Properties

Label 900.2.i.f.301.4
Level $900$
Weight $2$
Character 900.301
Analytic conductor $7.187$
Analytic rank $0$
Dimension $12$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [900,2,Mod(301,900)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(900, base_ring=CyclotomicField(6))
 
chi = DirichletCharacter(H, H._module([0, 2, 0]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("900.301");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 900 = 2^{2} \cdot 3^{2} \cdot 5^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 900.i (of order \(3\), degree \(2\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(7.18653618192\)
Analytic rank: \(0\)
Dimension: \(12\)
Relative dimension: \(6\) over \(\Q(\zeta_{3})\)
Coefficient field: \(\mathbb{Q}[x]/(x^{12} + \cdots)\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{12} + 4x^{10} + 10x^{8} + 6x^{6} + 90x^{4} + 324x^{2} + 729 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{13}]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 180)
Sato-Tate group: $\mathrm{SU}(2)[C_{3}]$

Embedding invariants

Embedding label 301.4
Root \(0.602950 - 1.62372i\) of defining polynomial
Character \(\chi\) \(=\) 900.301
Dual form 900.2.i.f.601.4

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(0.602950 - 1.62372i) q^{3} +(1.88482 + 3.26460i) q^{7} +(-2.27290 - 1.95804i) q^{9} +(1.77290 + 3.07076i) q^{11} +(-0.501753 + 0.869061i) q^{13} +1.56023 q^{17} +7.21013 q^{19} +(6.43723 - 1.09201i) q^{21} +(-3.09072 + 5.35328i) q^{23} +(-4.54975 + 2.50994i) q^{27} +(1.50000 + 2.59808i) q^{29} +(2.89142 - 5.00809i) q^{31} +(6.05500 - 1.02717i) q^{33} +0.851576 q^{37} +(1.10858 + 1.33870i) q^{39} +(1.55926 - 2.70072i) q^{41} +(1.35333 + 2.34403i) q^{43} +(-4.87434 - 8.44260i) q^{47} +(-3.60506 + 6.24415i) q^{49} +(0.940739 - 2.53336i) q^{51} -11.2494 q^{53} +(4.34735 - 11.7072i) q^{57} +(4.83216 - 8.36955i) q^{59} +(4.10506 + 7.11018i) q^{61} +(2.10821 - 11.1107i) q^{63} +(1.45903 - 2.52711i) q^{67} +(6.82865 + 8.24621i) q^{69} +7.21013 q^{71} +16.7817 q^{73} +(-6.68319 + 11.5756i) q^{77} +(-5.49649 - 9.52020i) q^{79} +(1.33216 + 8.90086i) q^{81} +(-5.09773 - 8.82952i) q^{83} +(5.12296 - 0.869061i) q^{87} -5.33567 q^{89} -3.78285 q^{91} +(-6.38833 - 7.71448i) q^{93} +(1.93105 + 3.34467i) q^{97} +(1.98303 - 10.4509i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 12 q - 8 q^{9} + 2 q^{11} + 10 q^{21} + 18 q^{29} + 6 q^{31} + 42 q^{39} + 14 q^{41} + 16 q^{51} + 34 q^{59} + 6 q^{61} - 14 q^{69} + 6 q^{79} - 8 q^{81} - 112 q^{89} + 12 q^{91} - 82 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/900\mathbb{Z}\right)^\times\).

\(n\) \(101\) \(451\) \(577\)
\(\chi(n)\) \(e\left(\frac{1}{3}\right)\) \(1\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 0.602950 1.62372i 0.348114 0.937452i
\(4\) 0 0
\(5\) 0 0
\(6\) 0 0
\(7\) 1.88482 + 3.26460i 0.712394 + 1.23390i 0.963956 + 0.266061i \(0.0857222\pi\)
−0.251563 + 0.967841i \(0.580944\pi\)
\(8\) 0 0
\(9\) −2.27290 1.95804i −0.757634 0.652680i
\(10\) 0 0
\(11\) 1.77290 + 3.07076i 0.534550 + 0.925868i 0.999185 + 0.0403654i \(0.0128522\pi\)
−0.464635 + 0.885502i \(0.653814\pi\)
\(12\) 0 0
\(13\) −0.501753 + 0.869061i −0.139161 + 0.241034i −0.927179 0.374618i \(-0.877774\pi\)
0.788018 + 0.615652i \(0.211107\pi\)
\(14\) 0 0
\(15\) 0 0
\(16\) 0 0
\(17\) 1.56023 0.378410 0.189205 0.981938i \(-0.439409\pi\)
0.189205 + 0.981938i \(0.439409\pi\)
\(18\) 0 0
\(19\) 7.21013 1.65412 0.827058 0.562116i \(-0.190013\pi\)
0.827058 + 0.562116i \(0.190013\pi\)
\(20\) 0 0
\(21\) 6.43723 1.09201i 1.40472 0.238297i
\(22\) 0 0
\(23\) −3.09072 + 5.35328i −0.644459 + 1.11624i 0.339967 + 0.940437i \(0.389584\pi\)
−0.984426 + 0.175799i \(0.943749\pi\)
\(24\) 0 0
\(25\) 0 0
\(26\) 0 0
\(27\) −4.54975 + 2.50994i −0.875599 + 0.483039i
\(28\) 0 0
\(29\) 1.50000 + 2.59808i 0.278543 + 0.482451i 0.971023 0.238987i \(-0.0768152\pi\)
−0.692480 + 0.721437i \(0.743482\pi\)
\(30\) 0 0
\(31\) 2.89142 5.00809i 0.519315 0.899480i −0.480433 0.877031i \(-0.659520\pi\)
0.999748 0.0224486i \(-0.00714621\pi\)
\(32\) 0 0
\(33\) 6.05500 1.02717i 1.05404 0.178808i
\(34\) 0 0
\(35\) 0 0
\(36\) 0 0
\(37\) 0.851576 0.139998 0.0699991 0.997547i \(-0.477700\pi\)
0.0699991 + 0.997547i \(0.477700\pi\)
\(38\) 0 0
\(39\) 1.10858 + 1.33870i 0.177514 + 0.214364i
\(40\) 0 0
\(41\) 1.55926 2.70072i 0.243516 0.421782i −0.718198 0.695839i \(-0.755033\pi\)
0.961713 + 0.274058i \(0.0883659\pi\)
\(42\) 0 0
\(43\) 1.35333 + 2.34403i 0.206381 + 0.357462i 0.950572 0.310505i \(-0.100498\pi\)
−0.744191 + 0.667967i \(0.767165\pi\)
\(44\) 0 0
\(45\) 0 0
\(46\) 0 0
\(47\) −4.87434 8.44260i −0.710995 1.23148i −0.964484 0.264141i \(-0.914912\pi\)
0.253489 0.967338i \(-0.418422\pi\)
\(48\) 0 0
\(49\) −3.60506 + 6.24415i −0.515009 + 0.892022i
\(50\) 0 0
\(51\) 0.940739 2.53336i 0.131730 0.354742i
\(52\) 0 0
\(53\) −11.2494 −1.54523 −0.772614 0.634876i \(-0.781051\pi\)
−0.772614 + 0.634876i \(0.781051\pi\)
\(54\) 0 0
\(55\) 0 0
\(56\) 0 0
\(57\) 4.34735 11.7072i 0.575821 1.55066i
\(58\) 0 0
\(59\) 4.83216 8.36955i 0.629094 1.08962i −0.358640 0.933476i \(-0.616759\pi\)
0.987734 0.156147i \(-0.0499073\pi\)
\(60\) 0 0
\(61\) 4.10506 + 7.11018i 0.525600 + 0.910365i 0.999555 + 0.0298166i \(0.00949232\pi\)
−0.473956 + 0.880549i \(0.657174\pi\)
\(62\) 0 0
\(63\) 2.10821 11.1107i 0.265609 1.39981i
\(64\) 0 0
\(65\) 0 0
\(66\) 0 0
\(67\) 1.45903 2.52711i 0.178249 0.308736i −0.763032 0.646361i \(-0.776290\pi\)
0.941281 + 0.337625i \(0.109624\pi\)
\(68\) 0 0
\(69\) 6.82865 + 8.24621i 0.822073 + 0.992727i
\(70\) 0 0
\(71\) 7.21013 0.855685 0.427842 0.903853i \(-0.359274\pi\)
0.427842 + 0.903853i \(0.359274\pi\)
\(72\) 0 0
\(73\) 16.7817 1.96415 0.982074 0.188498i \(-0.0603618\pi\)
0.982074 + 0.188498i \(0.0603618\pi\)
\(74\) 0 0
\(75\) 0 0
\(76\) 0 0
\(77\) −6.68319 + 11.5756i −0.761620 + 1.31916i
\(78\) 0 0
\(79\) −5.49649 9.52020i −0.618403 1.07111i −0.989777 0.142622i \(-0.954447\pi\)
0.371374 0.928483i \(-0.378887\pi\)
\(80\) 0 0
\(81\) 1.33216 + 8.90086i 0.148018 + 0.988985i
\(82\) 0 0
\(83\) −5.09773 8.82952i −0.559548 0.969166i −0.997534 0.0701843i \(-0.977641\pi\)
0.437986 0.898982i \(-0.355692\pi\)
\(84\) 0 0
\(85\) 0 0
\(86\) 0 0
\(87\) 5.12296 0.869061i 0.549239 0.0931732i
\(88\) 0 0
\(89\) −5.33567 −0.565580 −0.282790 0.959182i \(-0.591260\pi\)
−0.282790 + 0.959182i \(0.591260\pi\)
\(90\) 0 0
\(91\) −3.78285 −0.396550
\(92\) 0 0
\(93\) −6.38833 7.71448i −0.662439 0.799954i
\(94\) 0 0
\(95\) 0 0
\(96\) 0 0
\(97\) 1.93105 + 3.34467i 0.196068 + 0.339600i 0.947250 0.320495i \(-0.103849\pi\)
−0.751182 + 0.660095i \(0.770516\pi\)
\(98\) 0 0
\(99\) 1.98303 10.4509i 0.199302 1.05036i
\(100\) 0 0
\(101\) −2.37797 4.11876i −0.236616 0.409832i 0.723125 0.690717i \(-0.242705\pi\)
−0.959741 + 0.280886i \(0.909372\pi\)
\(102\) 0 0
\(103\) −9.04452 + 15.6656i −0.891183 + 1.54357i −0.0527251 + 0.998609i \(0.516791\pi\)
−0.838458 + 0.544966i \(0.816543\pi\)
\(104\) 0 0
\(105\) 0 0
\(106\) 0 0
\(107\) −3.61770 −0.349737 −0.174868 0.984592i \(-0.555950\pi\)
−0.174868 + 0.984592i \(0.555950\pi\)
\(108\) 0 0
\(109\) −9.63741 −0.923096 −0.461548 0.887115i \(-0.652706\pi\)
−0.461548 + 0.887115i \(0.652706\pi\)
\(110\) 0 0
\(111\) 0.513458 1.38272i 0.0487353 0.131242i
\(112\) 0 0
\(113\) −1.77912 + 3.08152i −0.167365 + 0.289885i −0.937493 0.348005i \(-0.886859\pi\)
0.770127 + 0.637890i \(0.220193\pi\)
\(114\) 0 0
\(115\) 0 0
\(116\) 0 0
\(117\) 2.84209 0.992839i 0.262751 0.0917880i
\(118\) 0 0
\(119\) 2.94074 + 5.09351i 0.269577 + 0.466921i
\(120\) 0 0
\(121\) −0.786360 + 1.36201i −0.0714872 + 0.123820i
\(122\) 0 0
\(123\) −3.44504 4.16020i −0.310629 0.375112i
\(124\) 0 0
\(125\) 0 0
\(126\) 0 0
\(127\) −6.78015 −0.601641 −0.300820 0.953681i \(-0.597261\pi\)
−0.300820 + 0.953681i \(0.597261\pi\)
\(128\) 0 0
\(129\) 4.62203 0.784084i 0.406947 0.0690347i
\(130\) 0 0
\(131\) 1.71364 2.96811i 0.149721 0.259325i −0.781403 0.624027i \(-0.785496\pi\)
0.931124 + 0.364702i \(0.118829\pi\)
\(132\) 0 0
\(133\) 13.5898 + 23.5382i 1.17838 + 2.04102i
\(134\) 0 0
\(135\) 0 0
\(136\) 0 0
\(137\) 7.46330 + 12.9268i 0.637633 + 1.10441i 0.985951 + 0.167036i \(0.0534196\pi\)
−0.348318 + 0.937376i \(0.613247\pi\)
\(138\) 0 0
\(139\) 2.71364 4.70016i 0.230168 0.398663i −0.727689 0.685907i \(-0.759406\pi\)
0.957857 + 0.287244i \(0.0927391\pi\)
\(140\) 0 0
\(141\) −16.6474 + 2.82406i −1.40196 + 0.237829i
\(142\) 0 0
\(143\) −3.55823 −0.297554
\(144\) 0 0
\(145\) 0 0
\(146\) 0 0
\(147\) 7.96505 + 9.61851i 0.656946 + 0.793322i
\(148\) 0 0
\(149\) −2.76939 + 4.79672i −0.226877 + 0.392963i −0.956881 0.290480i \(-0.906185\pi\)
0.730004 + 0.683443i \(0.239518\pi\)
\(150\) 0 0
\(151\) −0.108576 0.188059i −0.00883580 0.0153041i 0.861574 0.507633i \(-0.169479\pi\)
−0.870409 + 0.492328i \(0.836146\pi\)
\(152\) 0 0
\(153\) −3.54624 3.05498i −0.286696 0.246981i
\(154\) 0 0
\(155\) 0 0
\(156\) 0 0
\(157\) −1.07947 + 1.86970i −0.0861511 + 0.149218i −0.905881 0.423532i \(-0.860790\pi\)
0.819730 + 0.572750i \(0.194123\pi\)
\(158\) 0 0
\(159\) −6.78285 + 18.2659i −0.537915 + 1.44858i
\(160\) 0 0
\(161\) −23.3017 −1.83643
\(162\) 0 0
\(163\) 8.39084 0.657221 0.328611 0.944465i \(-0.393420\pi\)
0.328611 + 0.944465i \(0.393420\pi\)
\(164\) 0 0
\(165\) 0 0
\(166\) 0 0
\(167\) 2.31060 4.00208i 0.178800 0.309691i −0.762670 0.646788i \(-0.776112\pi\)
0.941470 + 0.337097i \(0.109445\pi\)
\(168\) 0 0
\(169\) 5.99649 + 10.3862i 0.461268 + 0.798940i
\(170\) 0 0
\(171\) −16.3879 14.1177i −1.25321 1.07961i
\(172\) 0 0
\(173\) −0.725146 1.25599i −0.0551318 0.0954911i 0.837142 0.546985i \(-0.184225\pi\)
−0.892274 + 0.451494i \(0.850891\pi\)
\(174\) 0 0
\(175\) 0 0
\(176\) 0 0
\(177\) −10.6762 12.8925i −0.802473 0.969058i
\(178\) 0 0
\(179\) −19.4472 −1.45355 −0.726775 0.686876i \(-0.758982\pi\)
−0.726775 + 0.686876i \(0.758982\pi\)
\(180\) 0 0
\(181\) −10.4273 −0.775054 −0.387527 0.921858i \(-0.626671\pi\)
−0.387527 + 0.921858i \(0.626671\pi\)
\(182\) 0 0
\(183\) 14.0201 2.37837i 1.03639 0.175814i
\(184\) 0 0
\(185\) 0 0
\(186\) 0 0
\(187\) 2.76613 + 4.79107i 0.202279 + 0.350358i
\(188\) 0 0
\(189\) −16.7694 10.1223i −1.21979 0.736289i
\(190\) 0 0
\(191\) 1.89142 + 3.27604i 0.136859 + 0.237046i 0.926306 0.376772i \(-0.122966\pi\)
−0.789447 + 0.613818i \(0.789633\pi\)
\(192\) 0 0
\(193\) 7.03751 12.1893i 0.506571 0.877407i −0.493400 0.869803i \(-0.664246\pi\)
0.999971 0.00760445i \(-0.00242060\pi\)
\(194\) 0 0
\(195\) 0 0
\(196\) 0 0
\(197\) −21.5044 −1.53212 −0.766061 0.642768i \(-0.777786\pi\)
−0.766061 + 0.642768i \(0.777786\pi\)
\(198\) 0 0
\(199\) 7.21013 0.511112 0.255556 0.966794i \(-0.417741\pi\)
0.255556 + 0.966794i \(0.417741\pi\)
\(200\) 0 0
\(201\) −3.22359 3.89277i −0.227374 0.274575i
\(202\) 0 0
\(203\) −5.65445 + 9.79379i −0.396864 + 0.687389i
\(204\) 0 0
\(205\) 0 0
\(206\) 0 0
\(207\) 17.5068 6.11573i 1.21681 0.425073i
\(208\) 0 0
\(209\) 12.7828 + 22.1405i 0.884208 + 1.53149i
\(210\) 0 0
\(211\) −1.89142 + 3.27604i −0.130211 + 0.225532i −0.923758 0.382977i \(-0.874899\pi\)
0.793547 + 0.608509i \(0.208232\pi\)
\(212\) 0 0
\(213\) 4.34735 11.7072i 0.297876 0.802164i
\(214\) 0 0
\(215\) 0 0
\(216\) 0 0
\(217\) 21.7992 1.47983
\(218\) 0 0
\(219\) 10.1185 27.2487i 0.683746 1.84129i
\(220\) 0 0
\(221\) −0.782848 + 1.35593i −0.0526600 + 0.0912099i
\(222\) 0 0
\(223\) −1.45903 2.52711i −0.0977038 0.169228i 0.813030 0.582222i \(-0.197816\pi\)
−0.910734 + 0.412994i \(0.864483\pi\)
\(224\) 0 0
\(225\) 0 0
\(226\) 0 0
\(227\) −2.55923 4.43272i −0.169862 0.294210i 0.768509 0.639839i \(-0.220999\pi\)
−0.938371 + 0.345629i \(0.887666\pi\)
\(228\) 0 0
\(229\) 4.71013 8.15818i 0.311254 0.539108i −0.667380 0.744717i \(-0.732584\pi\)
0.978634 + 0.205609i \(0.0659177\pi\)
\(230\) 0 0
\(231\) 14.7659 + 17.8311i 0.971523 + 1.17320i
\(232\) 0 0
\(233\) −26.1850 −1.71544 −0.857719 0.514118i \(-0.828119\pi\)
−0.857719 + 0.514118i \(0.828119\pi\)
\(234\) 0 0
\(235\) 0 0
\(236\) 0 0
\(237\) −18.7722 + 3.18452i −1.21939 + 0.206857i
\(238\) 0 0
\(239\) 11.3780 19.7072i 0.735979 1.27475i −0.218313 0.975879i \(-0.570055\pi\)
0.954292 0.298875i \(-0.0966113\pi\)
\(240\) 0 0
\(241\) −8.31519 14.4023i −0.535629 0.927736i −0.999133 0.0416412i \(-0.986741\pi\)
0.463504 0.886095i \(-0.346592\pi\)
\(242\) 0 0
\(243\) 15.2557 + 3.20373i 0.978653 + 0.205519i
\(244\) 0 0
\(245\) 0 0
\(246\) 0 0
\(247\) −3.61770 + 6.26604i −0.230189 + 0.398699i
\(248\) 0 0
\(249\) −17.4103 + 2.95349i −1.10333 + 0.187170i
\(250\) 0 0
\(251\) −20.7758 −1.31136 −0.655679 0.755040i \(-0.727618\pi\)
−0.655679 + 0.755040i \(0.727618\pi\)
\(252\) 0 0
\(253\) −21.9181 −1.37798
\(254\) 0 0
\(255\) 0 0
\(256\) 0 0
\(257\) 9.52978 16.5061i 0.594451 1.02962i −0.399173 0.916876i \(-0.630703\pi\)
0.993624 0.112744i \(-0.0359641\pi\)
\(258\) 0 0
\(259\) 1.60506 + 2.78005i 0.0997338 + 0.172744i
\(260\) 0 0
\(261\) 1.67778 8.84223i 0.103852 0.547320i
\(262\) 0 0
\(263\) 4.06899 + 7.04770i 0.250905 + 0.434580i 0.963775 0.266716i \(-0.0859386\pi\)
−0.712870 + 0.701296i \(0.752605\pi\)
\(264\) 0 0
\(265\) 0 0
\(266\) 0 0
\(267\) −3.21715 + 8.66362i −0.196886 + 0.530205i
\(268\) 0 0
\(269\) −25.6374 −1.56314 −0.781570 0.623817i \(-0.785581\pi\)
−0.781570 + 0.623817i \(0.785581\pi\)
\(270\) 0 0
\(271\) −3.21013 −0.195001 −0.0975007 0.995235i \(-0.531085\pi\)
−0.0975007 + 0.995235i \(0.531085\pi\)
\(272\) 0 0
\(273\) −2.28087 + 6.14227i −0.138045 + 0.371747i
\(274\) 0 0
\(275\) 0 0
\(276\) 0 0
\(277\) 0.349823 + 0.605911i 0.0210188 + 0.0364057i 0.876343 0.481687i \(-0.159976\pi\)
−0.855325 + 0.518092i \(0.826642\pi\)
\(278\) 0 0
\(279\) −16.3780 + 5.72138i −0.980523 + 0.342530i
\(280\) 0 0
\(281\) 15.3152 + 26.5267i 0.913628 + 1.58245i 0.808898 + 0.587949i \(0.200064\pi\)
0.104730 + 0.994501i \(0.466602\pi\)
\(282\) 0 0
\(283\) 4.80287 8.31882i 0.285501 0.494502i −0.687229 0.726440i \(-0.741173\pi\)
0.972731 + 0.231938i \(0.0745066\pi\)
\(284\) 0 0
\(285\) 0 0
\(286\) 0 0
\(287\) 11.7557 0.693916
\(288\) 0 0
\(289\) −14.5657 −0.856806
\(290\) 0 0
\(291\) 6.59512 1.11880i 0.386613 0.0655851i
\(292\) 0 0
\(293\) 1.50526 2.60718i 0.0879381 0.152313i −0.818701 0.574220i \(-0.805306\pi\)
0.906639 + 0.421906i \(0.138639\pi\)
\(294\) 0 0
\(295\) 0 0
\(296\) 0 0
\(297\) −15.7737 9.52127i −0.915281 0.552480i
\(298\) 0 0
\(299\) −3.10155 5.37205i −0.179367 0.310673i
\(300\) 0 0
\(301\) −5.10155 + 8.83615i −0.294049 + 0.509307i
\(302\) 0 0
\(303\) −8.12148 + 1.37773i −0.466567 + 0.0791487i
\(304\) 0 0
\(305\) 0 0
\(306\) 0 0
\(307\) −14.8671 −0.848512 −0.424256 0.905542i \(-0.639464\pi\)
−0.424256 + 0.905542i \(0.639464\pi\)
\(308\) 0 0
\(309\) 19.9830 + 24.1313i 1.13679 + 1.37278i
\(310\) 0 0
\(311\) −1.53586 + 2.66018i −0.0870905 + 0.150845i −0.906280 0.422678i \(-0.861090\pi\)
0.819190 + 0.573523i \(0.194424\pi\)
\(312\) 0 0
\(313\) −11.5068 19.9303i −0.650402 1.12653i −0.983025 0.183470i \(-0.941267\pi\)
0.332623 0.943060i \(-0.392066\pi\)
\(314\) 0 0
\(315\) 0 0
\(316\) 0 0
\(317\) −0.00450177 0.00779729i −0.000252844 0.000437939i 0.865899 0.500219i \(-0.166747\pi\)
−0.866152 + 0.499781i \(0.833414\pi\)
\(318\) 0 0
\(319\) −5.31870 + 9.21227i −0.297790 + 0.515788i
\(320\) 0 0
\(321\) −2.18130 + 5.87412i −0.121748 + 0.327861i
\(322\) 0 0
\(323\) 11.2494 0.625935
\(324\) 0 0
\(325\) 0 0
\(326\) 0 0
\(327\) −5.81088 + 15.6484i −0.321342 + 0.865359i
\(328\) 0 0
\(329\) 18.3745 31.8255i 1.01302 1.75460i
\(330\) 0 0
\(331\) −4.49649 7.78815i −0.247149 0.428075i 0.715584 0.698526i \(-0.246160\pi\)
−0.962734 + 0.270451i \(0.912827\pi\)
\(332\) 0 0
\(333\) −1.93555 1.66742i −0.106067 0.0913740i
\(334\) 0 0
\(335\) 0 0
\(336\) 0 0
\(337\) 2.63069 4.55649i 0.143303 0.248208i −0.785436 0.618943i \(-0.787561\pi\)
0.928739 + 0.370735i \(0.120894\pi\)
\(338\) 0 0
\(339\) 3.93079 + 4.74678i 0.213491 + 0.257810i
\(340\) 0 0
\(341\) 20.5048 1.11040
\(342\) 0 0
\(343\) −0.792107 −0.0427698
\(344\) 0 0
\(345\) 0 0
\(346\) 0 0
\(347\) 10.7477 18.6155i 0.576965 0.999333i −0.418860 0.908051i \(-0.637570\pi\)
0.995825 0.0912825i \(-0.0290966\pi\)
\(348\) 0 0
\(349\) 6.28285 + 10.8822i 0.336313 + 0.582511i 0.983736 0.179619i \(-0.0574866\pi\)
−0.647423 + 0.762131i \(0.724153\pi\)
\(350\) 0 0
\(351\) 0.101552 5.21338i 0.00542046 0.278270i
\(352\) 0 0
\(353\) 12.5313 + 21.7048i 0.666973 + 1.15523i 0.978746 + 0.205075i \(0.0657439\pi\)
−0.311773 + 0.950157i \(0.600923\pi\)
\(354\) 0 0
\(355\) 0 0
\(356\) 0 0
\(357\) 10.0435 1.70379i 0.531560 0.0901741i
\(358\) 0 0
\(359\) 23.1961 1.22424 0.612121 0.790764i \(-0.290316\pi\)
0.612121 + 0.790764i \(0.290316\pi\)
\(360\) 0 0
\(361\) 32.9860 1.73610
\(362\) 0 0
\(363\) 1.73739 + 2.09805i 0.0911892 + 0.110119i
\(364\) 0 0
\(365\) 0 0
\(366\) 0 0
\(367\) −8.89259 15.4024i −0.464190 0.804000i 0.534975 0.844868i \(-0.320321\pi\)
−0.999165 + 0.0408679i \(0.986988\pi\)
\(368\) 0 0
\(369\) −8.83216 + 3.08537i −0.459784 + 0.160618i
\(370\) 0 0
\(371\) −21.2031 36.7249i −1.10081 1.90666i
\(372\) 0 0
\(373\) −6.45979 + 11.1887i −0.334475 + 0.579328i −0.983384 0.181538i \(-0.941892\pi\)
0.648908 + 0.760866i \(0.275226\pi\)
\(374\) 0 0
\(375\) 0 0
\(376\) 0 0
\(377\) −3.01052 −0.155050
\(378\) 0 0
\(379\) −5.56570 −0.285891 −0.142945 0.989731i \(-0.545657\pi\)
−0.142945 + 0.989731i \(0.545657\pi\)
\(380\) 0 0
\(381\) −4.08809 + 11.0090i −0.209439 + 0.564010i
\(382\) 0 0
\(383\) 14.8716 25.7584i 0.759905 1.31619i −0.182994 0.983114i \(-0.558579\pi\)
0.942899 0.333080i \(-0.108088\pi\)
\(384\) 0 0
\(385\) 0 0
\(386\) 0 0
\(387\) 1.51373 7.97763i 0.0769471 0.405526i
\(388\) 0 0
\(389\) 3.77641 + 6.54094i 0.191472 + 0.331639i 0.945738 0.324930i \(-0.105341\pi\)
−0.754266 + 0.656568i \(0.772007\pi\)
\(390\) 0 0
\(391\) −4.82222 + 8.35232i −0.243870 + 0.422395i
\(392\) 0 0
\(393\) −3.78613 4.57209i −0.190985 0.230631i
\(394\) 0 0
\(395\) 0 0
\(396\) 0 0
\(397\) 30.1571 1.51354 0.756770 0.653682i \(-0.226776\pi\)
0.756770 + 0.653682i \(0.226776\pi\)
\(398\) 0 0
\(399\) 46.4132 7.87356i 2.32357 0.394171i
\(400\) 0 0
\(401\) 10.8322 18.7619i 0.540932 0.936922i −0.457918 0.888994i \(-0.651405\pi\)
0.998851 0.0479282i \(-0.0152619\pi\)
\(402\) 0 0
\(403\) 2.90156 + 5.02565i 0.144537 + 0.250345i
\(404\) 0 0
\(405\) 0 0
\(406\) 0 0
\(407\) 1.50976 + 2.61498i 0.0748360 + 0.129620i
\(408\) 0 0
\(409\) 4.06921 7.04807i 0.201209 0.348505i −0.747709 0.664027i \(-0.768846\pi\)
0.948918 + 0.315522i \(0.102180\pi\)
\(410\) 0 0
\(411\) 25.4895 4.32404i 1.25730 0.213289i
\(412\) 0 0
\(413\) 36.4310 1.79265
\(414\) 0 0
\(415\) 0 0
\(416\) 0 0
\(417\) −5.99553 7.24014i −0.293603 0.354551i
\(418\) 0 0
\(419\) −6.64736 + 11.5136i −0.324745 + 0.562474i −0.981461 0.191664i \(-0.938612\pi\)
0.656716 + 0.754138i \(0.271945\pi\)
\(420\) 0 0
\(421\) −10.0692 17.4404i −0.490743 0.849992i 0.509200 0.860648i \(-0.329941\pi\)
−0.999943 + 0.0106561i \(0.996608\pi\)
\(422\) 0 0
\(423\) −5.45205 + 28.7333i −0.265088 + 1.39706i
\(424\) 0 0
\(425\) 0 0
\(426\) 0 0
\(427\) −15.4746 + 26.8028i −0.748868 + 1.29708i
\(428\) 0 0
\(429\) −2.14544 + 5.77756i −0.103583 + 0.278943i
\(430\) 0 0
\(431\) 25.8027 1.24287 0.621437 0.783464i \(-0.286549\pi\)
0.621437 + 0.783464i \(0.286549\pi\)
\(432\) 0 0
\(433\) −6.38383 −0.306787 −0.153394 0.988165i \(-0.549020\pi\)
−0.153394 + 0.988165i \(0.549020\pi\)
\(434\) 0 0
\(435\) 0 0
\(436\) 0 0
\(437\) −22.2845 + 38.5978i −1.06601 + 1.84638i
\(438\) 0 0
\(439\) −5.49649 9.52020i −0.262333 0.454374i 0.704528 0.709676i \(-0.251159\pi\)
−0.966861 + 0.255302i \(0.917825\pi\)
\(440\) 0 0
\(441\) 20.4203 7.13349i 0.972393 0.339690i
\(442\) 0 0
\(443\) −12.6160 21.8515i −0.599404 1.03820i −0.992909 0.118876i \(-0.962071\pi\)
0.393505 0.919322i \(-0.371262\pi\)
\(444\) 0 0
\(445\) 0 0
\(446\) 0 0
\(447\) 6.11871 + 7.38889i 0.289405 + 0.349482i
\(448\) 0 0
\(449\) −19.5657 −0.923362 −0.461681 0.887046i \(-0.652754\pi\)
−0.461681 + 0.887046i \(0.652754\pi\)
\(450\) 0 0
\(451\) 11.0577 0.520685
\(452\) 0 0
\(453\) −0.370821 + 0.0629062i −0.0174227 + 0.00295559i
\(454\) 0 0
\(455\) 0 0
\(456\) 0 0
\(457\) −3.26788 5.66013i −0.152865 0.264770i 0.779415 0.626508i \(-0.215517\pi\)
−0.932280 + 0.361739i \(0.882183\pi\)
\(458\) 0 0
\(459\) −7.09863 + 3.91608i −0.331336 + 0.182787i
\(460\) 0 0
\(461\) 17.7101 + 30.6748i 0.824843 + 1.42867i 0.902039 + 0.431654i \(0.142070\pi\)
−0.0771964 + 0.997016i \(0.524597\pi\)
\(462\) 0 0
\(463\) 8.13348 14.0876i 0.377995 0.654706i −0.612776 0.790257i \(-0.709947\pi\)
0.990770 + 0.135551i \(0.0432804\pi\)
\(464\) 0 0
\(465\) 0 0
\(466\) 0 0
\(467\) 15.8112 0.731654 0.365827 0.930683i \(-0.380786\pi\)
0.365827 + 0.930683i \(0.380786\pi\)
\(468\) 0 0
\(469\) 11.0000 0.507933
\(470\) 0 0
\(471\) 2.38499 + 2.88009i 0.109895 + 0.132707i
\(472\) 0 0
\(473\) −4.79864 + 8.31148i −0.220642 + 0.382162i
\(474\) 0 0
\(475\) 0 0
\(476\) 0 0
\(477\) 25.5688 + 22.0268i 1.17072 + 1.00854i
\(478\) 0 0
\(479\) 16.3709 + 28.3553i 0.748007 + 1.29559i 0.948776 + 0.315948i \(0.102323\pi\)
−0.200769 + 0.979639i \(0.564344\pi\)
\(480\) 0 0
\(481\) −0.427281 + 0.740072i −0.0194823 + 0.0337444i
\(482\) 0 0
\(483\) −14.0498 + 37.8354i −0.639288 + 1.72157i
\(484\) 0 0
\(485\) 0 0
\(486\) 0 0
\(487\) −36.4220 −1.65044 −0.825218 0.564814i \(-0.808948\pi\)
−0.825218 + 0.564814i \(0.808948\pi\)
\(488\) 0 0
\(489\) 5.05926 13.6243i 0.228788 0.616114i
\(490\) 0 0
\(491\) 1.71364 2.96811i 0.0773355 0.133949i −0.824764 0.565477i \(-0.808692\pi\)
0.902100 + 0.431528i \(0.142025\pi\)
\(492\) 0 0
\(493\) 2.34034 + 4.05359i 0.105404 + 0.182564i
\(494\) 0 0
\(495\) 0 0
\(496\) 0 0
\(497\) 13.5898 + 23.5382i 0.609584 + 1.05583i
\(498\) 0 0
\(499\) −1.71364 + 2.96811i −0.0767131 + 0.132871i −0.901830 0.432091i \(-0.857776\pi\)
0.825117 + 0.564962i \(0.191109\pi\)
\(500\) 0 0
\(501\) −5.10506 6.16482i −0.228077 0.275424i
\(502\) 0 0
\(503\) 17.4219 0.776802 0.388401 0.921490i \(-0.373027\pi\)
0.388401 + 0.921490i \(0.373027\pi\)
\(504\) 0 0
\(505\) 0 0
\(506\) 0 0
\(507\) 20.4799 3.47421i 0.909542 0.154295i
\(508\) 0 0
\(509\) 7.07272 12.2503i 0.313493 0.542985i −0.665623 0.746288i \(-0.731834\pi\)
0.979116 + 0.203303i \(0.0651675\pi\)
\(510\) 0 0
\(511\) 31.6304 + 54.7854i 1.39925 + 2.42356i
\(512\) 0 0
\(513\) −32.8042 + 18.0970i −1.44834 + 0.799003i
\(514\) 0 0
\(515\) 0 0
\(516\) 0 0
\(517\) 17.2834 29.9358i 0.760125 1.31657i
\(518\) 0 0
\(519\) −2.47660 + 0.420131i −0.108710 + 0.0184417i
\(520\) 0 0
\(521\) −20.2300 −0.886293 −0.443147 0.896449i \(-0.646138\pi\)
−0.443147 + 0.896449i \(0.646138\pi\)
\(522\) 0 0
\(523\) −36.3295 −1.58858 −0.794289 0.607540i \(-0.792156\pi\)
−0.794289 + 0.607540i \(0.792156\pi\)
\(524\) 0 0
\(525\) 0 0
\(526\) 0 0
\(527\) 4.51127 7.81376i 0.196514 0.340373i
\(528\) 0 0
\(529\) −7.60506 13.1724i −0.330655 0.572711i
\(530\) 0 0
\(531\) −27.3709 + 9.56160i −1.18780 + 0.414938i
\(532\) 0 0
\(533\) 1.56473 + 2.71019i 0.0677759 + 0.117391i
\(534\) 0 0
\(535\) 0 0
\(536\) 0 0
\(537\) −11.7257 + 31.5767i −0.506001 + 1.36263i
\(538\) 0 0
\(539\) −25.5657 −1.10119
\(540\) 0 0
\(541\) 24.8475 1.06828 0.534140 0.845396i \(-0.320636\pi\)
0.534140 + 0.845396i \(0.320636\pi\)
\(542\) 0 0
\(543\) −6.28713 + 16.9309i −0.269807 + 0.726576i
\(544\) 0 0
\(545\) 0 0
\(546\) 0 0
\(547\) −16.0523 27.8034i −0.686347 1.18879i −0.973012 0.230757i \(-0.925880\pi\)
0.286665 0.958031i \(-0.407453\pi\)
\(548\) 0 0
\(549\) 4.59161 24.1986i 0.195965 1.03277i
\(550\) 0 0
\(551\) 10.8152 + 18.7325i 0.460743 + 0.798030i
\(552\) 0 0
\(553\) 20.7197 35.8876i 0.881093 1.52610i
\(554\) 0 0
\(555\) 0 0
\(556\) 0 0
\(557\) 17.3894 0.736813 0.368406 0.929665i \(-0.379904\pi\)
0.368406 + 0.929665i \(0.379904\pi\)
\(558\) 0 0
\(559\) −2.71615 −0.114881
\(560\) 0 0
\(561\) 9.44717 1.60262i 0.398860 0.0676628i
\(562\) 0 0
\(563\) 13.6700 23.6771i 0.576120 0.997870i −0.419799 0.907617i \(-0.637899\pi\)
0.995919 0.0902525i \(-0.0287674\pi\)
\(564\) 0 0
\(565\) 0 0
\(566\) 0 0
\(567\) −26.5468 + 21.1255i −1.11486 + 0.887186i
\(568\) 0 0
\(569\) 7.59512 + 13.1551i 0.318404 + 0.551492i 0.980155 0.198232i \(-0.0635198\pi\)
−0.661751 + 0.749723i \(0.730187\pi\)
\(570\) 0 0
\(571\) 19.3510 33.5170i 0.809816 1.40264i −0.103175 0.994663i \(-0.532900\pi\)
0.912991 0.407980i \(-0.133767\pi\)
\(572\) 0 0
\(573\) 6.45979 1.09584i 0.269862 0.0457795i
\(574\) 0 0
\(575\) 0 0
\(576\) 0 0
\(577\) −3.82910 −0.159408 −0.0797038 0.996819i \(-0.525397\pi\)
−0.0797038 + 0.996819i \(0.525397\pi\)
\(578\) 0 0
\(579\) −15.5487 18.7765i −0.646183 0.780324i
\(580\) 0 0
\(581\) 19.2166 33.2841i 0.797237 1.38086i
\(582\) 0 0
\(583\) −19.9441 34.5442i −0.826001 1.43068i
\(584\) 0 0
\(585\) 0 0
\(586\) 0 0
\(587\) −12.3421 21.3772i −0.509415 0.882332i −0.999941 0.0109053i \(-0.996529\pi\)
0.490526 0.871427i \(-0.336805\pi\)
\(588\) 0 0
\(589\) 20.8475 36.1090i 0.859008 1.48785i
\(590\) 0 0
\(591\) −12.9661 + 34.9169i −0.533352 + 1.43629i
\(592\) 0 0
\(593\) 38.4290 1.57809 0.789044 0.614336i \(-0.210576\pi\)
0.789044 + 0.614336i \(0.210576\pi\)
\(594\) 0 0
\(595\) 0 0
\(596\) 0 0
\(597\) 4.34735 11.7072i 0.177925 0.479144i
\(598\) 0 0
\(599\) −7.71364 + 13.3604i −0.315171 + 0.545892i −0.979474 0.201572i \(-0.935395\pi\)
0.664303 + 0.747463i \(0.268728\pi\)
\(600\) 0 0
\(601\) 0.286360 + 0.495989i 0.0116809 + 0.0202318i 0.871807 0.489850i \(-0.162948\pi\)
−0.860126 + 0.510082i \(0.829615\pi\)
\(602\) 0 0
\(603\) −8.26441 + 2.88704i −0.336553 + 0.117569i
\(604\) 0 0
\(605\) 0 0
\(606\) 0 0
\(607\) 4.52901 7.84448i 0.183827 0.318398i −0.759354 0.650678i \(-0.774485\pi\)
0.943181 + 0.332280i \(0.107818\pi\)
\(608\) 0 0
\(609\) 12.4930 + 15.0864i 0.506241 + 0.611331i
\(610\) 0 0
\(611\) 9.78285 0.395772
\(612\) 0 0
\(613\) 6.99155 0.282386 0.141193 0.989982i \(-0.454906\pi\)
0.141193 + 0.989982i \(0.454906\pi\)
\(614\) 0 0
\(615\) 0 0
\(616\) 0 0
\(617\) −9.91710 + 17.1769i −0.399247 + 0.691517i −0.993633 0.112663i \(-0.964062\pi\)
0.594386 + 0.804180i \(0.297395\pi\)
\(618\) 0 0
\(619\) 14.1016 + 24.4246i 0.566789 + 0.981708i 0.996881 + 0.0789225i \(0.0251480\pi\)
−0.430092 + 0.902785i \(0.641519\pi\)
\(620\) 0 0
\(621\) 0.625546 32.1136i 0.0251023 1.28867i
\(622\) 0 0
\(623\) −10.0568 17.4188i −0.402916 0.697871i
\(624\) 0 0
\(625\) 0 0
\(626\) 0 0
\(627\) 43.6574 7.40605i 1.74351 0.295769i
\(628\) 0 0
\(629\) 1.32865 0.0529768
\(630\) 0 0
\(631\) −7.27482 −0.289606 −0.144803 0.989461i \(-0.546255\pi\)
−0.144803 + 0.989461i \(0.546255\pi\)
\(632\) 0 0
\(633\) 4.17892 + 5.04642i 0.166097 + 0.200577i
\(634\) 0 0
\(635\) 0 0
\(636\) 0 0
\(637\) −3.61770 6.26604i −0.143339 0.248270i
\(638\) 0 0
\(639\) −16.3879 14.1177i −0.648296 0.558488i
\(640\) 0 0
\(641\) −6.43372 11.1435i −0.254116 0.440143i 0.710539 0.703658i \(-0.248451\pi\)
−0.964655 + 0.263515i \(0.915118\pi\)
\(642\) 0 0
\(643\) −12.6160 + 21.8515i −0.497526 + 0.861741i −0.999996 0.00285403i \(-0.999092\pi\)
0.502470 + 0.864595i \(0.332425\pi\)
\(644\) 0 0
\(645\) 0 0
\(646\) 0 0
\(647\) 23.5618 0.926311 0.463156 0.886277i \(-0.346717\pi\)
0.463156 + 0.886277i \(0.346717\pi\)
\(648\) 0 0
\(649\) 34.2678 1.34513
\(650\) 0 0
\(651\) 13.1438 35.3957i 0.515148 1.38727i
\(652\) 0 0
\(653\) 8.69020 15.0519i 0.340074 0.589025i −0.644372 0.764712i \(-0.722881\pi\)
0.984446 + 0.175687i \(0.0562146\pi\)
\(654\) 0 0
\(655\) 0 0
\(656\) 0 0
\(657\) −38.1431 32.8592i −1.48810 1.28196i
\(658\) 0 0
\(659\) 7.83216 + 13.5657i 0.305098 + 0.528445i 0.977283 0.211938i \(-0.0679775\pi\)
−0.672185 + 0.740383i \(0.734644\pi\)
\(660\) 0 0
\(661\) −11.7136 + 20.2886i −0.455608 + 0.789136i −0.998723 0.0505224i \(-0.983911\pi\)
0.543115 + 0.839658i \(0.317245\pi\)
\(662\) 0 0
\(663\) 1.72963 + 2.08868i 0.0671732 + 0.0811177i
\(664\) 0 0
\(665\) 0 0
\(666\) 0 0
\(667\) −18.5443 −0.718038
\(668\) 0 0
\(669\) −4.98303 + 0.845323i −0.192655 + 0.0326821i
\(670\) 0 0
\(671\) −14.5557 + 25.2113i −0.561918 + 0.973271i
\(672\) 0 0
\(673\) −14.3654 24.8816i −0.553745 0.959114i −0.998000 0.0632136i \(-0.979865\pi\)
0.444255 0.895900i \(-0.353468\pi\)
\(674\) 0 0
\(675\) 0 0
\(676\) 0 0
\(677\) −25.1770 43.6079i −0.967632 1.67599i −0.702372 0.711810i \(-0.747876\pi\)
−0.265260 0.964177i \(-0.585458\pi\)
\(678\) 0 0
\(679\) −7.27934 + 12.6082i −0.279355 + 0.483858i
\(680\) 0 0
\(681\) −8.74056 + 1.48275i −0.334939 + 0.0568192i
\(682\) 0 0
\(683\) 11.5953 0.443681 0.221841 0.975083i \(-0.428794\pi\)
0.221841 + 0.975083i \(0.428794\pi\)
\(684\) 0 0
\(685\) 0 0
\(686\) 0 0
\(687\) −10.4066 12.5669i −0.397036 0.479457i
\(688\) 0 0
\(689\) 5.64443 9.77644i 0.215036 0.372453i
\(690\) 0 0
\(691\) −22.9238 39.7051i −0.872061 1.51045i −0.859861 0.510529i \(-0.829450\pi\)
−0.0122006 0.999926i \(-0.503884\pi\)
\(692\) 0 0
\(693\) 37.8557 13.2243i 1.43802 0.502350i
\(694\) 0 0
\(695\) 0 0
\(696\) 0 0
\(697\) 2.43280 4.21373i 0.0921489 0.159606i
\(698\) 0 0
\(699\) −15.7883 + 42.5170i −0.597167 + 1.60814i
\(700\) 0 0
\(701\) −38.1115 −1.43945 −0.719726 0.694259i \(-0.755732\pi\)
−0.719726 + 0.694259i \(0.755732\pi\)
\(702\) 0 0
\(703\) 6.13997 0.231573
\(704\) 0 0
\(705\) 0 0
\(706\) 0 0
\(707\) 8.96406 15.5262i 0.337128 0.583923i
\(708\) 0 0
\(709\) 1.14443 + 1.98222i 0.0429801 + 0.0744437i 0.886715 0.462316i \(-0.152981\pi\)
−0.843735 + 0.536760i \(0.819648\pi\)
\(710\) 0 0
\(711\) −6.14794 + 32.4008i −0.230566 + 1.21513i
\(712\) 0 0
\(713\) 17.8731 + 30.9572i 0.669355 + 1.15936i
\(714\) 0 0
\(715\) 0 0
\(716\) 0 0
\(717\) −25.1386 30.3570i −0.938816 1.13370i
\(718\) 0 0
\(719\) −16.6035 −0.619205 −0.309602 0.950866i \(-0.600196\pi\)
−0.309602 + 0.950866i \(0.600196\pi\)
\(720\) 0 0
\(721\) −68.1891 −2.53949
\(722\) 0 0
\(723\) −28.3989 + 4.81761i −1.05617 + 0.179169i
\(724\) 0 0
\(725\) 0 0
\(726\) 0 0
\(727\) 19.3037 + 33.4350i 0.715934 + 1.24003i 0.962598 + 0.270933i \(0.0873322\pi\)
−0.246664 + 0.969101i \(0.579334\pi\)
\(728\) 0 0
\(729\) 14.4004 22.8392i 0.533347 0.845897i
\(730\) 0 0
\(731\) 2.11150 + 3.65722i 0.0780966 + 0.135267i
\(732\) 0 0
\(733\) −16.9501 + 29.3584i −0.626066 + 1.08438i 0.362267 + 0.932074i \(0.382003\pi\)
−0.988334 + 0.152305i \(0.951331\pi\)
\(734\) 0 0
\(735\) 0 0
\(736\) 0 0
\(737\) 10.3469 0.381131
\(738\) 0 0
\(739\) −36.8405 −1.35520 −0.677600 0.735431i \(-0.736980\pi\)
−0.677600 + 0.735431i \(0.736980\pi\)
\(740\) 0 0
\(741\) 7.99298 + 9.65223i 0.293629 + 0.354584i
\(742\) 0 0
\(743\) −5.71392 + 9.89680i −0.209623 + 0.363078i −0.951596 0.307352i \(-0.900557\pi\)
0.741973 + 0.670430i \(0.233890\pi\)
\(744\) 0 0
\(745\) 0 0
\(746\) 0 0
\(747\) −5.70192 + 30.0502i −0.208622 + 1.09948i
\(748\) 0 0
\(749\) −6.81870 11.8103i −0.249150 0.431541i
\(750\) 0 0
\(751\) 8.10155 14.0323i 0.295630 0.512046i −0.679501 0.733674i \(-0.737804\pi\)
0.975131 + 0.221628i \(0.0711372\pi\)
\(752\) 0 0
\(753\) −12.5268 + 33.7340i −0.456502 + 1.22934i
\(754\) 0 0
\(755\) 0 0
\(756\) 0 0
\(757\) 8.08698 0.293926 0.146963 0.989142i \(-0.453050\pi\)
0.146963 + 0.989142i \(0.453050\pi\)
\(758\) 0 0
\(759\) −13.2156 + 35.5888i −0.479694 + 1.29179i
\(760\) 0 0
\(761\) −10.7031 + 18.5383i −0.387987 + 0.672014i −0.992179 0.124826i \(-0.960163\pi\)
0.604191 + 0.796839i \(0.293496\pi\)
\(762\) 0 0
\(763\) −18.1647 31.4623i −0.657608 1.13901i
\(764\) 0 0
\(765\) 0 0
\(766\) 0 0
\(767\) 4.84910 + 8.39889i 0.175091 + 0.303266i
\(768\) 0 0
\(769\) −25.7031 + 44.5191i −0.926878 + 1.60540i −0.138364 + 0.990381i \(0.544185\pi\)
−0.788513 + 0.615018i \(0.789149\pi\)
\(770\) 0 0
\(771\) −21.0552 25.4260i −0.758283 0.915695i
\(772\) 0 0
\(773\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(774\) 0 0
\(775\) 0 0
\(776\) 0 0
\(777\) 5.48179 0.929933i 0.196658 0.0333612i
\(778\) 0 0
\(779\) 11.2425 19.4725i 0.402803 0.697676i
\(780\) 0 0
\(781\) 12.7828 + 22.1405i 0.457406 + 0.792251i
\(782\) 0 0
\(783\) −13.3456 8.05567i −0.476934 0.287886i
\(784\) 0 0
\(785\) 0 0
\(786\) 0 0
\(787\) 2.35683 4.08216i 0.0840121 0.145513i −0.820958 0.570989i \(-0.806560\pi\)
0.904970 + 0.425476i \(0.139893\pi\)
\(788\) 0 0
\(789\) 13.8969 2.35747i 0.494741 0.0839281i
\(790\) 0 0
\(791\) −13.4132 −0.476920
\(792\) 0 0
\(793\) −8.23891 −0.292572
\(794\) 0 0
\(795\) 0 0
\(796\) 0 0
\(797\) 5.13196 8.88882i 0.181784 0.314858i −0.760704 0.649098i \(-0.775146\pi\)
0.942488 + 0.334240i \(0.108480\pi\)
\(798\) 0 0
\(799\) −7.60506 13.1724i −0.269048 0.466005i
\(800\) 0 0
\(801\) 12.1275 + 10.4475i 0.428503 + 0.369143i
\(802\) 0 0
\(803\) 29.7523 + 51.5324i 1.04993 + 1.81854i
\(804\) 0 0
\(805\) 0 0
\(806\) 0 0
\(807\) −15.4581 + 41.6278i −0.544150 + 1.46537i
\(808\) 0 0
\(809\) 21.9860 0.772985 0.386492 0.922293i \(-0.373687\pi\)
0.386492 + 0.922293i \(0.373687\pi\)
\(810\) 0 0
\(811\) −25.6951 −0.902276 −0.451138 0.892454i \(-0.648982\pi\)
−0.451138 + 0.892454i \(0.648982\pi\)
\(812\) 0 0
\(813\) −1.93555 + 5.21233i −0.0678826 + 0.182805i
\(814\) 0 0
\(815\) 0 0
\(816\) 0 0
\(817\) 9.75767 + 16.9008i 0.341378 + 0.591284i
\(818\) 0 0
\(819\) 8.59804 + 7.40697i 0.300440 + 0.258820i
\(820\) 0 0
\(821\) −12.1967 21.1253i −0.425667 0.737276i 0.570816 0.821078i \(-0.306627\pi\)
−0.996482 + 0.0838018i \(0.973294\pi\)
\(822\) 0 0
\(823\) 1.30710 2.26396i 0.0455626 0.0789167i −0.842345 0.538939i \(-0.818825\pi\)
0.887907 + 0.460022i \(0.152159\pi\)
\(824\) 0 0
\(825\) 0 0
\(826\) 0 0
\(827\) 0.0684725 0.00238102 0.00119051 0.999999i \(-0.499621\pi\)
0.00119051 + 0.999999i \(0.499621\pi\)
\(828\) 0 0
\(829\) −24.7828 −0.860744 −0.430372 0.902652i \(-0.641618\pi\)
−0.430372 + 0.902652i \(0.641618\pi\)
\(830\) 0 0
\(831\) 1.19475 0.202679i 0.0414455 0.00703084i
\(832\) 0 0
\(833\) −5.62471 + 9.74229i −0.194885 + 0.337550i
\(834\) 0 0
\(835\) 0 0
\(836\) 0 0
\(837\) −0.585210 + 30.0429i −0.0202278 + 1.03843i
\(838\) 0 0
\(839\) −22.6204 39.1797i −0.780944 1.35264i −0.931392 0.364017i \(-0.881405\pi\)
0.150448 0.988618i \(-0.451928\pi\)
\(840\) 0 0
\(841\) 10.0000 17.3205i 0.344828 0.597259i
\(842\) 0 0
\(843\) 52.3061 8.87323i 1.80152 0.305610i
\(844\) 0 0
\(845\) 0 0
\(846\) 0 0
\(847\) −5.92857 −0.203708
\(848\) 0 0
\(849\) −10.6115 12.8143i −0.364186 0.439787i
\(850\) 0 0
\(851\) −2.63198 + 4.55872i −0.0902231 + 0.156271i
\(852\) 0 0
\(853\) −10.1075 17.5067i −0.346074 0.599418i 0.639474 0.768813i \(-0.279152\pi\)
−0.985548 + 0.169395i \(0.945819\pi\)
\(854\) 0 0
\(855\) 0 0
\(856\) 0 0
\(857\) 13.4213 + 23.2464i 0.458464 + 0.794083i 0.998880 0.0473147i \(-0.0150664\pi\)
−0.540416 + 0.841398i \(0.681733\pi\)
\(858\) 0 0
\(859\) −1.68130 + 2.91209i −0.0573651 + 0.0993592i −0.893282 0.449497i \(-0.851603\pi\)
0.835917 + 0.548856i \(0.184937\pi\)
\(860\) 0 0
\(861\) 7.08809 19.0879i 0.241562 0.650513i
\(862\) 0 0
\(863\) −18.4524 −0.628126 −0.314063 0.949402i \(-0.601690\pi\)
−0.314063 + 0.949402i \(0.601690\pi\)
\(864\) 0 0
\(865\) 0 0
\(866\) 0 0
\(867\) −8.78239 + 23.6505i −0.298266 + 0.803214i
\(868\) 0 0
\(869\) 19.4895 33.7567i 0.661135 1.14512i
\(870\) 0 0
\(871\) 1.46414 + 2.53597i 0.0496106 + 0.0859281i
\(872\) 0 0
\(873\) 2.15992 11.3832i 0.0731022 0.385262i
\(874\) 0 0
\(875\) 0 0
\(876\) 0 0
\(877\) −11.5993 + 20.0905i −0.391679 + 0.678408i −0.992671 0.120847i \(-0.961439\pi\)
0.600992 + 0.799255i \(0.294772\pi\)
\(878\) 0 0
\(879\) −3.32573 4.01611i −0.112174 0.135460i
\(880\) 0 0
\(881\) 2.34854 0.0791244 0.0395622 0.999217i \(-0.487404\pi\)
0.0395622 + 0.999217i \(0.487404\pi\)
\(882\) 0 0
\(883\) −16.3264 −0.549428 −0.274714 0.961526i \(-0.588583\pi\)
−0.274714 + 0.961526i \(0.588583\pi\)
\(884\) 0 0
\(885\) 0 0
\(886\) 0 0
\(887\) 13.4213 23.2464i 0.450645 0.780539i −0.547782 0.836621i \(-0.684528\pi\)
0.998426 + 0.0560821i \(0.0178609\pi\)
\(888\) 0 0
\(889\) −12.7793 22.1345i −0.428605 0.742366i
\(890\) 0 0
\(891\) −24.9706 + 19.8711i −0.836546 + 0.665707i
\(892\) 0 0
\(893\) −35.1446 60.8722i −1.17607 2.03701i
\(894\) 0 0
\(895\) 0 0
\(896\) 0 0
\(897\) −10.5928 + 1.79696i −0.353682 + 0.0599987i
\(898\) 0 0
\(899\) 17.3485 0.578606
\(900\) 0 0
\(901\) −17.5516 −0.584730
\(902\) 0 0
\(903\) 11.2714 + 13.6112i 0.375089 + 0.452953i
\(904\) 0 0
\(905\) 0 0
\(906\) 0 0
\(907\) 3.92130 + 6.79188i 0.130204 + 0.225521i 0.923755 0.382983i \(-0.125103\pi\)
−0.793551 + 0.608504i \(0.791770\pi\)
\(908\) 0 0
\(909\) −2.65981 + 14.0177i −0.0882203 + 0.464937i
\(910\) 0 0
\(911\) −1.28636 2.22804i −0.0426190 0.0738183i 0.843929 0.536455i \(-0.180237\pi\)
−0.886548 + 0.462637i \(0.846903\pi\)
\(912\) 0 0
\(913\) 18.0755 31.3078i 0.598213 1.03614i
\(914\) 0 0
\(915\) 0 0
\(916\) 0 0
\(917\) 12.9196 0.426642
\(918\) 0 0
\(919\) 42.4062 1.39885 0.699426 0.714705i \(-0.253439\pi\)
0.699426 + 0.714705i \(0.253439\pi\)
\(920\) 0 0
\(921\) −8.96414 + 24.1400i −0.295379 + 0.795440i
\(922\) 0 0
\(923\) −3.61770 + 6.26604i −0.119078 + 0.206249i
\(924\) 0 0
\(925\) 0 0
\(926\) 0 0
\(927\) 51.2311 17.8968i 1.68265 0.587807i
\(928\) 0 0
\(929\) −25.9167 44.8891i −0.850301 1.47276i −0.880937 0.473234i \(-0.843087\pi\)
0.0306361 0.999531i \(-0.490247\pi\)
\(930\) 0 0
\(931\) −25.9930 + 45.0212i −0.851885 + 1.47551i
\(932\) 0 0
\(933\) 3.39333 + 4.09775i 0.111093 + 0.134154i
\(934\) 0 0
\(935\) 0 0
\(936\) 0 0
\(937\) 16.9666 0.554275 0.277137 0.960830i \(-0.410614\pi\)
0.277137 + 0.960830i \(0.410614\pi\)
\(938\) 0 0
\(939\) −39.2992 + 6.66674i −1.28248 + 0.217561i
\(940\) 0 0
\(941\) −2.82865 + 4.89937i −0.0922114 + 0.159715i −0.908441 0.418012i \(-0.862727\pi\)
0.816230 + 0.577727i \(0.196060\pi\)
\(942\) 0 0
\(943\) 9.63847 + 16.6943i 0.313872 + 0.543642i
\(944\) 0 0
\(945\) 0 0
\(946\) 0 0
\(947\) 17.6930 + 30.6452i 0.574945 + 0.995834i 0.996048 + 0.0888210i \(0.0283099\pi\)
−0.421103 + 0.907013i \(0.638357\pi\)
\(948\) 0 0
\(949\) −8.42026 + 14.5843i −0.273333 + 0.473427i
\(950\) 0 0
\(951\) −0.0153749 + 0.00260821i −0.000498566 + 8.45770e-5i
\(952\) 0 0
\(953\) 1.66116 0.0538101 0.0269051 0.999638i \(-0.491435\pi\)
0.0269051 + 0.999638i \(0.491435\pi\)
\(954\) 0 0
\(955\) 0 0
\(956\) 0 0
\(957\) 11.7512 + 14.1906i 0.379862 + 0.458717i
\(958\) 0 0
\(959\) −28.1339 + 48.7293i −0.908491 + 1.57355i
\(960\) 0 0
\(961\) −1.22066 2.11425i −0.0393763 0.0682017i
\(962\) 0 0
\(963\) 8.22268 + 7.08360i 0.264972 + 0.228266i
\(964\) 0 0
\(965\) 0 0
\(966\) 0 0
\(967\) 10.3681 17.9581i 0.333416 0.577494i −0.649763 0.760137i \(-0.725132\pi\)
0.983179 + 0.182643i \(0.0584652\pi\)
\(968\) 0 0
\(969\) 6.78285 18.2659i 0.217896 0.586784i
\(970\) 0 0
\(971\) 20.9193 0.671331 0.335665 0.941981i \(-0.391039\pi\)
0.335665 + 0.941981i \(0.391039\pi\)
\(972\) 0 0
\(973\) 20.4589 0.655881
\(974\) 0 0
\(975\) 0 0
\(976\) 0 0
\(977\) 1.44579 2.50418i 0.0462549 0.0801159i −0.841971 0.539523i \(-0.818605\pi\)
0.888226 + 0.459407i \(0.151938\pi\)
\(978\) 0 0
\(979\) −9.45963 16.3846i −0.302331 0.523653i
\(980\) 0 0
\(981\) 21.9049 + 18.8704i 0.699369 + 0.602486i
\(982\) 0 0
\(983\) 3.15019 + 5.45628i 0.100475 + 0.174028i 0.911881 0.410456i \(-0.134630\pi\)
−0.811405 + 0.584484i \(0.801297\pi\)
\(984\) 0 0
\(985\) 0 0
\(986\) 0 0
\(987\) −40.5966 49.0241i −1.29221 1.56045i
\(988\) 0 0
\(989\) −16.7310 −0.532016
\(990\) 0 0
\(991\) −32.0000 −1.01651 −0.508257 0.861206i \(-0.669710\pi\)
−0.508257 + 0.861206i \(0.669710\pi\)
\(992\) 0 0
\(993\) −15.3569 + 2.60515i −0.487336 + 0.0826719i
\(994\) 0 0
\(995\) 0 0
\(996\) 0 0
\(997\) 4.78963 + 8.29589i 0.151689 + 0.262733i 0.931849 0.362847i \(-0.118195\pi\)
−0.780159 + 0.625581i \(0.784862\pi\)
\(998\) 0 0
\(999\) −3.87445 + 2.13741i −0.122582 + 0.0676246i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 900.2.i.f.301.4 12
3.2 odd 2 2700.2.i.f.901.6 12
5.2 odd 4 180.2.r.a.49.1 12
5.3 odd 4 180.2.r.a.49.6 yes 12
5.4 even 2 inner 900.2.i.f.301.3 12
9.2 odd 6 2700.2.i.f.1801.6 12
9.4 even 3 8100.2.a.bc.1.1 6
9.5 odd 6 8100.2.a.bd.1.1 6
9.7 even 3 inner 900.2.i.f.601.4 12
15.2 even 4 540.2.r.a.469.4 12
15.8 even 4 540.2.r.a.469.6 12
15.14 odd 2 2700.2.i.f.901.1 12
20.3 even 4 720.2.by.e.49.1 12
20.7 even 4 720.2.by.e.49.6 12
45.2 even 12 540.2.r.a.289.6 12
45.4 even 6 8100.2.a.bc.1.6 6
45.7 odd 12 180.2.r.a.169.6 yes 12
45.13 odd 12 1620.2.d.c.649.6 6
45.14 odd 6 8100.2.a.bd.1.6 6
45.22 odd 12 1620.2.d.c.649.5 6
45.23 even 12 1620.2.d.d.649.1 6
45.29 odd 6 2700.2.i.f.1801.1 12
45.32 even 12 1620.2.d.d.649.2 6
45.34 even 6 inner 900.2.i.f.601.3 12
45.38 even 12 540.2.r.a.289.4 12
45.43 odd 12 180.2.r.a.169.1 yes 12
60.23 odd 4 2160.2.by.e.1009.6 12
60.47 odd 4 2160.2.by.e.1009.4 12
180.7 even 12 720.2.by.e.529.1 12
180.43 even 12 720.2.by.e.529.6 12
180.47 odd 12 2160.2.by.e.289.6 12
180.83 odd 12 2160.2.by.e.289.4 12
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
180.2.r.a.49.1 12 5.2 odd 4
180.2.r.a.49.6 yes 12 5.3 odd 4
180.2.r.a.169.1 yes 12 45.43 odd 12
180.2.r.a.169.6 yes 12 45.7 odd 12
540.2.r.a.289.4 12 45.38 even 12
540.2.r.a.289.6 12 45.2 even 12
540.2.r.a.469.4 12 15.2 even 4
540.2.r.a.469.6 12 15.8 even 4
720.2.by.e.49.1 12 20.3 even 4
720.2.by.e.49.6 12 20.7 even 4
720.2.by.e.529.1 12 180.7 even 12
720.2.by.e.529.6 12 180.43 even 12
900.2.i.f.301.3 12 5.4 even 2 inner
900.2.i.f.301.4 12 1.1 even 1 trivial
900.2.i.f.601.3 12 45.34 even 6 inner
900.2.i.f.601.4 12 9.7 even 3 inner
1620.2.d.c.649.5 6 45.22 odd 12
1620.2.d.c.649.6 6 45.13 odd 12
1620.2.d.d.649.1 6 45.23 even 12
1620.2.d.d.649.2 6 45.32 even 12
2160.2.by.e.289.4 12 180.83 odd 12
2160.2.by.e.289.6 12 180.47 odd 12
2160.2.by.e.1009.4 12 60.47 odd 4
2160.2.by.e.1009.6 12 60.23 odd 4
2700.2.i.f.901.1 12 15.14 odd 2
2700.2.i.f.901.6 12 3.2 odd 2
2700.2.i.f.1801.1 12 45.29 odd 6
2700.2.i.f.1801.6 12 9.2 odd 6
8100.2.a.bc.1.1 6 9.4 even 3
8100.2.a.bc.1.6 6 45.4 even 6
8100.2.a.bd.1.1 6 9.5 odd 6
8100.2.a.bd.1.6 6 45.14 odd 6