\(852\) 0 0
\(853\) 17.5067 + 10.1075i 0.599418 + 0.346074i 0.768813 0.639474i \(-0.220848\pi\)
−0.169395 + 0.985548i \(0.554181\pi\)
\(854\) 0 0
\(855\) −46.5574 + 13.1063i −1.59223 + 0.448226i
\(856\) 0 0
\(857\) 23.2464 + 13.4213i 0.794083 + 0.458464i 0.841398 0.540416i \(-0.181733\pi\)
−0.0473147 + 0.998880i \(0.515066\pi\)
\(858\) 0 0
\(859\) −1.68130 2.91209i −0.0573651 0.0993592i 0.835917 0.548856i \(-0.184937\pi\)
−0.893282 + 0.449497i \(0.851603\pi\)
\(860\) 0 0
\(861\) 7.08809 + 19.0879i 0.241562 + 0.650513i
\(862\) 0 0
\(863\) 18.4524i 0.628126i −0.949402 0.314063i \(-0.898310\pi\)
0.949402 0.314063i \(-0.101690\pi\)
\(864\) 0 0
\(865\) −1.85908 2.65717i −0.0632106 0.0903465i
\(866\) 0 0
\(867\) −23.6505 + 8.78239i −0.803214 + 0.298266i
\(868\) 0 0
\(869\) −19.4895 33.7567i −0.661135 1.14512i
\(870\) 0 0
\(871\) −1.46414 + 2.53597i −0.0496106 + 0.0859281i
\(872\) 0 0
\(873\) 11.3832 2.15992i 0.385262 0.0731022i
\(874\) 0 0
\(875\) −10.9541 + 40.6973i −0.370317 + 1.37582i
\(876\) 0 0
\(877\) 20.0905 11.5993i 0.678408 0.391679i −0.120847 0.992671i \(-0.538561\pi\)
0.799255 + 0.600992i \(0.205228\pi\)
\(878\) 0 0
\(879\) −3.32573 + 4.01611i −0.112174 + 0.135460i
\(880\) 0 0
\(881\) 2.34854 0.0791244 0.0395622 0.999217i \(-0.487404\pi\)
0.0395622 + 0.999217i \(0.487404\pi\)
\(882\) 0 0
\(883\) 16.3264i 0.549428i −0.961526 0.274714i \(-0.911417\pi\)
0.961526 0.274714i \(-0.0885832\pi\)
\(884\) 0 0
\(885\) 16.0257 + 33.8255i 0.538697 + 1.13703i
\(886\) 0 0
\(887\) 23.2464 13.4213i 0.780539 0.450645i −0.0560821 0.998426i \(-0.517861\pi\)
0.836621 + 0.547782i \(0.184528\pi\)
\(888\) 0 0
\(889\) 12.7793 22.1345i 0.428605 0.742366i
\(890\) 0 0
\(891\) 24.9706 + 19.8711i 0.836546 + 0.665707i
\(892\) 0 0
\(893\) 60.8722 + 35.1446i 2.03701 + 1.17607i
\(894\) 0 0
\(895\) 39.4041 + 18.3925i 1.31713 + 0.614793i
\(896\) 0 0
\(897\) 1.79696 10.5928i 0.0599987 0.353682i
\(898\) 0 0
\(899\) 17.3485 0.578606
\(900\) 0 0
\(901\) −17.5516 −0.584730
\(902\) 0 0
\(903\) 13.6112 + 11.2714i 0.452953 + 0.375089i
\(904\) 0 0
\(905\) 21.1279 + 9.86177i 0.702314 + 0.327816i
\(906\) 0 0
\(907\) −6.79188 3.92130i −0.225521 0.130204i 0.382983 0.923755i \(-0.374897\pi\)
−0.608504 + 0.793551i \(0.708230\pi\)
\(908\) 0 0
\(909\) 2.65981 + 14.0177i 0.0882203 + 0.464937i
\(910\) 0 0
\(911\) 1.28636 2.22804i 0.0426190 0.0738183i −0.843929 0.536455i \(-0.819763\pi\)
0.886548 + 0.462637i \(0.153097\pi\)
\(912\) 0 0
\(913\) 31.3078 18.0755i 1.03614 0.598213i
\(914\) 0 0
\(915\) 18.0788 26.1582i 0.597666 0.864763i
\(916\) 0 0
\(917\) 12.9196i 0.426642i
\(918\) 0 0
\(919\) 42.4062 1.39885 0.699426 0.714705i \(-0.253439\pi\)
0.699426 + 0.714705i \(0.253439\pi\)
\(920\) 0 0
\(921\) −8.96414 24.1400i −0.295379 0.795440i
\(922\) 0 0
\(923\) 6.26604 3.61770i 0.206249 0.119078i
\(924\) 0 0
\(925\) −3.26379 + 2.73445i −0.107313 + 0.0899083i
\(926\) 0 0
\(927\) 17.8968 51.2311i 0.587807 1.68265i
\(928\) 0 0
\(929\) 25.9167 44.8891i 0.850301 1.47276i −0.0306361 0.999531i \(-0.509753\pi\)
0.880937 0.473234i \(-0.156913\pi\)
\(930\) 0 0
\(931\) 25.9930 + 45.0212i 0.851885 + 1.47551i
\(932\) 0 0
\(933\) −4.09775 3.39333i −0.134154 0.111093i
\(934\) 0 0
\(935\) 7.09161 + 10.1360i 0.231920 + 0.331482i
\(936\) 0 0
\(937\) 16.9666i 0.554275i 0.960830 + 0.277137i \(0.0893857\pi\)
−0.960830 + 0.277137i \(0.910614\pi\)
\(938\) 0 0
\(939\) −39.2992 6.66674i −1.28248 0.217561i
\(940\) 0 0
\(941\) −2.82865 4.89937i −0.0922114 0.159715i 0.816230 0.577727i \(-0.196060\pi\)
−0.908441 + 0.418012i \(0.862727\pi\)
\(942\) 0 0
\(943\) 16.6943 + 9.63847i 0.543642 + 0.313872i
\(944\) 0 0
\(945\) −43.5516 + 4.64998i −1.41673 + 0.151264i
\(946\) 0 0
\(947\) −30.6452 17.6930i −0.995834 0.574945i −0.0888210 0.996048i \(-0.528310\pi\)
−0.907013 + 0.421103i \(0.861643\pi\)
\(948\) 0 0
\(949\) 8.42026 + 14.5843i 0.273333 + 0.473427i
\(950\) 0 0
\(951\) 0.0153749 + 0.00260821i 0.000498566 + 8.45770e-5i
\(952\) 0 0
\(953\) 1.66116i 0.0538101i −0.999638 0.0269051i \(-0.991435\pi\)
0.999638 0.0269051i \(-0.00856518\pi\)
\(954\) 0 0
\(955\) 6.93079 4.84910i 0.224275 0.156913i
\(956\) 0 0
\(957\) 14.1906 + 11.7512i 0.458717 + 0.379862i
\(958\) 0 0
\(959\) −28.1339 48.7293i −0.908491 1.57355i
\(960\) 0 0
\(961\) −1.22066 + 2.11425i −0.0393763 + 0.0682017i
\(962\) 0 0
\(963\) 7.08360 + 8.22268i 0.228266 + 0.264972i
\(964\) 0 0
\(965\) −31.3540 + 2.73122i −1.00932 + 0.0879209i
\(966\) 0 0
\(967\) 17.9581 10.3681i 0.577494 0.333416i −0.182643 0.983179i \(-0.558465\pi\)
0.760137 + 0.649763i \(0.225132\pi\)
\(968\) 0 0
\(969\) −6.78285 18.2659i −0.217896 0.586784i
\(970\) 0 0
\(971\) −20.9193 −0.671331 −0.335665 0.941981i \(-0.608961\pi\)
−0.335665 + 0.941981i \(0.608961\pi\)
\(972\) 0 0
\(973\) 20.4589i 0.655881i
\(974\) 0 0
\(975\) 8.69047 0.0498732i 0.278318 0.00159722i
\(976\) 0 0
\(977\) −2.50418 + 1.44579i −0.0801159 + 0.0462549i −0.539523 0.841971i \(-0.681395\pi\)
0.459407 + 0.888226i \(0.348062\pi\)
\(978\) 0 0
\(979\) −9.45963 + 16.3846i −0.302331 + 0.523653i
\(980\) 0 0
\(981\) 21.9049 18.8704i 0.699369 0.602486i
\(982\) 0 0
\(983\) 5.45628 + 3.15019i 0.174028 + 0.100475i 0.584484 0.811405i \(-0.301297\pi\)
−0.410456 + 0.911881i \(0.634630\pi\)
\(984\) 0 0
\(985\) −20.3381 + 43.5723i −0.648026 + 1.38833i
\(986\) 0 0
\(987\) 49.0241 + 40.5966i 1.56045 + 1.29221i
\(988\) 0 0
\(989\) 16.7310 0.532016
\(990\) 0 0
\(991\) 32.0000 1.01651 0.508257 0.861206i \(-0.330290\pi\)
0.508257 + 0.861206i \(0.330290\pi\)
\(992\) 0 0
\(993\) −2.60515 + 15.3569i −0.0826719 + 0.487336i
\(994\) 0 0
\(995\) −14.6092 6.81910i −0.463144 0.216180i
\(996\) 0 0
\(997\) 8.29589 + 4.78963i 0.262733 + 0.151689i 0.625581 0.780159i \(-0.284862\pi\)
−0.362847 + 0.931849i \(0.618195\pi\)
\(998\) 0 0
\(999\) −3.87445 2.13741i −0.122582 0.0676246i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 720.2.by.e.529.1 12
3.2 odd 2 2160.2.by.e.289.6 12
4.3 odd 2 180.2.r.a.169.6 yes 12
5.4 even 2 inner 720.2.by.e.529.6 12
9.4 even 3 inner 720.2.by.e.49.6 12
9.5 odd 6 2160.2.by.e.1009.4 12
12.11 even 2 540.2.r.a.289.6 12
15.14 odd 2 2160.2.by.e.289.4 12
20.3 even 4 900.2.i.f.601.4 12
20.7 even 4 900.2.i.f.601.3 12
20.19 odd 2 180.2.r.a.169.1 yes 12
36.7 odd 6 1620.2.d.c.649.5 6
36.11 even 6 1620.2.d.d.649.2 6
36.23 even 6 540.2.r.a.469.4 12
36.31 odd 6 180.2.r.a.49.1 12
45.4 even 6 inner 720.2.by.e.49.1 12
45.14 odd 6 2160.2.by.e.1009.6 12
60.23 odd 4 2700.2.i.f.1801.6 12
60.47 odd 4 2700.2.i.f.1801.1 12
60.59 even 2 540.2.r.a.289.4 12
180.7 even 12 8100.2.a.bc.1.6 6
180.23 odd 12 2700.2.i.f.901.6 12
180.43 even 12 8100.2.a.bc.1.1 6
180.47 odd 12 8100.2.a.bd.1.6 6
180.59 even 6 540.2.r.a.469.6 12
180.67 even 12 900.2.i.f.301.3 12
180.79 odd 6 1620.2.d.c.649.6 6
180.83 odd 12 8100.2.a.bd.1.1 6
180.103 even 12 900.2.i.f.301.4 12
180.119 even 6 1620.2.d.d.649.1 6
180.139 odd 6 180.2.r.a.49.6 yes 12
180.167 odd 12 2700.2.i.f.901.1 12
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
180.2.r.a.49.1 12 36.31 odd 6
180.2.r.a.49.6 yes 12 180.139 odd 6
180.2.r.a.169.1 yes 12 20.19 odd 2
180.2.r.a.169.6 yes 12 4.3 odd 2
540.2.r.a.289.4 12 60.59 even 2
540.2.r.a.289.6 12 12.11 even 2
540.2.r.a.469.4 12 36.23 even 6
540.2.r.a.469.6 12 180.59 even 6
720.2.by.e.49.1 12 45.4 even 6 inner
720.2.by.e.49.6 12 9.4 even 3 inner
720.2.by.e.529.1 12 1.1 even 1 trivial
720.2.by.e.529.6 12 5.4 even 2 inner
900.2.i.f.301.3 12 180.67 even 12
900.2.i.f.301.4 12 180.103 even 12
900.2.i.f.601.3 12 20.7 even 4
900.2.i.f.601.4 12 20.3 even 4
1620.2.d.c.649.5 6 36.7 odd 6
1620.2.d.c.649.6 6 180.79 odd 6
1620.2.d.d.649.1 6 180.119 even 6
1620.2.d.d.649.2 6 36.11 even 6
2160.2.by.e.289.4 12 15.14 odd 2
2160.2.by.e.289.6 12 3.2 odd 2
2160.2.by.e.1009.4 12 9.5 odd 6
2160.2.by.e.1009.6 12 45.14 odd 6
2700.2.i.f.901.1 12 180.167 odd 12
2700.2.i.f.901.6 12 180.23 odd 12
2700.2.i.f.1801.1 12 60.47 odd 4
2700.2.i.f.1801.6 12 60.23 odd 4
8100.2.a.bc.1.1 6 180.43 even 12
8100.2.a.bc.1.6 6 180.7 even 12
8100.2.a.bd.1.1 6 180.83 odd 12
8100.2.a.bd.1.6 6 180.47 odd 12