Properties

Label 800.2.f.d.49.4
Level $800$
Weight $2$
Character 800.49
Analytic conductor $6.388$
Analytic rank $0$
Dimension $4$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [800,2,Mod(49,800)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(800, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 1, 1]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("800.49");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 800 = 2^{5} \cdot 5^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 800.f (of order \(2\), degree \(1\), not minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(6.38803216170\)
Analytic rank: \(0\)
Dimension: \(4\)
Coefficient field: \(\Q(i, \sqrt{7})\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{4} - 3x^{2} + 4 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{11}]\)
Coefficient ring index: \( 2^{2} \)
Twist minimal: no (minimal twist has level 200)
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

Embedding invariants

Embedding label 49.4
Root \(-1.32288 + 0.500000i\) of defining polynomial
Character \(\chi\) \(=\) 800.49
Dual form 800.2.f.d.49.3

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+2.64575 q^{3} +4.00000i q^{7} +4.00000 q^{9} +2.64575i q^{11} +3.00000i q^{17} -2.64575i q^{19} +10.5830i q^{21} -4.00000i q^{23} +2.64575 q^{27} -4.00000 q^{31} +7.00000i q^{33} +10.5830 q^{37} -5.00000 q^{41} +5.29150 q^{43} -8.00000i q^{47} -9.00000 q^{49} +7.93725i q^{51} +10.5830 q^{53} -7.00000i q^{57} -5.29150i q^{59} -10.5830i q^{61} +16.0000i q^{63} +7.93725 q^{67} -10.5830i q^{69} -8.00000 q^{71} -7.00000i q^{73} -10.5830 q^{77} +4.00000 q^{79} -5.00000 q^{81} -7.93725 q^{83} +1.00000 q^{89} -10.5830 q^{93} +2.00000i q^{97} +10.5830i q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 4 q + 16 q^{9} - 16 q^{31} - 20 q^{41} - 36 q^{49} - 32 q^{71} + 16 q^{79} - 20 q^{81} + 4 q^{89}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/800\mathbb{Z}\right)^\times\).

\(n\) \(101\) \(351\) \(577\)
\(\chi(n)\) \(-1\) \(1\) \(-1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 2.64575 1.52753 0.763763 0.645497i \(-0.223350\pi\)
0.763763 + 0.645497i \(0.223350\pi\)
\(4\) 0 0
\(5\) 0 0
\(6\) 0 0
\(7\) 4.00000i 1.51186i 0.654654 + 0.755929i \(0.272814\pi\)
−0.654654 + 0.755929i \(0.727186\pi\)
\(8\) 0 0
\(9\) 4.00000 1.33333
\(10\) 0 0
\(11\) 2.64575i 0.797724i 0.917011 + 0.398862i \(0.130595\pi\)
−0.917011 + 0.398862i \(0.869405\pi\)
\(12\) 0 0
\(13\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(14\) 0 0
\(15\) 0 0
\(16\) 0 0
\(17\) 3.00000i 0.727607i 0.931476 + 0.363803i \(0.118522\pi\)
−0.931476 + 0.363803i \(0.881478\pi\)
\(18\) 0 0
\(19\) − 2.64575i − 0.606977i −0.952835 0.303488i \(-0.901849\pi\)
0.952835 0.303488i \(-0.0981514\pi\)
\(20\) 0 0
\(21\) 10.5830i 2.30940i
\(22\) 0 0
\(23\) − 4.00000i − 0.834058i −0.908893 0.417029i \(-0.863071\pi\)
0.908893 0.417029i \(-0.136929\pi\)
\(24\) 0 0
\(25\) 0 0
\(26\) 0 0
\(27\) 2.64575 0.509175
\(28\) 0 0
\(29\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(30\) 0 0
\(31\) −4.00000 −0.718421 −0.359211 0.933257i \(-0.616954\pi\)
−0.359211 + 0.933257i \(0.616954\pi\)
\(32\) 0 0
\(33\) 7.00000i 1.21854i
\(34\) 0 0
\(35\) 0 0
\(36\) 0 0
\(37\) 10.5830 1.73984 0.869918 0.493197i \(-0.164172\pi\)
0.869918 + 0.493197i \(0.164172\pi\)
\(38\) 0 0
\(39\) 0 0
\(40\) 0 0
\(41\) −5.00000 −0.780869 −0.390434 0.920631i \(-0.627675\pi\)
−0.390434 + 0.920631i \(0.627675\pi\)
\(42\) 0 0
\(43\) 5.29150 0.806947 0.403473 0.914991i \(-0.367803\pi\)
0.403473 + 0.914991i \(0.367803\pi\)
\(44\) 0 0
\(45\) 0 0
\(46\) 0 0
\(47\) − 8.00000i − 1.16692i −0.812142 0.583460i \(-0.801699\pi\)
0.812142 0.583460i \(-0.198301\pi\)
\(48\) 0 0
\(49\) −9.00000 −1.28571
\(50\) 0 0
\(51\) 7.93725i 1.11144i
\(52\) 0 0
\(53\) 10.5830 1.45369 0.726844 0.686803i \(-0.240986\pi\)
0.726844 + 0.686803i \(0.240986\pi\)
\(54\) 0 0
\(55\) 0 0
\(56\) 0 0
\(57\) − 7.00000i − 0.927173i
\(58\) 0 0
\(59\) − 5.29150i − 0.688895i −0.938806 0.344447i \(-0.888066\pi\)
0.938806 0.344447i \(-0.111934\pi\)
\(60\) 0 0
\(61\) − 10.5830i − 1.35501i −0.735516 0.677507i \(-0.763060\pi\)
0.735516 0.677507i \(-0.236940\pi\)
\(62\) 0 0
\(63\) 16.0000i 2.01581i
\(64\) 0 0
\(65\) 0 0
\(66\) 0 0
\(67\) 7.93725 0.969690 0.484845 0.874600i \(-0.338876\pi\)
0.484845 + 0.874600i \(0.338876\pi\)
\(68\) 0 0
\(69\) − 10.5830i − 1.27404i
\(70\) 0 0
\(71\) −8.00000 −0.949425 −0.474713 0.880141i \(-0.657448\pi\)
−0.474713 + 0.880141i \(0.657448\pi\)
\(72\) 0 0
\(73\) − 7.00000i − 0.819288i −0.912245 0.409644i \(-0.865653\pi\)
0.912245 0.409644i \(-0.134347\pi\)
\(74\) 0 0
\(75\) 0 0
\(76\) 0 0
\(77\) −10.5830 −1.20605
\(78\) 0 0
\(79\) 4.00000 0.450035 0.225018 0.974355i \(-0.427756\pi\)
0.225018 + 0.974355i \(0.427756\pi\)
\(80\) 0 0
\(81\) −5.00000 −0.555556
\(82\) 0 0
\(83\) −7.93725 −0.871227 −0.435613 0.900134i \(-0.643469\pi\)
−0.435613 + 0.900134i \(0.643469\pi\)
\(84\) 0 0
\(85\) 0 0
\(86\) 0 0
\(87\) 0 0
\(88\) 0 0
\(89\) 1.00000 0.106000 0.0529999 0.998595i \(-0.483122\pi\)
0.0529999 + 0.998595i \(0.483122\pi\)
\(90\) 0 0
\(91\) 0 0
\(92\) 0 0
\(93\) −10.5830 −1.09741
\(94\) 0 0
\(95\) 0 0
\(96\) 0 0
\(97\) 2.00000i 0.203069i 0.994832 + 0.101535i \(0.0323753\pi\)
−0.994832 + 0.101535i \(0.967625\pi\)
\(98\) 0 0
\(99\) 10.5830i 1.06363i
\(100\) 0 0
\(101\) 10.5830i 1.05305i 0.850160 + 0.526524i \(0.176505\pi\)
−0.850160 + 0.526524i \(0.823495\pi\)
\(102\) 0 0
\(103\) − 8.00000i − 0.788263i −0.919054 0.394132i \(-0.871045\pi\)
0.919054 0.394132i \(-0.128955\pi\)
\(104\) 0 0
\(105\) 0 0
\(106\) 0 0
\(107\) −2.64575 −0.255774 −0.127887 0.991789i \(-0.540820\pi\)
−0.127887 + 0.991789i \(0.540820\pi\)
\(108\) 0 0
\(109\) 10.5830i 1.01367i 0.862044 + 0.506834i \(0.169184\pi\)
−0.862044 + 0.506834i \(0.830816\pi\)
\(110\) 0 0
\(111\) 28.0000 2.65764
\(112\) 0 0
\(113\) − 15.0000i − 1.41108i −0.708669 0.705541i \(-0.750704\pi\)
0.708669 0.705541i \(-0.249296\pi\)
\(114\) 0 0
\(115\) 0 0
\(116\) 0 0
\(117\) 0 0
\(118\) 0 0
\(119\) −12.0000 −1.10004
\(120\) 0 0
\(121\) 4.00000 0.363636
\(122\) 0 0
\(123\) −13.2288 −1.19280
\(124\) 0 0
\(125\) 0 0
\(126\) 0 0
\(127\) 12.0000i 1.06483i 0.846484 + 0.532414i \(0.178715\pi\)
−0.846484 + 0.532414i \(0.821285\pi\)
\(128\) 0 0
\(129\) 14.0000 1.23263
\(130\) 0 0
\(131\) − 15.8745i − 1.38696i −0.720475 0.693481i \(-0.756076\pi\)
0.720475 0.693481i \(-0.243924\pi\)
\(132\) 0 0
\(133\) 10.5830 0.917663
\(134\) 0 0
\(135\) 0 0
\(136\) 0 0
\(137\) 19.0000i 1.62328i 0.584158 + 0.811640i \(0.301425\pi\)
−0.584158 + 0.811640i \(0.698575\pi\)
\(138\) 0 0
\(139\) 18.5203i 1.57087i 0.618945 + 0.785434i \(0.287560\pi\)
−0.618945 + 0.785434i \(0.712440\pi\)
\(140\) 0 0
\(141\) − 21.1660i − 1.78250i
\(142\) 0 0
\(143\) 0 0
\(144\) 0 0
\(145\) 0 0
\(146\) 0 0
\(147\) −23.8118 −1.96396
\(148\) 0 0
\(149\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(150\) 0 0
\(151\) −4.00000 −0.325515 −0.162758 0.986666i \(-0.552039\pi\)
−0.162758 + 0.986666i \(0.552039\pi\)
\(152\) 0 0
\(153\) 12.0000i 0.970143i
\(154\) 0 0
\(155\) 0 0
\(156\) 0 0
\(157\) −10.5830 −0.844616 −0.422308 0.906452i \(-0.638780\pi\)
−0.422308 + 0.906452i \(0.638780\pi\)
\(158\) 0 0
\(159\) 28.0000 2.22054
\(160\) 0 0
\(161\) 16.0000 1.26098
\(162\) 0 0
\(163\) 13.2288 1.03616 0.518078 0.855333i \(-0.326648\pi\)
0.518078 + 0.855333i \(0.326648\pi\)
\(164\) 0 0
\(165\) 0 0
\(166\) 0 0
\(167\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(168\) 0 0
\(169\) −13.0000 −1.00000
\(170\) 0 0
\(171\) − 10.5830i − 0.809303i
\(172\) 0 0
\(173\) −21.1660 −1.60922 −0.804611 0.593802i \(-0.797626\pi\)
−0.804611 + 0.593802i \(0.797626\pi\)
\(174\) 0 0
\(175\) 0 0
\(176\) 0 0
\(177\) − 14.0000i − 1.05230i
\(178\) 0 0
\(179\) − 23.8118i − 1.77977i −0.456180 0.889887i \(-0.650783\pi\)
0.456180 0.889887i \(-0.349217\pi\)
\(180\) 0 0
\(181\) − 10.5830i − 0.786629i −0.919404 0.393314i \(-0.871328\pi\)
0.919404 0.393314i \(-0.128672\pi\)
\(182\) 0 0
\(183\) − 28.0000i − 2.06982i
\(184\) 0 0
\(185\) 0 0
\(186\) 0 0
\(187\) −7.93725 −0.580429
\(188\) 0 0
\(189\) 10.5830i 0.769800i
\(190\) 0 0
\(191\) −4.00000 −0.289430 −0.144715 0.989473i \(-0.546227\pi\)
−0.144715 + 0.989473i \(0.546227\pi\)
\(192\) 0 0
\(193\) 5.00000i 0.359908i 0.983675 + 0.179954i \(0.0575949\pi\)
−0.983675 + 0.179954i \(0.942405\pi\)
\(194\) 0 0
\(195\) 0 0
\(196\) 0 0
\(197\) −10.5830 −0.754008 −0.377004 0.926212i \(-0.623046\pi\)
−0.377004 + 0.926212i \(0.623046\pi\)
\(198\) 0 0
\(199\) −24.0000 −1.70131 −0.850657 0.525720i \(-0.823796\pi\)
−0.850657 + 0.525720i \(0.823796\pi\)
\(200\) 0 0
\(201\) 21.0000 1.48123
\(202\) 0 0
\(203\) 0 0
\(204\) 0 0
\(205\) 0 0
\(206\) 0 0
\(207\) − 16.0000i − 1.11208i
\(208\) 0 0
\(209\) 7.00000 0.484200
\(210\) 0 0
\(211\) − 7.93725i − 0.546423i −0.961954 0.273212i \(-0.911914\pi\)
0.961954 0.273212i \(-0.0880859\pi\)
\(212\) 0 0
\(213\) −21.1660 −1.45027
\(214\) 0 0
\(215\) 0 0
\(216\) 0 0
\(217\) − 16.0000i − 1.08615i
\(218\) 0 0
\(219\) − 18.5203i − 1.25148i
\(220\) 0 0
\(221\) 0 0
\(222\) 0 0
\(223\) 16.0000i 1.07144i 0.844396 + 0.535720i \(0.179960\pi\)
−0.844396 + 0.535720i \(0.820040\pi\)
\(224\) 0 0
\(225\) 0 0
\(226\) 0 0
\(227\) 15.8745 1.05363 0.526814 0.849981i \(-0.323386\pi\)
0.526814 + 0.849981i \(0.323386\pi\)
\(228\) 0 0
\(229\) 21.1660i 1.39869i 0.714785 + 0.699345i \(0.246525\pi\)
−0.714785 + 0.699345i \(0.753475\pi\)
\(230\) 0 0
\(231\) −28.0000 −1.84226
\(232\) 0 0
\(233\) 6.00000i 0.393073i 0.980497 + 0.196537i \(0.0629694\pi\)
−0.980497 + 0.196537i \(0.937031\pi\)
\(234\) 0 0
\(235\) 0 0
\(236\) 0 0
\(237\) 10.5830 0.687440
\(238\) 0 0
\(239\) −8.00000 −0.517477 −0.258738 0.965947i \(-0.583307\pi\)
−0.258738 + 0.965947i \(0.583307\pi\)
\(240\) 0 0
\(241\) −21.0000 −1.35273 −0.676364 0.736567i \(-0.736446\pi\)
−0.676364 + 0.736567i \(0.736446\pi\)
\(242\) 0 0
\(243\) −21.1660 −1.35780
\(244\) 0 0
\(245\) 0 0
\(246\) 0 0
\(247\) 0 0
\(248\) 0 0
\(249\) −21.0000 −1.33082
\(250\) 0 0
\(251\) − 7.93725i − 0.500995i −0.968117 0.250498i \(-0.919406\pi\)
0.968117 0.250498i \(-0.0805942\pi\)
\(252\) 0 0
\(253\) 10.5830 0.665348
\(254\) 0 0
\(255\) 0 0
\(256\) 0 0
\(257\) − 14.0000i − 0.873296i −0.899632 0.436648i \(-0.856166\pi\)
0.899632 0.436648i \(-0.143834\pi\)
\(258\) 0 0
\(259\) 42.3320i 2.63038i
\(260\) 0 0
\(261\) 0 0
\(262\) 0 0
\(263\) − 12.0000i − 0.739952i −0.929041 0.369976i \(-0.879366\pi\)
0.929041 0.369976i \(-0.120634\pi\)
\(264\) 0 0
\(265\) 0 0
\(266\) 0 0
\(267\) 2.64575 0.161917
\(268\) 0 0
\(269\) − 21.1660i − 1.29051i −0.763965 0.645257i \(-0.776750\pi\)
0.763965 0.645257i \(-0.223250\pi\)
\(270\) 0 0
\(271\) 20.0000 1.21491 0.607457 0.794353i \(-0.292190\pi\)
0.607457 + 0.794353i \(0.292190\pi\)
\(272\) 0 0
\(273\) 0 0
\(274\) 0 0
\(275\) 0 0
\(276\) 0 0
\(277\) 21.1660 1.27174 0.635871 0.771795i \(-0.280641\pi\)
0.635871 + 0.771795i \(0.280641\pi\)
\(278\) 0 0
\(279\) −16.0000 −0.957895
\(280\) 0 0
\(281\) −22.0000 −1.31241 −0.656205 0.754583i \(-0.727839\pi\)
−0.656205 + 0.754583i \(0.727839\pi\)
\(282\) 0 0
\(283\) 13.2288 0.786368 0.393184 0.919460i \(-0.371374\pi\)
0.393184 + 0.919460i \(0.371374\pi\)
\(284\) 0 0
\(285\) 0 0
\(286\) 0 0
\(287\) − 20.0000i − 1.18056i
\(288\) 0 0
\(289\) 8.00000 0.470588
\(290\) 0 0
\(291\) 5.29150i 0.310193i
\(292\) 0 0
\(293\) −10.5830 −0.618266 −0.309133 0.951019i \(-0.600039\pi\)
−0.309133 + 0.951019i \(0.600039\pi\)
\(294\) 0 0
\(295\) 0 0
\(296\) 0 0
\(297\) 7.00000i 0.406181i
\(298\) 0 0
\(299\) 0 0
\(300\) 0 0
\(301\) 21.1660i 1.21999i
\(302\) 0 0
\(303\) 28.0000i 1.60856i
\(304\) 0 0
\(305\) 0 0
\(306\) 0 0
\(307\) −2.64575 −0.151001 −0.0755005 0.997146i \(-0.524055\pi\)
−0.0755005 + 0.997146i \(0.524055\pi\)
\(308\) 0 0
\(309\) − 21.1660i − 1.20409i
\(310\) 0 0
\(311\) 4.00000 0.226819 0.113410 0.993548i \(-0.463823\pi\)
0.113410 + 0.993548i \(0.463823\pi\)
\(312\) 0 0
\(313\) 6.00000i 0.339140i 0.985518 + 0.169570i \(0.0542379\pi\)
−0.985518 + 0.169570i \(0.945762\pi\)
\(314\) 0 0
\(315\) 0 0
\(316\) 0 0
\(317\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(318\) 0 0
\(319\) 0 0
\(320\) 0 0
\(321\) −7.00000 −0.390702
\(322\) 0 0
\(323\) 7.93725 0.441641
\(324\) 0 0
\(325\) 0 0
\(326\) 0 0
\(327\) 28.0000i 1.54840i
\(328\) 0 0
\(329\) 32.0000 1.76422
\(330\) 0 0
\(331\) 2.64575i 0.145424i 0.997353 + 0.0727118i \(0.0231653\pi\)
−0.997353 + 0.0727118i \(0.976835\pi\)
\(332\) 0 0
\(333\) 42.3320 2.31978
\(334\) 0 0
\(335\) 0 0
\(336\) 0 0
\(337\) 15.0000i 0.817102i 0.912735 + 0.408551i \(0.133966\pi\)
−0.912735 + 0.408551i \(0.866034\pi\)
\(338\) 0 0
\(339\) − 39.6863i − 2.15546i
\(340\) 0 0
\(341\) − 10.5830i − 0.573102i
\(342\) 0 0
\(343\) − 8.00000i − 0.431959i
\(344\) 0 0
\(345\) 0 0
\(346\) 0 0
\(347\) −2.64575 −0.142031 −0.0710157 0.997475i \(-0.522624\pi\)
−0.0710157 + 0.997475i \(0.522624\pi\)
\(348\) 0 0
\(349\) − 10.5830i − 0.566495i −0.959047 0.283248i \(-0.908588\pi\)
0.959047 0.283248i \(-0.0914118\pi\)
\(350\) 0 0
\(351\) 0 0
\(352\) 0 0
\(353\) − 18.0000i − 0.958043i −0.877803 0.479022i \(-0.840992\pi\)
0.877803 0.479022i \(-0.159008\pi\)
\(354\) 0 0
\(355\) 0 0
\(356\) 0 0
\(357\) −31.7490 −1.68034
\(358\) 0 0
\(359\) 36.0000 1.90001 0.950004 0.312239i \(-0.101079\pi\)
0.950004 + 0.312239i \(0.101079\pi\)
\(360\) 0 0
\(361\) 12.0000 0.631579
\(362\) 0 0
\(363\) 10.5830 0.555464
\(364\) 0 0
\(365\) 0 0
\(366\) 0 0
\(367\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(368\) 0 0
\(369\) −20.0000 −1.04116
\(370\) 0 0
\(371\) 42.3320i 2.19777i
\(372\) 0 0
\(373\) 10.5830 0.547967 0.273984 0.961734i \(-0.411659\pi\)
0.273984 + 0.961734i \(0.411659\pi\)
\(374\) 0 0
\(375\) 0 0
\(376\) 0 0
\(377\) 0 0
\(378\) 0 0
\(379\) 7.93725i 0.407709i 0.979001 + 0.203855i \(0.0653470\pi\)
−0.979001 + 0.203855i \(0.934653\pi\)
\(380\) 0 0
\(381\) 31.7490i 1.62655i
\(382\) 0 0
\(383\) 36.0000i 1.83951i 0.392488 + 0.919757i \(0.371614\pi\)
−0.392488 + 0.919757i \(0.628386\pi\)
\(384\) 0 0
\(385\) 0 0
\(386\) 0 0
\(387\) 21.1660 1.07593
\(388\) 0 0
\(389\) 10.5830i 0.536580i 0.963338 + 0.268290i \(0.0864585\pi\)
−0.963338 + 0.268290i \(0.913542\pi\)
\(390\) 0 0
\(391\) 12.0000 0.606866
\(392\) 0 0
\(393\) − 42.0000i − 2.11862i
\(394\) 0 0
\(395\) 0 0
\(396\) 0 0
\(397\) 21.1660 1.06229 0.531146 0.847280i \(-0.321762\pi\)
0.531146 + 0.847280i \(0.321762\pi\)
\(398\) 0 0
\(399\) 28.0000 1.40175
\(400\) 0 0
\(401\) 27.0000 1.34832 0.674158 0.738587i \(-0.264507\pi\)
0.674158 + 0.738587i \(0.264507\pi\)
\(402\) 0 0
\(403\) 0 0
\(404\) 0 0
\(405\) 0 0
\(406\) 0 0
\(407\) 28.0000i 1.38791i
\(408\) 0 0
\(409\) −3.00000 −0.148340 −0.0741702 0.997246i \(-0.523631\pi\)
−0.0741702 + 0.997246i \(0.523631\pi\)
\(410\) 0 0
\(411\) 50.2693i 2.47960i
\(412\) 0 0
\(413\) 21.1660 1.04151
\(414\) 0 0
\(415\) 0 0
\(416\) 0 0
\(417\) 49.0000i 2.39954i
\(418\) 0 0
\(419\) 18.5203i 0.904774i 0.891822 + 0.452387i \(0.149427\pi\)
−0.891822 + 0.452387i \(0.850573\pi\)
\(420\) 0 0
\(421\) − 21.1660i − 1.03157i −0.856719 0.515784i \(-0.827501\pi\)
0.856719 0.515784i \(-0.172499\pi\)
\(422\) 0 0
\(423\) − 32.0000i − 1.55589i
\(424\) 0 0
\(425\) 0 0
\(426\) 0 0
\(427\) 42.3320 2.04859
\(428\) 0 0
\(429\) 0 0
\(430\) 0 0
\(431\) −12.0000 −0.578020 −0.289010 0.957326i \(-0.593326\pi\)
−0.289010 + 0.957326i \(0.593326\pi\)
\(432\) 0 0
\(433\) 37.0000i 1.77811i 0.457804 + 0.889053i \(0.348636\pi\)
−0.457804 + 0.889053i \(0.651364\pi\)
\(434\) 0 0
\(435\) 0 0
\(436\) 0 0
\(437\) −10.5830 −0.506254
\(438\) 0 0
\(439\) 8.00000 0.381819 0.190910 0.981608i \(-0.438856\pi\)
0.190910 + 0.981608i \(0.438856\pi\)
\(440\) 0 0
\(441\) −36.0000 −1.71429
\(442\) 0 0
\(443\) −29.1033 −1.38274 −0.691369 0.722502i \(-0.742992\pi\)
−0.691369 + 0.722502i \(0.742992\pi\)
\(444\) 0 0
\(445\) 0 0
\(446\) 0 0
\(447\) 0 0
\(448\) 0 0
\(449\) −27.0000 −1.27421 −0.637104 0.770778i \(-0.719868\pi\)
−0.637104 + 0.770778i \(0.719868\pi\)
\(450\) 0 0
\(451\) − 13.2288i − 0.622918i
\(452\) 0 0
\(453\) −10.5830 −0.497233
\(454\) 0 0
\(455\) 0 0
\(456\) 0 0
\(457\) 27.0000i 1.26301i 0.775373 + 0.631503i \(0.217562\pi\)
−0.775373 + 0.631503i \(0.782438\pi\)
\(458\) 0 0
\(459\) 7.93725i 0.370479i
\(460\) 0 0
\(461\) 42.3320i 1.97160i 0.167927 + 0.985799i \(0.446293\pi\)
−0.167927 + 0.985799i \(0.553707\pi\)
\(462\) 0 0
\(463\) 8.00000i 0.371792i 0.982569 + 0.185896i \(0.0595187\pi\)
−0.982569 + 0.185896i \(0.940481\pi\)
\(464\) 0 0
\(465\) 0 0
\(466\) 0 0
\(467\) −26.4575 −1.22431 −0.612154 0.790739i \(-0.709697\pi\)
−0.612154 + 0.790739i \(0.709697\pi\)
\(468\) 0 0
\(469\) 31.7490i 1.46603i
\(470\) 0 0
\(471\) −28.0000 −1.29017
\(472\) 0 0
\(473\) 14.0000i 0.643721i
\(474\) 0 0
\(475\) 0 0
\(476\) 0 0
\(477\) 42.3320 1.93825
\(478\) 0 0
\(479\) 4.00000 0.182765 0.0913823 0.995816i \(-0.470871\pi\)
0.0913823 + 0.995816i \(0.470871\pi\)
\(480\) 0 0
\(481\) 0 0
\(482\) 0 0
\(483\) 42.3320 1.92617
\(484\) 0 0
\(485\) 0 0
\(486\) 0 0
\(487\) − 12.0000i − 0.543772i −0.962329 0.271886i \(-0.912353\pi\)
0.962329 0.271886i \(-0.0876473\pi\)
\(488\) 0 0
\(489\) 35.0000 1.58275
\(490\) 0 0
\(491\) 5.29150i 0.238802i 0.992846 + 0.119401i \(0.0380974\pi\)
−0.992846 + 0.119401i \(0.961903\pi\)
\(492\) 0 0
\(493\) 0 0
\(494\) 0 0
\(495\) 0 0
\(496\) 0 0
\(497\) − 32.0000i − 1.43540i
\(498\) 0 0
\(499\) − 26.4575i − 1.18440i −0.805791 0.592200i \(-0.798259\pi\)
0.805791 0.592200i \(-0.201741\pi\)
\(500\) 0 0
\(501\) 0 0
\(502\) 0 0
\(503\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(504\) 0 0
\(505\) 0 0
\(506\) 0 0
\(507\) −34.3948 −1.52753
\(508\) 0 0
\(509\) − 31.7490i − 1.40725i −0.710571 0.703625i \(-0.751563\pi\)
0.710571 0.703625i \(-0.248437\pi\)
\(510\) 0 0
\(511\) 28.0000 1.23865
\(512\) 0 0
\(513\) − 7.00000i − 0.309058i
\(514\) 0 0
\(515\) 0 0
\(516\) 0 0
\(517\) 21.1660 0.930880
\(518\) 0 0
\(519\) −56.0000 −2.45813
\(520\) 0 0
\(521\) 3.00000 0.131432 0.0657162 0.997838i \(-0.479067\pi\)
0.0657162 + 0.997838i \(0.479067\pi\)
\(522\) 0 0
\(523\) 2.64575 0.115691 0.0578453 0.998326i \(-0.481577\pi\)
0.0578453 + 0.998326i \(0.481577\pi\)
\(524\) 0 0
\(525\) 0 0
\(526\) 0 0
\(527\) − 12.0000i − 0.522728i
\(528\) 0 0
\(529\) 7.00000 0.304348
\(530\) 0 0
\(531\) − 21.1660i − 0.918527i
\(532\) 0 0
\(533\) 0 0
\(534\) 0 0
\(535\) 0 0
\(536\) 0 0
\(537\) − 63.0000i − 2.71865i
\(538\) 0 0
\(539\) − 23.8118i − 1.02565i
\(540\) 0 0
\(541\) 21.1660i 0.909998i 0.890492 + 0.454999i \(0.150360\pi\)
−0.890492 + 0.454999i \(0.849640\pi\)
\(542\) 0 0
\(543\) − 28.0000i − 1.20160i
\(544\) 0 0
\(545\) 0 0
\(546\) 0 0
\(547\) 18.5203 0.791869 0.395935 0.918279i \(-0.370421\pi\)
0.395935 + 0.918279i \(0.370421\pi\)
\(548\) 0 0
\(549\) − 42.3320i − 1.80669i
\(550\) 0 0
\(551\) 0 0
\(552\) 0 0
\(553\) 16.0000i 0.680389i
\(554\) 0 0
\(555\) 0 0
\(556\) 0 0
\(557\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(558\) 0 0
\(559\) 0 0
\(560\) 0 0
\(561\) −21.0000 −0.886621
\(562\) 0 0
\(563\) −15.8745 −0.669031 −0.334515 0.942390i \(-0.608573\pi\)
−0.334515 + 0.942390i \(0.608573\pi\)
\(564\) 0 0
\(565\) 0 0
\(566\) 0 0
\(567\) − 20.0000i − 0.839921i
\(568\) 0 0
\(569\) −11.0000 −0.461144 −0.230572 0.973055i \(-0.574060\pi\)
−0.230572 + 0.973055i \(0.574060\pi\)
\(570\) 0 0
\(571\) − 37.0405i − 1.55010i −0.631901 0.775049i \(-0.717725\pi\)
0.631901 0.775049i \(-0.282275\pi\)
\(572\) 0 0
\(573\) −10.5830 −0.442111
\(574\) 0 0
\(575\) 0 0
\(576\) 0 0
\(577\) 7.00000i 0.291414i 0.989328 + 0.145707i \(0.0465456\pi\)
−0.989328 + 0.145707i \(0.953454\pi\)
\(578\) 0 0
\(579\) 13.2288i 0.549768i
\(580\) 0 0
\(581\) − 31.7490i − 1.31717i
\(582\) 0 0
\(583\) 28.0000i 1.15964i
\(584\) 0 0
\(585\) 0 0
\(586\) 0 0
\(587\) 7.93725 0.327606 0.163803 0.986493i \(-0.447624\pi\)
0.163803 + 0.986493i \(0.447624\pi\)
\(588\) 0 0
\(589\) 10.5830i 0.436065i
\(590\) 0 0
\(591\) −28.0000 −1.15177
\(592\) 0 0
\(593\) 41.0000i 1.68367i 0.539736 + 0.841834i \(0.318524\pi\)
−0.539736 + 0.841834i \(0.681476\pi\)
\(594\) 0 0
\(595\) 0 0
\(596\) 0 0
\(597\) −63.4980 −2.59880
\(598\) 0 0
\(599\) −12.0000 −0.490307 −0.245153 0.969484i \(-0.578838\pi\)
−0.245153 + 0.969484i \(0.578838\pi\)
\(600\) 0 0
\(601\) 7.00000 0.285536 0.142768 0.989756i \(-0.454400\pi\)
0.142768 + 0.989756i \(0.454400\pi\)
\(602\) 0 0
\(603\) 31.7490 1.29292
\(604\) 0 0
\(605\) 0 0
\(606\) 0 0
\(607\) − 8.00000i − 0.324710i −0.986732 0.162355i \(-0.948091\pi\)
0.986732 0.162355i \(-0.0519090\pi\)
\(608\) 0 0
\(609\) 0 0
\(610\) 0 0
\(611\) 0 0
\(612\) 0 0
\(613\) −10.5830 −0.427444 −0.213722 0.976895i \(-0.568559\pi\)
−0.213722 + 0.976895i \(0.568559\pi\)
\(614\) 0 0
\(615\) 0 0
\(616\) 0 0
\(617\) − 6.00000i − 0.241551i −0.992680 0.120775i \(-0.961462\pi\)
0.992680 0.120775i \(-0.0385381\pi\)
\(618\) 0 0
\(619\) − 5.29150i − 0.212683i −0.994330 0.106342i \(-0.966086\pi\)
0.994330 0.106342i \(-0.0339137\pi\)
\(620\) 0 0
\(621\) − 10.5830i − 0.424681i
\(622\) 0 0
\(623\) 4.00000i 0.160257i
\(624\) 0 0
\(625\) 0 0
\(626\) 0 0
\(627\) 18.5203 0.739628
\(628\) 0 0
\(629\) 31.7490i 1.26592i
\(630\) 0 0
\(631\) −36.0000 −1.43314 −0.716569 0.697517i \(-0.754288\pi\)
−0.716569 + 0.697517i \(0.754288\pi\)
\(632\) 0 0
\(633\) − 21.0000i − 0.834675i
\(634\) 0 0
\(635\) 0 0
\(636\) 0 0
\(637\) 0 0
\(638\) 0 0
\(639\) −32.0000 −1.26590
\(640\) 0 0
\(641\) 2.00000 0.0789953 0.0394976 0.999220i \(-0.487424\pi\)
0.0394976 + 0.999220i \(0.487424\pi\)
\(642\) 0 0
\(643\) −15.8745 −0.626029 −0.313015 0.949748i \(-0.601339\pi\)
−0.313015 + 0.949748i \(0.601339\pi\)
\(644\) 0 0
\(645\) 0 0
\(646\) 0 0
\(647\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(648\) 0 0
\(649\) 14.0000 0.549548
\(650\) 0 0
\(651\) − 42.3320i − 1.65912i
\(652\) 0 0
\(653\) −31.7490 −1.24243 −0.621217 0.783638i \(-0.713362\pi\)
−0.621217 + 0.783638i \(0.713362\pi\)
\(654\) 0 0
\(655\) 0 0
\(656\) 0 0
\(657\) − 28.0000i − 1.09238i
\(658\) 0 0
\(659\) 7.93725i 0.309192i 0.987978 + 0.154596i \(0.0494075\pi\)
−0.987978 + 0.154596i \(0.950592\pi\)
\(660\) 0 0
\(661\) − 21.1660i − 0.823262i −0.911351 0.411631i \(-0.864959\pi\)
0.911351 0.411631i \(-0.135041\pi\)
\(662\) 0 0
\(663\) 0 0
\(664\) 0 0
\(665\) 0 0
\(666\) 0 0
\(667\) 0 0
\(668\) 0 0
\(669\) 42.3320i 1.63665i
\(670\) 0 0
\(671\) 28.0000 1.08093
\(672\) 0 0
\(673\) − 34.0000i − 1.31060i −0.755367 0.655302i \(-0.772541\pi\)
0.755367 0.655302i \(-0.227459\pi\)
\(674\) 0 0
\(675\) 0 0
\(676\) 0 0
\(677\) 42.3320 1.62695 0.813476 0.581599i \(-0.197573\pi\)
0.813476 + 0.581599i \(0.197573\pi\)
\(678\) 0 0
\(679\) −8.00000 −0.307012
\(680\) 0 0
\(681\) 42.0000 1.60944
\(682\) 0 0
\(683\) 23.8118 0.911132 0.455566 0.890202i \(-0.349437\pi\)
0.455566 + 0.890202i \(0.349437\pi\)
\(684\) 0 0
\(685\) 0 0
\(686\) 0 0
\(687\) 56.0000i 2.13653i
\(688\) 0 0
\(689\) 0 0
\(690\) 0 0
\(691\) 23.8118i 0.905842i 0.891551 + 0.452921i \(0.149618\pi\)
−0.891551 + 0.452921i \(0.850382\pi\)
\(692\) 0 0
\(693\) −42.3320 −1.60806
\(694\) 0 0
\(695\) 0 0
\(696\) 0 0
\(697\) − 15.0000i − 0.568166i
\(698\) 0 0
\(699\) 15.8745i 0.600429i
\(700\) 0 0
\(701\) − 21.1660i − 0.799429i −0.916640 0.399715i \(-0.869109\pi\)
0.916640 0.399715i \(-0.130891\pi\)
\(702\) 0 0
\(703\) − 28.0000i − 1.05604i
\(704\) 0 0
\(705\) 0 0
\(706\) 0 0
\(707\) −42.3320 −1.59206
\(708\) 0 0
\(709\) 21.1660i 0.794906i 0.917622 + 0.397453i \(0.130106\pi\)
−0.917622 + 0.397453i \(0.869894\pi\)
\(710\) 0 0
\(711\) 16.0000 0.600047
\(712\) 0 0
\(713\) 16.0000i 0.599205i
\(714\) 0 0
\(715\) 0 0
\(716\) 0 0
\(717\) −21.1660 −0.790459
\(718\) 0 0
\(719\) 36.0000 1.34257 0.671287 0.741198i \(-0.265742\pi\)
0.671287 + 0.741198i \(0.265742\pi\)
\(720\) 0 0
\(721\) 32.0000 1.19174
\(722\) 0 0
\(723\) −55.5608 −2.06633
\(724\) 0 0
\(725\) 0 0
\(726\) 0 0
\(727\) − 16.0000i − 0.593407i −0.954970 0.296704i \(-0.904113\pi\)
0.954970 0.296704i \(-0.0958873\pi\)
\(728\) 0 0
\(729\) −41.0000 −1.51852
\(730\) 0 0
\(731\) 15.8745i 0.587140i
\(732\) 0 0
\(733\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(734\) 0 0
\(735\) 0 0
\(736\) 0 0
\(737\) 21.0000i 0.773545i
\(738\) 0 0
\(739\) 15.8745i 0.583953i 0.956425 + 0.291977i \(0.0943129\pi\)
−0.956425 + 0.291977i \(0.905687\pi\)
\(740\) 0 0
\(741\) 0 0
\(742\) 0 0
\(743\) − 36.0000i − 1.32071i −0.750953 0.660356i \(-0.770405\pi\)
0.750953 0.660356i \(-0.229595\pi\)
\(744\) 0 0
\(745\) 0 0
\(746\) 0 0
\(747\) −31.7490 −1.16164
\(748\) 0 0
\(749\) − 10.5830i − 0.386695i
\(750\) 0 0
\(751\) −8.00000 −0.291924 −0.145962 0.989290i \(-0.546628\pi\)
−0.145962 + 0.989290i \(0.546628\pi\)
\(752\) 0 0
\(753\) − 21.0000i − 0.765283i
\(754\) 0 0
\(755\) 0 0
\(756\) 0 0
\(757\) −21.1660 −0.769292 −0.384646 0.923064i \(-0.625676\pi\)
−0.384646 + 0.923064i \(0.625676\pi\)
\(758\) 0 0
\(759\) 28.0000 1.01634
\(760\) 0 0
\(761\) −29.0000 −1.05125 −0.525625 0.850717i \(-0.676168\pi\)
−0.525625 + 0.850717i \(0.676168\pi\)
\(762\) 0 0
\(763\) −42.3320 −1.53252
\(764\) 0 0
\(765\) 0 0
\(766\) 0 0
\(767\) 0 0
\(768\) 0 0
\(769\) 21.0000 0.757279 0.378640 0.925544i \(-0.376392\pi\)
0.378640 + 0.925544i \(0.376392\pi\)
\(770\) 0 0
\(771\) − 37.0405i − 1.33398i
\(772\) 0 0
\(773\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(774\) 0 0
\(775\) 0 0
\(776\) 0 0
\(777\) 112.000i 4.01798i
\(778\) 0 0
\(779\) 13.2288i 0.473969i
\(780\) 0 0
\(781\) − 21.1660i − 0.757379i
\(782\) 0 0
\(783\) 0 0
\(784\) 0 0
\(785\) 0 0
\(786\) 0 0
\(787\) −26.4575 −0.943108 −0.471554 0.881837i \(-0.656307\pi\)
−0.471554 + 0.881837i \(0.656307\pi\)
\(788\) 0 0
\(789\) − 31.7490i − 1.13029i
\(790\) 0 0
\(791\) 60.0000 2.13335
\(792\) 0 0
\(793\) 0 0
\(794\) 0 0
\(795\) 0 0
\(796\) 0 0
\(797\) −31.7490 −1.12461 −0.562304 0.826931i \(-0.690085\pi\)
−0.562304 + 0.826931i \(0.690085\pi\)
\(798\) 0 0
\(799\) 24.0000 0.849059
\(800\) 0 0
\(801\) 4.00000 0.141333
\(802\) 0 0
\(803\) 18.5203 0.653566
\(804\) 0 0
\(805\) 0 0
\(806\) 0 0
\(807\) − 56.0000i − 1.97129i
\(808\) 0 0
\(809\) −10.0000 −0.351581 −0.175791 0.984428i \(-0.556248\pi\)
−0.175791 + 0.984428i \(0.556248\pi\)
\(810\) 0 0
\(811\) 5.29150i 0.185810i 0.995675 + 0.0929049i \(0.0296153\pi\)
−0.995675 + 0.0929049i \(0.970385\pi\)
\(812\) 0 0
\(813\) 52.9150 1.85581
\(814\) 0 0
\(815\) 0 0
\(816\) 0 0
\(817\) − 14.0000i − 0.489798i
\(818\) 0 0
\(819\) 0 0
\(820\) 0 0
\(821\) 10.5830i 0.369349i 0.982800 + 0.184675i \(0.0591232\pi\)
−0.982800 + 0.184675i \(0.940877\pi\)
\(822\) 0 0
\(823\) 24.0000i 0.836587i 0.908312 + 0.418294i \(0.137372\pi\)
−0.908312 + 0.418294i \(0.862628\pi\)
\(824\) 0 0
\(825\) 0 0
\(826\) 0 0
\(827\) −13.2288 −0.460009 −0.230004 0.973190i \(-0.573874\pi\)
−0.230004 + 0.973190i \(0.573874\pi\)
\(828\) 0 0
\(829\) − 21.1660i − 0.735126i −0.929999 0.367563i \(-0.880192\pi\)
0.929999 0.367563i \(-0.119808\pi\)
\(830\) 0 0
\(831\) 56.0000 1.94262
\(832\) 0 0
\(833\) − 27.0000i − 0.935495i
\(834\) 0 0
\(835\) 0 0
\(836\) 0 0
\(837\) −10.5830 −0.365802
\(838\) 0 0
\(839\) 40.0000 1.38095 0.690477 0.723355i \(-0.257401\pi\)
0.690477 + 0.723355i \(0.257401\pi\)
\(840\) 0 0
\(841\) 29.0000 1.00000
\(842\) 0 0
\(843\) −58.2065 −2.00474
\(844\) 0 0
\(845\) 0 0
\(846\) 0 0
\(847\) 16.0000i 0.549767i
\(848\) 0 0
\(849\) 35.0000 1.20120
\(850\) 0 0
\(851\) − 42.3320i − 1.45112i
\(852\) 0 0
\(853\) 52.9150 1.81178 0.905888 0.423517i \(-0.139205\pi\)
0.905888 + 0.423517i \(0.139205\pi\)
\(854\) 0 0
\(855\) 0 0
\(856\) 0 0
\(857\) − 21.0000i − 0.717346i −0.933463 0.358673i \(-0.883229\pi\)
0.933463 0.358673i \(-0.116771\pi\)
\(858\) 0 0
\(859\) − 2.64575i − 0.0902719i −0.998981 0.0451359i \(-0.985628\pi\)
0.998981 0.0451359i \(-0.0143721\pi\)
\(860\) 0 0
\(861\) − 52.9150i − 1.80334i
\(862\) 0 0
\(863\) − 24.0000i − 0.816970i −0.912765 0.408485i \(-0.866057\pi\)
0.912765 0.408485i \(-0.133943\pi\)
\(864\) 0 0
\(865\) 0 0
\(866\) 0 0
\(867\) 21.1660 0.718835
\(868\) 0 0
\(869\) 10.5830i 0.359004i
\(870\) 0 0
\(871\) 0 0
\(872\) 0 0
\(873\) 8.00000i 0.270759i
\(874\) 0 0
\(875\) 0 0
\(876\) 0 0
\(877\) −42.3320 −1.42945 −0.714725 0.699405i \(-0.753448\pi\)
−0.714725 + 0.699405i \(0.753448\pi\)
\(878\) 0 0
\(879\) −28.0000 −0.944417
\(880\) 0 0
\(881\) −30.0000 −1.01073 −0.505363 0.862907i \(-0.668641\pi\)
−0.505363 + 0.862907i \(0.668641\pi\)
\(882\) 0 0
\(883\) 44.9778 1.51362 0.756811 0.653633i \(-0.226756\pi\)
0.756811 + 0.653633i \(0.226756\pi\)
\(884\) 0 0
\(885\) 0 0
\(886\) 0 0
\(887\) 56.0000i 1.88030i 0.340766 + 0.940148i \(0.389313\pi\)
−0.340766 + 0.940148i \(0.610687\pi\)
\(888\) 0 0
\(889\) −48.0000 −1.60987
\(890\) 0 0
\(891\) − 13.2288i − 0.443180i
\(892\) 0 0
\(893\) −21.1660 −0.708294
\(894\) 0 0
\(895\) 0 0
\(896\) 0 0
\(897\) 0 0
\(898\) 0 0
\(899\) 0 0
\(900\) 0 0
\(901\) 31.7490i 1.05771i
\(902\) 0 0
\(903\) 56.0000i 1.86356i
\(904\) 0 0
\(905\) 0 0
\(906\) 0 0
\(907\) −5.29150 −0.175701 −0.0878507 0.996134i \(-0.528000\pi\)
−0.0878507 + 0.996134i \(0.528000\pi\)
\(908\) 0 0
\(909\) 42.3320i 1.40406i
\(910\) 0 0
\(911\) −48.0000 −1.59031 −0.795155 0.606406i \(-0.792611\pi\)
−0.795155 + 0.606406i \(0.792611\pi\)
\(912\) 0 0
\(913\) − 21.0000i − 0.694999i
\(914\) 0 0
\(915\) 0 0
\(916\) 0 0
\(917\) 63.4980 2.09689
\(918\) 0 0
\(919\) 4.00000 0.131948 0.0659739 0.997821i \(-0.478985\pi\)
0.0659739 + 0.997821i \(0.478985\pi\)
\(920\) 0 0
\(921\) −7.00000 −0.230658
\(922\) 0 0
\(923\) 0 0
\(924\) 0 0
\(925\) 0 0
\(926\) 0 0
\(927\) − 32.0000i − 1.05102i
\(928\) 0 0
\(929\) 14.0000 0.459325 0.229663 0.973270i \(-0.426238\pi\)
0.229663 + 0.973270i \(0.426238\pi\)
\(930\) 0 0
\(931\) 23.8118i 0.780399i
\(932\) 0 0
\(933\) 10.5830 0.346472
\(934\) 0 0
\(935\) 0 0
\(936\) 0 0
\(937\) 7.00000i 0.228680i 0.993442 + 0.114340i \(0.0364753\pi\)
−0.993442 + 0.114340i \(0.963525\pi\)
\(938\) 0 0
\(939\) 15.8745i 0.518045i
\(940\) 0 0
\(941\) − 42.3320i − 1.37998i −0.723817 0.689992i \(-0.757614\pi\)
0.723817 0.689992i \(-0.242386\pi\)
\(942\) 0 0
\(943\) 20.0000i 0.651290i
\(944\) 0 0
\(945\) 0 0
\(946\) 0 0
\(947\) 15.8745 0.515852 0.257926 0.966165i \(-0.416961\pi\)
0.257926 + 0.966165i \(0.416961\pi\)
\(948\) 0 0
\(949\) 0 0
\(950\) 0 0
\(951\) 0 0
\(952\) 0 0
\(953\) 5.00000i 0.161966i 0.996715 + 0.0809829i \(0.0258059\pi\)
−0.996715 + 0.0809829i \(0.974194\pi\)
\(954\) 0 0
\(955\) 0 0
\(956\) 0 0
\(957\) 0 0
\(958\) 0 0
\(959\) −76.0000 −2.45417
\(960\) 0 0
\(961\) −15.0000 −0.483871
\(962\) 0 0
\(963\) −10.5830 −0.341033
\(964\) 0 0
\(965\) 0 0
\(966\) 0 0
\(967\) 8.00000i 0.257263i 0.991692 + 0.128631i \(0.0410584\pi\)
−0.991692 + 0.128631i \(0.958942\pi\)
\(968\) 0 0
\(969\) 21.0000 0.674617
\(970\) 0 0
\(971\) 23.8118i 0.764156i 0.924130 + 0.382078i \(0.124791\pi\)
−0.924130 + 0.382078i \(0.875209\pi\)
\(972\) 0 0
\(973\) −74.0810 −2.37493
\(974\) 0 0
\(975\) 0 0
\(976\) 0 0
\(977\) − 37.0000i − 1.18373i −0.806035 0.591867i \(-0.798391\pi\)
0.806035 0.591867i \(-0.201609\pi\)
\(978\) 0 0
\(979\) 2.64575i 0.0845586i
\(980\) 0 0
\(981\) 42.3320i 1.35156i
\(982\) 0 0
\(983\) 28.0000i 0.893061i 0.894768 + 0.446531i \(0.147341\pi\)
−0.894768 + 0.446531i \(0.852659\pi\)
\(984\) 0 0
\(985\) 0 0
\(986\) 0 0
\(987\) 84.6640 2.69489
\(988\) 0 0
\(989\) − 21.1660i − 0.673040i
\(990\) 0 0
\(991\) −44.0000 −1.39771 −0.698853 0.715265i \(-0.746306\pi\)
−0.698853 + 0.715265i \(0.746306\pi\)
\(992\) 0 0
\(993\) 7.00000i 0.222138i
\(994\) 0 0
\(995\) 0 0
\(996\) 0 0
\(997\) −42.3320 −1.34067 −0.670334 0.742059i \(-0.733849\pi\)
−0.670334 + 0.742059i \(0.733849\pi\)
\(998\) 0 0
\(999\) 28.0000 0.885881
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 800.2.f.d.49.4 4
3.2 odd 2 7200.2.d.m.2449.3 4
4.3 odd 2 200.2.f.d.149.3 4
5.2 odd 4 800.2.d.a.401.1 2
5.3 odd 4 800.2.d.d.401.2 2
5.4 even 2 inner 800.2.f.d.49.1 4
8.3 odd 2 200.2.f.d.149.1 4
8.5 even 2 inner 800.2.f.d.49.2 4
12.11 even 2 1800.2.d.m.1549.2 4
15.2 even 4 7200.2.k.b.3601.1 2
15.8 even 4 7200.2.k.i.3601.1 2
15.14 odd 2 7200.2.d.m.2449.1 4
20.3 even 4 200.2.d.b.101.1 2
20.7 even 4 200.2.d.c.101.2 yes 2
20.19 odd 2 200.2.f.d.149.2 4
24.5 odd 2 7200.2.d.m.2449.4 4
24.11 even 2 1800.2.d.m.1549.4 4
40.3 even 4 200.2.d.b.101.2 yes 2
40.13 odd 4 800.2.d.d.401.1 2
40.19 odd 2 200.2.f.d.149.4 4
40.27 even 4 200.2.d.c.101.1 yes 2
40.29 even 2 inner 800.2.f.d.49.3 4
40.37 odd 4 800.2.d.a.401.2 2
60.23 odd 4 1800.2.k.f.901.2 2
60.47 odd 4 1800.2.k.d.901.1 2
60.59 even 2 1800.2.d.m.1549.3 4
80.3 even 4 6400.2.a.cc.1.2 2
80.13 odd 4 6400.2.a.bh.1.1 2
80.27 even 4 6400.2.a.bg.1.2 2
80.37 odd 4 6400.2.a.cb.1.1 2
80.43 even 4 6400.2.a.cc.1.1 2
80.53 odd 4 6400.2.a.bh.1.2 2
80.67 even 4 6400.2.a.bg.1.1 2
80.77 odd 4 6400.2.a.cb.1.2 2
120.29 odd 2 7200.2.d.m.2449.2 4
120.53 even 4 7200.2.k.i.3601.2 2
120.59 even 2 1800.2.d.m.1549.1 4
120.77 even 4 7200.2.k.b.3601.2 2
120.83 odd 4 1800.2.k.f.901.1 2
120.107 odd 4 1800.2.k.d.901.2 2
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
200.2.d.b.101.1 2 20.3 even 4
200.2.d.b.101.2 yes 2 40.3 even 4
200.2.d.c.101.1 yes 2 40.27 even 4
200.2.d.c.101.2 yes 2 20.7 even 4
200.2.f.d.149.1 4 8.3 odd 2
200.2.f.d.149.2 4 20.19 odd 2
200.2.f.d.149.3 4 4.3 odd 2
200.2.f.d.149.4 4 40.19 odd 2
800.2.d.a.401.1 2 5.2 odd 4
800.2.d.a.401.2 2 40.37 odd 4
800.2.d.d.401.1 2 40.13 odd 4
800.2.d.d.401.2 2 5.3 odd 4
800.2.f.d.49.1 4 5.4 even 2 inner
800.2.f.d.49.2 4 8.5 even 2 inner
800.2.f.d.49.3 4 40.29 even 2 inner
800.2.f.d.49.4 4 1.1 even 1 trivial
1800.2.d.m.1549.1 4 120.59 even 2
1800.2.d.m.1549.2 4 12.11 even 2
1800.2.d.m.1549.3 4 60.59 even 2
1800.2.d.m.1549.4 4 24.11 even 2
1800.2.k.d.901.1 2 60.47 odd 4
1800.2.k.d.901.2 2 120.107 odd 4
1800.2.k.f.901.1 2 120.83 odd 4
1800.2.k.f.901.2 2 60.23 odd 4
6400.2.a.bg.1.1 2 80.67 even 4
6400.2.a.bg.1.2 2 80.27 even 4
6400.2.a.bh.1.1 2 80.13 odd 4
6400.2.a.bh.1.2 2 80.53 odd 4
6400.2.a.cb.1.1 2 80.37 odd 4
6400.2.a.cb.1.2 2 80.77 odd 4
6400.2.a.cc.1.1 2 80.43 even 4
6400.2.a.cc.1.2 2 80.3 even 4
7200.2.d.m.2449.1 4 15.14 odd 2
7200.2.d.m.2449.2 4 120.29 odd 2
7200.2.d.m.2449.3 4 3.2 odd 2
7200.2.d.m.2449.4 4 24.5 odd 2
7200.2.k.b.3601.1 2 15.2 even 4
7200.2.k.b.3601.2 2 120.77 even 4
7200.2.k.i.3601.1 2 15.8 even 4
7200.2.k.i.3601.2 2 120.53 even 4