Newspace parameters
comment: Compute space of new eigenforms
[N,k,chi] = [7200,2,Mod(3601,7200)]
mf = mfinit([N,k,chi],0)
lf = mfeigenbasis(mf)
from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(7200, base_ring=CyclotomicField(2))
chi = DirichletCharacter(H, H._module([0, 1, 0, 0]))
N = Newforms(chi, 2, names="a")
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
chi := DirichletCharacter("7200.3601");
S:= CuspForms(chi, 2);
N := Newforms(S);
Level: | \( N \) | \(=\) | \( 7200 = 2^{5} \cdot 3^{2} \cdot 5^{2} \) |
Weight: | \( k \) | \(=\) | \( 2 \) |
Character orbit: | \([\chi]\) | \(=\) | 7200.k (of order \(2\), degree \(1\), not minimal) |
Newform invariants
comment: select newform
sage: f = N[0] # Warning: the index may be different
gp: f = lf[1] \\ Warning: the index may be different
Self dual: | no |
Analytic conductor: | \(57.4922894553\) |
Analytic rank: | \(0\) |
Dimension: | \(2\) |
Coefficient field: | \(\Q(\sqrt{-7}) \) |
comment: defining polynomial
gp: f.mod \\ as an extension of the character field
|
|
Defining polynomial: | \( x^{2} - x + 2 \) |
Coefficient ring: | \(\Z[a_1, \ldots, a_{11}]\) |
Coefficient ring index: | \( 2 \) |
Twist minimal: | no (minimal twist has level 200) |
Sato-Tate group: | $\mathrm{SU}(2)[C_{2}]$ |
Embedding invariants
Embedding label | 3601.2 | ||
Root | \(0.500000 - 1.32288i\) of defining polynomial | ||
Character | \(\chi\) | \(=\) | 7200.3601 |
Dual form | 7200.2.k.b.3601.1 |
$q$-expansion
comment: q-expansion
sage: f.q_expansion() # note that sage often uses an isomorphic number field
gp: mfcoefs(f, 20)
Character values
We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/7200\mathbb{Z}\right)^\times\).
\(n\) | \(577\) | \(901\) | \(6401\) | \(6751\) |
\(\chi(n)\) | \(1\) | \(-1\) | \(1\) | \(1\) |
Coefficient data
For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).
(See \(a_n\) instead)
(See \(a_n\) instead)
(See \(a_n\) instead)
(See only \(a_p\))
(See only \(a_p\))
(See only \(a_p\))
\(n\) | \(a_n\) | \(a_n / n^{(k-1)/2}\) | \( \alpha_n \) | \( \theta_n \) | ||||||
---|---|---|---|---|---|---|---|---|---|---|
\(p\) | \(a_p\) | \(a_p / p^{(k-1)/2}\) | \( \alpha_p\) | \( \theta_p \) | ||||||
\(2\) | 0 | 0 | ||||||||
\(3\) | 0 | 0 | ||||||||
\(4\) | 0 | 0 | ||||||||
\(5\) | 0 | 0 | ||||||||
\(6\) | 0 | 0 | ||||||||
\(7\) | −4.00000 | −1.51186 | −0.755929 | − | 0.654654i | \(-0.772814\pi\) | ||||
−0.755929 | + | 0.654654i | \(0.772814\pi\) | |||||||
\(8\) | 0 | 0 | ||||||||
\(9\) | 0 | 0 | ||||||||
\(10\) | 0 | 0 | ||||||||
\(11\) | 2.64575i | 0.797724i | 0.917011 | + | 0.398862i | \(0.130595\pi\) | ||||
−0.917011 | + | 0.398862i | \(0.869405\pi\) | |||||||
\(12\) | 0 | 0 | ||||||||
\(13\) | 0 | 0 | 1.00000 | \(0\) | ||||||
−1.00000 | \(\pi\) | |||||||||
\(14\) | 0 | 0 | ||||||||
\(15\) | 0 | 0 | ||||||||
\(16\) | 0 | 0 | ||||||||
\(17\) | 3.00000 | 0.727607 | 0.363803 | − | 0.931476i | \(-0.381478\pi\) | ||||
0.363803 | + | 0.931476i | \(0.381478\pi\) | |||||||
\(18\) | 0 | 0 | ||||||||
\(19\) | − 2.64575i | − 0.606977i | −0.952835 | − | 0.303488i | \(-0.901849\pi\) | ||||
0.952835 | − | 0.303488i | \(-0.0981514\pi\) | |||||||
\(20\) | 0 | 0 | ||||||||
\(21\) | 0 | 0 | ||||||||
\(22\) | 0 | 0 | ||||||||
\(23\) | 4.00000 | 0.834058 | 0.417029 | − | 0.908893i | \(-0.363071\pi\) | ||||
0.417029 | + | 0.908893i | \(0.363071\pi\) | |||||||
\(24\) | 0 | 0 | ||||||||
\(25\) | 0 | 0 | ||||||||
\(26\) | 0 | 0 | ||||||||
\(27\) | 0 | 0 | ||||||||
\(28\) | 0 | 0 | ||||||||
\(29\) | 0 | 0 | 1.00000 | \(0\) | ||||||
−1.00000 | \(\pi\) | |||||||||
\(30\) | 0 | 0 | ||||||||
\(31\) | −4.00000 | −0.718421 | −0.359211 | − | 0.933257i | \(-0.616954\pi\) | ||||
−0.359211 | + | 0.933257i | \(0.616954\pi\) | |||||||
\(32\) | 0 | 0 | ||||||||
\(33\) | 0 | 0 | ||||||||
\(34\) | 0 | 0 | ||||||||
\(35\) | 0 | 0 | ||||||||
\(36\) | 0 | 0 | ||||||||
\(37\) | − 10.5830i | − 1.73984i | −0.493197 | − | 0.869918i | \(-0.664172\pi\) | ||||
0.493197 | − | 0.869918i | \(-0.335828\pi\) | |||||||
\(38\) | 0 | 0 | ||||||||
\(39\) | 0 | 0 | ||||||||
\(40\) | 0 | 0 | ||||||||
\(41\) | 5.00000 | 0.780869 | 0.390434 | − | 0.920631i | \(-0.372325\pi\) | ||||
0.390434 | + | 0.920631i | \(0.372325\pi\) | |||||||
\(42\) | 0 | 0 | ||||||||
\(43\) | 5.29150i | 0.806947i | 0.914991 | + | 0.403473i | \(0.132197\pi\) | ||||
−0.914991 | + | 0.403473i | \(0.867803\pi\) | |||||||
\(44\) | 0 | 0 | ||||||||
\(45\) | 0 | 0 | ||||||||
\(46\) | 0 | 0 | ||||||||
\(47\) | −8.00000 | −1.16692 | −0.583460 | − | 0.812142i | \(-0.698301\pi\) | ||||
−0.583460 | + | 0.812142i | \(0.698301\pi\) | |||||||
\(48\) | 0 | 0 | ||||||||
\(49\) | 9.00000 | 1.28571 | ||||||||
\(50\) | 0 | 0 | ||||||||
\(51\) | 0 | 0 | ||||||||
\(52\) | 0 | 0 | ||||||||
\(53\) | − 10.5830i | − 1.45369i | −0.686803 | − | 0.726844i | \(-0.740986\pi\) | ||||
0.686803 | − | 0.726844i | \(-0.259014\pi\) | |||||||
\(54\) | 0 | 0 | ||||||||
\(55\) | 0 | 0 | ||||||||
\(56\) | 0 | 0 | ||||||||
\(57\) | 0 | 0 | ||||||||
\(58\) | 0 | 0 | ||||||||
\(59\) | 5.29150i | 0.688895i | 0.938806 | + | 0.344447i | \(0.111934\pi\) | ||||
−0.938806 | + | 0.344447i | \(0.888066\pi\) | |||||||
\(60\) | 0 | 0 | ||||||||
\(61\) | 10.5830i | 1.35501i | 0.735516 | + | 0.677507i | \(0.236940\pi\) | ||||
−0.735516 | + | 0.677507i | \(0.763060\pi\) | |||||||
\(62\) | 0 | 0 | ||||||||
\(63\) | 0 | 0 | ||||||||
\(64\) | 0 | 0 | ||||||||
\(65\) | 0 | 0 | ||||||||
\(66\) | 0 | 0 | ||||||||
\(67\) | − 7.93725i | − 0.969690i | −0.874600 | − | 0.484845i | \(-0.838876\pi\) | ||||
0.874600 | − | 0.484845i | \(-0.161124\pi\) | |||||||
\(68\) | 0 | 0 | ||||||||
\(69\) | 0 | 0 | ||||||||
\(70\) | 0 | 0 | ||||||||
\(71\) | 8.00000 | 0.949425 | 0.474713 | − | 0.880141i | \(-0.342552\pi\) | ||||
0.474713 | + | 0.880141i | \(0.342552\pi\) | |||||||
\(72\) | 0 | 0 | ||||||||
\(73\) | −7.00000 | −0.819288 | −0.409644 | − | 0.912245i | \(-0.634347\pi\) | ||||
−0.409644 | + | 0.912245i | \(0.634347\pi\) | |||||||
\(74\) | 0 | 0 | ||||||||
\(75\) | 0 | 0 | ||||||||
\(76\) | 0 | 0 | ||||||||
\(77\) | − 10.5830i | − 1.20605i | ||||||||
\(78\) | 0 | 0 | ||||||||
\(79\) | −4.00000 | −0.450035 | −0.225018 | − | 0.974355i | \(-0.572244\pi\) | ||||
−0.225018 | + | 0.974355i | \(0.572244\pi\) | |||||||
\(80\) | 0 | 0 | ||||||||
\(81\) | 0 | 0 | ||||||||
\(82\) | 0 | 0 | ||||||||
\(83\) | 7.93725i | 0.871227i | 0.900134 | + | 0.435613i | \(0.143469\pi\) | ||||
−0.900134 | + | 0.435613i | \(0.856531\pi\) | |||||||
\(84\) | 0 | 0 | ||||||||
\(85\) | 0 | 0 | ||||||||
\(86\) | 0 | 0 | ||||||||
\(87\) | 0 | 0 | ||||||||
\(88\) | 0 | 0 | ||||||||
\(89\) | 1.00000 | 0.106000 | 0.0529999 | − | 0.998595i | \(-0.483122\pi\) | ||||
0.0529999 | + | 0.998595i | \(0.483122\pi\) | |||||||
\(90\) | 0 | 0 | ||||||||
\(91\) | 0 | 0 | ||||||||
\(92\) | 0 | 0 | ||||||||
\(93\) | 0 | 0 | ||||||||
\(94\) | 0 | 0 | ||||||||
\(95\) | 0 | 0 | ||||||||
\(96\) | 0 | 0 | ||||||||
\(97\) | −2.00000 | −0.203069 | −0.101535 | − | 0.994832i | \(-0.532375\pi\) | ||||
−0.101535 | + | 0.994832i | \(0.532375\pi\) | |||||||
\(98\) | 0 | 0 | ||||||||
\(99\) | 0 | 0 | ||||||||
\(100\) | 0 | 0 | ||||||||
\(101\) | 10.5830i | 1.05305i | 0.850160 | + | 0.526524i | \(0.176505\pi\) | ||||
−0.850160 | + | 0.526524i | \(0.823495\pi\) | |||||||
\(102\) | 0 | 0 | ||||||||
\(103\) | −8.00000 | −0.788263 | −0.394132 | − | 0.919054i | \(-0.628955\pi\) | ||||
−0.394132 | + | 0.919054i | \(0.628955\pi\) | |||||||
\(104\) | 0 | 0 | ||||||||
\(105\) | 0 | 0 | ||||||||
\(106\) | 0 | 0 | ||||||||
\(107\) | − 2.64575i | − 0.255774i | −0.991789 | − | 0.127887i | \(-0.959180\pi\) | ||||
0.991789 | − | 0.127887i | \(-0.0408196\pi\) | |||||||
\(108\) | 0 | 0 | ||||||||
\(109\) | 10.5830i | 1.01367i | 0.862044 | + | 0.506834i | \(0.169184\pi\) | ||||
−0.862044 | + | 0.506834i | \(0.830816\pi\) | |||||||
\(110\) | 0 | 0 | ||||||||
\(111\) | 0 | 0 | ||||||||
\(112\) | 0 | 0 | ||||||||
\(113\) | 15.0000 | 1.41108 | 0.705541 | − | 0.708669i | \(-0.250704\pi\) | ||||
0.705541 | + | 0.708669i | \(0.250704\pi\) | |||||||
\(114\) | 0 | 0 | ||||||||
\(115\) | 0 | 0 | ||||||||
\(116\) | 0 | 0 | ||||||||
\(117\) | 0 | 0 | ||||||||
\(118\) | 0 | 0 | ||||||||
\(119\) | −12.0000 | −1.10004 | ||||||||
\(120\) | 0 | 0 | ||||||||
\(121\) | 4.00000 | 0.363636 | ||||||||
\(122\) | 0 | 0 | ||||||||
\(123\) | 0 | 0 | ||||||||
\(124\) | 0 | 0 | ||||||||
\(125\) | 0 | 0 | ||||||||
\(126\) | 0 | 0 | ||||||||
\(127\) | −12.0000 | −1.06483 | −0.532414 | − | 0.846484i | \(-0.678715\pi\) | ||||
−0.532414 | + | 0.846484i | \(0.678715\pi\) | |||||||
\(128\) | 0 | 0 | ||||||||
\(129\) | 0 | 0 | ||||||||
\(130\) | 0 | 0 | ||||||||
\(131\) | − 15.8745i | − 1.38696i | −0.720475 | − | 0.693481i | \(-0.756076\pi\) | ||||
0.720475 | − | 0.693481i | \(-0.243924\pi\) | |||||||
\(132\) | 0 | 0 | ||||||||
\(133\) | 10.5830i | 0.917663i | ||||||||
\(134\) | 0 | 0 | ||||||||
\(135\) | 0 | 0 | ||||||||
\(136\) | 0 | 0 | ||||||||
\(137\) | 19.0000 | 1.62328 | 0.811640 | − | 0.584158i | \(-0.198575\pi\) | ||||
0.811640 | + | 0.584158i | \(0.198575\pi\) | |||||||
\(138\) | 0 | 0 | ||||||||
\(139\) | 18.5203i | 1.57087i | 0.618945 | + | 0.785434i | \(0.287560\pi\) | ||||
−0.618945 | + | 0.785434i | \(0.712440\pi\) | |||||||
\(140\) | 0 | 0 | ||||||||
\(141\) | 0 | 0 | ||||||||
\(142\) | 0 | 0 | ||||||||
\(143\) | 0 | 0 | ||||||||
\(144\) | 0 | 0 | ||||||||
\(145\) | 0 | 0 | ||||||||
\(146\) | 0 | 0 | ||||||||
\(147\) | 0 | 0 | ||||||||
\(148\) | 0 | 0 | ||||||||
\(149\) | 0 | 0 | 1.00000 | \(0\) | ||||||
−1.00000 | \(\pi\) | |||||||||
\(150\) | 0 | 0 | ||||||||
\(151\) | −4.00000 | −0.325515 | −0.162758 | − | 0.986666i | \(-0.552039\pi\) | ||||
−0.162758 | + | 0.986666i | \(0.552039\pi\) | |||||||
\(152\) | 0 | 0 | ||||||||
\(153\) | 0 | 0 | ||||||||
\(154\) | 0 | 0 | ||||||||
\(155\) | 0 | 0 | ||||||||
\(156\) | 0 | 0 | ||||||||
\(157\) | 10.5830i | 0.844616i | 0.906452 | + | 0.422308i | \(0.138780\pi\) | ||||
−0.906452 | + | 0.422308i | \(0.861220\pi\) | |||||||
\(158\) | 0 | 0 | ||||||||
\(159\) | 0 | 0 | ||||||||
\(160\) | 0 | 0 | ||||||||
\(161\) | −16.0000 | −1.26098 | ||||||||
\(162\) | 0 | 0 | ||||||||
\(163\) | 13.2288i | 1.03616i | 0.855333 | + | 0.518078i | \(0.173352\pi\) | ||||
−0.855333 | + | 0.518078i | \(0.826648\pi\) | |||||||
\(164\) | 0 | 0 | ||||||||
\(165\) | 0 | 0 | ||||||||
\(166\) | 0 | 0 | ||||||||
\(167\) | 0 | 0 | − | 1.00000i | \(-0.5\pi\) | |||||
1.00000i | \(0.5\pi\) | |||||||||
\(168\) | 0 | 0 | ||||||||
\(169\) | 13.0000 | 1.00000 | ||||||||
\(170\) | 0 | 0 | ||||||||
\(171\) | 0 | 0 | ||||||||
\(172\) | 0 | 0 | ||||||||
\(173\) | 21.1660i | 1.60922i | 0.593802 | + | 0.804611i | \(0.297626\pi\) | ||||
−0.593802 | + | 0.804611i | \(0.702374\pi\) | |||||||
\(174\) | 0 | 0 | ||||||||
\(175\) | 0 | 0 | ||||||||
\(176\) | 0 | 0 | ||||||||
\(177\) | 0 | 0 | ||||||||
\(178\) | 0 | 0 | ||||||||
\(179\) | 23.8118i | 1.77977i | 0.456180 | + | 0.889887i | \(0.349217\pi\) | ||||
−0.456180 | + | 0.889887i | \(0.650783\pi\) | |||||||
\(180\) | 0 | 0 | ||||||||
\(181\) | 10.5830i | 0.786629i | 0.919404 | + | 0.393314i | \(0.128672\pi\) | ||||
−0.919404 | + | 0.393314i | \(0.871328\pi\) | |||||||
\(182\) | 0 | 0 | ||||||||
\(183\) | 0 | 0 | ||||||||
\(184\) | 0 | 0 | ||||||||
\(185\) | 0 | 0 | ||||||||
\(186\) | 0 | 0 | ||||||||
\(187\) | 7.93725i | 0.580429i | ||||||||
\(188\) | 0 | 0 | ||||||||
\(189\) | 0 | 0 | ||||||||
\(190\) | 0 | 0 | ||||||||
\(191\) | 4.00000 | 0.289430 | 0.144715 | − | 0.989473i | \(-0.453773\pi\) | ||||
0.144715 | + | 0.989473i | \(0.453773\pi\) | |||||||
\(192\) | 0 | 0 | ||||||||
\(193\) | 5.00000 | 0.359908 | 0.179954 | − | 0.983675i | \(-0.442405\pi\) | ||||
0.179954 | + | 0.983675i | \(0.442405\pi\) | |||||||
\(194\) | 0 | 0 | ||||||||
\(195\) | 0 | 0 | ||||||||
\(196\) | 0 | 0 | ||||||||
\(197\) | − 10.5830i | − 0.754008i | −0.926212 | − | 0.377004i | \(-0.876954\pi\) | ||||
0.926212 | − | 0.377004i | \(-0.123046\pi\) | |||||||
\(198\) | 0 | 0 | ||||||||
\(199\) | 24.0000 | 1.70131 | 0.850657 | − | 0.525720i | \(-0.176204\pi\) | ||||
0.850657 | + | 0.525720i | \(0.176204\pi\) | |||||||
\(200\) | 0 | 0 | ||||||||
\(201\) | 0 | 0 | ||||||||
\(202\) | 0 | 0 | ||||||||
\(203\) | 0 | 0 | ||||||||
\(204\) | 0 | 0 | ||||||||
\(205\) | 0 | 0 | ||||||||
\(206\) | 0 | 0 | ||||||||
\(207\) | 0 | 0 | ||||||||
\(208\) | 0 | 0 | ||||||||
\(209\) | 7.00000 | 0.484200 | ||||||||
\(210\) | 0 | 0 | ||||||||
\(211\) | 7.93725i | 0.546423i | 0.961954 | + | 0.273212i | \(0.0880859\pi\) | ||||
−0.961954 | + | 0.273212i | \(0.911914\pi\) | |||||||
\(212\) | 0 | 0 | ||||||||
\(213\) | 0 | 0 | ||||||||
\(214\) | 0 | 0 | ||||||||
\(215\) | 0 | 0 | ||||||||
\(216\) | 0 | 0 | ||||||||
\(217\) | 16.0000 | 1.08615 | ||||||||
\(218\) | 0 | 0 | ||||||||
\(219\) | 0 | 0 | ||||||||
\(220\) | 0 | 0 | ||||||||
\(221\) | 0 | 0 | ||||||||
\(222\) | 0 | 0 | ||||||||
\(223\) | 16.0000 | 1.07144 | 0.535720 | − | 0.844396i | \(-0.320040\pi\) | ||||
0.535720 | + | 0.844396i | \(0.320040\pi\) | |||||||
\(224\) | 0 | 0 | ||||||||
\(225\) | 0 | 0 | ||||||||
\(226\) | 0 | 0 | ||||||||
\(227\) | 15.8745i | 1.05363i | 0.849981 | + | 0.526814i | \(0.176614\pi\) | ||||
−0.849981 | + | 0.526814i | \(0.823386\pi\) | |||||||
\(228\) | 0 | 0 | ||||||||
\(229\) | 21.1660i | 1.39869i | 0.714785 | + | 0.699345i | \(0.246525\pi\) | ||||
−0.714785 | + | 0.699345i | \(0.753475\pi\) | |||||||
\(230\) | 0 | 0 | ||||||||
\(231\) | 0 | 0 | ||||||||
\(232\) | 0 | 0 | ||||||||
\(233\) | −6.00000 | −0.393073 | −0.196537 | − | 0.980497i | \(-0.562969\pi\) | ||||
−0.196537 | + | 0.980497i | \(0.562969\pi\) | |||||||
\(234\) | 0 | 0 | ||||||||
\(235\) | 0 | 0 | ||||||||
\(236\) | 0 | 0 | ||||||||
\(237\) | 0 | 0 | ||||||||
\(238\) | 0 | 0 | ||||||||
\(239\) | −8.00000 | −0.517477 | −0.258738 | − | 0.965947i | \(-0.583307\pi\) | ||||
−0.258738 | + | 0.965947i | \(0.583307\pi\) | |||||||
\(240\) | 0 | 0 | ||||||||
\(241\) | −21.0000 | −1.35273 | −0.676364 | − | 0.736567i | \(-0.736446\pi\) | ||||
−0.676364 | + | 0.736567i | \(0.736446\pi\) | |||||||
\(242\) | 0 | 0 | ||||||||
\(243\) | 0 | 0 | ||||||||
\(244\) | 0 | 0 | ||||||||
\(245\) | 0 | 0 | ||||||||
\(246\) | 0 | 0 | ||||||||
\(247\) | 0 | 0 | ||||||||
\(248\) | 0 | 0 | ||||||||
\(249\) | 0 | 0 | ||||||||
\(250\) | 0 | 0 | ||||||||
\(251\) | − 7.93725i | − 0.500995i | −0.968117 | − | 0.250498i | \(-0.919406\pi\) | ||||
0.968117 | − | 0.250498i | \(-0.0805942\pi\) | |||||||
\(252\) | 0 | 0 | ||||||||
\(253\) | 10.5830i | 0.665348i | ||||||||
\(254\) | 0 | 0 | ||||||||
\(255\) | 0 | 0 | ||||||||
\(256\) | 0 | 0 | ||||||||
\(257\) | −14.0000 | −0.873296 | −0.436648 | − | 0.899632i | \(-0.643834\pi\) | ||||
−0.436648 | + | 0.899632i | \(0.643834\pi\) | |||||||
\(258\) | 0 | 0 | ||||||||
\(259\) | 42.3320i | 2.63038i | ||||||||
\(260\) | 0 | 0 | ||||||||
\(261\) | 0 | 0 | ||||||||
\(262\) | 0 | 0 | ||||||||
\(263\) | 12.0000 | 0.739952 | 0.369976 | − | 0.929041i | \(-0.379366\pi\) | ||||
0.369976 | + | 0.929041i | \(0.379366\pi\) | |||||||
\(264\) | 0 | 0 | ||||||||
\(265\) | 0 | 0 | ||||||||
\(266\) | 0 | 0 | ||||||||
\(267\) | 0 | 0 | ||||||||
\(268\) | 0 | 0 | ||||||||
\(269\) | 21.1660i | 1.29051i | 0.763965 | + | 0.645257i | \(0.223250\pi\) | ||||
−0.763965 | + | 0.645257i | \(0.776750\pi\) | |||||||
\(270\) | 0 | 0 | ||||||||
\(271\) | 20.0000 | 1.21491 | 0.607457 | − | 0.794353i | \(-0.292190\pi\) | ||||
0.607457 | + | 0.794353i | \(0.292190\pi\) | |||||||
\(272\) | 0 | 0 | ||||||||
\(273\) | 0 | 0 | ||||||||
\(274\) | 0 | 0 | ||||||||
\(275\) | 0 | 0 | ||||||||
\(276\) | 0 | 0 | ||||||||
\(277\) | − 21.1660i | − 1.27174i | −0.771795 | − | 0.635871i | \(-0.780641\pi\) | ||||
0.771795 | − | 0.635871i | \(-0.219359\pi\) | |||||||
\(278\) | 0 | 0 | ||||||||
\(279\) | 0 | 0 | ||||||||
\(280\) | 0 | 0 | ||||||||
\(281\) | 22.0000 | 1.31241 | 0.656205 | − | 0.754583i | \(-0.272161\pi\) | ||||
0.656205 | + | 0.754583i | \(0.272161\pi\) | |||||||
\(282\) | 0 | 0 | ||||||||
\(283\) | 13.2288i | 0.786368i | 0.919460 | + | 0.393184i | \(0.128626\pi\) | ||||
−0.919460 | + | 0.393184i | \(0.871374\pi\) | |||||||
\(284\) | 0 | 0 | ||||||||
\(285\) | 0 | 0 | ||||||||
\(286\) | 0 | 0 | ||||||||
\(287\) | −20.0000 | −1.18056 | ||||||||
\(288\) | 0 | 0 | ||||||||
\(289\) | −8.00000 | −0.470588 | ||||||||
\(290\) | 0 | 0 | ||||||||
\(291\) | 0 | 0 | ||||||||
\(292\) | 0 | 0 | ||||||||
\(293\) | 10.5830i | 0.618266i | 0.951019 | + | 0.309133i | \(0.100039\pi\) | ||||
−0.951019 | + | 0.309133i | \(0.899961\pi\) | |||||||
\(294\) | 0 | 0 | ||||||||
\(295\) | 0 | 0 | ||||||||
\(296\) | 0 | 0 | ||||||||
\(297\) | 0 | 0 | ||||||||
\(298\) | 0 | 0 | ||||||||
\(299\) | 0 | 0 | ||||||||
\(300\) | 0 | 0 | ||||||||
\(301\) | − 21.1660i | − 1.21999i | ||||||||
\(302\) | 0 | 0 | ||||||||
\(303\) | 0 | 0 | ||||||||
\(304\) | 0 | 0 | ||||||||
\(305\) | 0 | 0 | ||||||||
\(306\) | 0 | 0 | ||||||||
\(307\) | 2.64575i | 0.151001i | 0.997146 | + | 0.0755005i | \(0.0240554\pi\) | ||||
−0.997146 | + | 0.0755005i | \(0.975945\pi\) | |||||||
\(308\) | 0 | 0 | ||||||||
\(309\) | 0 | 0 | ||||||||
\(310\) | 0 | 0 | ||||||||
\(311\) | −4.00000 | −0.226819 | −0.113410 | − | 0.993548i | \(-0.536177\pi\) | ||||
−0.113410 | + | 0.993548i | \(0.536177\pi\) | |||||||
\(312\) | 0 | 0 | ||||||||
\(313\) | 6.00000 | 0.339140 | 0.169570 | − | 0.985518i | \(-0.445762\pi\) | ||||
0.169570 | + | 0.985518i | \(0.445762\pi\) | |||||||
\(314\) | 0 | 0 | ||||||||
\(315\) | 0 | 0 | ||||||||
\(316\) | 0 | 0 | ||||||||
\(317\) | 0 | 0 | 1.00000 | \(0\) | ||||||
−1.00000 | \(\pi\) | |||||||||
\(318\) | 0 | 0 | ||||||||
\(319\) | 0 | 0 | ||||||||
\(320\) | 0 | 0 | ||||||||
\(321\) | 0 | 0 | ||||||||
\(322\) | 0 | 0 | ||||||||
\(323\) | − 7.93725i | − 0.441641i | ||||||||
\(324\) | 0 | 0 | ||||||||
\(325\) | 0 | 0 | ||||||||
\(326\) | 0 | 0 | ||||||||
\(327\) | 0 | 0 | ||||||||
\(328\) | 0 | 0 | ||||||||
\(329\) | 32.0000 | 1.76422 | ||||||||
\(330\) | 0 | 0 | ||||||||
\(331\) | − 2.64575i | − 0.145424i | −0.997353 | − | 0.0727118i | \(-0.976835\pi\) | ||||
0.997353 | − | 0.0727118i | \(-0.0231653\pi\) | |||||||
\(332\) | 0 | 0 | ||||||||
\(333\) | 0 | 0 | ||||||||
\(334\) | 0 | 0 | ||||||||
\(335\) | 0 | 0 | ||||||||
\(336\) | 0 | 0 | ||||||||
\(337\) | −15.0000 | −0.817102 | −0.408551 | − | 0.912735i | \(-0.633966\pi\) | ||||
−0.408551 | + | 0.912735i | \(0.633966\pi\) | |||||||
\(338\) | 0 | 0 | ||||||||
\(339\) | 0 | 0 | ||||||||
\(340\) | 0 | 0 | ||||||||
\(341\) | − 10.5830i | − 0.573102i | ||||||||
\(342\) | 0 | 0 | ||||||||
\(343\) | −8.00000 | −0.431959 | ||||||||
\(344\) | 0 | 0 | ||||||||
\(345\) | 0 | 0 | ||||||||
\(346\) | 0 | 0 | ||||||||
\(347\) | − 2.64575i | − 0.142031i | −0.997475 | − | 0.0710157i | \(-0.977376\pi\) | ||||
0.997475 | − | 0.0710157i | \(-0.0226240\pi\) | |||||||
\(348\) | 0 | 0 | ||||||||
\(349\) | − 10.5830i | − 0.566495i | −0.959047 | − | 0.283248i | \(-0.908588\pi\) | ||||
0.959047 | − | 0.283248i | \(-0.0914118\pi\) | |||||||
\(350\) | 0 | 0 | ||||||||
\(351\) | 0 | 0 | ||||||||
\(352\) | 0 | 0 | ||||||||
\(353\) | 18.0000 | 0.958043 | 0.479022 | − | 0.877803i | \(-0.340992\pi\) | ||||
0.479022 | + | 0.877803i | \(0.340992\pi\) | |||||||
\(354\) | 0 | 0 | ||||||||
\(355\) | 0 | 0 | ||||||||
\(356\) | 0 | 0 | ||||||||
\(357\) | 0 | 0 | ||||||||
\(358\) | 0 | 0 | ||||||||
\(359\) | 36.0000 | 1.90001 | 0.950004 | − | 0.312239i | \(-0.101079\pi\) | ||||
0.950004 | + | 0.312239i | \(0.101079\pi\) | |||||||
\(360\) | 0 | 0 | ||||||||
\(361\) | 12.0000 | 0.631579 | ||||||||
\(362\) | 0 | 0 | ||||||||
\(363\) | 0 | 0 | ||||||||
\(364\) | 0 | 0 | ||||||||
\(365\) | 0 | 0 | ||||||||
\(366\) | 0 | 0 | ||||||||
\(367\) | 0 | 0 | − | 1.00000i | \(-0.5\pi\) | |||||
1.00000i | \(0.5\pi\) | |||||||||
\(368\) | 0 | 0 | ||||||||
\(369\) | 0 | 0 | ||||||||
\(370\) | 0 | 0 | ||||||||
\(371\) | 42.3320i | 2.19777i | ||||||||
\(372\) | 0 | 0 | ||||||||
\(373\) | 10.5830i | 0.547967i | 0.961734 | + | 0.273984i | \(0.0883414\pi\) | ||||
−0.961734 | + | 0.273984i | \(0.911659\pi\) | |||||||
\(374\) | 0 | 0 | ||||||||
\(375\) | 0 | 0 | ||||||||
\(376\) | 0 | 0 | ||||||||
\(377\) | 0 | 0 | ||||||||
\(378\) | 0 | 0 | ||||||||
\(379\) | 7.93725i | 0.407709i | 0.979001 | + | 0.203855i | \(0.0653470\pi\) | ||||
−0.979001 | + | 0.203855i | \(0.934653\pi\) | |||||||
\(380\) | 0 | 0 | ||||||||
\(381\) | 0 | 0 | ||||||||
\(382\) | 0 | 0 | ||||||||
\(383\) | −36.0000 | −1.83951 | −0.919757 | − | 0.392488i | \(-0.871614\pi\) | ||||
−0.919757 | + | 0.392488i | \(0.871614\pi\) | |||||||
\(384\) | 0 | 0 | ||||||||
\(385\) | 0 | 0 | ||||||||
\(386\) | 0 | 0 | ||||||||
\(387\) | 0 | 0 | ||||||||
\(388\) | 0 | 0 | ||||||||
\(389\) | − 10.5830i | − 0.536580i | −0.963338 | − | 0.268290i | \(-0.913542\pi\) | ||||
0.963338 | − | 0.268290i | \(-0.0864585\pi\) | |||||||
\(390\) | 0 | 0 | ||||||||
\(391\) | 12.0000 | 0.606866 | ||||||||
\(392\) | 0 | 0 | ||||||||
\(393\) | 0 | 0 | ||||||||
\(394\) | 0 | 0 | ||||||||
\(395\) | 0 | 0 | ||||||||
\(396\) | 0 | 0 | ||||||||
\(397\) | − 21.1660i | − 1.06229i | −0.847280 | − | 0.531146i | \(-0.821762\pi\) | ||||
0.847280 | − | 0.531146i | \(-0.178238\pi\) | |||||||
\(398\) | 0 | 0 | ||||||||
\(399\) | 0 | 0 | ||||||||
\(400\) | 0 | 0 | ||||||||
\(401\) | −27.0000 | −1.34832 | −0.674158 | − | 0.738587i | \(-0.735493\pi\) | ||||
−0.674158 | + | 0.738587i | \(0.735493\pi\) | |||||||
\(402\) | 0 | 0 | ||||||||
\(403\) | 0 | 0 | ||||||||
\(404\) | 0 | 0 | ||||||||
\(405\) | 0 | 0 | ||||||||
\(406\) | 0 | 0 | ||||||||
\(407\) | 28.0000 | 1.38791 | ||||||||
\(408\) | 0 | 0 | ||||||||
\(409\) | 3.00000 | 0.148340 | 0.0741702 | − | 0.997246i | \(-0.476369\pi\) | ||||
0.0741702 | + | 0.997246i | \(0.476369\pi\) | |||||||
\(410\) | 0 | 0 | ||||||||
\(411\) | 0 | 0 | ||||||||
\(412\) | 0 | 0 | ||||||||
\(413\) | − 21.1660i | − 1.04151i | ||||||||
\(414\) | 0 | 0 | ||||||||
\(415\) | 0 | 0 | ||||||||
\(416\) | 0 | 0 | ||||||||
\(417\) | 0 | 0 | ||||||||
\(418\) | 0 | 0 | ||||||||
\(419\) | − 18.5203i | − 0.904774i | −0.891822 | − | 0.452387i | \(-0.850573\pi\) | ||||
0.891822 | − | 0.452387i | \(-0.149427\pi\) | |||||||
\(420\) | 0 | 0 | ||||||||
\(421\) | 21.1660i | 1.03157i | 0.856719 | + | 0.515784i | \(0.172499\pi\) | ||||
−0.856719 | + | 0.515784i | \(0.827501\pi\) | |||||||
\(422\) | 0 | 0 | ||||||||
\(423\) | 0 | 0 | ||||||||
\(424\) | 0 | 0 | ||||||||
\(425\) | 0 | 0 | ||||||||
\(426\) | 0 | 0 | ||||||||
\(427\) | − 42.3320i | − 2.04859i | ||||||||
\(428\) | 0 | 0 | ||||||||
\(429\) | 0 | 0 | ||||||||
\(430\) | 0 | 0 | ||||||||
\(431\) | 12.0000 | 0.578020 | 0.289010 | − | 0.957326i | \(-0.406674\pi\) | ||||
0.289010 | + | 0.957326i | \(0.406674\pi\) | |||||||
\(432\) | 0 | 0 | ||||||||
\(433\) | 37.0000 | 1.77811 | 0.889053 | − | 0.457804i | \(-0.151364\pi\) | ||||
0.889053 | + | 0.457804i | \(0.151364\pi\) | |||||||
\(434\) | 0 | 0 | ||||||||
\(435\) | 0 | 0 | ||||||||
\(436\) | 0 | 0 | ||||||||
\(437\) | − 10.5830i | − 0.506254i | ||||||||
\(438\) | 0 | 0 | ||||||||
\(439\) | −8.00000 | −0.381819 | −0.190910 | − | 0.981608i | \(-0.561144\pi\) | ||||
−0.190910 | + | 0.981608i | \(0.561144\pi\) | |||||||
\(440\) | 0 | 0 | ||||||||
\(441\) | 0 | 0 | ||||||||
\(442\) | 0 | 0 | ||||||||
\(443\) | 29.1033i | 1.38274i | 0.722502 | + | 0.691369i | \(0.242992\pi\) | ||||
−0.722502 | + | 0.691369i | \(0.757008\pi\) | |||||||
\(444\) | 0 | 0 | ||||||||
\(445\) | 0 | 0 | ||||||||
\(446\) | 0 | 0 | ||||||||
\(447\) | 0 | 0 | ||||||||
\(448\) | 0 | 0 | ||||||||
\(449\) | −27.0000 | −1.27421 | −0.637104 | − | 0.770778i | \(-0.719868\pi\) | ||||
−0.637104 | + | 0.770778i | \(0.719868\pi\) | |||||||
\(450\) | 0 | 0 | ||||||||
\(451\) | 13.2288i | 0.622918i | ||||||||
\(452\) | 0 | 0 | ||||||||
\(453\) | 0 | 0 | ||||||||
\(454\) | 0 | 0 | ||||||||
\(455\) | 0 | 0 | ||||||||
\(456\) | 0 | 0 | ||||||||
\(457\) | −27.0000 | −1.26301 | −0.631503 | − | 0.775373i | \(-0.717562\pi\) | ||||
−0.631503 | + | 0.775373i | \(0.717562\pi\) | |||||||
\(458\) | 0 | 0 | ||||||||
\(459\) | 0 | 0 | ||||||||
\(460\) | 0 | 0 | ||||||||
\(461\) | 42.3320i | 1.97160i | 0.167927 | + | 0.985799i | \(0.446293\pi\) | ||||
−0.167927 | + | 0.985799i | \(0.553707\pi\) | |||||||
\(462\) | 0 | 0 | ||||||||
\(463\) | 8.00000 | 0.371792 | 0.185896 | − | 0.982569i | \(-0.440481\pi\) | ||||
0.185896 | + | 0.982569i | \(0.440481\pi\) | |||||||
\(464\) | 0 | 0 | ||||||||
\(465\) | 0 | 0 | ||||||||
\(466\) | 0 | 0 | ||||||||
\(467\) | − 26.4575i | − 1.22431i | −0.790739 | − | 0.612154i | \(-0.790303\pi\) | ||||
0.790739 | − | 0.612154i | \(-0.209697\pi\) | |||||||
\(468\) | 0 | 0 | ||||||||
\(469\) | 31.7490i | 1.46603i | ||||||||
\(470\) | 0 | 0 | ||||||||
\(471\) | 0 | 0 | ||||||||
\(472\) | 0 | 0 | ||||||||
\(473\) | −14.0000 | −0.643721 | ||||||||
\(474\) | 0 | 0 | ||||||||
\(475\) | 0 | 0 | ||||||||
\(476\) | 0 | 0 | ||||||||
\(477\) | 0 | 0 | ||||||||
\(478\) | 0 | 0 | ||||||||
\(479\) | 4.00000 | 0.182765 | 0.0913823 | − | 0.995816i | \(-0.470871\pi\) | ||||
0.0913823 | + | 0.995816i | \(0.470871\pi\) | |||||||
\(480\) | 0 | 0 | ||||||||
\(481\) | 0 | 0 | ||||||||
\(482\) | 0 | 0 | ||||||||
\(483\) | 0 | 0 | ||||||||
\(484\) | 0 | 0 | ||||||||
\(485\) | 0 | 0 | ||||||||
\(486\) | 0 | 0 | ||||||||
\(487\) | 12.0000 | 0.543772 | 0.271886 | − | 0.962329i | \(-0.412353\pi\) | ||||
0.271886 | + | 0.962329i | \(0.412353\pi\) | |||||||
\(488\) | 0 | 0 | ||||||||
\(489\) | 0 | 0 | ||||||||
\(490\) | 0 | 0 | ||||||||
\(491\) | 5.29150i | 0.238802i | 0.992846 | + | 0.119401i | \(0.0380974\pi\) | ||||
−0.992846 | + | 0.119401i | \(0.961903\pi\) | |||||||
\(492\) | 0 | 0 | ||||||||
\(493\) | 0 | 0 | ||||||||
\(494\) | 0 | 0 | ||||||||
\(495\) | 0 | 0 | ||||||||
\(496\) | 0 | 0 | ||||||||
\(497\) | −32.0000 | −1.43540 | ||||||||
\(498\) | 0 | 0 | ||||||||
\(499\) | − 26.4575i | − 1.18440i | −0.805791 | − | 0.592200i | \(-0.798259\pi\) | ||||
0.805791 | − | 0.592200i | \(-0.201741\pi\) | |||||||
\(500\) | 0 | 0 | ||||||||
\(501\) | 0 | 0 | ||||||||
\(502\) | 0 | 0 | ||||||||
\(503\) | 0 | 0 | − | 1.00000i | \(-0.5\pi\) | |||||
1.00000i | \(0.5\pi\) | |||||||||
\(504\) | 0 | 0 | ||||||||
\(505\) | 0 | 0 | ||||||||
\(506\) | 0 | 0 | ||||||||
\(507\) | 0 | 0 | ||||||||
\(508\) | 0 | 0 | ||||||||
\(509\) | 31.7490i | 1.40725i | 0.710571 | + | 0.703625i | \(0.248437\pi\) | ||||
−0.710571 | + | 0.703625i | \(0.751563\pi\) | |||||||
\(510\) | 0 | 0 | ||||||||
\(511\) | 28.0000 | 1.23865 | ||||||||
\(512\) | 0 | 0 | ||||||||
\(513\) | 0 | 0 | ||||||||
\(514\) | 0 | 0 | ||||||||
\(515\) | 0 | 0 | ||||||||
\(516\) | 0 | 0 | ||||||||
\(517\) | − 21.1660i | − 0.930880i | ||||||||
\(518\) | 0 | 0 | ||||||||
\(519\) | 0 | 0 | ||||||||
\(520\) | 0 | 0 | ||||||||
\(521\) | −3.00000 | −0.131432 | −0.0657162 | − | 0.997838i | \(-0.520933\pi\) | ||||
−0.0657162 | + | 0.997838i | \(0.520933\pi\) | |||||||
\(522\) | 0 | 0 | ||||||||
\(523\) | 2.64575i | 0.115691i | 0.998326 | + | 0.0578453i | \(0.0184230\pi\) | ||||
−0.998326 | + | 0.0578453i | \(0.981577\pi\) | |||||||
\(524\) | 0 | 0 | ||||||||
\(525\) | 0 | 0 | ||||||||
\(526\) | 0 | 0 | ||||||||
\(527\) | −12.0000 | −0.522728 | ||||||||
\(528\) | 0 | 0 | ||||||||
\(529\) | −7.00000 | −0.304348 | ||||||||
\(530\) | 0 | 0 | ||||||||
\(531\) | 0 | 0 | ||||||||
\(532\) | 0 | 0 | ||||||||
\(533\) | 0 | 0 | ||||||||
\(534\) | 0 | 0 | ||||||||
\(535\) | 0 | 0 | ||||||||
\(536\) | 0 | 0 | ||||||||
\(537\) | 0 | 0 | ||||||||
\(538\) | 0 | 0 | ||||||||
\(539\) | 23.8118i | 1.02565i | ||||||||
\(540\) | 0 | 0 | ||||||||
\(541\) | − 21.1660i | − 0.909998i | −0.890492 | − | 0.454999i | \(-0.849640\pi\) | ||||
0.890492 | − | 0.454999i | \(-0.150360\pi\) | |||||||
\(542\) | 0 | 0 | ||||||||
\(543\) | 0 | 0 | ||||||||
\(544\) | 0 | 0 | ||||||||
\(545\) | 0 | 0 | ||||||||
\(546\) | 0 | 0 | ||||||||
\(547\) | − 18.5203i | − 0.791869i | −0.918279 | − | 0.395935i | \(-0.870421\pi\) | ||||
0.918279 | − | 0.395935i | \(-0.129579\pi\) | |||||||
\(548\) | 0 | 0 | ||||||||
\(549\) | 0 | 0 | ||||||||
\(550\) | 0 | 0 | ||||||||
\(551\) | 0 | 0 | ||||||||
\(552\) | 0 | 0 | ||||||||
\(553\) | 16.0000 | 0.680389 | ||||||||
\(554\) | 0 | 0 | ||||||||
\(555\) | 0 | 0 | ||||||||
\(556\) | 0 | 0 | ||||||||
\(557\) | 0 | 0 | 1.00000 | \(0\) | ||||||
−1.00000 | \(\pi\) | |||||||||
\(558\) | 0 | 0 | ||||||||
\(559\) | 0 | 0 | ||||||||
\(560\) | 0 | 0 | ||||||||
\(561\) | 0 | 0 | ||||||||
\(562\) | 0 | 0 | ||||||||
\(563\) | 15.8745i | 0.669031i | 0.942390 | + | 0.334515i | \(0.108573\pi\) | ||||
−0.942390 | + | 0.334515i | \(0.891427\pi\) | |||||||
\(564\) | 0 | 0 | ||||||||
\(565\) | 0 | 0 | ||||||||
\(566\) | 0 | 0 | ||||||||
\(567\) | 0 | 0 | ||||||||
\(568\) | 0 | 0 | ||||||||
\(569\) | −11.0000 | −0.461144 | −0.230572 | − | 0.973055i | \(-0.574060\pi\) | ||||
−0.230572 | + | 0.973055i | \(0.574060\pi\) | |||||||
\(570\) | 0 | 0 | ||||||||
\(571\) | 37.0405i | 1.55010i | 0.631901 | + | 0.775049i | \(0.282275\pi\) | ||||
−0.631901 | + | 0.775049i | \(0.717725\pi\) | |||||||
\(572\) | 0 | 0 | ||||||||
\(573\) | 0 | 0 | ||||||||
\(574\) | 0 | 0 | ||||||||
\(575\) | 0 | 0 | ||||||||
\(576\) | 0 | 0 | ||||||||
\(577\) | −7.00000 | −0.291414 | −0.145707 | − | 0.989328i | \(-0.546546\pi\) | ||||
−0.145707 | + | 0.989328i | \(0.546546\pi\) | |||||||
\(578\) | 0 | 0 | ||||||||
\(579\) | 0 | 0 | ||||||||
\(580\) | 0 | 0 | ||||||||
\(581\) | − 31.7490i | − 1.31717i | ||||||||
\(582\) | 0 | 0 | ||||||||
\(583\) | 28.0000 | 1.15964 | ||||||||
\(584\) | 0 | 0 | ||||||||
\(585\) | 0 | 0 | ||||||||
\(586\) | 0 | 0 | ||||||||
\(587\) | 7.93725i | 0.327606i | 0.986493 | + | 0.163803i | \(0.0523761\pi\) | ||||
−0.986493 | + | 0.163803i | \(0.947624\pi\) | |||||||
\(588\) | 0 | 0 | ||||||||
\(589\) | 10.5830i | 0.436065i | ||||||||
\(590\) | 0 | 0 | ||||||||
\(591\) | 0 | 0 | ||||||||
\(592\) | 0 | 0 | ||||||||
\(593\) | −41.0000 | −1.68367 | −0.841834 | − | 0.539736i | \(-0.818524\pi\) | ||||
−0.841834 | + | 0.539736i | \(0.818524\pi\) | |||||||
\(594\) | 0 | 0 | ||||||||
\(595\) | 0 | 0 | ||||||||
\(596\) | 0 | 0 | ||||||||
\(597\) | 0 | 0 | ||||||||
\(598\) | 0 | 0 | ||||||||
\(599\) | −12.0000 | −0.490307 | −0.245153 | − | 0.969484i | \(-0.578838\pi\) | ||||
−0.245153 | + | 0.969484i | \(0.578838\pi\) | |||||||
\(600\) | 0 | 0 | ||||||||
\(601\) | 7.00000 | 0.285536 | 0.142768 | − | 0.989756i | \(-0.454400\pi\) | ||||
0.142768 | + | 0.989756i | \(0.454400\pi\) | |||||||
\(602\) | 0 | 0 | ||||||||
\(603\) | 0 | 0 | ||||||||
\(604\) | 0 | 0 | ||||||||
\(605\) | 0 | 0 | ||||||||
\(606\) | 0 | 0 | ||||||||
\(607\) | 8.00000 | 0.324710 | 0.162355 | − | 0.986732i | \(-0.448091\pi\) | ||||
0.162355 | + | 0.986732i | \(0.448091\pi\) | |||||||
\(608\) | 0 | 0 | ||||||||
\(609\) | 0 | 0 | ||||||||
\(610\) | 0 | 0 | ||||||||
\(611\) | 0 | 0 | ||||||||
\(612\) | 0 | 0 | ||||||||
\(613\) | − 10.5830i | − 0.427444i | −0.976895 | − | 0.213722i | \(-0.931441\pi\) | ||||
0.976895 | − | 0.213722i | \(-0.0685586\pi\) | |||||||
\(614\) | 0 | 0 | ||||||||
\(615\) | 0 | 0 | ||||||||
\(616\) | 0 | 0 | ||||||||
\(617\) | −6.00000 | −0.241551 | −0.120775 | − | 0.992680i | \(-0.538538\pi\) | ||||
−0.120775 | + | 0.992680i | \(0.538538\pi\) | |||||||
\(618\) | 0 | 0 | ||||||||
\(619\) | − 5.29150i | − 0.212683i | −0.994330 | − | 0.106342i | \(-0.966086\pi\) | ||||
0.994330 | − | 0.106342i | \(-0.0339137\pi\) | |||||||
\(620\) | 0 | 0 | ||||||||
\(621\) | 0 | 0 | ||||||||
\(622\) | 0 | 0 | ||||||||
\(623\) | −4.00000 | −0.160257 | ||||||||
\(624\) | 0 | 0 | ||||||||
\(625\) | 0 | 0 | ||||||||
\(626\) | 0 | 0 | ||||||||
\(627\) | 0 | 0 | ||||||||
\(628\) | 0 | 0 | ||||||||
\(629\) | − 31.7490i | − 1.26592i | ||||||||
\(630\) | 0 | 0 | ||||||||
\(631\) | −36.0000 | −1.43314 | −0.716569 | − | 0.697517i | \(-0.754288\pi\) | ||||
−0.716569 | + | 0.697517i | \(0.754288\pi\) | |||||||
\(632\) | 0 | 0 | ||||||||
\(633\) | 0 | 0 | ||||||||
\(634\) | 0 | 0 | ||||||||
\(635\) | 0 | 0 | ||||||||
\(636\) | 0 | 0 | ||||||||
\(637\) | 0 | 0 | ||||||||
\(638\) | 0 | 0 | ||||||||
\(639\) | 0 | 0 | ||||||||
\(640\) | 0 | 0 | ||||||||
\(641\) | −2.00000 | −0.0789953 | −0.0394976 | − | 0.999220i | \(-0.512576\pi\) | ||||
−0.0394976 | + | 0.999220i | \(0.512576\pi\) | |||||||
\(642\) | 0 | 0 | ||||||||
\(643\) | − 15.8745i | − 0.626029i | −0.949748 | − | 0.313015i | \(-0.898661\pi\) | ||||
0.949748 | − | 0.313015i | \(-0.101339\pi\) | |||||||
\(644\) | 0 | 0 | ||||||||
\(645\) | 0 | 0 | ||||||||
\(646\) | 0 | 0 | ||||||||
\(647\) | 0 | 0 | − | 1.00000i | \(-0.5\pi\) | |||||
1.00000i | \(0.5\pi\) | |||||||||
\(648\) | 0 | 0 | ||||||||
\(649\) | −14.0000 | −0.549548 | ||||||||
\(650\) | 0 | 0 | ||||||||
\(651\) | 0 | 0 | ||||||||
\(652\) | 0 | 0 | ||||||||
\(653\) | 31.7490i | 1.24243i | 0.783638 | + | 0.621217i | \(0.213362\pi\) | ||||
−0.783638 | + | 0.621217i | \(0.786638\pi\) | |||||||
\(654\) | 0 | 0 | ||||||||
\(655\) | 0 | 0 | ||||||||
\(656\) | 0 | 0 | ||||||||
\(657\) | 0 | 0 | ||||||||
\(658\) | 0 | 0 | ||||||||
\(659\) | − 7.93725i | − 0.309192i | −0.987978 | − | 0.154596i | \(-0.950592\pi\) | ||||
0.987978 | − | 0.154596i | \(-0.0494075\pi\) | |||||||
\(660\) | 0 | 0 | ||||||||
\(661\) | 21.1660i | 0.823262i | 0.911351 | + | 0.411631i | \(0.135041\pi\) | ||||
−0.911351 | + | 0.411631i | \(0.864959\pi\) | |||||||
\(662\) | 0 | 0 | ||||||||
\(663\) | 0 | 0 | ||||||||
\(664\) | 0 | 0 | ||||||||
\(665\) | 0 | 0 | ||||||||
\(666\) | 0 | 0 | ||||||||
\(667\) | 0 | 0 | ||||||||
\(668\) | 0 | 0 | ||||||||
\(669\) | 0 | 0 | ||||||||
\(670\) | 0 | 0 | ||||||||
\(671\) | −28.0000 | −1.08093 | ||||||||
\(672\) | 0 | 0 | ||||||||
\(673\) | −34.0000 | −1.31060 | −0.655302 | − | 0.755367i | \(-0.727459\pi\) | ||||
−0.655302 | + | 0.755367i | \(0.727459\pi\) | |||||||
\(674\) | 0 | 0 | ||||||||
\(675\) | 0 | 0 | ||||||||
\(676\) | 0 | 0 | ||||||||
\(677\) | 42.3320i | 1.62695i | 0.581599 | + | 0.813476i | \(0.302427\pi\) | ||||
−0.581599 | + | 0.813476i | \(0.697573\pi\) | |||||||
\(678\) | 0 | 0 | ||||||||
\(679\) | 8.00000 | 0.307012 | ||||||||
\(680\) | 0 | 0 | ||||||||
\(681\) | 0 | 0 | ||||||||
\(682\) | 0 | 0 | ||||||||
\(683\) | − 23.8118i | − 0.911132i | −0.890202 | − | 0.455566i | \(-0.849437\pi\) | ||||
0.890202 | − | 0.455566i | \(-0.150563\pi\) | |||||||
\(684\) | 0 | 0 | ||||||||
\(685\) | 0 | 0 | ||||||||
\(686\) | 0 | 0 | ||||||||
\(687\) | 0 | 0 | ||||||||
\(688\) | 0 | 0 | ||||||||
\(689\) | 0 | 0 | ||||||||
\(690\) | 0 | 0 | ||||||||
\(691\) | − 23.8118i | − 0.905842i | −0.891551 | − | 0.452921i | \(-0.850382\pi\) | ||||
0.891551 | − | 0.452921i | \(-0.149618\pi\) | |||||||
\(692\) | 0 | 0 | ||||||||
\(693\) | 0 | 0 | ||||||||
\(694\) | 0 | 0 | ||||||||
\(695\) | 0 | 0 | ||||||||
\(696\) | 0 | 0 | ||||||||
\(697\) | 15.0000 | 0.568166 | ||||||||
\(698\) | 0 | 0 | ||||||||
\(699\) | 0 | 0 | ||||||||
\(700\) | 0 | 0 | ||||||||
\(701\) | − 21.1660i | − 0.799429i | −0.916640 | − | 0.399715i | \(-0.869109\pi\) | ||||
0.916640 | − | 0.399715i | \(-0.130891\pi\) | |||||||
\(702\) | 0 | 0 | ||||||||
\(703\) | −28.0000 | −1.05604 | ||||||||
\(704\) | 0 | 0 | ||||||||
\(705\) | 0 | 0 | ||||||||
\(706\) | 0 | 0 | ||||||||
\(707\) | − 42.3320i | − 1.59206i | ||||||||
\(708\) | 0 | 0 | ||||||||
\(709\) | 21.1660i | 0.794906i | 0.917622 | + | 0.397453i | \(0.130106\pi\) | ||||
−0.917622 | + | 0.397453i | \(0.869894\pi\) | |||||||
\(710\) | 0 | 0 | ||||||||
\(711\) | 0 | 0 | ||||||||
\(712\) | 0 | 0 | ||||||||
\(713\) | −16.0000 | −0.599205 | ||||||||
\(714\) | 0 | 0 | ||||||||
\(715\) | 0 | 0 | ||||||||
\(716\) | 0 | 0 | ||||||||
\(717\) | 0 | 0 | ||||||||
\(718\) | 0 | 0 | ||||||||
\(719\) | 36.0000 | 1.34257 | 0.671287 | − | 0.741198i | \(-0.265742\pi\) | ||||
0.671287 | + | 0.741198i | \(0.265742\pi\) | |||||||
\(720\) | 0 | 0 | ||||||||
\(721\) | 32.0000 | 1.19174 | ||||||||
\(722\) | 0 | 0 | ||||||||
\(723\) | 0 | 0 | ||||||||
\(724\) | 0 | 0 | ||||||||
\(725\) | 0 | 0 | ||||||||
\(726\) | 0 | 0 | ||||||||
\(727\) | 16.0000 | 0.593407 | 0.296704 | − | 0.954970i | \(-0.404113\pi\) | ||||
0.296704 | + | 0.954970i | \(0.404113\pi\) | |||||||
\(728\) | 0 | 0 | ||||||||
\(729\) | 0 | 0 | ||||||||
\(730\) | 0 | 0 | ||||||||
\(731\) | 15.8745i | 0.587140i | ||||||||
\(732\) | 0 | 0 | ||||||||
\(733\) | 0 | 0 | 1.00000 | \(0\) | ||||||
−1.00000 | \(\pi\) | |||||||||
\(734\) | 0 | 0 | ||||||||
\(735\) | 0 | 0 | ||||||||
\(736\) | 0 | 0 | ||||||||
\(737\) | 21.0000 | 0.773545 | ||||||||
\(738\) | 0 | 0 | ||||||||
\(739\) | 15.8745i | 0.583953i | 0.956425 | + | 0.291977i | \(0.0943129\pi\) | ||||
−0.956425 | + | 0.291977i | \(0.905687\pi\) | |||||||
\(740\) | 0 | 0 | ||||||||
\(741\) | 0 | 0 | ||||||||
\(742\) | 0 | 0 | ||||||||
\(743\) | 36.0000 | 1.32071 | 0.660356 | − | 0.750953i | \(-0.270405\pi\) | ||||
0.660356 | + | 0.750953i | \(0.270405\pi\) | |||||||
\(744\) | 0 | 0 | ||||||||
\(745\) | 0 | 0 | ||||||||
\(746\) | 0 | 0 | ||||||||
\(747\) | 0 | 0 | ||||||||
\(748\) | 0 | 0 | ||||||||
\(749\) | 10.5830i | 0.386695i | ||||||||
\(750\) | 0 | 0 | ||||||||
\(751\) | −8.00000 | −0.291924 | −0.145962 | − | 0.989290i | \(-0.546628\pi\) | ||||
−0.145962 | + | 0.989290i | \(0.546628\pi\) | |||||||
\(752\) | 0 | 0 | ||||||||
\(753\) | 0 | 0 | ||||||||
\(754\) | 0 | 0 | ||||||||
\(755\) | 0 | 0 | ||||||||
\(756\) | 0 | 0 | ||||||||
\(757\) | 21.1660i | 0.769292i | 0.923064 | + | 0.384646i | \(0.125676\pi\) | ||||
−0.923064 | + | 0.384646i | \(0.874324\pi\) | |||||||
\(758\) | 0 | 0 | ||||||||
\(759\) | 0 | 0 | ||||||||
\(760\) | 0 | 0 | ||||||||
\(761\) | 29.0000 | 1.05125 | 0.525625 | − | 0.850717i | \(-0.323832\pi\) | ||||
0.525625 | + | 0.850717i | \(0.323832\pi\) | |||||||
\(762\) | 0 | 0 | ||||||||
\(763\) | − 42.3320i | − 1.53252i | ||||||||
\(764\) | 0 | 0 | ||||||||
\(765\) | 0 | 0 | ||||||||
\(766\) | 0 | 0 | ||||||||
\(767\) | 0 | 0 | ||||||||
\(768\) | 0 | 0 | ||||||||
\(769\) | −21.0000 | −0.757279 | −0.378640 | − | 0.925544i | \(-0.623608\pi\) | ||||
−0.378640 | + | 0.925544i | \(0.623608\pi\) | |||||||
\(770\) | 0 | 0 | ||||||||
\(771\) | 0 | 0 | ||||||||
\(772\) | 0 | 0 | ||||||||
\(773\) | 0 | 0 | 1.00000 | \(0\) | ||||||
−1.00000 | \(\pi\) | |||||||||
\(774\) | 0 | 0 | ||||||||
\(775\) | 0 | 0 | ||||||||
\(776\) | 0 | 0 | ||||||||
\(777\) | 0 | 0 | ||||||||
\(778\) | 0 | 0 | ||||||||
\(779\) | − 13.2288i | − 0.473969i | ||||||||
\(780\) | 0 | 0 | ||||||||
\(781\) | 21.1660i | 0.757379i | ||||||||
\(782\) | 0 | 0 | ||||||||
\(783\) | 0 | 0 | ||||||||
\(784\) | 0 | 0 | ||||||||
\(785\) | 0 | 0 | ||||||||
\(786\) | 0 | 0 | ||||||||
\(787\) | 26.4575i | 0.943108i | 0.881837 | + | 0.471554i | \(0.156307\pi\) | ||||
−0.881837 | + | 0.471554i | \(0.843693\pi\) | |||||||
\(788\) | 0 | 0 | ||||||||
\(789\) | 0 | 0 | ||||||||
\(790\) | 0 | 0 | ||||||||
\(791\) | −60.0000 | −2.13335 | ||||||||
\(792\) | 0 | 0 | ||||||||
\(793\) | 0 | 0 | ||||||||
\(794\) | 0 | 0 | ||||||||
\(795\) | 0 | 0 | ||||||||
\(796\) | 0 | 0 | ||||||||
\(797\) | − 31.7490i | − 1.12461i | −0.826931 | − | 0.562304i | \(-0.809915\pi\) | ||||
0.826931 | − | 0.562304i | \(-0.190085\pi\) | |||||||
\(798\) | 0 | 0 | ||||||||
\(799\) | −24.0000 | −0.849059 | ||||||||
\(800\) | 0 | 0 | ||||||||
\(801\) | 0 | 0 | ||||||||
\(802\) | 0 | 0 | ||||||||
\(803\) | − 18.5203i | − 0.653566i | ||||||||
\(804\) | 0 | 0 | ||||||||
\(805\) | 0 | 0 | ||||||||
\(806\) | 0 | 0 | ||||||||
\(807\) | 0 | 0 | ||||||||
\(808\) | 0 | 0 | ||||||||
\(809\) | −10.0000 | −0.351581 | −0.175791 | − | 0.984428i | \(-0.556248\pi\) | ||||
−0.175791 | + | 0.984428i | \(0.556248\pi\) | |||||||
\(810\) | 0 | 0 | ||||||||
\(811\) | − 5.29150i | − 0.185810i | −0.995675 | − | 0.0929049i | \(-0.970385\pi\) | ||||
0.995675 | − | 0.0929049i | \(-0.0296153\pi\) | |||||||
\(812\) | 0 | 0 | ||||||||
\(813\) | 0 | 0 | ||||||||
\(814\) | 0 | 0 | ||||||||
\(815\) | 0 | 0 | ||||||||
\(816\) | 0 | 0 | ||||||||
\(817\) | 14.0000 | 0.489798 | ||||||||
\(818\) | 0 | 0 | ||||||||
\(819\) | 0 | 0 | ||||||||
\(820\) | 0 | 0 | ||||||||
\(821\) | 10.5830i | 0.369349i | 0.982800 | + | 0.184675i | \(0.0591232\pi\) | ||||
−0.982800 | + | 0.184675i | \(0.940877\pi\) | |||||||
\(822\) | 0 | 0 | ||||||||
\(823\) | 24.0000 | 0.836587 | 0.418294 | − | 0.908312i | \(-0.362628\pi\) | ||||
0.418294 | + | 0.908312i | \(0.362628\pi\) | |||||||
\(824\) | 0 | 0 | ||||||||
\(825\) | 0 | 0 | ||||||||
\(826\) | 0 | 0 | ||||||||
\(827\) | − 13.2288i | − 0.460009i | −0.973190 | − | 0.230004i | \(-0.926126\pi\) | ||||
0.973190 | − | 0.230004i | \(-0.0738741\pi\) | |||||||
\(828\) | 0 | 0 | ||||||||
\(829\) | − 21.1660i | − 0.735126i | −0.929999 | − | 0.367563i | \(-0.880192\pi\) | ||||
0.929999 | − | 0.367563i | \(-0.119808\pi\) | |||||||
\(830\) | 0 | 0 | ||||||||
\(831\) | 0 | 0 | ||||||||
\(832\) | 0 | 0 | ||||||||
\(833\) | 27.0000 | 0.935495 | ||||||||
\(834\) | 0 | 0 | ||||||||
\(835\) | 0 | 0 | ||||||||
\(836\) | 0 | 0 | ||||||||
\(837\) | 0 | 0 | ||||||||
\(838\) | 0 | 0 | ||||||||
\(839\) | 40.0000 | 1.38095 | 0.690477 | − | 0.723355i | \(-0.257401\pi\) | ||||
0.690477 | + | 0.723355i | \(0.257401\pi\) | |||||||
\(840\) | 0 | 0 | ||||||||
\(841\) | 29.0000 | 1.00000 | ||||||||
\(842\) | 0 | 0 | ||||||||
\(843\) | 0 | 0 | ||||||||
\(844\) | 0 | 0 | ||||||||
\(845\) | 0 | 0 | ||||||||
\(846\) | 0 | 0 | ||||||||
\(847\) | −16.0000 | −0.549767 | ||||||||
\(848\) | 0 | 0 | ||||||||
\(849\) | 0 | 0 | ||||||||
\(850\) | 0 | 0 | ||||||||
\(851\) | − 42.3320i | − 1.45112i | ||||||||
\(852\) | 0 | 0 | ||||||||
\(853\) | 52.9150i | 1.81178i | 0.423517 | + | 0.905888i | \(0.360795\pi\) | ||||
−0.423517 | + | 0.905888i | \(0.639205\pi\) | |||||||
\(854\) | 0 | 0 | ||||||||
\(855\) | 0 | 0 | ||||||||
\(856\) | 0 | 0 | ||||||||
\(857\) | −21.0000 | −0.717346 | −0.358673 | − | 0.933463i | \(-0.616771\pi\) | ||||
−0.358673 | + | 0.933463i | \(0.616771\pi\) | |||||||
\(858\) | 0 | 0 | ||||||||
\(859\) | − 2.64575i | − 0.0902719i | −0.998981 | − | 0.0451359i | \(-0.985628\pi\) | ||||
0.998981 | − | 0.0451359i | \(-0.0143721\pi\) | |||||||
\(860\) | 0 | 0 | ||||||||
\(861\) | 0 | 0 | ||||||||
\(862\) | 0 | 0 | ||||||||
\(863\) | 24.0000 | 0.816970 | 0.408485 | − | 0.912765i | \(-0.366057\pi\) | ||||
0.408485 | + | 0.912765i | \(0.366057\pi\) | |||||||
\(864\) | 0 | 0 | ||||||||
\(865\) | 0 | 0 | ||||||||
\(866\) | 0 | 0 | ||||||||
\(867\) | 0 | 0 | ||||||||
\(868\) | 0 | 0 | ||||||||
\(869\) | − 10.5830i | − 0.359004i | ||||||||
\(870\) | 0 | 0 | ||||||||
\(871\) | 0 | 0 | ||||||||
\(872\) | 0 | 0 | ||||||||
\(873\) | 0 | 0 | ||||||||
\(874\) | 0 | 0 | ||||||||
\(875\) | 0 | 0 | ||||||||
\(876\) | 0 | 0 | ||||||||
\(877\) | 42.3320i | 1.42945i | 0.699405 | + | 0.714725i | \(0.253448\pi\) | ||||
−0.699405 | + | 0.714725i | \(0.746552\pi\) | |||||||
\(878\) | 0 | 0 | ||||||||
\(879\) | 0 | 0 | ||||||||
\(880\) | 0 | 0 | ||||||||
\(881\) | 30.0000 | 1.01073 | 0.505363 | − | 0.862907i | \(-0.331359\pi\) | ||||
0.505363 | + | 0.862907i | \(0.331359\pi\) | |||||||
\(882\) | 0 | 0 | ||||||||
\(883\) | 44.9778i | 1.51362i | 0.653633 | + | 0.756811i | \(0.273244\pi\) | ||||
−0.653633 | + | 0.756811i | \(0.726756\pi\) | |||||||
\(884\) | 0 | 0 | ||||||||
\(885\) | 0 | 0 | ||||||||
\(886\) | 0 | 0 | ||||||||
\(887\) | 56.0000 | 1.88030 | 0.940148 | − | 0.340766i | \(-0.110687\pi\) | ||||
0.940148 | + | 0.340766i | \(0.110687\pi\) | |||||||
\(888\) | 0 | 0 | ||||||||
\(889\) | 48.0000 | 1.60987 | ||||||||
\(890\) | 0 | 0 | ||||||||
\(891\) | 0 | 0 | ||||||||
\(892\) | 0 | 0 | ||||||||
\(893\) | 21.1660i | 0.708294i | ||||||||
\(894\) | 0 | 0 | ||||||||
\(895\) | 0 | 0 | ||||||||
\(896\) | 0 | 0 | ||||||||
\(897\) | 0 | 0 | ||||||||
\(898\) | 0 | 0 | ||||||||
\(899\) | 0 | 0 | ||||||||
\(900\) | 0 | 0 | ||||||||
\(901\) | − 31.7490i | − 1.05771i | ||||||||
\(902\) | 0 | 0 | ||||||||
\(903\) | 0 | 0 | ||||||||
\(904\) | 0 | 0 | ||||||||
\(905\) | 0 | 0 | ||||||||
\(906\) | 0 | 0 | ||||||||
\(907\) | 5.29150i | 0.175701i | 0.996134 | + | 0.0878507i | \(0.0279999\pi\) | ||||
−0.996134 | + | 0.0878507i | \(0.972000\pi\) | |||||||
\(908\) | 0 | 0 | ||||||||
\(909\) | 0 | 0 | ||||||||
\(910\) | 0 | 0 | ||||||||
\(911\) | 48.0000 | 1.59031 | 0.795155 | − | 0.606406i | \(-0.207389\pi\) | ||||
0.795155 | + | 0.606406i | \(0.207389\pi\) | |||||||
\(912\) | 0 | 0 | ||||||||
\(913\) | −21.0000 | −0.694999 | ||||||||
\(914\) | 0 | 0 | ||||||||
\(915\) | 0 | 0 | ||||||||
\(916\) | 0 | 0 | ||||||||
\(917\) | 63.4980i | 2.09689i | ||||||||
\(918\) | 0 | 0 | ||||||||
\(919\) | −4.00000 | −0.131948 | −0.0659739 | − | 0.997821i | \(-0.521015\pi\) | ||||
−0.0659739 | + | 0.997821i | \(0.521015\pi\) | |||||||
\(920\) | 0 | 0 | ||||||||
\(921\) | 0 | 0 | ||||||||
\(922\) | 0 | 0 | ||||||||
\(923\) | 0 | 0 | ||||||||
\(924\) | 0 | 0 | ||||||||
\(925\) | 0 | 0 | ||||||||
\(926\) | 0 | 0 | ||||||||
\(927\) | 0 | 0 | ||||||||
\(928\) | 0 | 0 | ||||||||
\(929\) | 14.0000 | 0.459325 | 0.229663 | − | 0.973270i | \(-0.426238\pi\) | ||||
0.229663 | + | 0.973270i | \(0.426238\pi\) | |||||||
\(930\) | 0 | 0 | ||||||||
\(931\) | − 23.8118i | − 0.780399i | ||||||||
\(932\) | 0 | 0 | ||||||||
\(933\) | 0 | 0 | ||||||||
\(934\) | 0 | 0 | ||||||||
\(935\) | 0 | 0 | ||||||||
\(936\) | 0 | 0 | ||||||||
\(937\) | −7.00000 | −0.228680 | −0.114340 | − | 0.993442i | \(-0.536475\pi\) | ||||
−0.114340 | + | 0.993442i | \(0.536475\pi\) | |||||||
\(938\) | 0 | 0 | ||||||||
\(939\) | 0 | 0 | ||||||||
\(940\) | 0 | 0 | ||||||||
\(941\) | − 42.3320i | − 1.37998i | −0.723817 | − | 0.689992i | \(-0.757614\pi\) | ||||
0.723817 | − | 0.689992i | \(-0.242386\pi\) | |||||||
\(942\) | 0 | 0 | ||||||||
\(943\) | 20.0000 | 0.651290 | ||||||||
\(944\) | 0 | 0 | ||||||||
\(945\) | 0 | 0 | ||||||||
\(946\) | 0 | 0 | ||||||||
\(947\) | 15.8745i | 0.515852i | 0.966165 | + | 0.257926i | \(0.0830391\pi\) | ||||
−0.966165 | + | 0.257926i | \(0.916961\pi\) | |||||||
\(948\) | 0 | 0 | ||||||||
\(949\) | 0 | 0 | ||||||||
\(950\) | 0 | 0 | ||||||||
\(951\) | 0 | 0 | ||||||||
\(952\) | 0 | 0 | ||||||||
\(953\) | −5.00000 | −0.161966 | −0.0809829 | − | 0.996715i | \(-0.525806\pi\) | ||||
−0.0809829 | + | 0.996715i | \(0.525806\pi\) | |||||||
\(954\) | 0 | 0 | ||||||||
\(955\) | 0 | 0 | ||||||||
\(956\) | 0 | 0 | ||||||||
\(957\) | 0 | 0 | ||||||||
\(958\) | 0 | 0 | ||||||||
\(959\) | −76.0000 | −2.45417 | ||||||||
\(960\) | 0 | 0 | ||||||||
\(961\) | −15.0000 | −0.483871 | ||||||||
\(962\) | 0 | 0 | ||||||||
\(963\) | 0 | 0 | ||||||||
\(964\) | 0 | 0 | ||||||||
\(965\) | 0 | 0 | ||||||||
\(966\) | 0 | 0 | ||||||||
\(967\) | −8.00000 | −0.257263 | −0.128631 | − | 0.991692i | \(-0.541058\pi\) | ||||
−0.128631 | + | 0.991692i | \(0.541058\pi\) | |||||||
\(968\) | 0 | 0 | ||||||||
\(969\) | 0 | 0 | ||||||||
\(970\) | 0 | 0 | ||||||||
\(971\) | 23.8118i | 0.764156i | 0.924130 | + | 0.382078i | \(0.124791\pi\) | ||||
−0.924130 | + | 0.382078i | \(0.875209\pi\) | |||||||
\(972\) | 0 | 0 | ||||||||
\(973\) | − 74.0810i | − 2.37493i | ||||||||
\(974\) | 0 | 0 | ||||||||
\(975\) | 0 | 0 | ||||||||
\(976\) | 0 | 0 | ||||||||
\(977\) | −37.0000 | −1.18373 | −0.591867 | − | 0.806035i | \(-0.701609\pi\) | ||||
−0.591867 | + | 0.806035i | \(0.701609\pi\) | |||||||
\(978\) | 0 | 0 | ||||||||
\(979\) | 2.64575i | 0.0845586i | ||||||||
\(980\) | 0 | 0 | ||||||||
\(981\) | 0 | 0 | ||||||||
\(982\) | 0 | 0 | ||||||||
\(983\) | −28.0000 | −0.893061 | −0.446531 | − | 0.894768i | \(-0.647341\pi\) | ||||
−0.446531 | + | 0.894768i | \(0.647341\pi\) | |||||||
\(984\) | 0 | 0 | ||||||||
\(985\) | 0 | 0 | ||||||||
\(986\) | 0 | 0 | ||||||||
\(987\) | 0 | 0 | ||||||||
\(988\) | 0 | 0 | ||||||||
\(989\) | 21.1660i | 0.673040i | ||||||||
\(990\) | 0 | 0 | ||||||||
\(991\) | −44.0000 | −1.39771 | −0.698853 | − | 0.715265i | \(-0.746306\pi\) | ||||
−0.698853 | + | 0.715265i | \(0.746306\pi\) | |||||||
\(992\) | 0 | 0 | ||||||||
\(993\) | 0 | 0 | ||||||||
\(994\) | 0 | 0 | ||||||||
\(995\) | 0 | 0 | ||||||||
\(996\) | 0 | 0 | ||||||||
\(997\) | 42.3320i | 1.34067i | 0.742059 | + | 0.670334i | \(0.233849\pi\) | ||||
−0.742059 | + | 0.670334i | \(0.766151\pi\) | |||||||
\(998\) | 0 | 0 | ||||||||
\(999\) | 0 | 0 |
(See \(a_n\) instead)
(See \(a_n\) instead)
(See \(a_n\) instead)
(See only \(a_p\))
(See only \(a_p\))
(See only \(a_p\))