Properties

Label 7200.2.k.b.3601.2
Level $7200$
Weight $2$
Character 7200.3601
Analytic conductor $57.492$
Analytic rank $0$
Dimension $2$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [7200,2,Mod(3601,7200)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(7200, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 1, 0, 0]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("7200.3601");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 7200 = 2^{5} \cdot 3^{2} \cdot 5^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 7200.k (of order \(2\), degree \(1\), not minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(57.4922894553\)
Analytic rank: \(0\)
Dimension: \(2\)
Coefficient field: \(\Q(\sqrt{-7}) \)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{2} - x + 2 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{11}]\)
Coefficient ring index: \( 2 \)
Twist minimal: no (minimal twist has level 200)
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

Embedding invariants

Embedding label 3601.2
Root \(0.500000 - 1.32288i\) of defining polynomial
Character \(\chi\) \(=\) 7200.3601
Dual form 7200.2.k.b.3601.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-4.00000 q^{7} +2.64575i q^{11} +3.00000 q^{17} -2.64575i q^{19} +4.00000 q^{23} -4.00000 q^{31} -10.5830i q^{37} +5.00000 q^{41} +5.29150i q^{43} -8.00000 q^{47} +9.00000 q^{49} -10.5830i q^{53} +5.29150i q^{59} +10.5830i q^{61} -7.93725i q^{67} +8.00000 q^{71} -7.00000 q^{73} -10.5830i q^{77} -4.00000 q^{79} +7.93725i q^{83} +1.00000 q^{89} -2.00000 q^{97} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 2 q - 8 q^{7} + 6 q^{17} + 8 q^{23} - 8 q^{31} + 10 q^{41} - 16 q^{47} + 18 q^{49} + 16 q^{71} - 14 q^{73} - 8 q^{79} + 2 q^{89} - 4 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/7200\mathbb{Z}\right)^\times\).

\(n\) \(577\) \(901\) \(6401\) \(6751\)
\(\chi(n)\) \(1\) \(-1\) \(1\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 0 0
\(4\) 0 0
\(5\) 0 0
\(6\) 0 0
\(7\) −4.00000 −1.51186 −0.755929 0.654654i \(-0.772814\pi\)
−0.755929 + 0.654654i \(0.772814\pi\)
\(8\) 0 0
\(9\) 0 0
\(10\) 0 0
\(11\) 2.64575i 0.797724i 0.917011 + 0.398862i \(0.130595\pi\)
−0.917011 + 0.398862i \(0.869405\pi\)
\(12\) 0 0
\(13\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(14\) 0 0
\(15\) 0 0
\(16\) 0 0
\(17\) 3.00000 0.727607 0.363803 0.931476i \(-0.381478\pi\)
0.363803 + 0.931476i \(0.381478\pi\)
\(18\) 0 0
\(19\) − 2.64575i − 0.606977i −0.952835 0.303488i \(-0.901849\pi\)
0.952835 0.303488i \(-0.0981514\pi\)
\(20\) 0 0
\(21\) 0 0
\(22\) 0 0
\(23\) 4.00000 0.834058 0.417029 0.908893i \(-0.363071\pi\)
0.417029 + 0.908893i \(0.363071\pi\)
\(24\) 0 0
\(25\) 0 0
\(26\) 0 0
\(27\) 0 0
\(28\) 0 0
\(29\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(30\) 0 0
\(31\) −4.00000 −0.718421 −0.359211 0.933257i \(-0.616954\pi\)
−0.359211 + 0.933257i \(0.616954\pi\)
\(32\) 0 0
\(33\) 0 0
\(34\) 0 0
\(35\) 0 0
\(36\) 0 0
\(37\) − 10.5830i − 1.73984i −0.493197 0.869918i \(-0.664172\pi\)
0.493197 0.869918i \(-0.335828\pi\)
\(38\) 0 0
\(39\) 0 0
\(40\) 0 0
\(41\) 5.00000 0.780869 0.390434 0.920631i \(-0.372325\pi\)
0.390434 + 0.920631i \(0.372325\pi\)
\(42\) 0 0
\(43\) 5.29150i 0.806947i 0.914991 + 0.403473i \(0.132197\pi\)
−0.914991 + 0.403473i \(0.867803\pi\)
\(44\) 0 0
\(45\) 0 0
\(46\) 0 0
\(47\) −8.00000 −1.16692 −0.583460 0.812142i \(-0.698301\pi\)
−0.583460 + 0.812142i \(0.698301\pi\)
\(48\) 0 0
\(49\) 9.00000 1.28571
\(50\) 0 0
\(51\) 0 0
\(52\) 0 0
\(53\) − 10.5830i − 1.45369i −0.686803 0.726844i \(-0.740986\pi\)
0.686803 0.726844i \(-0.259014\pi\)
\(54\) 0 0
\(55\) 0 0
\(56\) 0 0
\(57\) 0 0
\(58\) 0 0
\(59\) 5.29150i 0.688895i 0.938806 + 0.344447i \(0.111934\pi\)
−0.938806 + 0.344447i \(0.888066\pi\)
\(60\) 0 0
\(61\) 10.5830i 1.35501i 0.735516 + 0.677507i \(0.236940\pi\)
−0.735516 + 0.677507i \(0.763060\pi\)
\(62\) 0 0
\(63\) 0 0
\(64\) 0 0
\(65\) 0 0
\(66\) 0 0
\(67\) − 7.93725i − 0.969690i −0.874600 0.484845i \(-0.838876\pi\)
0.874600 0.484845i \(-0.161124\pi\)
\(68\) 0 0
\(69\) 0 0
\(70\) 0 0
\(71\) 8.00000 0.949425 0.474713 0.880141i \(-0.342552\pi\)
0.474713 + 0.880141i \(0.342552\pi\)
\(72\) 0 0
\(73\) −7.00000 −0.819288 −0.409644 0.912245i \(-0.634347\pi\)
−0.409644 + 0.912245i \(0.634347\pi\)
\(74\) 0 0
\(75\) 0 0
\(76\) 0 0
\(77\) − 10.5830i − 1.20605i
\(78\) 0 0
\(79\) −4.00000 −0.450035 −0.225018 0.974355i \(-0.572244\pi\)
−0.225018 + 0.974355i \(0.572244\pi\)
\(80\) 0 0
\(81\) 0 0
\(82\) 0 0
\(83\) 7.93725i 0.871227i 0.900134 + 0.435613i \(0.143469\pi\)
−0.900134 + 0.435613i \(0.856531\pi\)
\(84\) 0 0
\(85\) 0 0
\(86\) 0 0
\(87\) 0 0
\(88\) 0 0
\(89\) 1.00000 0.106000 0.0529999 0.998595i \(-0.483122\pi\)
0.0529999 + 0.998595i \(0.483122\pi\)
\(90\) 0 0
\(91\) 0 0
\(92\) 0 0
\(93\) 0 0
\(94\) 0 0
\(95\) 0 0
\(96\) 0 0
\(97\) −2.00000 −0.203069 −0.101535 0.994832i \(-0.532375\pi\)
−0.101535 + 0.994832i \(0.532375\pi\)
\(98\) 0 0
\(99\) 0 0
\(100\) 0 0
\(101\) 10.5830i 1.05305i 0.850160 + 0.526524i \(0.176505\pi\)
−0.850160 + 0.526524i \(0.823495\pi\)
\(102\) 0 0
\(103\) −8.00000 −0.788263 −0.394132 0.919054i \(-0.628955\pi\)
−0.394132 + 0.919054i \(0.628955\pi\)
\(104\) 0 0
\(105\) 0 0
\(106\) 0 0
\(107\) − 2.64575i − 0.255774i −0.991789 0.127887i \(-0.959180\pi\)
0.991789 0.127887i \(-0.0408196\pi\)
\(108\) 0 0
\(109\) 10.5830i 1.01367i 0.862044 + 0.506834i \(0.169184\pi\)
−0.862044 + 0.506834i \(0.830816\pi\)
\(110\) 0 0
\(111\) 0 0
\(112\) 0 0
\(113\) 15.0000 1.41108 0.705541 0.708669i \(-0.250704\pi\)
0.705541 + 0.708669i \(0.250704\pi\)
\(114\) 0 0
\(115\) 0 0
\(116\) 0 0
\(117\) 0 0
\(118\) 0 0
\(119\) −12.0000 −1.10004
\(120\) 0 0
\(121\) 4.00000 0.363636
\(122\) 0 0
\(123\) 0 0
\(124\) 0 0
\(125\) 0 0
\(126\) 0 0
\(127\) −12.0000 −1.06483 −0.532414 0.846484i \(-0.678715\pi\)
−0.532414 + 0.846484i \(0.678715\pi\)
\(128\) 0 0
\(129\) 0 0
\(130\) 0 0
\(131\) − 15.8745i − 1.38696i −0.720475 0.693481i \(-0.756076\pi\)
0.720475 0.693481i \(-0.243924\pi\)
\(132\) 0 0
\(133\) 10.5830i 0.917663i
\(134\) 0 0
\(135\) 0 0
\(136\) 0 0
\(137\) 19.0000 1.62328 0.811640 0.584158i \(-0.198575\pi\)
0.811640 + 0.584158i \(0.198575\pi\)
\(138\) 0 0
\(139\) 18.5203i 1.57087i 0.618945 + 0.785434i \(0.287560\pi\)
−0.618945 + 0.785434i \(0.712440\pi\)
\(140\) 0 0
\(141\) 0 0
\(142\) 0 0
\(143\) 0 0
\(144\) 0 0
\(145\) 0 0
\(146\) 0 0
\(147\) 0 0
\(148\) 0 0
\(149\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(150\) 0 0
\(151\) −4.00000 −0.325515 −0.162758 0.986666i \(-0.552039\pi\)
−0.162758 + 0.986666i \(0.552039\pi\)
\(152\) 0 0
\(153\) 0 0
\(154\) 0 0
\(155\) 0 0
\(156\) 0 0
\(157\) 10.5830i 0.844616i 0.906452 + 0.422308i \(0.138780\pi\)
−0.906452 + 0.422308i \(0.861220\pi\)
\(158\) 0 0
\(159\) 0 0
\(160\) 0 0
\(161\) −16.0000 −1.26098
\(162\) 0 0
\(163\) 13.2288i 1.03616i 0.855333 + 0.518078i \(0.173352\pi\)
−0.855333 + 0.518078i \(0.826648\pi\)
\(164\) 0 0
\(165\) 0 0
\(166\) 0 0
\(167\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(168\) 0 0
\(169\) 13.0000 1.00000
\(170\) 0 0
\(171\) 0 0
\(172\) 0 0
\(173\) 21.1660i 1.60922i 0.593802 + 0.804611i \(0.297626\pi\)
−0.593802 + 0.804611i \(0.702374\pi\)
\(174\) 0 0
\(175\) 0 0
\(176\) 0 0
\(177\) 0 0
\(178\) 0 0
\(179\) 23.8118i 1.77977i 0.456180 + 0.889887i \(0.349217\pi\)
−0.456180 + 0.889887i \(0.650783\pi\)
\(180\) 0 0
\(181\) 10.5830i 0.786629i 0.919404 + 0.393314i \(0.128672\pi\)
−0.919404 + 0.393314i \(0.871328\pi\)
\(182\) 0 0
\(183\) 0 0
\(184\) 0 0
\(185\) 0 0
\(186\) 0 0
\(187\) 7.93725i 0.580429i
\(188\) 0 0
\(189\) 0 0
\(190\) 0 0
\(191\) 4.00000 0.289430 0.144715 0.989473i \(-0.453773\pi\)
0.144715 + 0.989473i \(0.453773\pi\)
\(192\) 0 0
\(193\) 5.00000 0.359908 0.179954 0.983675i \(-0.442405\pi\)
0.179954 + 0.983675i \(0.442405\pi\)
\(194\) 0 0
\(195\) 0 0
\(196\) 0 0
\(197\) − 10.5830i − 0.754008i −0.926212 0.377004i \(-0.876954\pi\)
0.926212 0.377004i \(-0.123046\pi\)
\(198\) 0 0
\(199\) 24.0000 1.70131 0.850657 0.525720i \(-0.176204\pi\)
0.850657 + 0.525720i \(0.176204\pi\)
\(200\) 0 0
\(201\) 0 0
\(202\) 0 0
\(203\) 0 0
\(204\) 0 0
\(205\) 0 0
\(206\) 0 0
\(207\) 0 0
\(208\) 0 0
\(209\) 7.00000 0.484200
\(210\) 0 0
\(211\) 7.93725i 0.546423i 0.961954 + 0.273212i \(0.0880859\pi\)
−0.961954 + 0.273212i \(0.911914\pi\)
\(212\) 0 0
\(213\) 0 0
\(214\) 0 0
\(215\) 0 0
\(216\) 0 0
\(217\) 16.0000 1.08615
\(218\) 0 0
\(219\) 0 0
\(220\) 0 0
\(221\) 0 0
\(222\) 0 0
\(223\) 16.0000 1.07144 0.535720 0.844396i \(-0.320040\pi\)
0.535720 + 0.844396i \(0.320040\pi\)
\(224\) 0 0
\(225\) 0 0
\(226\) 0 0
\(227\) 15.8745i 1.05363i 0.849981 + 0.526814i \(0.176614\pi\)
−0.849981 + 0.526814i \(0.823386\pi\)
\(228\) 0 0
\(229\) 21.1660i 1.39869i 0.714785 + 0.699345i \(0.246525\pi\)
−0.714785 + 0.699345i \(0.753475\pi\)
\(230\) 0 0
\(231\) 0 0
\(232\) 0 0
\(233\) −6.00000 −0.393073 −0.196537 0.980497i \(-0.562969\pi\)
−0.196537 + 0.980497i \(0.562969\pi\)
\(234\) 0 0
\(235\) 0 0
\(236\) 0 0
\(237\) 0 0
\(238\) 0 0
\(239\) −8.00000 −0.517477 −0.258738 0.965947i \(-0.583307\pi\)
−0.258738 + 0.965947i \(0.583307\pi\)
\(240\) 0 0
\(241\) −21.0000 −1.35273 −0.676364 0.736567i \(-0.736446\pi\)
−0.676364 + 0.736567i \(0.736446\pi\)
\(242\) 0 0
\(243\) 0 0
\(244\) 0 0
\(245\) 0 0
\(246\) 0 0
\(247\) 0 0
\(248\) 0 0
\(249\) 0 0
\(250\) 0 0
\(251\) − 7.93725i − 0.500995i −0.968117 0.250498i \(-0.919406\pi\)
0.968117 0.250498i \(-0.0805942\pi\)
\(252\) 0 0
\(253\) 10.5830i 0.665348i
\(254\) 0 0
\(255\) 0 0
\(256\) 0 0
\(257\) −14.0000 −0.873296 −0.436648 0.899632i \(-0.643834\pi\)
−0.436648 + 0.899632i \(0.643834\pi\)
\(258\) 0 0
\(259\) 42.3320i 2.63038i
\(260\) 0 0
\(261\) 0 0
\(262\) 0 0
\(263\) 12.0000 0.739952 0.369976 0.929041i \(-0.379366\pi\)
0.369976 + 0.929041i \(0.379366\pi\)
\(264\) 0 0
\(265\) 0 0
\(266\) 0 0
\(267\) 0 0
\(268\) 0 0
\(269\) 21.1660i 1.29051i 0.763965 + 0.645257i \(0.223250\pi\)
−0.763965 + 0.645257i \(0.776750\pi\)
\(270\) 0 0
\(271\) 20.0000 1.21491 0.607457 0.794353i \(-0.292190\pi\)
0.607457 + 0.794353i \(0.292190\pi\)
\(272\) 0 0
\(273\) 0 0
\(274\) 0 0
\(275\) 0 0
\(276\) 0 0
\(277\) − 21.1660i − 1.27174i −0.771795 0.635871i \(-0.780641\pi\)
0.771795 0.635871i \(-0.219359\pi\)
\(278\) 0 0
\(279\) 0 0
\(280\) 0 0
\(281\) 22.0000 1.31241 0.656205 0.754583i \(-0.272161\pi\)
0.656205 + 0.754583i \(0.272161\pi\)
\(282\) 0 0
\(283\) 13.2288i 0.786368i 0.919460 + 0.393184i \(0.128626\pi\)
−0.919460 + 0.393184i \(0.871374\pi\)
\(284\) 0 0
\(285\) 0 0
\(286\) 0 0
\(287\) −20.0000 −1.18056
\(288\) 0 0
\(289\) −8.00000 −0.470588
\(290\) 0 0
\(291\) 0 0
\(292\) 0 0
\(293\) 10.5830i 0.618266i 0.951019 + 0.309133i \(0.100039\pi\)
−0.951019 + 0.309133i \(0.899961\pi\)
\(294\) 0 0
\(295\) 0 0
\(296\) 0 0
\(297\) 0 0
\(298\) 0 0
\(299\) 0 0
\(300\) 0 0
\(301\) − 21.1660i − 1.21999i
\(302\) 0 0
\(303\) 0 0
\(304\) 0 0
\(305\) 0 0
\(306\) 0 0
\(307\) 2.64575i 0.151001i 0.997146 + 0.0755005i \(0.0240554\pi\)
−0.997146 + 0.0755005i \(0.975945\pi\)
\(308\) 0 0
\(309\) 0 0
\(310\) 0 0
\(311\) −4.00000 −0.226819 −0.113410 0.993548i \(-0.536177\pi\)
−0.113410 + 0.993548i \(0.536177\pi\)
\(312\) 0 0
\(313\) 6.00000 0.339140 0.169570 0.985518i \(-0.445762\pi\)
0.169570 + 0.985518i \(0.445762\pi\)
\(314\) 0 0
\(315\) 0 0
\(316\) 0 0
\(317\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(318\) 0 0
\(319\) 0 0
\(320\) 0 0
\(321\) 0 0
\(322\) 0 0
\(323\) − 7.93725i − 0.441641i
\(324\) 0 0
\(325\) 0 0
\(326\) 0 0
\(327\) 0 0
\(328\) 0 0
\(329\) 32.0000 1.76422
\(330\) 0 0
\(331\) − 2.64575i − 0.145424i −0.997353 0.0727118i \(-0.976835\pi\)
0.997353 0.0727118i \(-0.0231653\pi\)
\(332\) 0 0
\(333\) 0 0
\(334\) 0 0
\(335\) 0 0
\(336\) 0 0
\(337\) −15.0000 −0.817102 −0.408551 0.912735i \(-0.633966\pi\)
−0.408551 + 0.912735i \(0.633966\pi\)
\(338\) 0 0
\(339\) 0 0
\(340\) 0 0
\(341\) − 10.5830i − 0.573102i
\(342\) 0 0
\(343\) −8.00000 −0.431959
\(344\) 0 0
\(345\) 0 0
\(346\) 0 0
\(347\) − 2.64575i − 0.142031i −0.997475 0.0710157i \(-0.977376\pi\)
0.997475 0.0710157i \(-0.0226240\pi\)
\(348\) 0 0
\(349\) − 10.5830i − 0.566495i −0.959047 0.283248i \(-0.908588\pi\)
0.959047 0.283248i \(-0.0914118\pi\)
\(350\) 0 0
\(351\) 0 0
\(352\) 0 0
\(353\) 18.0000 0.958043 0.479022 0.877803i \(-0.340992\pi\)
0.479022 + 0.877803i \(0.340992\pi\)
\(354\) 0 0
\(355\) 0 0
\(356\) 0 0
\(357\) 0 0
\(358\) 0 0
\(359\) 36.0000 1.90001 0.950004 0.312239i \(-0.101079\pi\)
0.950004 + 0.312239i \(0.101079\pi\)
\(360\) 0 0
\(361\) 12.0000 0.631579
\(362\) 0 0
\(363\) 0 0
\(364\) 0 0
\(365\) 0 0
\(366\) 0 0
\(367\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(368\) 0 0
\(369\) 0 0
\(370\) 0 0
\(371\) 42.3320i 2.19777i
\(372\) 0 0
\(373\) 10.5830i 0.547967i 0.961734 + 0.273984i \(0.0883414\pi\)
−0.961734 + 0.273984i \(0.911659\pi\)
\(374\) 0 0
\(375\) 0 0
\(376\) 0 0
\(377\) 0 0
\(378\) 0 0
\(379\) 7.93725i 0.407709i 0.979001 + 0.203855i \(0.0653470\pi\)
−0.979001 + 0.203855i \(0.934653\pi\)
\(380\) 0 0
\(381\) 0 0
\(382\) 0 0
\(383\) −36.0000 −1.83951 −0.919757 0.392488i \(-0.871614\pi\)
−0.919757 + 0.392488i \(0.871614\pi\)
\(384\) 0 0
\(385\) 0 0
\(386\) 0 0
\(387\) 0 0
\(388\) 0 0
\(389\) − 10.5830i − 0.536580i −0.963338 0.268290i \(-0.913542\pi\)
0.963338 0.268290i \(-0.0864585\pi\)
\(390\) 0 0
\(391\) 12.0000 0.606866
\(392\) 0 0
\(393\) 0 0
\(394\) 0 0
\(395\) 0 0
\(396\) 0 0
\(397\) − 21.1660i − 1.06229i −0.847280 0.531146i \(-0.821762\pi\)
0.847280 0.531146i \(-0.178238\pi\)
\(398\) 0 0
\(399\) 0 0
\(400\) 0 0
\(401\) −27.0000 −1.34832 −0.674158 0.738587i \(-0.735493\pi\)
−0.674158 + 0.738587i \(0.735493\pi\)
\(402\) 0 0
\(403\) 0 0
\(404\) 0 0
\(405\) 0 0
\(406\) 0 0
\(407\) 28.0000 1.38791
\(408\) 0 0
\(409\) 3.00000 0.148340 0.0741702 0.997246i \(-0.476369\pi\)
0.0741702 + 0.997246i \(0.476369\pi\)
\(410\) 0 0
\(411\) 0 0
\(412\) 0 0
\(413\) − 21.1660i − 1.04151i
\(414\) 0 0
\(415\) 0 0
\(416\) 0 0
\(417\) 0 0
\(418\) 0 0
\(419\) − 18.5203i − 0.904774i −0.891822 0.452387i \(-0.850573\pi\)
0.891822 0.452387i \(-0.149427\pi\)
\(420\) 0 0
\(421\) 21.1660i 1.03157i 0.856719 + 0.515784i \(0.172499\pi\)
−0.856719 + 0.515784i \(0.827501\pi\)
\(422\) 0 0
\(423\) 0 0
\(424\) 0 0
\(425\) 0 0
\(426\) 0 0
\(427\) − 42.3320i − 2.04859i
\(428\) 0 0
\(429\) 0 0
\(430\) 0 0
\(431\) 12.0000 0.578020 0.289010 0.957326i \(-0.406674\pi\)
0.289010 + 0.957326i \(0.406674\pi\)
\(432\) 0 0
\(433\) 37.0000 1.77811 0.889053 0.457804i \(-0.151364\pi\)
0.889053 + 0.457804i \(0.151364\pi\)
\(434\) 0 0
\(435\) 0 0
\(436\) 0 0
\(437\) − 10.5830i − 0.506254i
\(438\) 0 0
\(439\) −8.00000 −0.381819 −0.190910 0.981608i \(-0.561144\pi\)
−0.190910 + 0.981608i \(0.561144\pi\)
\(440\) 0 0
\(441\) 0 0
\(442\) 0 0
\(443\) 29.1033i 1.38274i 0.722502 + 0.691369i \(0.242992\pi\)
−0.722502 + 0.691369i \(0.757008\pi\)
\(444\) 0 0
\(445\) 0 0
\(446\) 0 0
\(447\) 0 0
\(448\) 0 0
\(449\) −27.0000 −1.27421 −0.637104 0.770778i \(-0.719868\pi\)
−0.637104 + 0.770778i \(0.719868\pi\)
\(450\) 0 0
\(451\) 13.2288i 0.622918i
\(452\) 0 0
\(453\) 0 0
\(454\) 0 0
\(455\) 0 0
\(456\) 0 0
\(457\) −27.0000 −1.26301 −0.631503 0.775373i \(-0.717562\pi\)
−0.631503 + 0.775373i \(0.717562\pi\)
\(458\) 0 0
\(459\) 0 0
\(460\) 0 0
\(461\) 42.3320i 1.97160i 0.167927 + 0.985799i \(0.446293\pi\)
−0.167927 + 0.985799i \(0.553707\pi\)
\(462\) 0 0
\(463\) 8.00000 0.371792 0.185896 0.982569i \(-0.440481\pi\)
0.185896 + 0.982569i \(0.440481\pi\)
\(464\) 0 0
\(465\) 0 0
\(466\) 0 0
\(467\) − 26.4575i − 1.22431i −0.790739 0.612154i \(-0.790303\pi\)
0.790739 0.612154i \(-0.209697\pi\)
\(468\) 0 0
\(469\) 31.7490i 1.46603i
\(470\) 0 0
\(471\) 0 0
\(472\) 0 0
\(473\) −14.0000 −0.643721
\(474\) 0 0
\(475\) 0 0
\(476\) 0 0
\(477\) 0 0
\(478\) 0 0
\(479\) 4.00000 0.182765 0.0913823 0.995816i \(-0.470871\pi\)
0.0913823 + 0.995816i \(0.470871\pi\)
\(480\) 0 0
\(481\) 0 0
\(482\) 0 0
\(483\) 0 0
\(484\) 0 0
\(485\) 0 0
\(486\) 0 0
\(487\) 12.0000 0.543772 0.271886 0.962329i \(-0.412353\pi\)
0.271886 + 0.962329i \(0.412353\pi\)
\(488\) 0 0
\(489\) 0 0
\(490\) 0 0
\(491\) 5.29150i 0.238802i 0.992846 + 0.119401i \(0.0380974\pi\)
−0.992846 + 0.119401i \(0.961903\pi\)
\(492\) 0 0
\(493\) 0 0
\(494\) 0 0
\(495\) 0 0
\(496\) 0 0
\(497\) −32.0000 −1.43540
\(498\) 0 0
\(499\) − 26.4575i − 1.18440i −0.805791 0.592200i \(-0.798259\pi\)
0.805791 0.592200i \(-0.201741\pi\)
\(500\) 0 0
\(501\) 0 0
\(502\) 0 0
\(503\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(504\) 0 0
\(505\) 0 0
\(506\) 0 0
\(507\) 0 0
\(508\) 0 0
\(509\) 31.7490i 1.40725i 0.710571 + 0.703625i \(0.248437\pi\)
−0.710571 + 0.703625i \(0.751563\pi\)
\(510\) 0 0
\(511\) 28.0000 1.23865
\(512\) 0 0
\(513\) 0 0
\(514\) 0 0
\(515\) 0 0
\(516\) 0 0
\(517\) − 21.1660i − 0.930880i
\(518\) 0 0
\(519\) 0 0
\(520\) 0 0
\(521\) −3.00000 −0.131432 −0.0657162 0.997838i \(-0.520933\pi\)
−0.0657162 + 0.997838i \(0.520933\pi\)
\(522\) 0 0
\(523\) 2.64575i 0.115691i 0.998326 + 0.0578453i \(0.0184230\pi\)
−0.998326 + 0.0578453i \(0.981577\pi\)
\(524\) 0 0
\(525\) 0 0
\(526\) 0 0
\(527\) −12.0000 −0.522728
\(528\) 0 0
\(529\) −7.00000 −0.304348
\(530\) 0 0
\(531\) 0 0
\(532\) 0 0
\(533\) 0 0
\(534\) 0 0
\(535\) 0 0
\(536\) 0 0
\(537\) 0 0
\(538\) 0 0
\(539\) 23.8118i 1.02565i
\(540\) 0 0
\(541\) − 21.1660i − 0.909998i −0.890492 0.454999i \(-0.849640\pi\)
0.890492 0.454999i \(-0.150360\pi\)
\(542\) 0 0
\(543\) 0 0
\(544\) 0 0
\(545\) 0 0
\(546\) 0 0
\(547\) − 18.5203i − 0.791869i −0.918279 0.395935i \(-0.870421\pi\)
0.918279 0.395935i \(-0.129579\pi\)
\(548\) 0 0
\(549\) 0 0
\(550\) 0 0
\(551\) 0 0
\(552\) 0 0
\(553\) 16.0000 0.680389
\(554\) 0 0
\(555\) 0 0
\(556\) 0 0
\(557\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(558\) 0 0
\(559\) 0 0
\(560\) 0 0
\(561\) 0 0
\(562\) 0 0
\(563\) 15.8745i 0.669031i 0.942390 + 0.334515i \(0.108573\pi\)
−0.942390 + 0.334515i \(0.891427\pi\)
\(564\) 0 0
\(565\) 0 0
\(566\) 0 0
\(567\) 0 0
\(568\) 0 0
\(569\) −11.0000 −0.461144 −0.230572 0.973055i \(-0.574060\pi\)
−0.230572 + 0.973055i \(0.574060\pi\)
\(570\) 0 0
\(571\) 37.0405i 1.55010i 0.631901 + 0.775049i \(0.282275\pi\)
−0.631901 + 0.775049i \(0.717725\pi\)
\(572\) 0 0
\(573\) 0 0
\(574\) 0 0
\(575\) 0 0
\(576\) 0 0
\(577\) −7.00000 −0.291414 −0.145707 0.989328i \(-0.546546\pi\)
−0.145707 + 0.989328i \(0.546546\pi\)
\(578\) 0 0
\(579\) 0 0
\(580\) 0 0
\(581\) − 31.7490i − 1.31717i
\(582\) 0 0
\(583\) 28.0000 1.15964
\(584\) 0 0
\(585\) 0 0
\(586\) 0 0
\(587\) 7.93725i 0.327606i 0.986493 + 0.163803i \(0.0523761\pi\)
−0.986493 + 0.163803i \(0.947624\pi\)
\(588\) 0 0
\(589\) 10.5830i 0.436065i
\(590\) 0 0
\(591\) 0 0
\(592\) 0 0
\(593\) −41.0000 −1.68367 −0.841834 0.539736i \(-0.818524\pi\)
−0.841834 + 0.539736i \(0.818524\pi\)
\(594\) 0 0
\(595\) 0 0
\(596\) 0 0
\(597\) 0 0
\(598\) 0 0
\(599\) −12.0000 −0.490307 −0.245153 0.969484i \(-0.578838\pi\)
−0.245153 + 0.969484i \(0.578838\pi\)
\(600\) 0 0
\(601\) 7.00000 0.285536 0.142768 0.989756i \(-0.454400\pi\)
0.142768 + 0.989756i \(0.454400\pi\)
\(602\) 0 0
\(603\) 0 0
\(604\) 0 0
\(605\) 0 0
\(606\) 0 0
\(607\) 8.00000 0.324710 0.162355 0.986732i \(-0.448091\pi\)
0.162355 + 0.986732i \(0.448091\pi\)
\(608\) 0 0
\(609\) 0 0
\(610\) 0 0
\(611\) 0 0
\(612\) 0 0
\(613\) − 10.5830i − 0.427444i −0.976895 0.213722i \(-0.931441\pi\)
0.976895 0.213722i \(-0.0685586\pi\)
\(614\) 0 0
\(615\) 0 0
\(616\) 0 0
\(617\) −6.00000 −0.241551 −0.120775 0.992680i \(-0.538538\pi\)
−0.120775 + 0.992680i \(0.538538\pi\)
\(618\) 0 0
\(619\) − 5.29150i − 0.212683i −0.994330 0.106342i \(-0.966086\pi\)
0.994330 0.106342i \(-0.0339137\pi\)
\(620\) 0 0
\(621\) 0 0
\(622\) 0 0
\(623\) −4.00000 −0.160257
\(624\) 0 0
\(625\) 0 0
\(626\) 0 0
\(627\) 0 0
\(628\) 0 0
\(629\) − 31.7490i − 1.26592i
\(630\) 0 0
\(631\) −36.0000 −1.43314 −0.716569 0.697517i \(-0.754288\pi\)
−0.716569 + 0.697517i \(0.754288\pi\)
\(632\) 0 0
\(633\) 0 0
\(634\) 0 0
\(635\) 0 0
\(636\) 0 0
\(637\) 0 0
\(638\) 0 0
\(639\) 0 0
\(640\) 0 0
\(641\) −2.00000 −0.0789953 −0.0394976 0.999220i \(-0.512576\pi\)
−0.0394976 + 0.999220i \(0.512576\pi\)
\(642\) 0 0
\(643\) − 15.8745i − 0.626029i −0.949748 0.313015i \(-0.898661\pi\)
0.949748 0.313015i \(-0.101339\pi\)
\(644\) 0 0
\(645\) 0 0
\(646\) 0 0
\(647\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(648\) 0 0
\(649\) −14.0000 −0.549548
\(650\) 0 0
\(651\) 0 0
\(652\) 0 0
\(653\) 31.7490i 1.24243i 0.783638 + 0.621217i \(0.213362\pi\)
−0.783638 + 0.621217i \(0.786638\pi\)
\(654\) 0 0
\(655\) 0 0
\(656\) 0 0
\(657\) 0 0
\(658\) 0 0
\(659\) − 7.93725i − 0.309192i −0.987978 0.154596i \(-0.950592\pi\)
0.987978 0.154596i \(-0.0494075\pi\)
\(660\) 0 0
\(661\) 21.1660i 0.823262i 0.911351 + 0.411631i \(0.135041\pi\)
−0.911351 + 0.411631i \(0.864959\pi\)
\(662\) 0 0
\(663\) 0 0
\(664\) 0 0
\(665\) 0 0
\(666\) 0 0
\(667\) 0 0
\(668\) 0 0
\(669\) 0 0
\(670\) 0 0
\(671\) −28.0000 −1.08093
\(672\) 0 0
\(673\) −34.0000 −1.31060 −0.655302 0.755367i \(-0.727459\pi\)
−0.655302 + 0.755367i \(0.727459\pi\)
\(674\) 0 0
\(675\) 0 0
\(676\) 0 0
\(677\) 42.3320i 1.62695i 0.581599 + 0.813476i \(0.302427\pi\)
−0.581599 + 0.813476i \(0.697573\pi\)
\(678\) 0 0
\(679\) 8.00000 0.307012
\(680\) 0 0
\(681\) 0 0
\(682\) 0 0
\(683\) − 23.8118i − 0.911132i −0.890202 0.455566i \(-0.849437\pi\)
0.890202 0.455566i \(-0.150563\pi\)
\(684\) 0 0
\(685\) 0 0
\(686\) 0 0
\(687\) 0 0
\(688\) 0 0
\(689\) 0 0
\(690\) 0 0
\(691\) − 23.8118i − 0.905842i −0.891551 0.452921i \(-0.850382\pi\)
0.891551 0.452921i \(-0.149618\pi\)
\(692\) 0 0
\(693\) 0 0
\(694\) 0 0
\(695\) 0 0
\(696\) 0 0
\(697\) 15.0000 0.568166
\(698\) 0 0
\(699\) 0 0
\(700\) 0 0
\(701\) − 21.1660i − 0.799429i −0.916640 0.399715i \(-0.869109\pi\)
0.916640 0.399715i \(-0.130891\pi\)
\(702\) 0 0
\(703\) −28.0000 −1.05604
\(704\) 0 0
\(705\) 0 0
\(706\) 0 0
\(707\) − 42.3320i − 1.59206i
\(708\) 0 0
\(709\) 21.1660i 0.794906i 0.917622 + 0.397453i \(0.130106\pi\)
−0.917622 + 0.397453i \(0.869894\pi\)
\(710\) 0 0
\(711\) 0 0
\(712\) 0 0
\(713\) −16.0000 −0.599205
\(714\) 0 0
\(715\) 0 0
\(716\) 0 0
\(717\) 0 0
\(718\) 0 0
\(719\) 36.0000 1.34257 0.671287 0.741198i \(-0.265742\pi\)
0.671287 + 0.741198i \(0.265742\pi\)
\(720\) 0 0
\(721\) 32.0000 1.19174
\(722\) 0 0
\(723\) 0 0
\(724\) 0 0
\(725\) 0 0
\(726\) 0 0
\(727\) 16.0000 0.593407 0.296704 0.954970i \(-0.404113\pi\)
0.296704 + 0.954970i \(0.404113\pi\)
\(728\) 0 0
\(729\) 0 0
\(730\) 0 0
\(731\) 15.8745i 0.587140i
\(732\) 0 0
\(733\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(734\) 0 0
\(735\) 0 0
\(736\) 0 0
\(737\) 21.0000 0.773545
\(738\) 0 0
\(739\) 15.8745i 0.583953i 0.956425 + 0.291977i \(0.0943129\pi\)
−0.956425 + 0.291977i \(0.905687\pi\)
\(740\) 0 0
\(741\) 0 0
\(742\) 0 0
\(743\) 36.0000 1.32071 0.660356 0.750953i \(-0.270405\pi\)
0.660356 + 0.750953i \(0.270405\pi\)
\(744\) 0 0
\(745\) 0 0
\(746\) 0 0
\(747\) 0 0
\(748\) 0 0
\(749\) 10.5830i 0.386695i
\(750\) 0 0
\(751\) −8.00000 −0.291924 −0.145962 0.989290i \(-0.546628\pi\)
−0.145962 + 0.989290i \(0.546628\pi\)
\(752\) 0 0
\(753\) 0 0
\(754\) 0 0
\(755\) 0 0
\(756\) 0 0
\(757\) 21.1660i 0.769292i 0.923064 + 0.384646i \(0.125676\pi\)
−0.923064 + 0.384646i \(0.874324\pi\)
\(758\) 0 0
\(759\) 0 0
\(760\) 0 0
\(761\) 29.0000 1.05125 0.525625 0.850717i \(-0.323832\pi\)
0.525625 + 0.850717i \(0.323832\pi\)
\(762\) 0 0
\(763\) − 42.3320i − 1.53252i
\(764\) 0 0
\(765\) 0 0
\(766\) 0 0
\(767\) 0 0
\(768\) 0 0
\(769\) −21.0000 −0.757279 −0.378640 0.925544i \(-0.623608\pi\)
−0.378640 + 0.925544i \(0.623608\pi\)
\(770\) 0 0
\(771\) 0 0
\(772\) 0 0
\(773\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(774\) 0 0
\(775\) 0 0
\(776\) 0 0
\(777\) 0 0
\(778\) 0 0
\(779\) − 13.2288i − 0.473969i
\(780\) 0 0
\(781\) 21.1660i 0.757379i
\(782\) 0 0
\(783\) 0 0
\(784\) 0 0
\(785\) 0 0
\(786\) 0 0
\(787\) 26.4575i 0.943108i 0.881837 + 0.471554i \(0.156307\pi\)
−0.881837 + 0.471554i \(0.843693\pi\)
\(788\) 0 0
\(789\) 0 0
\(790\) 0 0
\(791\) −60.0000 −2.13335
\(792\) 0 0
\(793\) 0 0
\(794\) 0 0
\(795\) 0 0
\(796\) 0 0
\(797\) − 31.7490i − 1.12461i −0.826931 0.562304i \(-0.809915\pi\)
0.826931 0.562304i \(-0.190085\pi\)
\(798\) 0 0
\(799\) −24.0000 −0.849059
\(800\) 0 0
\(801\) 0 0
\(802\) 0 0
\(803\) − 18.5203i − 0.653566i
\(804\) 0 0
\(805\) 0 0
\(806\) 0 0
\(807\) 0 0
\(808\) 0 0
\(809\) −10.0000 −0.351581 −0.175791 0.984428i \(-0.556248\pi\)
−0.175791 + 0.984428i \(0.556248\pi\)
\(810\) 0 0
\(811\) − 5.29150i − 0.185810i −0.995675 0.0929049i \(-0.970385\pi\)
0.995675 0.0929049i \(-0.0296153\pi\)
\(812\) 0 0
\(813\) 0 0
\(814\) 0 0
\(815\) 0 0
\(816\) 0 0
\(817\) 14.0000 0.489798
\(818\) 0 0
\(819\) 0 0
\(820\) 0 0
\(821\) 10.5830i 0.369349i 0.982800 + 0.184675i \(0.0591232\pi\)
−0.982800 + 0.184675i \(0.940877\pi\)
\(822\) 0 0
\(823\) 24.0000 0.836587 0.418294 0.908312i \(-0.362628\pi\)
0.418294 + 0.908312i \(0.362628\pi\)
\(824\) 0 0
\(825\) 0 0
\(826\) 0 0
\(827\) − 13.2288i − 0.460009i −0.973190 0.230004i \(-0.926126\pi\)
0.973190 0.230004i \(-0.0738741\pi\)
\(828\) 0 0
\(829\) − 21.1660i − 0.735126i −0.929999 0.367563i \(-0.880192\pi\)
0.929999 0.367563i \(-0.119808\pi\)
\(830\) 0 0
\(831\) 0 0
\(832\) 0 0
\(833\) 27.0000 0.935495
\(834\) 0 0
\(835\) 0 0
\(836\) 0 0
\(837\) 0 0
\(838\) 0 0
\(839\) 40.0000 1.38095 0.690477 0.723355i \(-0.257401\pi\)
0.690477 + 0.723355i \(0.257401\pi\)
\(840\) 0 0
\(841\) 29.0000 1.00000
\(842\) 0 0
\(843\) 0 0
\(844\) 0 0
\(845\) 0 0
\(846\) 0 0
\(847\) −16.0000 −0.549767
\(848\) 0 0
\(849\) 0 0
\(850\) 0 0
\(851\) − 42.3320i − 1.45112i
\(852\) 0 0
\(853\) 52.9150i 1.81178i 0.423517 + 0.905888i \(0.360795\pi\)
−0.423517 + 0.905888i \(0.639205\pi\)
\(854\) 0 0
\(855\) 0 0
\(856\) 0 0
\(857\) −21.0000 −0.717346 −0.358673 0.933463i \(-0.616771\pi\)
−0.358673 + 0.933463i \(0.616771\pi\)
\(858\) 0 0
\(859\) − 2.64575i − 0.0902719i −0.998981 0.0451359i \(-0.985628\pi\)
0.998981 0.0451359i \(-0.0143721\pi\)
\(860\) 0 0
\(861\) 0 0
\(862\) 0 0
\(863\) 24.0000 0.816970 0.408485 0.912765i \(-0.366057\pi\)
0.408485 + 0.912765i \(0.366057\pi\)
\(864\) 0 0
\(865\) 0 0
\(866\) 0 0
\(867\) 0 0
\(868\) 0 0
\(869\) − 10.5830i − 0.359004i
\(870\) 0 0
\(871\) 0 0
\(872\) 0 0
\(873\) 0 0
\(874\) 0 0
\(875\) 0 0
\(876\) 0 0
\(877\) 42.3320i 1.42945i 0.699405 + 0.714725i \(0.253448\pi\)
−0.699405 + 0.714725i \(0.746552\pi\)
\(878\) 0 0
\(879\) 0 0
\(880\) 0 0
\(881\) 30.0000 1.01073 0.505363 0.862907i \(-0.331359\pi\)
0.505363 + 0.862907i \(0.331359\pi\)
\(882\) 0 0
\(883\) 44.9778i 1.51362i 0.653633 + 0.756811i \(0.273244\pi\)
−0.653633 + 0.756811i \(0.726756\pi\)
\(884\) 0 0
\(885\) 0 0
\(886\) 0 0
\(887\) 56.0000 1.88030 0.940148 0.340766i \(-0.110687\pi\)
0.940148 + 0.340766i \(0.110687\pi\)
\(888\) 0 0
\(889\) 48.0000 1.60987
\(890\) 0 0
\(891\) 0 0
\(892\) 0 0
\(893\) 21.1660i 0.708294i
\(894\) 0 0
\(895\) 0 0
\(896\) 0 0
\(897\) 0 0
\(898\) 0 0
\(899\) 0 0
\(900\) 0 0
\(901\) − 31.7490i − 1.05771i
\(902\) 0 0
\(903\) 0 0
\(904\) 0 0
\(905\) 0 0
\(906\) 0 0
\(907\) 5.29150i 0.175701i 0.996134 + 0.0878507i \(0.0279999\pi\)
−0.996134 + 0.0878507i \(0.972000\pi\)
\(908\) 0 0
\(909\) 0 0
\(910\) 0 0
\(911\) 48.0000 1.59031 0.795155 0.606406i \(-0.207389\pi\)
0.795155 + 0.606406i \(0.207389\pi\)
\(912\) 0 0
\(913\) −21.0000 −0.694999
\(914\) 0 0
\(915\) 0 0
\(916\) 0 0
\(917\) 63.4980i 2.09689i
\(918\) 0 0
\(919\) −4.00000 −0.131948 −0.0659739 0.997821i \(-0.521015\pi\)
−0.0659739 + 0.997821i \(0.521015\pi\)
\(920\) 0 0
\(921\) 0 0
\(922\) 0 0
\(923\) 0 0
\(924\) 0 0
\(925\) 0 0
\(926\) 0 0
\(927\) 0 0
\(928\) 0 0
\(929\) 14.0000 0.459325 0.229663 0.973270i \(-0.426238\pi\)
0.229663 + 0.973270i \(0.426238\pi\)
\(930\) 0 0
\(931\) − 23.8118i − 0.780399i
\(932\) 0 0
\(933\) 0 0
\(934\) 0 0
\(935\) 0 0
\(936\) 0 0
\(937\) −7.00000 −0.228680 −0.114340 0.993442i \(-0.536475\pi\)
−0.114340 + 0.993442i \(0.536475\pi\)
\(938\) 0 0
\(939\) 0 0
\(940\) 0 0
\(941\) − 42.3320i − 1.37998i −0.723817 0.689992i \(-0.757614\pi\)
0.723817 0.689992i \(-0.242386\pi\)
\(942\) 0 0
\(943\) 20.0000 0.651290
\(944\) 0 0
\(945\) 0 0
\(946\) 0 0
\(947\) 15.8745i 0.515852i 0.966165 + 0.257926i \(0.0830391\pi\)
−0.966165 + 0.257926i \(0.916961\pi\)
\(948\) 0 0
\(949\) 0 0
\(950\) 0 0
\(951\) 0 0
\(952\) 0 0
\(953\) −5.00000 −0.161966 −0.0809829 0.996715i \(-0.525806\pi\)
−0.0809829 + 0.996715i \(0.525806\pi\)
\(954\) 0 0
\(955\) 0 0
\(956\) 0 0
\(957\) 0 0
\(958\) 0 0
\(959\) −76.0000 −2.45417
\(960\) 0 0
\(961\) −15.0000 −0.483871
\(962\) 0 0
\(963\) 0 0
\(964\) 0 0
\(965\) 0 0
\(966\) 0 0
\(967\) −8.00000 −0.257263 −0.128631 0.991692i \(-0.541058\pi\)
−0.128631 + 0.991692i \(0.541058\pi\)
\(968\) 0 0
\(969\) 0 0
\(970\) 0 0
\(971\) 23.8118i 0.764156i 0.924130 + 0.382078i \(0.124791\pi\)
−0.924130 + 0.382078i \(0.875209\pi\)
\(972\) 0 0
\(973\) − 74.0810i − 2.37493i
\(974\) 0 0
\(975\) 0 0
\(976\) 0 0
\(977\) −37.0000 −1.18373 −0.591867 0.806035i \(-0.701609\pi\)
−0.591867 + 0.806035i \(0.701609\pi\)
\(978\) 0 0
\(979\) 2.64575i 0.0845586i
\(980\) 0 0
\(981\) 0 0
\(982\) 0 0
\(983\) −28.0000 −0.893061 −0.446531 0.894768i \(-0.647341\pi\)
−0.446531 + 0.894768i \(0.647341\pi\)
\(984\) 0 0
\(985\) 0 0
\(986\) 0 0
\(987\) 0 0
\(988\) 0 0
\(989\) 21.1660i 0.673040i
\(990\) 0 0
\(991\) −44.0000 −1.39771 −0.698853 0.715265i \(-0.746306\pi\)
−0.698853 + 0.715265i \(0.746306\pi\)
\(992\) 0 0
\(993\) 0 0
\(994\) 0 0
\(995\) 0 0
\(996\) 0 0
\(997\) 42.3320i 1.34067i 0.742059 + 0.670334i \(0.233849\pi\)
−0.742059 + 0.670334i \(0.766151\pi\)
\(998\) 0 0
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 7200.2.k.b.3601.2 2
3.2 odd 2 800.2.d.a.401.2 2
4.3 odd 2 1800.2.k.d.901.2 2
5.2 odd 4 7200.2.d.m.2449.2 4
5.3 odd 4 7200.2.d.m.2449.4 4
5.4 even 2 7200.2.k.i.3601.2 2
8.3 odd 2 1800.2.k.d.901.1 2
8.5 even 2 inner 7200.2.k.b.3601.1 2
12.11 even 2 200.2.d.c.101.1 yes 2
15.2 even 4 800.2.f.d.49.3 4
15.8 even 4 800.2.f.d.49.2 4
15.14 odd 2 800.2.d.d.401.1 2
20.3 even 4 1800.2.d.m.1549.4 4
20.7 even 4 1800.2.d.m.1549.1 4
20.19 odd 2 1800.2.k.f.901.1 2
24.5 odd 2 800.2.d.a.401.1 2
24.11 even 2 200.2.d.c.101.2 yes 2
40.3 even 4 1800.2.d.m.1549.2 4
40.13 odd 4 7200.2.d.m.2449.3 4
40.19 odd 2 1800.2.k.f.901.2 2
40.27 even 4 1800.2.d.m.1549.3 4
40.29 even 2 7200.2.k.i.3601.1 2
40.37 odd 4 7200.2.d.m.2449.1 4
48.5 odd 4 6400.2.a.cb.1.2 2
48.11 even 4 6400.2.a.bg.1.1 2
48.29 odd 4 6400.2.a.cb.1.1 2
48.35 even 4 6400.2.a.bg.1.2 2
60.23 odd 4 200.2.f.d.149.1 4
60.47 odd 4 200.2.f.d.149.4 4
60.59 even 2 200.2.d.b.101.2 yes 2
120.29 odd 2 800.2.d.d.401.2 2
120.53 even 4 800.2.f.d.49.4 4
120.59 even 2 200.2.d.b.101.1 2
120.77 even 4 800.2.f.d.49.1 4
120.83 odd 4 200.2.f.d.149.3 4
120.107 odd 4 200.2.f.d.149.2 4
240.29 odd 4 6400.2.a.bh.1.2 2
240.59 even 4 6400.2.a.cc.1.2 2
240.149 odd 4 6400.2.a.bh.1.1 2
240.179 even 4 6400.2.a.cc.1.1 2
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
200.2.d.b.101.1 2 120.59 even 2
200.2.d.b.101.2 yes 2 60.59 even 2
200.2.d.c.101.1 yes 2 12.11 even 2
200.2.d.c.101.2 yes 2 24.11 even 2
200.2.f.d.149.1 4 60.23 odd 4
200.2.f.d.149.2 4 120.107 odd 4
200.2.f.d.149.3 4 120.83 odd 4
200.2.f.d.149.4 4 60.47 odd 4
800.2.d.a.401.1 2 24.5 odd 2
800.2.d.a.401.2 2 3.2 odd 2
800.2.d.d.401.1 2 15.14 odd 2
800.2.d.d.401.2 2 120.29 odd 2
800.2.f.d.49.1 4 120.77 even 4
800.2.f.d.49.2 4 15.8 even 4
800.2.f.d.49.3 4 15.2 even 4
800.2.f.d.49.4 4 120.53 even 4
1800.2.d.m.1549.1 4 20.7 even 4
1800.2.d.m.1549.2 4 40.3 even 4
1800.2.d.m.1549.3 4 40.27 even 4
1800.2.d.m.1549.4 4 20.3 even 4
1800.2.k.d.901.1 2 8.3 odd 2
1800.2.k.d.901.2 2 4.3 odd 2
1800.2.k.f.901.1 2 20.19 odd 2
1800.2.k.f.901.2 2 40.19 odd 2
6400.2.a.bg.1.1 2 48.11 even 4
6400.2.a.bg.1.2 2 48.35 even 4
6400.2.a.bh.1.1 2 240.149 odd 4
6400.2.a.bh.1.2 2 240.29 odd 4
6400.2.a.cb.1.1 2 48.29 odd 4
6400.2.a.cb.1.2 2 48.5 odd 4
6400.2.a.cc.1.1 2 240.179 even 4
6400.2.a.cc.1.2 2 240.59 even 4
7200.2.d.m.2449.1 4 40.37 odd 4
7200.2.d.m.2449.2 4 5.2 odd 4
7200.2.d.m.2449.3 4 40.13 odd 4
7200.2.d.m.2449.4 4 5.3 odd 4
7200.2.k.b.3601.1 2 8.5 even 2 inner
7200.2.k.b.3601.2 2 1.1 even 1 trivial
7200.2.k.i.3601.1 2 40.29 even 2
7200.2.k.i.3601.2 2 5.4 even 2