Properties

Label 720.4.f.i.289.3
Level $720$
Weight $4$
Character 720.289
Analytic conductor $42.481$
Analytic rank $0$
Dimension $4$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [720,4,Mod(289,720)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(720, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0, 0, 1]))
 
N = Newforms(chi, 4, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("720.289");
 
S:= CuspForms(chi, 4);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 720 = 2^{4} \cdot 3^{2} \cdot 5 \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 720.f (of order \(2\), degree \(1\), not minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(42.4813752041\)
Analytic rank: \(0\)
Dimension: \(4\)
Coefficient field: \(\Q(i, \sqrt{129})\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{4} + 65x^{2} + 1024 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{7}]\)
Coefficient ring index: \( 2^{3} \)
Twist minimal: no (minimal twist has level 120)
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

Embedding invariants

Embedding label 289.3
Root \(-6.17891i\) of defining polynomial
Character \(\chi\) \(=\) 720.289
Dual form 720.4.f.i.289.4

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(0.178908 - 11.1789i) q^{5} +35.0735i q^{7} +25.6422 q^{11} -37.6422i q^{13} +95.7891i q^{17} +50.8625 q^{19} -110.863i q^{23} +(-124.936 - 4.00000i) q^{25} -54.5047 q^{29} -198.441 q^{31} +(392.083 + 6.27493i) q^{35} +266.945i q^{37} -103.853 q^{41} +108.000i q^{43} +597.009i q^{47} -887.147 q^{49} -305.642i q^{53} +(4.58760 - 286.652i) q^{55} +223.533 q^{59} +485.450 q^{61} +(-420.799 - 6.73450i) q^{65} +876.166i q^{67} +585.597 q^{71} +1137.60i q^{73} +899.360i q^{77} +685.009 q^{79} -305.725i q^{83} +(1070.82 + 17.1375i) q^{85} +887.175 q^{89} +1320.24 q^{91} +(9.09973 - 568.588i) q^{95} -556.550i q^{97} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 4 q - 22 q^{5} + 148 q^{11} - 160 q^{19} + 100 q^{29} + 24 q^{31} + 796 q^{35} - 688 q^{41} - 3276 q^{49} - 1072 q^{55} - 1332 q^{59} + 488 q^{61} - 820 q^{65} + 616 q^{71} + 2104 q^{79} + 2148 q^{85} + 1368 q^{89}+ \cdots + 2944 q^{95}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/720\mathbb{Z}\right)^\times\).

\(n\) \(181\) \(271\) \(577\) \(641\)
\(\chi(n)\) \(1\) \(1\) \(-1\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 0 0
\(4\) 0 0
\(5\) 0.178908 11.1789i 0.0160020 0.999872i
\(6\) 0 0
\(7\) 35.0735i 1.89379i 0.321545 + 0.946894i \(0.395798\pi\)
−0.321545 + 0.946894i \(0.604202\pi\)
\(8\) 0 0
\(9\) 0 0
\(10\) 0 0
\(11\) 25.6422 0.702855 0.351428 0.936215i \(-0.385696\pi\)
0.351428 + 0.936215i \(0.385696\pi\)
\(12\) 0 0
\(13\) 37.6422i 0.803082i −0.915841 0.401541i \(-0.868475\pi\)
0.915841 0.401541i \(-0.131525\pi\)
\(14\) 0 0
\(15\) 0 0
\(16\) 0 0
\(17\) 95.7891i 1.36660i 0.730136 + 0.683302i \(0.239457\pi\)
−0.730136 + 0.683302i \(0.760543\pi\)
\(18\) 0 0
\(19\) 50.8625 0.614140 0.307070 0.951687i \(-0.400651\pi\)
0.307070 + 0.951687i \(0.400651\pi\)
\(20\) 0 0
\(21\) 0 0
\(22\) 0 0
\(23\) 110.863i 1.00506i −0.864559 0.502531i \(-0.832402\pi\)
0.864559 0.502531i \(-0.167598\pi\)
\(24\) 0 0
\(25\) −124.936 4.00000i −0.999488 0.0320000i
\(26\) 0 0
\(27\) 0 0
\(28\) 0 0
\(29\) −54.5047 −0.349009 −0.174505 0.984656i \(-0.555832\pi\)
−0.174505 + 0.984656i \(0.555832\pi\)
\(30\) 0 0
\(31\) −198.441 −1.14971 −0.574855 0.818255i \(-0.694941\pi\)
−0.574855 + 0.818255i \(0.694941\pi\)
\(32\) 0 0
\(33\) 0 0
\(34\) 0 0
\(35\) 392.083 + 6.27493i 1.89355 + 0.0303045i
\(36\) 0 0
\(37\) 266.945i 1.18610i 0.805167 + 0.593048i \(0.202076\pi\)
−0.805167 + 0.593048i \(0.797924\pi\)
\(38\) 0 0
\(39\) 0 0
\(40\) 0 0
\(41\) −103.853 −0.395589 −0.197794 0.980244i \(-0.563378\pi\)
−0.197794 + 0.980244i \(0.563378\pi\)
\(42\) 0 0
\(43\) 108.000i 0.383020i 0.981491 + 0.191510i \(0.0613384\pi\)
−0.981491 + 0.191510i \(0.938662\pi\)
\(44\) 0 0
\(45\) 0 0
\(46\) 0 0
\(47\) 597.009i 1.85283i 0.376510 + 0.926413i \(0.377124\pi\)
−0.376510 + 0.926413i \(0.622876\pi\)
\(48\) 0 0
\(49\) −887.147 −2.58643
\(50\) 0 0
\(51\) 0 0
\(52\) 0 0
\(53\) 305.642i 0.792136i −0.918221 0.396068i \(-0.870375\pi\)
0.918221 0.396068i \(-0.129625\pi\)
\(54\) 0 0
\(55\) 4.58760 286.652i 0.0112471 0.702765i
\(56\) 0 0
\(57\) 0 0
\(58\) 0 0
\(59\) 223.533 0.493246 0.246623 0.969111i \(-0.420679\pi\)
0.246623 + 0.969111i \(0.420679\pi\)
\(60\) 0 0
\(61\) 485.450 1.01894 0.509471 0.860488i \(-0.329841\pi\)
0.509471 + 0.860488i \(0.329841\pi\)
\(62\) 0 0
\(63\) 0 0
\(64\) 0 0
\(65\) −420.799 6.73450i −0.802979 0.0128510i
\(66\) 0 0
\(67\) 876.166i 1.59762i 0.601582 + 0.798811i \(0.294537\pi\)
−0.601582 + 0.798811i \(0.705463\pi\)
\(68\) 0 0
\(69\) 0 0
\(70\) 0 0
\(71\) 585.597 0.978839 0.489420 0.872048i \(-0.337209\pi\)
0.489420 + 0.872048i \(0.337209\pi\)
\(72\) 0 0
\(73\) 1137.60i 1.82391i 0.410287 + 0.911957i \(0.365429\pi\)
−0.410287 + 0.911957i \(0.634571\pi\)
\(74\) 0 0
\(75\) 0 0
\(76\) 0 0
\(77\) 899.360i 1.33106i
\(78\) 0 0
\(79\) 685.009 0.975564 0.487782 0.872965i \(-0.337806\pi\)
0.487782 + 0.872965i \(0.337806\pi\)
\(80\) 0 0
\(81\) 0 0
\(82\) 0 0
\(83\) 305.725i 0.404309i −0.979354 0.202155i \(-0.935206\pi\)
0.979354 0.202155i \(-0.0647944\pi\)
\(84\) 0 0
\(85\) 1070.82 + 17.1375i 1.36643 + 0.0218685i
\(86\) 0 0
\(87\) 0 0
\(88\) 0 0
\(89\) 887.175 1.05663 0.528317 0.849047i \(-0.322823\pi\)
0.528317 + 0.849047i \(0.322823\pi\)
\(90\) 0 0
\(91\) 1320.24 1.52087
\(92\) 0 0
\(93\) 0 0
\(94\) 0 0
\(95\) 9.09973 568.588i 0.00982750 0.614062i
\(96\) 0 0
\(97\) 556.550i 0.582568i −0.956637 0.291284i \(-0.905918\pi\)
0.956637 0.291284i \(-0.0940824\pi\)
\(98\) 0 0
\(99\) 0 0
\(100\) 0 0
\(101\) −1591.09 −1.56752 −0.783760 0.621063i \(-0.786701\pi\)
−0.783760 + 0.621063i \(0.786701\pi\)
\(102\) 0 0
\(103\) 1350.95i 1.29236i 0.763187 + 0.646178i \(0.223634\pi\)
−0.763187 + 0.646178i \(0.776366\pi\)
\(104\) 0 0
\(105\) 0 0
\(106\) 0 0
\(107\) 1333.51i 1.20481i 0.798190 + 0.602406i \(0.205791\pi\)
−0.798190 + 0.602406i \(0.794209\pi\)
\(108\) 0 0
\(109\) 609.910 0.535952 0.267976 0.963426i \(-0.413645\pi\)
0.267976 + 0.963426i \(0.413645\pi\)
\(110\) 0 0
\(111\) 0 0
\(112\) 0 0
\(113\) 241.808i 0.201304i 0.994922 + 0.100652i \(0.0320929\pi\)
−0.994922 + 0.100652i \(0.967907\pi\)
\(114\) 0 0
\(115\) −1239.32 19.8342i −1.00493 0.0160831i
\(116\) 0 0
\(117\) 0 0
\(118\) 0 0
\(119\) −3359.65 −2.58806
\(120\) 0 0
\(121\) −673.478 −0.505994
\(122\) 0 0
\(123\) 0 0
\(124\) 0 0
\(125\) −67.0677 + 1395.93i −0.0479898 + 0.998848i
\(126\) 0 0
\(127\) 1045.94i 0.730802i 0.930850 + 0.365401i \(0.119068\pi\)
−0.930850 + 0.365401i \(0.880932\pi\)
\(128\) 0 0
\(129\) 0 0
\(130\) 0 0
\(131\) −886.524 −0.591267 −0.295633 0.955301i \(-0.595531\pi\)
−0.295633 + 0.955301i \(0.595531\pi\)
\(132\) 0 0
\(133\) 1783.92i 1.16305i
\(134\) 0 0
\(135\) 0 0
\(136\) 0 0
\(137\) 160.723i 0.100230i 0.998743 + 0.0501150i \(0.0159588\pi\)
−0.998743 + 0.0501150i \(0.984041\pi\)
\(138\) 0 0
\(139\) −57.2655 −0.0349439 −0.0174719 0.999847i \(-0.505562\pi\)
−0.0174719 + 0.999847i \(0.505562\pi\)
\(140\) 0 0
\(141\) 0 0
\(142\) 0 0
\(143\) 965.228i 0.564450i
\(144\) 0 0
\(145\) −9.75135 + 609.303i −0.00558487 + 0.348965i
\(146\) 0 0
\(147\) 0 0
\(148\) 0 0
\(149\) −1105.15 −0.607633 −0.303817 0.952731i \(-0.598261\pi\)
−0.303817 + 0.952731i \(0.598261\pi\)
\(150\) 0 0
\(151\) −2289.63 −1.23396 −0.616980 0.786979i \(-0.711644\pi\)
−0.616980 + 0.786979i \(0.711644\pi\)
\(152\) 0 0
\(153\) 0 0
\(154\) 0 0
\(155\) −35.5027 + 2218.35i −0.0183977 + 1.14956i
\(156\) 0 0
\(157\) 161.514i 0.0821034i −0.999157 0.0410517i \(-0.986929\pi\)
0.999157 0.0410517i \(-0.0130708\pi\)
\(158\) 0 0
\(159\) 0 0
\(160\) 0 0
\(161\) 3888.33 1.90338
\(162\) 0 0
\(163\) 1594.15i 0.766032i 0.923742 + 0.383016i \(0.125115\pi\)
−0.923742 + 0.383016i \(0.874885\pi\)
\(164\) 0 0
\(165\) 0 0
\(166\) 0 0
\(167\) 1017.39i 0.471427i 0.971823 + 0.235713i \(0.0757427\pi\)
−0.971823 + 0.235713i \(0.924257\pi\)
\(168\) 0 0
\(169\) 780.066 0.355060
\(170\) 0 0
\(171\) 0 0
\(172\) 0 0
\(173\) 2444.49i 1.07428i −0.843492 0.537142i \(-0.819504\pi\)
0.843492 0.537142i \(-0.180496\pi\)
\(174\) 0 0
\(175\) 140.294 4381.94i 0.0606012 1.89282i
\(176\) 0 0
\(177\) 0 0
\(178\) 0 0
\(179\) −222.780 −0.0930242 −0.0465121 0.998918i \(-0.514811\pi\)
−0.0465121 + 0.998918i \(0.514811\pi\)
\(180\) 0 0
\(181\) −100.034 −0.0410798 −0.0205399 0.999789i \(-0.506539\pi\)
−0.0205399 + 0.999789i \(0.506539\pi\)
\(182\) 0 0
\(183\) 0 0
\(184\) 0 0
\(185\) 2984.16 + 47.7588i 1.18594 + 0.0189800i
\(186\) 0 0
\(187\) 2456.24i 0.960525i
\(188\) 0 0
\(189\) 0 0
\(190\) 0 0
\(191\) 702.403 0.266095 0.133047 0.991110i \(-0.457524\pi\)
0.133047 + 0.991110i \(0.457524\pi\)
\(192\) 0 0
\(193\) 4126.63i 1.53907i 0.638602 + 0.769537i \(0.279513\pi\)
−0.638602 + 0.769537i \(0.720487\pi\)
\(194\) 0 0
\(195\) 0 0
\(196\) 0 0
\(197\) 3104.45i 1.12276i −0.827559 0.561378i \(-0.810271\pi\)
0.827559 0.561378i \(-0.189729\pi\)
\(198\) 0 0
\(199\) −367.616 −0.130953 −0.0654764 0.997854i \(-0.520857\pi\)
−0.0654764 + 0.997854i \(0.520857\pi\)
\(200\) 0 0
\(201\) 0 0
\(202\) 0 0
\(203\) 1911.67i 0.660950i
\(204\) 0 0
\(205\) −18.5802 + 1160.96i −0.00633023 + 0.395538i
\(206\) 0 0
\(207\) 0 0
\(208\) 0 0
\(209\) 1304.23 0.431652
\(210\) 0 0
\(211\) −2594.85 −0.846619 −0.423310 0.905985i \(-0.639132\pi\)
−0.423310 + 0.905985i \(0.639132\pi\)
\(212\) 0 0
\(213\) 0 0
\(214\) 0 0
\(215\) 1207.32 + 19.3221i 0.382971 + 0.00612910i
\(216\) 0 0
\(217\) 6960.00i 2.17731i
\(218\) 0 0
\(219\) 0 0
\(220\) 0 0
\(221\) 3605.71 1.09749
\(222\) 0 0
\(223\) 1834.41i 0.550857i −0.961321 0.275429i \(-0.911180\pi\)
0.961321 0.275429i \(-0.0888198\pi\)
\(224\) 0 0
\(225\) 0 0
\(226\) 0 0
\(227\) 175.811i 0.0514053i 0.999670 + 0.0257027i \(0.00818231\pi\)
−0.999670 + 0.0257027i \(0.991818\pi\)
\(228\) 0 0
\(229\) −1622.35 −0.468158 −0.234079 0.972218i \(-0.575207\pi\)
−0.234079 + 0.972218i \(0.575207\pi\)
\(230\) 0 0
\(231\) 0 0
\(232\) 0 0
\(233\) 3965.65i 1.11501i 0.830172 + 0.557507i \(0.188242\pi\)
−0.830172 + 0.557507i \(0.811758\pi\)
\(234\) 0 0
\(235\) 6673.91 + 106.810i 1.85259 + 0.0296490i
\(236\) 0 0
\(237\) 0 0
\(238\) 0 0
\(239\) 6323.25 1.71137 0.855685 0.517497i \(-0.173136\pi\)
0.855685 + 0.517497i \(0.173136\pi\)
\(240\) 0 0
\(241\) 3407.51 0.910775 0.455388 0.890293i \(-0.349501\pi\)
0.455388 + 0.890293i \(0.349501\pi\)
\(242\) 0 0
\(243\) 0 0
\(244\) 0 0
\(245\) −158.718 + 9917.33i −0.0413882 + 2.58610i
\(246\) 0 0
\(247\) 1914.58i 0.493205i
\(248\) 0 0
\(249\) 0 0
\(250\) 0 0
\(251\) 1345.81 0.338433 0.169216 0.985579i \(-0.445876\pi\)
0.169216 + 0.985579i \(0.445876\pi\)
\(252\) 0 0
\(253\) 2842.76i 0.706414i
\(254\) 0 0
\(255\) 0 0
\(256\) 0 0
\(257\) 4697.19i 1.14009i −0.821614 0.570044i \(-0.806926\pi\)
0.821614 0.570044i \(-0.193074\pi\)
\(258\) 0 0
\(259\) −9362.70 −2.24621
\(260\) 0 0
\(261\) 0 0
\(262\) 0 0
\(263\) 4700.66i 1.10211i −0.834468 0.551056i \(-0.814225\pi\)
0.834468 0.551056i \(-0.185775\pi\)
\(264\) 0 0
\(265\) −3416.75 54.6819i −0.792034 0.0126758i
\(266\) 0 0
\(267\) 0 0
\(268\) 0 0
\(269\) −7962.67 −1.80481 −0.902403 0.430894i \(-0.858198\pi\)
−0.902403 + 0.430894i \(0.858198\pi\)
\(270\) 0 0
\(271\) 6122.73 1.37243 0.686217 0.727397i \(-0.259270\pi\)
0.686217 + 0.727397i \(0.259270\pi\)
\(272\) 0 0
\(273\) 0 0
\(274\) 0 0
\(275\) −3203.63 102.569i −0.702495 0.0224914i
\(276\) 0 0
\(277\) 8417.57i 1.82586i −0.408117 0.912930i \(-0.633814\pi\)
0.408117 0.912930i \(-0.366186\pi\)
\(278\) 0 0
\(279\) 0 0
\(280\) 0 0
\(281\) −3030.99 −0.643466 −0.321733 0.946830i \(-0.604265\pi\)
−0.321733 + 0.946830i \(0.604265\pi\)
\(282\) 0 0
\(283\) 2890.81i 0.607211i 0.952798 + 0.303606i \(0.0981905\pi\)
−0.952798 + 0.303606i \(0.901809\pi\)
\(284\) 0 0
\(285\) 0 0
\(286\) 0 0
\(287\) 3642.49i 0.749161i
\(288\) 0 0
\(289\) −4262.55 −0.867606
\(290\) 0 0
\(291\) 0 0
\(292\) 0 0
\(293\) 8966.75i 1.78786i −0.448206 0.893930i \(-0.647937\pi\)
0.448206 0.893930i \(-0.352063\pi\)
\(294\) 0 0
\(295\) 39.9919 2498.86i 0.00789295 0.493183i
\(296\) 0 0
\(297\) 0 0
\(298\) 0 0
\(299\) −4173.11 −0.807147
\(300\) 0 0
\(301\) −3787.93 −0.725358
\(302\) 0 0
\(303\) 0 0
\(304\) 0 0
\(305\) 86.8511 5426.80i 0.0163052 1.01881i
\(306\) 0 0
\(307\) 3298.42i 0.613194i 0.951839 + 0.306597i \(0.0991904\pi\)
−0.951839 + 0.306597i \(0.900810\pi\)
\(308\) 0 0
\(309\) 0 0
\(310\) 0 0
\(311\) −3394.92 −0.618998 −0.309499 0.950900i \(-0.600161\pi\)
−0.309499 + 0.950900i \(0.600161\pi\)
\(312\) 0 0
\(313\) 5946.95i 1.07393i 0.843603 + 0.536967i \(0.180430\pi\)
−0.843603 + 0.536967i \(0.819570\pi\)
\(314\) 0 0
\(315\) 0 0
\(316\) 0 0
\(317\) 2520.83i 0.446637i −0.974746 0.223318i \(-0.928311\pi\)
0.974746 0.223318i \(-0.0716889\pi\)
\(318\) 0 0
\(319\) −1397.62 −0.245303
\(320\) 0 0
\(321\) 0 0
\(322\) 0 0
\(323\) 4872.08i 0.839286i
\(324\) 0 0
\(325\) −150.569 + 4702.86i −0.0256986 + 0.802671i
\(326\) 0 0
\(327\) 0 0
\(328\) 0 0
\(329\) −20939.2 −3.50886
\(330\) 0 0
\(331\) 4586.86 0.761682 0.380841 0.924641i \(-0.375635\pi\)
0.380841 + 0.924641i \(0.375635\pi\)
\(332\) 0 0
\(333\) 0 0
\(334\) 0 0
\(335\) 9794.58 + 156.753i 1.59742 + 0.0255652i
\(336\) 0 0
\(337\) 8582.12i 1.38723i −0.720344 0.693617i \(-0.756016\pi\)
0.720344 0.693617i \(-0.243984\pi\)
\(338\) 0 0
\(339\) 0 0
\(340\) 0 0
\(341\) −5088.45 −0.808080
\(342\) 0 0
\(343\) 19085.1i 3.00437i
\(344\) 0 0
\(345\) 0 0
\(346\) 0 0
\(347\) 2539.38i 0.392857i 0.980518 + 0.196428i \(0.0629343\pi\)
−0.980518 + 0.196428i \(0.937066\pi\)
\(348\) 0 0
\(349\) 9002.82 1.38083 0.690415 0.723413i \(-0.257428\pi\)
0.690415 + 0.723413i \(0.257428\pi\)
\(350\) 0 0
\(351\) 0 0
\(352\) 0 0
\(353\) 3928.08i 0.592267i 0.955146 + 0.296134i \(0.0956974\pi\)
−0.955146 + 0.296134i \(0.904303\pi\)
\(354\) 0 0
\(355\) 104.768 6546.34i 0.0156634 0.978714i
\(356\) 0 0
\(357\) 0 0
\(358\) 0 0
\(359\) −10001.7 −1.47039 −0.735197 0.677854i \(-0.762910\pi\)
−0.735197 + 0.677854i \(0.762910\pi\)
\(360\) 0 0
\(361\) −4272.00 −0.622832
\(362\) 0 0
\(363\) 0 0
\(364\) 0 0
\(365\) 12717.1 + 203.526i 1.82368 + 0.0291863i
\(366\) 0 0
\(367\) 5967.79i 0.848818i −0.905471 0.424409i \(-0.860482\pi\)
0.905471 0.424409i \(-0.139518\pi\)
\(368\) 0 0
\(369\) 0 0
\(370\) 0 0
\(371\) 10719.9 1.50014
\(372\) 0 0
\(373\) 6931.55i 0.962204i −0.876665 0.481102i \(-0.840237\pi\)
0.876665 0.481102i \(-0.159763\pi\)
\(374\) 0 0
\(375\) 0 0
\(376\) 0 0
\(377\) 2051.68i 0.280283i
\(378\) 0 0
\(379\) 9711.70 1.31624 0.658122 0.752911i \(-0.271351\pi\)
0.658122 + 0.752911i \(0.271351\pi\)
\(380\) 0 0
\(381\) 0 0
\(382\) 0 0
\(383\) 5664.84i 0.755769i −0.925853 0.377885i \(-0.876652\pi\)
0.925853 0.377885i \(-0.123348\pi\)
\(384\) 0 0
\(385\) 10053.9 + 160.903i 1.33089 + 0.0212997i
\(386\) 0 0
\(387\) 0 0
\(388\) 0 0
\(389\) 8918.17 1.16239 0.581195 0.813765i \(-0.302586\pi\)
0.581195 + 0.813765i \(0.302586\pi\)
\(390\) 0 0
\(391\) 10619.4 1.37352
\(392\) 0 0
\(393\) 0 0
\(394\) 0 0
\(395\) 122.554 7657.66i 0.0156110 0.975439i
\(396\) 0 0
\(397\) 12849.9i 1.62448i 0.583321 + 0.812242i \(0.301753\pi\)
−0.583321 + 0.812242i \(0.698247\pi\)
\(398\) 0 0
\(399\) 0 0
\(400\) 0 0
\(401\) −3563.08 −0.443721 −0.221860 0.975078i \(-0.571213\pi\)
−0.221860 + 0.975078i \(0.571213\pi\)
\(402\) 0 0
\(403\) 7469.74i 0.923311i
\(404\) 0 0
\(405\) 0 0
\(406\) 0 0
\(407\) 6845.06i 0.833654i
\(408\) 0 0
\(409\) 2026.69 0.245020 0.122510 0.992467i \(-0.460906\pi\)
0.122510 + 0.992467i \(0.460906\pi\)
\(410\) 0 0
\(411\) 0 0
\(412\) 0 0
\(413\) 7840.07i 0.934104i
\(414\) 0 0
\(415\) −3417.67 54.6968i −0.404258 0.00646978i
\(416\) 0 0
\(417\) 0 0
\(418\) 0 0
\(419\) 1670.39 0.194759 0.0973793 0.995247i \(-0.468954\pi\)
0.0973793 + 0.995247i \(0.468954\pi\)
\(420\) 0 0
\(421\) 6079.66 0.703812 0.351906 0.936035i \(-0.385534\pi\)
0.351906 + 0.936035i \(0.385534\pi\)
\(422\) 0 0
\(423\) 0 0
\(424\) 0 0
\(425\) 383.156 11967.5i 0.0437313 1.36590i
\(426\) 0 0
\(427\) 17026.4i 1.92966i
\(428\) 0 0
\(429\) 0 0
\(430\) 0 0
\(431\) 1719.37 0.192155 0.0960777 0.995374i \(-0.469370\pi\)
0.0960777 + 0.995374i \(0.469370\pi\)
\(432\) 0 0
\(433\) 12024.9i 1.33459i −0.744792 0.667296i \(-0.767451\pi\)
0.744792 0.667296i \(-0.232549\pi\)
\(434\) 0 0
\(435\) 0 0
\(436\) 0 0
\(437\) 5638.75i 0.617249i
\(438\) 0 0
\(439\) −7542.97 −0.820060 −0.410030 0.912072i \(-0.634482\pi\)
−0.410030 + 0.912072i \(0.634482\pi\)
\(440\) 0 0
\(441\) 0 0
\(442\) 0 0
\(443\) 4578.13i 0.491001i 0.969396 + 0.245501i \(0.0789524\pi\)
−0.969396 + 0.245501i \(0.921048\pi\)
\(444\) 0 0
\(445\) 158.723 9917.65i 0.0169083 1.05650i
\(446\) 0 0
\(447\) 0 0
\(448\) 0 0
\(449\) 6875.21 0.722630 0.361315 0.932444i \(-0.382328\pi\)
0.361315 + 0.932444i \(0.382328\pi\)
\(450\) 0 0
\(451\) −2663.02 −0.278042
\(452\) 0 0
\(453\) 0 0
\(454\) 0 0
\(455\) 236.202 14758.9i 0.0243370 1.52067i
\(456\) 0 0
\(457\) 7351.97i 0.752540i −0.926510 0.376270i \(-0.877207\pi\)
0.926510 0.376270i \(-0.122793\pi\)
\(458\) 0 0
\(459\) 0 0
\(460\) 0 0
\(461\) 15614.5 1.57752 0.788762 0.614698i \(-0.210722\pi\)
0.788762 + 0.614698i \(0.210722\pi\)
\(462\) 0 0
\(463\) 1684.73i 0.169106i −0.996419 0.0845530i \(-0.973054\pi\)
0.996419 0.0845530i \(-0.0269462\pi\)
\(464\) 0 0
\(465\) 0 0
\(466\) 0 0
\(467\) 10235.2i 1.01420i 0.861888 + 0.507099i \(0.169282\pi\)
−0.861888 + 0.507099i \(0.830718\pi\)
\(468\) 0 0
\(469\) −30730.2 −3.02556
\(470\) 0 0
\(471\) 0 0
\(472\) 0 0
\(473\) 2769.36i 0.269207i
\(474\) 0 0
\(475\) −6354.56 203.450i −0.613826 0.0196525i
\(476\) 0 0
\(477\) 0 0
\(478\) 0 0
\(479\) −12247.2 −1.16825 −0.584123 0.811665i \(-0.698561\pi\)
−0.584123 + 0.811665i \(0.698561\pi\)
\(480\) 0 0
\(481\) 10048.4 0.952532
\(482\) 0 0
\(483\) 0 0
\(484\) 0 0
\(485\) −6221.62 99.5714i −0.582493 0.00932228i
\(486\) 0 0
\(487\) 7895.91i 0.734698i 0.930083 + 0.367349i \(0.119735\pi\)
−0.930083 + 0.367349i \(0.880265\pi\)
\(488\) 0 0
\(489\) 0 0
\(490\) 0 0
\(491\) −7625.48 −0.700882 −0.350441 0.936585i \(-0.613968\pi\)
−0.350441 + 0.936585i \(0.613968\pi\)
\(492\) 0 0
\(493\) 5220.96i 0.476958i
\(494\) 0 0
\(495\) 0 0
\(496\) 0 0
\(497\) 20538.9i 1.85371i
\(498\) 0 0
\(499\) −8655.23 −0.776476 −0.388238 0.921559i \(-0.626916\pi\)
−0.388238 + 0.921559i \(0.626916\pi\)
\(500\) 0 0
\(501\) 0 0
\(502\) 0 0
\(503\) 118.441i 0.0104990i −0.999986 0.00524951i \(-0.998329\pi\)
0.999986 0.00524951i \(-0.00167098\pi\)
\(504\) 0 0
\(505\) −284.660 + 17786.7i −0.0250835 + 1.56732i
\(506\) 0 0
\(507\) 0 0
\(508\) 0 0
\(509\) 5359.43 0.466704 0.233352 0.972392i \(-0.425030\pi\)
0.233352 + 0.972392i \(0.425030\pi\)
\(510\) 0 0
\(511\) −39899.5 −3.45411
\(512\) 0 0
\(513\) 0 0
\(514\) 0 0
\(515\) 15102.1 + 241.695i 1.29219 + 0.0206803i
\(516\) 0 0
\(517\) 15308.6i 1.30227i
\(518\) 0 0
\(519\) 0 0
\(520\) 0 0
\(521\) 10862.4 0.913414 0.456707 0.889617i \(-0.349029\pi\)
0.456707 + 0.889617i \(0.349029\pi\)
\(522\) 0 0
\(523\) 9553.39i 0.798740i −0.916790 0.399370i \(-0.869229\pi\)
0.916790 0.399370i \(-0.130771\pi\)
\(524\) 0 0
\(525\) 0 0
\(526\) 0 0
\(527\) 19008.5i 1.57120i
\(528\) 0 0
\(529\) −123.501 −0.0101505
\(530\) 0 0
\(531\) 0 0
\(532\) 0 0
\(533\) 3909.26i 0.317690i
\(534\) 0 0
\(535\) 14907.1 + 238.575i 1.20466 + 0.0192795i
\(536\) 0 0
\(537\) 0 0
\(538\) 0 0
\(539\) −22748.4 −1.81789
\(540\) 0 0
\(541\) −6132.47 −0.487348 −0.243674 0.969857i \(-0.578353\pi\)
−0.243674 + 0.969857i \(0.578353\pi\)
\(542\) 0 0
\(543\) 0 0
\(544\) 0 0
\(545\) 109.118 6818.12i 0.00857633 0.535883i
\(546\) 0 0
\(547\) 2853.85i 0.223075i 0.993760 + 0.111537i \(0.0355775\pi\)
−0.993760 + 0.111537i \(0.964422\pi\)
\(548\) 0 0
\(549\) 0 0
\(550\) 0 0
\(551\) −2772.25 −0.214341
\(552\) 0 0
\(553\) 24025.6i 1.84751i
\(554\) 0 0
\(555\) 0 0
\(556\) 0 0
\(557\) 5192.60i 0.395005i −0.980302 0.197502i \(-0.936717\pi\)
0.980302 0.197502i \(-0.0632830\pi\)
\(558\) 0 0
\(559\) 4065.36 0.307596
\(560\) 0 0
\(561\) 0 0
\(562\) 0 0
\(563\) 10907.2i 0.816492i 0.912872 + 0.408246i \(0.133859\pi\)
−0.912872 + 0.408246i \(0.866141\pi\)
\(564\) 0 0
\(565\) 2703.15 + 43.2615i 0.201278 + 0.00322128i
\(566\) 0 0
\(567\) 0 0
\(568\) 0 0
\(569\) −155.257 −0.0114389 −0.00571945 0.999984i \(-0.501821\pi\)
−0.00571945 + 0.999984i \(0.501821\pi\)
\(570\) 0 0
\(571\) 4925.15 0.360965 0.180483 0.983578i \(-0.442234\pi\)
0.180483 + 0.983578i \(0.442234\pi\)
\(572\) 0 0
\(573\) 0 0
\(574\) 0 0
\(575\) −443.450 + 13850.7i −0.0321620 + 1.00455i
\(576\) 0 0
\(577\) 5292.05i 0.381822i 0.981607 + 0.190911i \(0.0611441\pi\)
−0.981607 + 0.190911i \(0.938856\pi\)
\(578\) 0 0
\(579\) 0 0
\(580\) 0 0
\(581\) 10722.8 0.765677
\(582\) 0 0
\(583\) 7837.33i 0.556757i
\(584\) 0 0
\(585\) 0 0
\(586\) 0 0
\(587\) 19658.5i 1.38227i 0.722727 + 0.691134i \(0.242888\pi\)
−0.722727 + 0.691134i \(0.757112\pi\)
\(588\) 0 0
\(589\) −10093.2 −0.706083
\(590\) 0 0
\(591\) 0 0
\(592\) 0 0
\(593\) 6578.08i 0.455530i −0.973716 0.227765i \(-0.926858\pi\)
0.973716 0.227765i \(-0.0731418\pi\)
\(594\) 0 0
\(595\) −601.070 + 37557.3i −0.0414142 + 2.58773i
\(596\) 0 0
\(597\) 0 0
\(598\) 0 0
\(599\) −16915.9 −1.15386 −0.576931 0.816793i \(-0.695750\pi\)
−0.576931 + 0.816793i \(0.695750\pi\)
\(600\) 0 0
\(601\) 19801.4 1.34395 0.671977 0.740572i \(-0.265445\pi\)
0.671977 + 0.740572i \(0.265445\pi\)
\(602\) 0 0
\(603\) 0 0
\(604\) 0 0
\(605\) −120.491 + 7528.75i −0.00809695 + 0.505930i
\(606\) 0 0
\(607\) 22498.4i 1.50442i −0.658926 0.752208i \(-0.728989\pi\)
0.658926 0.752208i \(-0.271011\pi\)
\(608\) 0 0
\(609\) 0 0
\(610\) 0 0
\(611\) 22472.7 1.48797
\(612\) 0 0
\(613\) 23829.3i 1.57008i −0.619446 0.785039i \(-0.712643\pi\)
0.619446 0.785039i \(-0.287357\pi\)
\(614\) 0 0
\(615\) 0 0
\(616\) 0 0
\(617\) 4277.52i 0.279103i −0.990215 0.139551i \(-0.955434\pi\)
0.990215 0.139551i \(-0.0445660\pi\)
\(618\) 0 0
\(619\) 4995.99 0.324404 0.162202 0.986758i \(-0.448140\pi\)
0.162202 + 0.986758i \(0.448140\pi\)
\(620\) 0 0
\(621\) 0 0
\(622\) 0 0
\(623\) 31116.3i 2.00104i
\(624\) 0 0
\(625\) 15593.0 + 999.488i 0.997952 + 0.0639672i
\(626\) 0 0
\(627\) 0 0
\(628\) 0 0
\(629\) −25570.5 −1.62092
\(630\) 0 0
\(631\) 11328.0 0.714675 0.357337 0.933975i \(-0.383685\pi\)
0.357337 + 0.933975i \(0.383685\pi\)
\(632\) 0 0
\(633\) 0 0
\(634\) 0 0
\(635\) 11692.4 + 187.127i 0.730708 + 0.0116943i
\(636\) 0 0
\(637\) 33394.1i 2.07712i
\(638\) 0 0
\(639\) 0 0
\(640\) 0 0
\(641\) −5955.35 −0.366961 −0.183481 0.983023i \(-0.558736\pi\)
−0.183481 + 0.983023i \(0.558736\pi\)
\(642\) 0 0
\(643\) 15727.7i 0.964605i 0.876005 + 0.482302i \(0.160199\pi\)
−0.876005 + 0.482302i \(0.839801\pi\)
\(644\) 0 0
\(645\) 0 0
\(646\) 0 0
\(647\) 9582.24i 0.582252i −0.956685 0.291126i \(-0.905970\pi\)
0.956685 0.291126i \(-0.0940298\pi\)
\(648\) 0 0
\(649\) 5731.87 0.346681
\(650\) 0 0
\(651\) 0 0
\(652\) 0 0
\(653\) 8313.70i 0.498224i 0.968475 + 0.249112i \(0.0801388\pi\)
−0.968475 + 0.249112i \(0.919861\pi\)
\(654\) 0 0
\(655\) −158.606 + 9910.37i −0.00946148 + 0.591191i
\(656\) 0 0
\(657\) 0 0
\(658\) 0 0
\(659\) −15095.5 −0.892317 −0.446158 0.894954i \(-0.647208\pi\)
−0.446158 + 0.894954i \(0.647208\pi\)
\(660\) 0 0
\(661\) 8266.98 0.486457 0.243229 0.969969i \(-0.421793\pi\)
0.243229 + 0.969969i \(0.421793\pi\)
\(662\) 0 0
\(663\) 0 0
\(664\) 0 0
\(665\) 19942.3 + 319.159i 1.16290 + 0.0186112i
\(666\) 0 0
\(667\) 6042.53i 0.350776i
\(668\) 0 0
\(669\) 0 0
\(670\) 0 0
\(671\) 12448.0 0.716170
\(672\) 0 0
\(673\) 11186.7i 0.640735i −0.947293 0.320367i \(-0.896194\pi\)
0.947293 0.320367i \(-0.103806\pi\)
\(674\) 0 0
\(675\) 0 0
\(676\) 0 0
\(677\) 7675.84i 0.435756i −0.975976 0.217878i \(-0.930087\pi\)
0.975976 0.217878i \(-0.0699134\pi\)
\(678\) 0 0
\(679\) 19520.1 1.10326
\(680\) 0 0
\(681\) 0 0
\(682\) 0 0
\(683\) 10550.9i 0.591099i −0.955327 0.295549i \(-0.904497\pi\)
0.955327 0.295549i \(-0.0955027\pi\)
\(684\) 0 0
\(685\) 1796.71 + 28.7547i 0.100217 + 0.00160388i
\(686\) 0 0
\(687\) 0 0
\(688\) 0 0
\(689\) −11505.0 −0.636150
\(690\) 0 0
\(691\) 26950.9 1.48373 0.741867 0.670547i \(-0.233940\pi\)
0.741867 + 0.670547i \(0.233940\pi\)
\(692\) 0 0
\(693\) 0 0
\(694\) 0 0
\(695\) −10.2453 + 640.166i −0.000559173 + 0.0349394i
\(696\) 0 0
\(697\) 9947.99i 0.540613i
\(698\) 0 0
\(699\) 0 0
\(700\) 0 0
\(701\) −12791.6 −0.689204 −0.344602 0.938749i \(-0.611986\pi\)
−0.344602 + 0.938749i \(0.611986\pi\)
\(702\) 0 0
\(703\) 13577.5i 0.728429i
\(704\) 0 0
\(705\) 0 0
\(706\) 0 0
\(707\) 55805.1i 2.96855i
\(708\) 0 0
\(709\) 16238.3 0.860142 0.430071 0.902795i \(-0.358489\pi\)
0.430071 + 0.902795i \(0.358489\pi\)
\(710\) 0 0
\(711\) 0 0
\(712\) 0 0
\(713\) 21999.6i 1.15553i
\(714\) 0 0
\(715\) −10790.2 172.687i −0.564378 0.00903236i
\(716\) 0 0
\(717\) 0 0
\(718\) 0 0
\(719\) 24285.8 1.25968 0.629839 0.776726i \(-0.283121\pi\)
0.629839 + 0.776726i \(0.283121\pi\)
\(720\) 0 0
\(721\) −47382.3 −2.44745
\(722\) 0 0
\(723\) 0 0
\(724\) 0 0
\(725\) 6809.60 + 218.019i 0.348831 + 0.0111683i
\(726\) 0 0
\(727\) 4466.82i 0.227875i −0.993488 0.113937i \(-0.963654\pi\)
0.993488 0.113937i \(-0.0363464\pi\)
\(728\) 0 0
\(729\) 0 0
\(730\) 0 0
\(731\) −10345.2 −0.523436
\(732\) 0 0
\(733\) 30802.1i 1.55212i 0.630661 + 0.776059i \(0.282784\pi\)
−0.630661 + 0.776059i \(0.717216\pi\)
\(734\) 0 0
\(735\) 0 0
\(736\) 0 0
\(737\) 22466.8i 1.12290i
\(738\) 0 0
\(739\) −12920.5 −0.643151 −0.321576 0.946884i \(-0.604212\pi\)
−0.321576 + 0.946884i \(0.604212\pi\)
\(740\) 0 0
\(741\) 0 0
\(742\) 0 0
\(743\) 2571.29i 0.126960i −0.997983 0.0634802i \(-0.979780\pi\)
0.997983 0.0634802i \(-0.0202200\pi\)
\(744\) 0 0
\(745\) −197.720 + 12354.4i −0.00972337 + 0.607555i
\(746\) 0 0
\(747\) 0 0
\(748\) 0 0
\(749\) −46770.7 −2.28166
\(750\) 0 0
\(751\) 13427.4 0.652426 0.326213 0.945296i \(-0.394227\pi\)
0.326213 + 0.945296i \(0.394227\pi\)
\(752\) 0 0
\(753\) 0 0
\(754\) 0 0
\(755\) −409.635 + 25595.6i −0.0197459 + 1.23380i
\(756\) 0 0
\(757\) 7103.66i 0.341066i 0.985352 + 0.170533i \(0.0545489\pi\)
−0.985352 + 0.170533i \(0.945451\pi\)
\(758\) 0 0
\(759\) 0 0
\(760\) 0 0
\(761\) −19205.2 −0.914831 −0.457416 0.889253i \(-0.651225\pi\)
−0.457416 + 0.889253i \(0.651225\pi\)
\(762\) 0 0
\(763\) 21391.6i 1.01498i
\(764\) 0 0
\(765\) 0 0
\(766\) 0 0
\(767\) 8414.27i 0.396117i
\(768\) 0 0
\(769\) −19508.1 −0.914799 −0.457399 0.889261i \(-0.651219\pi\)
−0.457399 + 0.889261i \(0.651219\pi\)
\(770\) 0 0
\(771\) 0 0
\(772\) 0 0
\(773\) 38852.5i 1.80780i 0.427746 + 0.903899i \(0.359308\pi\)
−0.427746 + 0.903899i \(0.640692\pi\)
\(774\) 0 0
\(775\) 24792.4 + 793.763i 1.14912 + 0.0367907i
\(776\) 0 0
\(777\) 0 0
\(778\) 0 0
\(779\) −5282.23 −0.242947
\(780\) 0 0
\(781\) 15016.0 0.687982
\(782\) 0 0
\(783\) 0 0
\(784\) 0 0
\(785\) −1805.55 28.8962i −0.0820929 0.00131382i
\(786\) 0 0
\(787\) 24851.1i 1.12560i −0.826594 0.562799i \(-0.809725\pi\)
0.826594 0.562799i \(-0.190275\pi\)
\(788\) 0 0
\(789\) 0 0
\(790\) 0 0
\(791\) −8481.04 −0.381228
\(792\) 0 0
\(793\) 18273.4i 0.818295i
\(794\) 0 0
\(795\) 0 0
\(796\) 0 0
\(797\) 33040.1i 1.46843i −0.678916 0.734216i \(-0.737550\pi\)
0.678916 0.734216i \(-0.262450\pi\)
\(798\) 0 0
\(799\) −57187.0 −2.53208
\(800\) 0 0
\(801\) 0 0
\(802\) 0 0
\(803\) 29170.5i 1.28195i
\(804\) 0 0
\(805\) 695.655 43467.3i 0.0304579 1.90313i
\(806\) 0 0
\(807\) 0 0
\(808\) 0 0
\(809\) 10756.6 0.467467 0.233734 0.972301i \(-0.424906\pi\)
0.233734 + 0.972301i \(0.424906\pi\)
\(810\) 0 0
\(811\) 5985.48 0.259160 0.129580 0.991569i \(-0.458637\pi\)
0.129580 + 0.991569i \(0.458637\pi\)
\(812\) 0 0
\(813\) 0 0
\(814\) 0 0
\(815\) 17820.8 + 285.206i 0.765934 + 0.0122581i
\(816\) 0 0
\(817\) 5493.15i 0.235228i
\(818\) 0 0
\(819\) 0 0
\(820\) 0 0
\(821\) −16426.4 −0.698276 −0.349138 0.937071i \(-0.613526\pi\)
−0.349138 + 0.937071i \(0.613526\pi\)
\(822\) 0 0
\(823\) 27124.3i 1.14884i 0.818561 + 0.574419i \(0.194772\pi\)
−0.818561 + 0.574419i \(0.805228\pi\)
\(824\) 0 0
\(825\) 0 0
\(826\) 0 0
\(827\) 32759.9i 1.37748i 0.725011 + 0.688738i \(0.241835\pi\)
−0.725011 + 0.688738i \(0.758165\pi\)
\(828\) 0 0
\(829\) 18211.8 0.762995 0.381498 0.924370i \(-0.375408\pi\)
0.381498 + 0.924370i \(0.375408\pi\)
\(830\) 0 0
\(831\) 0 0
\(832\) 0 0
\(833\) 84979.0i 3.53463i
\(834\) 0 0
\(835\) 11373.3 + 182.020i 0.471366 + 0.00754379i
\(836\) 0 0
\(837\) 0 0
\(838\) 0 0
\(839\) 37500.6 1.54310 0.771552 0.636166i \(-0.219481\pi\)
0.771552 + 0.636166i \(0.219481\pi\)
\(840\) 0 0
\(841\) −21418.2 −0.878192
\(842\) 0 0
\(843\) 0 0
\(844\) 0 0
\(845\) 139.560 8720.29i 0.00568168 0.355014i
\(846\) 0 0
\(847\) 23621.2i 0.958246i
\(848\) 0 0
\(849\) 0 0
\(850\) 0 0
\(851\) 29594.2 1.19210
\(852\) 0 0
\(853\) 2421.81i 0.0972112i 0.998818 + 0.0486056i \(0.0154777\pi\)
−0.998818 + 0.0486056i \(0.984522\pi\)
\(854\) 0 0
\(855\) 0 0
\(856\) 0 0
\(857\) 37700.0i 1.50269i 0.659908 + 0.751346i \(0.270595\pi\)
−0.659908 + 0.751346i \(0.729405\pi\)
\(858\) 0 0
\(859\) −14709.0 −0.584242 −0.292121 0.956381i \(-0.594361\pi\)
−0.292121 + 0.956381i \(0.594361\pi\)
\(860\) 0 0
\(861\) 0 0
\(862\) 0 0
\(863\) 28950.4i 1.14193i −0.820975 0.570963i \(-0.806570\pi\)
0.820975 0.570963i \(-0.193430\pi\)
\(864\) 0 0
\(865\) −27326.7 437.340i −1.07415 0.0171907i
\(866\) 0 0
\(867\) 0 0
\(868\) 0 0
\(869\) 17565.1 0.685681
\(870\) 0 0
\(871\) 32980.8 1.28302
\(872\) 0 0
\(873\) 0 0
\(874\) 0 0
\(875\) −48960.2 2352.30i −1.89161 0.0908824i
\(876\) 0 0
\(877\) 17501.3i 0.673860i 0.941530 + 0.336930i \(0.109389\pi\)
−0.941530 + 0.336930i \(0.890611\pi\)
\(878\) 0 0
\(879\) 0 0
\(880\) 0 0
\(881\) 45136.0 1.72607 0.863037 0.505140i \(-0.168559\pi\)
0.863037 + 0.505140i \(0.168559\pi\)
\(882\) 0 0
\(883\) 51564.8i 1.96522i −0.185673 0.982612i \(-0.559446\pi\)
0.185673 0.982612i \(-0.440554\pi\)
\(884\) 0 0
\(885\) 0 0
\(886\) 0 0
\(887\) 19226.4i 0.727800i 0.931438 + 0.363900i \(0.118555\pi\)
−0.931438 + 0.363900i \(0.881445\pi\)
\(888\) 0 0
\(889\) −36684.6 −1.38398
\(890\) 0 0
\(891\) 0 0
\(892\) 0 0
\(893\) 30365.4i 1.13789i
\(894\) 0 0
\(895\) −39.8571 + 2490.43i −0.00148858 + 0.0930123i
\(896\) 0 0
\(897\) 0 0
\(898\) 0 0
\(899\) 10816.0 0.401259
\(900\) 0 0
\(901\) 29277.2 1.08254
\(902\) 0 0
\(903\) 0 0
\(904\) 0 0
\(905\) −17.8969 + 1118.27i −0.000657361 + 0.0410746i
\(906\) 0 0
\(907\) 32050.1i 1.17333i −0.809831 0.586663i \(-0.800441\pi\)
0.809831 0.586663i \(-0.199559\pi\)
\(908\) 0 0
\(909\) 0 0
\(910\) 0 0
\(911\) −29674.6 −1.07921 −0.539606 0.841918i \(-0.681427\pi\)
−0.539606 + 0.841918i \(0.681427\pi\)
\(912\) 0 0
\(913\) 7839.46i 0.284171i
\(914\) 0 0
\(915\) 0 0
\(916\) 0 0
\(917\) 31093.4i 1.11973i
\(918\) 0 0
\(919\) −6029.99 −0.216443 −0.108221 0.994127i \(-0.534516\pi\)
−0.108221 + 0.994127i \(0.534516\pi\)
\(920\) 0 0
\(921\) 0 0
\(922\) 0 0
\(923\) 22043.2i 0.786088i
\(924\) 0 0
\(925\) 1067.78 33351.1i 0.0379551 1.18549i
\(926\) 0 0
\(927\) 0 0
\(928\) 0 0
\(929\) −35365.2 −1.24897 −0.624485 0.781037i \(-0.714691\pi\)
−0.624485 + 0.781037i \(0.714691\pi\)
\(930\) 0 0
\(931\) −45122.5 −1.58843
\(932\) 0 0
\(933\) 0 0
\(934\) 0 0
\(935\) 27458.1 + 439.442i 0.960402 + 0.0153704i
\(936\) 0 0
\(937\) 35637.0i 1.24249i 0.783618 + 0.621243i \(0.213372\pi\)
−0.783618 + 0.621243i \(0.786628\pi\)
\(938\) 0 0
\(939\) 0 0
\(940\) 0 0
\(941\) 6609.70 0.228980 0.114490 0.993424i \(-0.463477\pi\)
0.114490 + 0.993424i \(0.463477\pi\)
\(942\) 0 0
\(943\) 11513.4i 0.397591i
\(944\) 0 0
\(945\) 0 0
\(946\) 0 0
\(947\) 42650.9i 1.46354i −0.681553 0.731768i \(-0.738695\pi\)
0.681553 0.731768i \(-0.261305\pi\)
\(948\) 0 0
\(949\) 42821.6 1.46475
\(950\) 0 0
\(951\) 0 0
\(952\) 0 0
\(953\) 38382.4i 1.30465i −0.757941 0.652323i \(-0.773795\pi\)
0.757941 0.652323i \(-0.226205\pi\)
\(954\) 0 0
\(955\) 125.666 7852.10i 0.00425806 0.266061i
\(956\) 0 0
\(957\) 0 0
\(958\) 0 0
\(959\) −5637.11 −0.189814
\(960\) 0 0
\(961\) 9587.71 0.321832
\(962\) 0 0
\(963\) 0 0
\(964\) 0 0
\(965\) 46131.2 + 738.288i 1.53888 + 0.0246283i
\(966\) 0 0
\(967\) 2611.76i 0.0868549i −0.999057 0.0434275i \(-0.986172\pi\)
0.999057 0.0434275i \(-0.0138277\pi\)
\(968\) 0 0
\(969\) 0 0
\(970\) 0 0
\(971\) 7846.09 0.259313 0.129657 0.991559i \(-0.458613\pi\)
0.129657 + 0.991559i \(0.458613\pi\)
\(972\) 0 0
\(973\) 2008.50i 0.0661763i
\(974\) 0 0
\(975\) 0 0
\(976\) 0 0
\(977\) 35667.2i 1.16796i 0.811769 + 0.583979i \(0.198505\pi\)
−0.811769 + 0.583979i \(0.801495\pi\)
\(978\) 0 0
\(979\) 22749.1 0.742661
\(980\) 0 0
\(981\) 0 0
\(982\) 0 0
\(983\) 13421.6i 0.435485i 0.976006 + 0.217742i \(0.0698693\pi\)
−0.976006 + 0.217742i \(0.930131\pi\)
\(984\) 0 0
\(985\) −34704.4 555.412i −1.12261 0.0179664i
\(986\) 0 0
\(987\) 0 0
\(988\) 0 0
\(989\) 11973.2 0.384959
\(990\) 0 0
\(991\) −40673.7 −1.30378 −0.651888 0.758315i \(-0.726023\pi\)
−0.651888 + 0.758315i \(0.726023\pi\)
\(992\) 0 0
\(993\) 0 0
\(994\) 0 0
\(995\) −65.7696 + 4109.54i −0.00209551 + 0.130936i
\(996\) 0 0
\(997\) 29558.8i 0.938954i −0.882945 0.469477i \(-0.844442\pi\)
0.882945 0.469477i \(-0.155558\pi\)
\(998\) 0 0
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 720.4.f.i.289.3 4
3.2 odd 2 240.4.f.g.49.3 4
4.3 odd 2 360.4.f.d.289.3 4
5.4 even 2 inner 720.4.f.i.289.4 4
12.11 even 2 120.4.f.d.49.1 4
15.2 even 4 1200.4.a.bq.1.1 2
15.8 even 4 1200.4.a.bo.1.2 2
15.14 odd 2 240.4.f.g.49.1 4
20.3 even 4 1800.4.a.bl.1.1 2
20.7 even 4 1800.4.a.bn.1.2 2
20.19 odd 2 360.4.f.d.289.4 4
24.5 odd 2 960.4.f.o.769.2 4
24.11 even 2 960.4.f.n.769.4 4
60.23 odd 4 600.4.a.v.1.1 2
60.47 odd 4 600.4.a.t.1.2 2
60.59 even 2 120.4.f.d.49.3 yes 4
120.29 odd 2 960.4.f.o.769.4 4
120.59 even 2 960.4.f.n.769.2 4
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
120.4.f.d.49.1 4 12.11 even 2
120.4.f.d.49.3 yes 4 60.59 even 2
240.4.f.g.49.1 4 15.14 odd 2
240.4.f.g.49.3 4 3.2 odd 2
360.4.f.d.289.3 4 4.3 odd 2
360.4.f.d.289.4 4 20.19 odd 2
600.4.a.t.1.2 2 60.47 odd 4
600.4.a.v.1.1 2 60.23 odd 4
720.4.f.i.289.3 4 1.1 even 1 trivial
720.4.f.i.289.4 4 5.4 even 2 inner
960.4.f.n.769.2 4 120.59 even 2
960.4.f.n.769.4 4 24.11 even 2
960.4.f.o.769.2 4 24.5 odd 2
960.4.f.o.769.4 4 120.29 odd 2
1200.4.a.bo.1.2 2 15.8 even 4
1200.4.a.bq.1.1 2 15.2 even 4
1800.4.a.bl.1.1 2 20.3 even 4
1800.4.a.bn.1.2 2 20.7 even 4