Properties

Label 7200.2.k.d.3601.2
Level $7200$
Weight $2$
Character 7200.3601
Analytic conductor $57.492$
Analytic rank $0$
Dimension $2$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [7200,2,Mod(3601,7200)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(7200, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 1, 0, 0]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("7200.3601");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 7200 = 2^{5} \cdot 3^{2} \cdot 5^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 7200.k (of order \(2\), degree \(1\), not minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(57.4922894553\)
Analytic rank: \(0\)
Dimension: \(2\)
Coefficient field: \(\Q(i)\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{2} + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{29}]\)
Coefficient ring index: \( 2 \)
Twist minimal: no (minimal twist has level 24)
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

Embedding invariants

Embedding label 3601.2
Root \(1.00000i\) of defining polynomial
Character \(\chi\) \(=\) 7200.3601
Dual form 7200.2.k.d.3601.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-2.00000 q^{7} +O(q^{10})\) \(q-2.00000 q^{7} +4.00000i q^{13} -2.00000 q^{17} -4.00000i q^{19} -4.00000 q^{23} +6.00000i q^{29} -2.00000 q^{31} -8.00000i q^{37} -2.00000 q^{41} -4.00000i q^{43} +12.0000 q^{47} -3.00000 q^{49} +6.00000i q^{53} +4.00000i q^{59} -12.0000i q^{67} +12.0000 q^{71} +6.00000 q^{73} -10.0000 q^{79} -16.0000i q^{83} +10.0000 q^{89} -8.00000i q^{91} +2.00000 q^{97} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 2 q - 4 q^{7}+O(q^{10}) \) Copy content Toggle raw display \( 2 q - 4 q^{7} - 4 q^{17} - 8 q^{23} - 4 q^{31} - 4 q^{41} + 24 q^{47} - 6 q^{49} + 24 q^{71} + 12 q^{73} - 20 q^{79} + 20 q^{89} + 4 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/7200\mathbb{Z}\right)^\times\).

\(n\) \(577\) \(901\) \(6401\) \(6751\)
\(\chi(n)\) \(1\) \(-1\) \(1\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 0 0
\(4\) 0 0
\(5\) 0 0
\(6\) 0 0
\(7\) −2.00000 −0.755929 −0.377964 0.925820i \(-0.623376\pi\)
−0.377964 + 0.925820i \(0.623376\pi\)
\(8\) 0 0
\(9\) 0 0
\(10\) 0 0
\(11\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(12\) 0 0
\(13\) 4.00000i 1.10940i 0.832050 + 0.554700i \(0.187167\pi\)
−0.832050 + 0.554700i \(0.812833\pi\)
\(14\) 0 0
\(15\) 0 0
\(16\) 0 0
\(17\) −2.00000 −0.485071 −0.242536 0.970143i \(-0.577979\pi\)
−0.242536 + 0.970143i \(0.577979\pi\)
\(18\) 0 0
\(19\) − 4.00000i − 0.917663i −0.888523 0.458831i \(-0.848268\pi\)
0.888523 0.458831i \(-0.151732\pi\)
\(20\) 0 0
\(21\) 0 0
\(22\) 0 0
\(23\) −4.00000 −0.834058 −0.417029 0.908893i \(-0.636929\pi\)
−0.417029 + 0.908893i \(0.636929\pi\)
\(24\) 0 0
\(25\) 0 0
\(26\) 0 0
\(27\) 0 0
\(28\) 0 0
\(29\) 6.00000i 1.11417i 0.830455 + 0.557086i \(0.188081\pi\)
−0.830455 + 0.557086i \(0.811919\pi\)
\(30\) 0 0
\(31\) −2.00000 −0.359211 −0.179605 0.983739i \(-0.557482\pi\)
−0.179605 + 0.983739i \(0.557482\pi\)
\(32\) 0 0
\(33\) 0 0
\(34\) 0 0
\(35\) 0 0
\(36\) 0 0
\(37\) − 8.00000i − 1.31519i −0.753371 0.657596i \(-0.771573\pi\)
0.753371 0.657596i \(-0.228427\pi\)
\(38\) 0 0
\(39\) 0 0
\(40\) 0 0
\(41\) −2.00000 −0.312348 −0.156174 0.987730i \(-0.549916\pi\)
−0.156174 + 0.987730i \(0.549916\pi\)
\(42\) 0 0
\(43\) − 4.00000i − 0.609994i −0.952353 0.304997i \(-0.901344\pi\)
0.952353 0.304997i \(-0.0986555\pi\)
\(44\) 0 0
\(45\) 0 0
\(46\) 0 0
\(47\) 12.0000 1.75038 0.875190 0.483779i \(-0.160736\pi\)
0.875190 + 0.483779i \(0.160736\pi\)
\(48\) 0 0
\(49\) −3.00000 −0.428571
\(50\) 0 0
\(51\) 0 0
\(52\) 0 0
\(53\) 6.00000i 0.824163i 0.911147 + 0.412082i \(0.135198\pi\)
−0.911147 + 0.412082i \(0.864802\pi\)
\(54\) 0 0
\(55\) 0 0
\(56\) 0 0
\(57\) 0 0
\(58\) 0 0
\(59\) 4.00000i 0.520756i 0.965507 + 0.260378i \(0.0838471\pi\)
−0.965507 + 0.260378i \(0.916153\pi\)
\(60\) 0 0
\(61\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(62\) 0 0
\(63\) 0 0
\(64\) 0 0
\(65\) 0 0
\(66\) 0 0
\(67\) − 12.0000i − 1.46603i −0.680211 0.733017i \(-0.738112\pi\)
0.680211 0.733017i \(-0.261888\pi\)
\(68\) 0 0
\(69\) 0 0
\(70\) 0 0
\(71\) 12.0000 1.42414 0.712069 0.702109i \(-0.247758\pi\)
0.712069 + 0.702109i \(0.247758\pi\)
\(72\) 0 0
\(73\) 6.00000 0.702247 0.351123 0.936329i \(-0.385800\pi\)
0.351123 + 0.936329i \(0.385800\pi\)
\(74\) 0 0
\(75\) 0 0
\(76\) 0 0
\(77\) 0 0
\(78\) 0 0
\(79\) −10.0000 −1.12509 −0.562544 0.826767i \(-0.690177\pi\)
−0.562544 + 0.826767i \(0.690177\pi\)
\(80\) 0 0
\(81\) 0 0
\(82\) 0 0
\(83\) − 16.0000i − 1.75623i −0.478451 0.878114i \(-0.658802\pi\)
0.478451 0.878114i \(-0.341198\pi\)
\(84\) 0 0
\(85\) 0 0
\(86\) 0 0
\(87\) 0 0
\(88\) 0 0
\(89\) 10.0000 1.06000 0.529999 0.847998i \(-0.322192\pi\)
0.529999 + 0.847998i \(0.322192\pi\)
\(90\) 0 0
\(91\) − 8.00000i − 0.838628i
\(92\) 0 0
\(93\) 0 0
\(94\) 0 0
\(95\) 0 0
\(96\) 0 0
\(97\) 2.00000 0.203069 0.101535 0.994832i \(-0.467625\pi\)
0.101535 + 0.994832i \(0.467625\pi\)
\(98\) 0 0
\(99\) 0 0
\(100\) 0 0
\(101\) 10.0000i 0.995037i 0.867453 + 0.497519i \(0.165755\pi\)
−0.867453 + 0.497519i \(0.834245\pi\)
\(102\) 0 0
\(103\) −6.00000 −0.591198 −0.295599 0.955312i \(-0.595519\pi\)
−0.295599 + 0.955312i \(0.595519\pi\)
\(104\) 0 0
\(105\) 0 0
\(106\) 0 0
\(107\) 12.0000i 1.16008i 0.814587 + 0.580042i \(0.196964\pi\)
−0.814587 + 0.580042i \(0.803036\pi\)
\(108\) 0 0
\(109\) 4.00000i 0.383131i 0.981480 + 0.191565i \(0.0613564\pi\)
−0.981480 + 0.191565i \(0.938644\pi\)
\(110\) 0 0
\(111\) 0 0
\(112\) 0 0
\(113\) −6.00000 −0.564433 −0.282216 0.959351i \(-0.591070\pi\)
−0.282216 + 0.959351i \(0.591070\pi\)
\(114\) 0 0
\(115\) 0 0
\(116\) 0 0
\(117\) 0 0
\(118\) 0 0
\(119\) 4.00000 0.366679
\(120\) 0 0
\(121\) 11.0000 1.00000
\(122\) 0 0
\(123\) 0 0
\(124\) 0 0
\(125\) 0 0
\(126\) 0 0
\(127\) −2.00000 −0.177471 −0.0887357 0.996055i \(-0.528283\pi\)
−0.0887357 + 0.996055i \(0.528283\pi\)
\(128\) 0 0
\(129\) 0 0
\(130\) 0 0
\(131\) − 20.0000i − 1.74741i −0.486458 0.873704i \(-0.661711\pi\)
0.486458 0.873704i \(-0.338289\pi\)
\(132\) 0 0
\(133\) 8.00000i 0.693688i
\(134\) 0 0
\(135\) 0 0
\(136\) 0 0
\(137\) 18.0000 1.53784 0.768922 0.639343i \(-0.220793\pi\)
0.768922 + 0.639343i \(0.220793\pi\)
\(138\) 0 0
\(139\) − 4.00000i − 0.339276i −0.985506 0.169638i \(-0.945740\pi\)
0.985506 0.169638i \(-0.0542598\pi\)
\(140\) 0 0
\(141\) 0 0
\(142\) 0 0
\(143\) 0 0
\(144\) 0 0
\(145\) 0 0
\(146\) 0 0
\(147\) 0 0
\(148\) 0 0
\(149\) 6.00000i 0.491539i 0.969328 + 0.245770i \(0.0790407\pi\)
−0.969328 + 0.245770i \(0.920959\pi\)
\(150\) 0 0
\(151\) 18.0000 1.46482 0.732410 0.680864i \(-0.238396\pi\)
0.732410 + 0.680864i \(0.238396\pi\)
\(152\) 0 0
\(153\) 0 0
\(154\) 0 0
\(155\) 0 0
\(156\) 0 0
\(157\) − 8.00000i − 0.638470i −0.947676 0.319235i \(-0.896574\pi\)
0.947676 0.319235i \(-0.103426\pi\)
\(158\) 0 0
\(159\) 0 0
\(160\) 0 0
\(161\) 8.00000 0.630488
\(162\) 0 0
\(163\) − 4.00000i − 0.313304i −0.987654 0.156652i \(-0.949930\pi\)
0.987654 0.156652i \(-0.0500701\pi\)
\(164\) 0 0
\(165\) 0 0
\(166\) 0 0
\(167\) −8.00000 −0.619059 −0.309529 0.950890i \(-0.600171\pi\)
−0.309529 + 0.950890i \(0.600171\pi\)
\(168\) 0 0
\(169\) −3.00000 −0.230769
\(170\) 0 0
\(171\) 0 0
\(172\) 0 0
\(173\) 6.00000i 0.456172i 0.973641 + 0.228086i \(0.0732467\pi\)
−0.973641 + 0.228086i \(0.926753\pi\)
\(174\) 0 0
\(175\) 0 0
\(176\) 0 0
\(177\) 0 0
\(178\) 0 0
\(179\) 4.00000i 0.298974i 0.988764 + 0.149487i \(0.0477622\pi\)
−0.988764 + 0.149487i \(0.952238\pi\)
\(180\) 0 0
\(181\) − 20.0000i − 1.48659i −0.668965 0.743294i \(-0.733262\pi\)
0.668965 0.743294i \(-0.266738\pi\)
\(182\) 0 0
\(183\) 0 0
\(184\) 0 0
\(185\) 0 0
\(186\) 0 0
\(187\) 0 0
\(188\) 0 0
\(189\) 0 0
\(190\) 0 0
\(191\) −8.00000 −0.578860 −0.289430 0.957199i \(-0.593466\pi\)
−0.289430 + 0.957199i \(0.593466\pi\)
\(192\) 0 0
\(193\) 6.00000 0.431889 0.215945 0.976406i \(-0.430717\pi\)
0.215945 + 0.976406i \(0.430717\pi\)
\(194\) 0 0
\(195\) 0 0
\(196\) 0 0
\(197\) − 2.00000i − 0.142494i −0.997459 0.0712470i \(-0.977302\pi\)
0.997459 0.0712470i \(-0.0226979\pi\)
\(198\) 0 0
\(199\) −10.0000 −0.708881 −0.354441 0.935079i \(-0.615329\pi\)
−0.354441 + 0.935079i \(0.615329\pi\)
\(200\) 0 0
\(201\) 0 0
\(202\) 0 0
\(203\) − 12.0000i − 0.842235i
\(204\) 0 0
\(205\) 0 0
\(206\) 0 0
\(207\) 0 0
\(208\) 0 0
\(209\) 0 0
\(210\) 0 0
\(211\) − 20.0000i − 1.37686i −0.725304 0.688428i \(-0.758301\pi\)
0.725304 0.688428i \(-0.241699\pi\)
\(212\) 0 0
\(213\) 0 0
\(214\) 0 0
\(215\) 0 0
\(216\) 0 0
\(217\) 4.00000 0.271538
\(218\) 0 0
\(219\) 0 0
\(220\) 0 0
\(221\) − 8.00000i − 0.538138i
\(222\) 0 0
\(223\) 14.0000 0.937509 0.468755 0.883328i \(-0.344703\pi\)
0.468755 + 0.883328i \(0.344703\pi\)
\(224\) 0 0
\(225\) 0 0
\(226\) 0 0
\(227\) − 8.00000i − 0.530979i −0.964114 0.265489i \(-0.914466\pi\)
0.964114 0.265489i \(-0.0855335\pi\)
\(228\) 0 0
\(229\) 4.00000i 0.264327i 0.991228 + 0.132164i \(0.0421925\pi\)
−0.991228 + 0.132164i \(0.957808\pi\)
\(230\) 0 0
\(231\) 0 0
\(232\) 0 0
\(233\) 14.0000 0.917170 0.458585 0.888650i \(-0.348356\pi\)
0.458585 + 0.888650i \(0.348356\pi\)
\(234\) 0 0
\(235\) 0 0
\(236\) 0 0
\(237\) 0 0
\(238\) 0 0
\(239\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(240\) 0 0
\(241\) 2.00000 0.128831 0.0644157 0.997923i \(-0.479482\pi\)
0.0644157 + 0.997923i \(0.479482\pi\)
\(242\) 0 0
\(243\) 0 0
\(244\) 0 0
\(245\) 0 0
\(246\) 0 0
\(247\) 16.0000 1.01806
\(248\) 0 0
\(249\) 0 0
\(250\) 0 0
\(251\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(252\) 0 0
\(253\) 0 0
\(254\) 0 0
\(255\) 0 0
\(256\) 0 0
\(257\) 18.0000 1.12281 0.561405 0.827541i \(-0.310261\pi\)
0.561405 + 0.827541i \(0.310261\pi\)
\(258\) 0 0
\(259\) 16.0000i 0.994192i
\(260\) 0 0
\(261\) 0 0
\(262\) 0 0
\(263\) 16.0000 0.986602 0.493301 0.869859i \(-0.335790\pi\)
0.493301 + 0.869859i \(0.335790\pi\)
\(264\) 0 0
\(265\) 0 0
\(266\) 0 0
\(267\) 0 0
\(268\) 0 0
\(269\) 6.00000i 0.365826i 0.983129 + 0.182913i \(0.0585527\pi\)
−0.983129 + 0.182913i \(0.941447\pi\)
\(270\) 0 0
\(271\) 18.0000 1.09342 0.546711 0.837321i \(-0.315880\pi\)
0.546711 + 0.837321i \(0.315880\pi\)
\(272\) 0 0
\(273\) 0 0
\(274\) 0 0
\(275\) 0 0
\(276\) 0 0
\(277\) − 28.0000i − 1.68236i −0.540758 0.841178i \(-0.681862\pi\)
0.540758 0.841178i \(-0.318138\pi\)
\(278\) 0 0
\(279\) 0 0
\(280\) 0 0
\(281\) 18.0000 1.07379 0.536895 0.843649i \(-0.319597\pi\)
0.536895 + 0.843649i \(0.319597\pi\)
\(282\) 0 0
\(283\) − 4.00000i − 0.237775i −0.992908 0.118888i \(-0.962067\pi\)
0.992908 0.118888i \(-0.0379328\pi\)
\(284\) 0 0
\(285\) 0 0
\(286\) 0 0
\(287\) 4.00000 0.236113
\(288\) 0 0
\(289\) −13.0000 −0.764706
\(290\) 0 0
\(291\) 0 0
\(292\) 0 0
\(293\) 6.00000i 0.350524i 0.984522 + 0.175262i \(0.0560772\pi\)
−0.984522 + 0.175262i \(0.943923\pi\)
\(294\) 0 0
\(295\) 0 0
\(296\) 0 0
\(297\) 0 0
\(298\) 0 0
\(299\) − 16.0000i − 0.925304i
\(300\) 0 0
\(301\) 8.00000i 0.461112i
\(302\) 0 0
\(303\) 0 0
\(304\) 0 0
\(305\) 0 0
\(306\) 0 0
\(307\) − 12.0000i − 0.684876i −0.939540 0.342438i \(-0.888747\pi\)
0.939540 0.342438i \(-0.111253\pi\)
\(308\) 0 0
\(309\) 0 0
\(310\) 0 0
\(311\) −8.00000 −0.453638 −0.226819 0.973937i \(-0.572833\pi\)
−0.226819 + 0.973937i \(0.572833\pi\)
\(312\) 0 0
\(313\) −14.0000 −0.791327 −0.395663 0.918396i \(-0.629485\pi\)
−0.395663 + 0.918396i \(0.629485\pi\)
\(314\) 0 0
\(315\) 0 0
\(316\) 0 0
\(317\) − 22.0000i − 1.23564i −0.786318 0.617822i \(-0.788015\pi\)
0.786318 0.617822i \(-0.211985\pi\)
\(318\) 0 0
\(319\) 0 0
\(320\) 0 0
\(321\) 0 0
\(322\) 0 0
\(323\) 8.00000i 0.445132i
\(324\) 0 0
\(325\) 0 0
\(326\) 0 0
\(327\) 0 0
\(328\) 0 0
\(329\) −24.0000 −1.32316
\(330\) 0 0
\(331\) − 20.0000i − 1.09930i −0.835395 0.549650i \(-0.814761\pi\)
0.835395 0.549650i \(-0.185239\pi\)
\(332\) 0 0
\(333\) 0 0
\(334\) 0 0
\(335\) 0 0
\(336\) 0 0
\(337\) 2.00000 0.108947 0.0544735 0.998515i \(-0.482652\pi\)
0.0544735 + 0.998515i \(0.482652\pi\)
\(338\) 0 0
\(339\) 0 0
\(340\) 0 0
\(341\) 0 0
\(342\) 0 0
\(343\) 20.0000 1.07990
\(344\) 0 0
\(345\) 0 0
\(346\) 0 0
\(347\) − 8.00000i − 0.429463i −0.976673 0.214731i \(-0.931112\pi\)
0.976673 0.214731i \(-0.0688876\pi\)
\(348\) 0 0
\(349\) − 16.0000i − 0.856460i −0.903670 0.428230i \(-0.859137\pi\)
0.903670 0.428230i \(-0.140863\pi\)
\(350\) 0 0
\(351\) 0 0
\(352\) 0 0
\(353\) −6.00000 −0.319348 −0.159674 0.987170i \(-0.551044\pi\)
−0.159674 + 0.987170i \(0.551044\pi\)
\(354\) 0 0
\(355\) 0 0
\(356\) 0 0
\(357\) 0 0
\(358\) 0 0
\(359\) −20.0000 −1.05556 −0.527780 0.849381i \(-0.676975\pi\)
−0.527780 + 0.849381i \(0.676975\pi\)
\(360\) 0 0
\(361\) 3.00000 0.157895
\(362\) 0 0
\(363\) 0 0
\(364\) 0 0
\(365\) 0 0
\(366\) 0 0
\(367\) 18.0000 0.939592 0.469796 0.882775i \(-0.344327\pi\)
0.469796 + 0.882775i \(0.344327\pi\)
\(368\) 0 0
\(369\) 0 0
\(370\) 0 0
\(371\) − 12.0000i − 0.623009i
\(372\) 0 0
\(373\) − 16.0000i − 0.828449i −0.910175 0.414224i \(-0.864053\pi\)
0.910175 0.414224i \(-0.135947\pi\)
\(374\) 0 0
\(375\) 0 0
\(376\) 0 0
\(377\) −24.0000 −1.23606
\(378\) 0 0
\(379\) − 4.00000i − 0.205466i −0.994709 0.102733i \(-0.967241\pi\)
0.994709 0.102733i \(-0.0327588\pi\)
\(380\) 0 0
\(381\) 0 0
\(382\) 0 0
\(383\) −24.0000 −1.22634 −0.613171 0.789950i \(-0.710106\pi\)
−0.613171 + 0.789950i \(0.710106\pi\)
\(384\) 0 0
\(385\) 0 0
\(386\) 0 0
\(387\) 0 0
\(388\) 0 0
\(389\) − 34.0000i − 1.72387i −0.507020 0.861934i \(-0.669253\pi\)
0.507020 0.861934i \(-0.330747\pi\)
\(390\) 0 0
\(391\) 8.00000 0.404577
\(392\) 0 0
\(393\) 0 0
\(394\) 0 0
\(395\) 0 0
\(396\) 0 0
\(397\) 32.0000i 1.60603i 0.595956 + 0.803017i \(0.296773\pi\)
−0.595956 + 0.803017i \(0.703227\pi\)
\(398\) 0 0
\(399\) 0 0
\(400\) 0 0
\(401\) 18.0000 0.898877 0.449439 0.893311i \(-0.351624\pi\)
0.449439 + 0.893311i \(0.351624\pi\)
\(402\) 0 0
\(403\) − 8.00000i − 0.398508i
\(404\) 0 0
\(405\) 0 0
\(406\) 0 0
\(407\) 0 0
\(408\) 0 0
\(409\) 10.0000 0.494468 0.247234 0.968956i \(-0.420478\pi\)
0.247234 + 0.968956i \(0.420478\pi\)
\(410\) 0 0
\(411\) 0 0
\(412\) 0 0
\(413\) − 8.00000i − 0.393654i
\(414\) 0 0
\(415\) 0 0
\(416\) 0 0
\(417\) 0 0
\(418\) 0 0
\(419\) 24.0000i 1.17248i 0.810139 + 0.586238i \(0.199392\pi\)
−0.810139 + 0.586238i \(0.800608\pi\)
\(420\) 0 0
\(421\) − 20.0000i − 0.974740i −0.873195 0.487370i \(-0.837956\pi\)
0.873195 0.487370i \(-0.162044\pi\)
\(422\) 0 0
\(423\) 0 0
\(424\) 0 0
\(425\) 0 0
\(426\) 0 0
\(427\) 0 0
\(428\) 0 0
\(429\) 0 0
\(430\) 0 0
\(431\) 12.0000 0.578020 0.289010 0.957326i \(-0.406674\pi\)
0.289010 + 0.957326i \(0.406674\pi\)
\(432\) 0 0
\(433\) −14.0000 −0.672797 −0.336399 0.941720i \(-0.609209\pi\)
−0.336399 + 0.941720i \(0.609209\pi\)
\(434\) 0 0
\(435\) 0 0
\(436\) 0 0
\(437\) 16.0000i 0.765384i
\(438\) 0 0
\(439\) 30.0000 1.43182 0.715911 0.698192i \(-0.246012\pi\)
0.715911 + 0.698192i \(0.246012\pi\)
\(440\) 0 0
\(441\) 0 0
\(442\) 0 0
\(443\) 24.0000i 1.14027i 0.821549 + 0.570137i \(0.193110\pi\)
−0.821549 + 0.570137i \(0.806890\pi\)
\(444\) 0 0
\(445\) 0 0
\(446\) 0 0
\(447\) 0 0
\(448\) 0 0
\(449\) −30.0000 −1.41579 −0.707894 0.706319i \(-0.750354\pi\)
−0.707894 + 0.706319i \(0.750354\pi\)
\(450\) 0 0
\(451\) 0 0
\(452\) 0 0
\(453\) 0 0
\(454\) 0 0
\(455\) 0 0
\(456\) 0 0
\(457\) 22.0000 1.02912 0.514558 0.857455i \(-0.327956\pi\)
0.514558 + 0.857455i \(0.327956\pi\)
\(458\) 0 0
\(459\) 0 0
\(460\) 0 0
\(461\) − 30.0000i − 1.39724i −0.715493 0.698620i \(-0.753798\pi\)
0.715493 0.698620i \(-0.246202\pi\)
\(462\) 0 0
\(463\) −26.0000 −1.20832 −0.604161 0.796862i \(-0.706492\pi\)
−0.604161 + 0.796862i \(0.706492\pi\)
\(464\) 0 0
\(465\) 0 0
\(466\) 0 0
\(467\) − 8.00000i − 0.370196i −0.982720 0.185098i \(-0.940740\pi\)
0.982720 0.185098i \(-0.0592602\pi\)
\(468\) 0 0
\(469\) 24.0000i 1.10822i
\(470\) 0 0
\(471\) 0 0
\(472\) 0 0
\(473\) 0 0
\(474\) 0 0
\(475\) 0 0
\(476\) 0 0
\(477\) 0 0
\(478\) 0 0
\(479\) 20.0000 0.913823 0.456912 0.889512i \(-0.348956\pi\)
0.456912 + 0.889512i \(0.348956\pi\)
\(480\) 0 0
\(481\) 32.0000 1.45907
\(482\) 0 0
\(483\) 0 0
\(484\) 0 0
\(485\) 0 0
\(486\) 0 0
\(487\) 38.0000 1.72194 0.860972 0.508652i \(-0.169856\pi\)
0.860972 + 0.508652i \(0.169856\pi\)
\(488\) 0 0
\(489\) 0 0
\(490\) 0 0
\(491\) − 20.0000i − 0.902587i −0.892375 0.451294i \(-0.850963\pi\)
0.892375 0.451294i \(-0.149037\pi\)
\(492\) 0 0
\(493\) − 12.0000i − 0.540453i
\(494\) 0 0
\(495\) 0 0
\(496\) 0 0
\(497\) −24.0000 −1.07655
\(498\) 0 0
\(499\) 36.0000i 1.61158i 0.592200 + 0.805791i \(0.298259\pi\)
−0.592200 + 0.805791i \(0.701741\pi\)
\(500\) 0 0
\(501\) 0 0
\(502\) 0 0
\(503\) 36.0000 1.60516 0.802580 0.596544i \(-0.203460\pi\)
0.802580 + 0.596544i \(0.203460\pi\)
\(504\) 0 0
\(505\) 0 0
\(506\) 0 0
\(507\) 0 0
\(508\) 0 0
\(509\) 6.00000i 0.265945i 0.991120 + 0.132973i \(0.0424523\pi\)
−0.991120 + 0.132973i \(0.957548\pi\)
\(510\) 0 0
\(511\) −12.0000 −0.530849
\(512\) 0 0
\(513\) 0 0
\(514\) 0 0
\(515\) 0 0
\(516\) 0 0
\(517\) 0 0
\(518\) 0 0
\(519\) 0 0
\(520\) 0 0
\(521\) −42.0000 −1.84005 −0.920027 0.391856i \(-0.871833\pi\)
−0.920027 + 0.391856i \(0.871833\pi\)
\(522\) 0 0
\(523\) 36.0000i 1.57417i 0.616844 + 0.787085i \(0.288411\pi\)
−0.616844 + 0.787085i \(0.711589\pi\)
\(524\) 0 0
\(525\) 0 0
\(526\) 0 0
\(527\) 4.00000 0.174243
\(528\) 0 0
\(529\) −7.00000 −0.304348
\(530\) 0 0
\(531\) 0 0
\(532\) 0 0
\(533\) − 8.00000i − 0.346518i
\(534\) 0 0
\(535\) 0 0
\(536\) 0 0
\(537\) 0 0
\(538\) 0 0
\(539\) 0 0
\(540\) 0 0
\(541\) 20.0000i 0.859867i 0.902861 + 0.429934i \(0.141463\pi\)
−0.902861 + 0.429934i \(0.858537\pi\)
\(542\) 0 0
\(543\) 0 0
\(544\) 0 0
\(545\) 0 0
\(546\) 0 0
\(547\) 28.0000i 1.19719i 0.801050 + 0.598597i \(0.204275\pi\)
−0.801050 + 0.598597i \(0.795725\pi\)
\(548\) 0 0
\(549\) 0 0
\(550\) 0 0
\(551\) 24.0000 1.02243
\(552\) 0 0
\(553\) 20.0000 0.850487
\(554\) 0 0
\(555\) 0 0
\(556\) 0 0
\(557\) − 42.0000i − 1.77960i −0.456354 0.889799i \(-0.650845\pi\)
0.456354 0.889799i \(-0.349155\pi\)
\(558\) 0 0
\(559\) 16.0000 0.676728
\(560\) 0 0
\(561\) 0 0
\(562\) 0 0
\(563\) 24.0000i 1.01148i 0.862686 + 0.505740i \(0.168780\pi\)
−0.862686 + 0.505740i \(0.831220\pi\)
\(564\) 0 0
\(565\) 0 0
\(566\) 0 0
\(567\) 0 0
\(568\) 0 0
\(569\) 30.0000 1.25767 0.628833 0.777541i \(-0.283533\pi\)
0.628833 + 0.777541i \(0.283533\pi\)
\(570\) 0 0
\(571\) 20.0000i 0.836974i 0.908223 + 0.418487i \(0.137439\pi\)
−0.908223 + 0.418487i \(0.862561\pi\)
\(572\) 0 0
\(573\) 0 0
\(574\) 0 0
\(575\) 0 0
\(576\) 0 0
\(577\) 42.0000 1.74848 0.874241 0.485491i \(-0.161359\pi\)
0.874241 + 0.485491i \(0.161359\pi\)
\(578\) 0 0
\(579\) 0 0
\(580\) 0 0
\(581\) 32.0000i 1.32758i
\(582\) 0 0
\(583\) 0 0
\(584\) 0 0
\(585\) 0 0
\(586\) 0 0
\(587\) − 28.0000i − 1.15568i −0.816149 0.577842i \(-0.803895\pi\)
0.816149 0.577842i \(-0.196105\pi\)
\(588\) 0 0
\(589\) 8.00000i 0.329634i
\(590\) 0 0
\(591\) 0 0
\(592\) 0 0
\(593\) −6.00000 −0.246390 −0.123195 0.992382i \(-0.539314\pi\)
−0.123195 + 0.992382i \(0.539314\pi\)
\(594\) 0 0
\(595\) 0 0
\(596\) 0 0
\(597\) 0 0
\(598\) 0 0
\(599\) −20.0000 −0.817178 −0.408589 0.912719i \(-0.633979\pi\)
−0.408589 + 0.912719i \(0.633979\pi\)
\(600\) 0 0
\(601\) 2.00000 0.0815817 0.0407909 0.999168i \(-0.487012\pi\)
0.0407909 + 0.999168i \(0.487012\pi\)
\(602\) 0 0
\(603\) 0 0
\(604\) 0 0
\(605\) 0 0
\(606\) 0 0
\(607\) −2.00000 −0.0811775 −0.0405887 0.999176i \(-0.512923\pi\)
−0.0405887 + 0.999176i \(0.512923\pi\)
\(608\) 0 0
\(609\) 0 0
\(610\) 0 0
\(611\) 48.0000i 1.94187i
\(612\) 0 0
\(613\) − 16.0000i − 0.646234i −0.946359 0.323117i \(-0.895269\pi\)
0.946359 0.323117i \(-0.104731\pi\)
\(614\) 0 0
\(615\) 0 0
\(616\) 0 0
\(617\) −2.00000 −0.0805170 −0.0402585 0.999189i \(-0.512818\pi\)
−0.0402585 + 0.999189i \(0.512818\pi\)
\(618\) 0 0
\(619\) 36.0000i 1.44696i 0.690344 + 0.723481i \(0.257459\pi\)
−0.690344 + 0.723481i \(0.742541\pi\)
\(620\) 0 0
\(621\) 0 0
\(622\) 0 0
\(623\) −20.0000 −0.801283
\(624\) 0 0
\(625\) 0 0
\(626\) 0 0
\(627\) 0 0
\(628\) 0 0
\(629\) 16.0000i 0.637962i
\(630\) 0 0
\(631\) −22.0000 −0.875806 −0.437903 0.899022i \(-0.644279\pi\)
−0.437903 + 0.899022i \(0.644279\pi\)
\(632\) 0 0
\(633\) 0 0
\(634\) 0 0
\(635\) 0 0
\(636\) 0 0
\(637\) − 12.0000i − 0.475457i
\(638\) 0 0
\(639\) 0 0
\(640\) 0 0
\(641\) −22.0000 −0.868948 −0.434474 0.900684i \(-0.643066\pi\)
−0.434474 + 0.900684i \(0.643066\pi\)
\(642\) 0 0
\(643\) − 4.00000i − 0.157745i −0.996885 0.0788723i \(-0.974868\pi\)
0.996885 0.0788723i \(-0.0251319\pi\)
\(644\) 0 0
\(645\) 0 0
\(646\) 0 0
\(647\) 12.0000 0.471769 0.235884 0.971781i \(-0.424201\pi\)
0.235884 + 0.971781i \(0.424201\pi\)
\(648\) 0 0
\(649\) 0 0
\(650\) 0 0
\(651\) 0 0
\(652\) 0 0
\(653\) 6.00000i 0.234798i 0.993085 + 0.117399i \(0.0374557\pi\)
−0.993085 + 0.117399i \(0.962544\pi\)
\(654\) 0 0
\(655\) 0 0
\(656\) 0 0
\(657\) 0 0
\(658\) 0 0
\(659\) − 36.0000i − 1.40236i −0.712984 0.701180i \(-0.752657\pi\)
0.712984 0.701180i \(-0.247343\pi\)
\(660\) 0 0
\(661\) − 40.0000i − 1.55582i −0.628376 0.777910i \(-0.716280\pi\)
0.628376 0.777910i \(-0.283720\pi\)
\(662\) 0 0
\(663\) 0 0
\(664\) 0 0
\(665\) 0 0
\(666\) 0 0
\(667\) − 24.0000i − 0.929284i
\(668\) 0 0
\(669\) 0 0
\(670\) 0 0
\(671\) 0 0
\(672\) 0 0
\(673\) −14.0000 −0.539660 −0.269830 0.962908i \(-0.586968\pi\)
−0.269830 + 0.962908i \(0.586968\pi\)
\(674\) 0 0
\(675\) 0 0
\(676\) 0 0
\(677\) 18.0000i 0.691796i 0.938272 + 0.345898i \(0.112426\pi\)
−0.938272 + 0.345898i \(0.887574\pi\)
\(678\) 0 0
\(679\) −4.00000 −0.153506
\(680\) 0 0
\(681\) 0 0
\(682\) 0 0
\(683\) − 16.0000i − 0.612223i −0.951996 0.306111i \(-0.900972\pi\)
0.951996 0.306111i \(-0.0990280\pi\)
\(684\) 0 0
\(685\) 0 0
\(686\) 0 0
\(687\) 0 0
\(688\) 0 0
\(689\) −24.0000 −0.914327
\(690\) 0 0
\(691\) 20.0000i 0.760836i 0.924815 + 0.380418i \(0.124220\pi\)
−0.924815 + 0.380418i \(0.875780\pi\)
\(692\) 0 0
\(693\) 0 0
\(694\) 0 0
\(695\) 0 0
\(696\) 0 0
\(697\) 4.00000 0.151511
\(698\) 0 0
\(699\) 0 0
\(700\) 0 0
\(701\) − 50.0000i − 1.88847i −0.329267 0.944237i \(-0.606802\pi\)
0.329267 0.944237i \(-0.393198\pi\)
\(702\) 0 0
\(703\) −32.0000 −1.20690
\(704\) 0 0
\(705\) 0 0
\(706\) 0 0
\(707\) − 20.0000i − 0.752177i
\(708\) 0 0
\(709\) 4.00000i 0.150223i 0.997175 + 0.0751116i \(0.0239313\pi\)
−0.997175 + 0.0751116i \(0.976069\pi\)
\(710\) 0 0
\(711\) 0 0
\(712\) 0 0
\(713\) 8.00000 0.299602
\(714\) 0 0
\(715\) 0 0
\(716\) 0 0
\(717\) 0 0
\(718\) 0 0
\(719\) −20.0000 −0.745874 −0.372937 0.927857i \(-0.621649\pi\)
−0.372937 + 0.927857i \(0.621649\pi\)
\(720\) 0 0
\(721\) 12.0000 0.446903
\(722\) 0 0
\(723\) 0 0
\(724\) 0 0
\(725\) 0 0
\(726\) 0 0
\(727\) −42.0000 −1.55769 −0.778847 0.627214i \(-0.784195\pi\)
−0.778847 + 0.627214i \(0.784195\pi\)
\(728\) 0 0
\(729\) 0 0
\(730\) 0 0
\(731\) 8.00000i 0.295891i
\(732\) 0 0
\(733\) 4.00000i 0.147743i 0.997268 + 0.0738717i \(0.0235355\pi\)
−0.997268 + 0.0738717i \(0.976464\pi\)
\(734\) 0 0
\(735\) 0 0
\(736\) 0 0
\(737\) 0 0
\(738\) 0 0
\(739\) − 44.0000i − 1.61857i −0.587419 0.809283i \(-0.699856\pi\)
0.587419 0.809283i \(-0.300144\pi\)
\(740\) 0 0
\(741\) 0 0
\(742\) 0 0
\(743\) 16.0000 0.586983 0.293492 0.955962i \(-0.405183\pi\)
0.293492 + 0.955962i \(0.405183\pi\)
\(744\) 0 0
\(745\) 0 0
\(746\) 0 0
\(747\) 0 0
\(748\) 0 0
\(749\) − 24.0000i − 0.876941i
\(750\) 0 0
\(751\) −2.00000 −0.0729810 −0.0364905 0.999334i \(-0.511618\pi\)
−0.0364905 + 0.999334i \(0.511618\pi\)
\(752\) 0 0
\(753\) 0 0
\(754\) 0 0
\(755\) 0 0
\(756\) 0 0
\(757\) 12.0000i 0.436147i 0.975932 + 0.218074i \(0.0699773\pi\)
−0.975932 + 0.218074i \(0.930023\pi\)
\(758\) 0 0
\(759\) 0 0
\(760\) 0 0
\(761\) 38.0000 1.37750 0.688749 0.724999i \(-0.258160\pi\)
0.688749 + 0.724999i \(0.258160\pi\)
\(762\) 0 0
\(763\) − 8.00000i − 0.289619i
\(764\) 0 0
\(765\) 0 0
\(766\) 0 0
\(767\) −16.0000 −0.577727
\(768\) 0 0
\(769\) 10.0000 0.360609 0.180305 0.983611i \(-0.442292\pi\)
0.180305 + 0.983611i \(0.442292\pi\)
\(770\) 0 0
\(771\) 0 0
\(772\) 0 0
\(773\) − 34.0000i − 1.22290i −0.791285 0.611448i \(-0.790588\pi\)
0.791285 0.611448i \(-0.209412\pi\)
\(774\) 0 0
\(775\) 0 0
\(776\) 0 0
\(777\) 0 0
\(778\) 0 0
\(779\) 8.00000i 0.286630i
\(780\) 0 0
\(781\) 0 0
\(782\) 0 0
\(783\) 0 0
\(784\) 0 0
\(785\) 0 0
\(786\) 0 0
\(787\) − 12.0000i − 0.427754i −0.976861 0.213877i \(-0.931391\pi\)
0.976861 0.213877i \(-0.0686091\pi\)
\(788\) 0 0
\(789\) 0 0
\(790\) 0 0
\(791\) 12.0000 0.426671
\(792\) 0 0
\(793\) 0 0
\(794\) 0 0
\(795\) 0 0
\(796\) 0 0
\(797\) − 2.00000i − 0.0708436i −0.999372 0.0354218i \(-0.988723\pi\)
0.999372 0.0354218i \(-0.0112775\pi\)
\(798\) 0 0
\(799\) −24.0000 −0.849059
\(800\) 0 0
\(801\) 0 0
\(802\) 0 0
\(803\) 0 0
\(804\) 0 0
\(805\) 0 0
\(806\) 0 0
\(807\) 0 0
\(808\) 0 0
\(809\) 30.0000 1.05474 0.527372 0.849635i \(-0.323177\pi\)
0.527372 + 0.849635i \(0.323177\pi\)
\(810\) 0 0
\(811\) − 20.0000i − 0.702295i −0.936320 0.351147i \(-0.885792\pi\)
0.936320 0.351147i \(-0.114208\pi\)
\(812\) 0 0
\(813\) 0 0
\(814\) 0 0
\(815\) 0 0
\(816\) 0 0
\(817\) −16.0000 −0.559769
\(818\) 0 0
\(819\) 0 0
\(820\) 0 0
\(821\) 10.0000i 0.349002i 0.984657 + 0.174501i \(0.0558313\pi\)
−0.984657 + 0.174501i \(0.944169\pi\)
\(822\) 0 0
\(823\) 14.0000 0.488009 0.244005 0.969774i \(-0.421539\pi\)
0.244005 + 0.969774i \(0.421539\pi\)
\(824\) 0 0
\(825\) 0 0
\(826\) 0 0
\(827\) 12.0000i 0.417281i 0.977992 + 0.208640i \(0.0669038\pi\)
−0.977992 + 0.208640i \(0.933096\pi\)
\(828\) 0 0
\(829\) 4.00000i 0.138926i 0.997585 + 0.0694629i \(0.0221285\pi\)
−0.997585 + 0.0694629i \(0.977871\pi\)
\(830\) 0 0
\(831\) 0 0
\(832\) 0 0
\(833\) 6.00000 0.207888
\(834\) 0 0
\(835\) 0 0
\(836\) 0 0
\(837\) 0 0
\(838\) 0 0
\(839\) 20.0000 0.690477 0.345238 0.938515i \(-0.387798\pi\)
0.345238 + 0.938515i \(0.387798\pi\)
\(840\) 0 0
\(841\) −7.00000 −0.241379
\(842\) 0 0
\(843\) 0 0
\(844\) 0 0
\(845\) 0 0
\(846\) 0 0
\(847\) −22.0000 −0.755929
\(848\) 0 0
\(849\) 0 0
\(850\) 0 0
\(851\) 32.0000i 1.09695i
\(852\) 0 0
\(853\) 24.0000i 0.821744i 0.911693 + 0.410872i \(0.134776\pi\)
−0.911693 + 0.410872i \(0.865224\pi\)
\(854\) 0 0
\(855\) 0 0
\(856\) 0 0
\(857\) 18.0000 0.614868 0.307434 0.951569i \(-0.400530\pi\)
0.307434 + 0.951569i \(0.400530\pi\)
\(858\) 0 0
\(859\) − 44.0000i − 1.50126i −0.660722 0.750630i \(-0.729750\pi\)
0.660722 0.750630i \(-0.270250\pi\)
\(860\) 0 0
\(861\) 0 0
\(862\) 0 0
\(863\) −24.0000 −0.816970 −0.408485 0.912765i \(-0.633943\pi\)
−0.408485 + 0.912765i \(0.633943\pi\)
\(864\) 0 0
\(865\) 0 0
\(866\) 0 0
\(867\) 0 0
\(868\) 0 0
\(869\) 0 0
\(870\) 0 0
\(871\) 48.0000 1.62642
\(872\) 0 0
\(873\) 0 0
\(874\) 0 0
\(875\) 0 0
\(876\) 0 0
\(877\) 32.0000i 1.08056i 0.841484 + 0.540282i \(0.181682\pi\)
−0.841484 + 0.540282i \(0.818318\pi\)
\(878\) 0 0
\(879\) 0 0
\(880\) 0 0
\(881\) −2.00000 −0.0673817 −0.0336909 0.999432i \(-0.510726\pi\)
−0.0336909 + 0.999432i \(0.510726\pi\)
\(882\) 0 0
\(883\) − 4.00000i − 0.134611i −0.997732 0.0673054i \(-0.978560\pi\)
0.997732 0.0673054i \(-0.0214402\pi\)
\(884\) 0 0
\(885\) 0 0
\(886\) 0 0
\(887\) −48.0000 −1.61168 −0.805841 0.592132i \(-0.798286\pi\)
−0.805841 + 0.592132i \(0.798286\pi\)
\(888\) 0 0
\(889\) 4.00000 0.134156
\(890\) 0 0
\(891\) 0 0
\(892\) 0 0
\(893\) − 48.0000i − 1.60626i
\(894\) 0 0
\(895\) 0 0
\(896\) 0 0
\(897\) 0 0
\(898\) 0 0
\(899\) − 12.0000i − 0.400222i
\(900\) 0 0
\(901\) − 12.0000i − 0.399778i
\(902\) 0 0
\(903\) 0 0
\(904\) 0 0
\(905\) 0 0
\(906\) 0 0
\(907\) 28.0000i 0.929725i 0.885383 + 0.464862i \(0.153896\pi\)
−0.885383 + 0.464862i \(0.846104\pi\)
\(908\) 0 0
\(909\) 0 0
\(910\) 0 0
\(911\) −48.0000 −1.59031 −0.795155 0.606406i \(-0.792611\pi\)
−0.795155 + 0.606406i \(0.792611\pi\)
\(912\) 0 0
\(913\) 0 0
\(914\) 0 0
\(915\) 0 0
\(916\) 0 0
\(917\) 40.0000i 1.32092i
\(918\) 0 0
\(919\) −30.0000 −0.989609 −0.494804 0.869004i \(-0.664760\pi\)
−0.494804 + 0.869004i \(0.664760\pi\)
\(920\) 0 0
\(921\) 0 0
\(922\) 0 0
\(923\) 48.0000i 1.57994i
\(924\) 0 0
\(925\) 0 0
\(926\) 0 0
\(927\) 0 0
\(928\) 0 0
\(929\) 50.0000 1.64045 0.820223 0.572043i \(-0.193849\pi\)
0.820223 + 0.572043i \(0.193849\pi\)
\(930\) 0 0
\(931\) 12.0000i 0.393284i
\(932\) 0 0
\(933\) 0 0
\(934\) 0 0
\(935\) 0 0
\(936\) 0 0
\(937\) −38.0000 −1.24141 −0.620703 0.784046i \(-0.713153\pi\)
−0.620703 + 0.784046i \(0.713153\pi\)
\(938\) 0 0
\(939\) 0 0
\(940\) 0 0
\(941\) − 30.0000i − 0.977972i −0.872292 0.488986i \(-0.837367\pi\)
0.872292 0.488986i \(-0.162633\pi\)
\(942\) 0 0
\(943\) 8.00000 0.260516
\(944\) 0 0
\(945\) 0 0
\(946\) 0 0
\(947\) 12.0000i 0.389948i 0.980808 + 0.194974i \(0.0624622\pi\)
−0.980808 + 0.194974i \(0.937538\pi\)
\(948\) 0 0
\(949\) 24.0000i 0.779073i
\(950\) 0 0
\(951\) 0 0
\(952\) 0 0
\(953\) −6.00000 −0.194359 −0.0971795 0.995267i \(-0.530982\pi\)
−0.0971795 + 0.995267i \(0.530982\pi\)
\(954\) 0 0
\(955\) 0 0
\(956\) 0 0
\(957\) 0 0
\(958\) 0 0
\(959\) −36.0000 −1.16250
\(960\) 0 0
\(961\) −27.0000 −0.870968
\(962\) 0 0
\(963\) 0 0
\(964\) 0 0
\(965\) 0 0
\(966\) 0 0
\(967\) −22.0000 −0.707472 −0.353736 0.935345i \(-0.615089\pi\)
−0.353736 + 0.935345i \(0.615089\pi\)
\(968\) 0 0
\(969\) 0 0
\(970\) 0 0
\(971\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(972\) 0 0
\(973\) 8.00000i 0.256468i
\(974\) 0 0
\(975\) 0 0
\(976\) 0 0
\(977\) −2.00000 −0.0639857 −0.0319928 0.999488i \(-0.510185\pi\)
−0.0319928 + 0.999488i \(0.510185\pi\)
\(978\) 0 0
\(979\) 0 0
\(980\) 0 0
\(981\) 0 0
\(982\) 0 0
\(983\) 16.0000 0.510321 0.255160 0.966899i \(-0.417872\pi\)
0.255160 + 0.966899i \(0.417872\pi\)
\(984\) 0 0
\(985\) 0 0
\(986\) 0 0
\(987\) 0 0
\(988\) 0 0
\(989\) 16.0000i 0.508770i
\(990\) 0 0
\(991\) −2.00000 −0.0635321 −0.0317660 0.999495i \(-0.510113\pi\)
−0.0317660 + 0.999495i \(0.510113\pi\)
\(992\) 0 0
\(993\) 0 0
\(994\) 0 0
\(995\) 0 0
\(996\) 0 0
\(997\) − 48.0000i − 1.52018i −0.649821 0.760088i \(-0.725156\pi\)
0.649821 0.760088i \(-0.274844\pi\)
\(998\) 0 0
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 7200.2.k.d.3601.2 2
3.2 odd 2 2400.2.k.a.1201.1 2
4.3 odd 2 1800.2.k.a.901.1 2
5.2 odd 4 7200.2.d.g.2449.1 2
5.3 odd 4 7200.2.d.d.2449.2 2
5.4 even 2 288.2.d.b.145.1 2
8.3 odd 2 1800.2.k.a.901.2 2
8.5 even 2 inner 7200.2.k.d.3601.1 2
12.11 even 2 600.2.k.b.301.2 2
15.2 even 4 2400.2.d.b.49.1 2
15.8 even 4 2400.2.d.c.49.2 2
15.14 odd 2 96.2.d.a.49.2 2
20.3 even 4 1800.2.d.b.1549.2 2
20.7 even 4 1800.2.d.i.1549.1 2
20.19 odd 2 72.2.d.b.37.2 2
24.5 odd 2 2400.2.k.a.1201.2 2
24.11 even 2 600.2.k.b.301.1 2
40.3 even 4 1800.2.d.i.1549.2 2
40.13 odd 4 7200.2.d.g.2449.2 2
40.19 odd 2 72.2.d.b.37.1 2
40.27 even 4 1800.2.d.b.1549.1 2
40.29 even 2 288.2.d.b.145.2 2
40.37 odd 4 7200.2.d.d.2449.1 2
45.4 even 6 2592.2.r.g.2161.1 4
45.14 odd 6 2592.2.r.f.2161.2 4
45.29 odd 6 2592.2.r.f.433.1 4
45.34 even 6 2592.2.r.g.433.2 4
60.23 odd 4 600.2.d.c.349.1 2
60.47 odd 4 600.2.d.b.349.2 2
60.59 even 2 24.2.d.a.13.1 2
80.19 odd 4 2304.2.a.e.1.1 1
80.29 even 4 2304.2.a.b.1.1 1
80.59 odd 4 2304.2.a.o.1.1 1
80.69 even 4 2304.2.a.l.1.1 1
105.104 even 2 4704.2.c.a.2353.1 2
120.29 odd 2 96.2.d.a.49.1 2
120.53 even 4 2400.2.d.b.49.2 2
120.59 even 2 24.2.d.a.13.2 yes 2
120.77 even 4 2400.2.d.c.49.1 2
120.83 odd 4 600.2.d.b.349.1 2
120.107 odd 4 600.2.d.c.349.2 2
180.59 even 6 648.2.n.k.541.2 4
180.79 odd 6 648.2.n.c.109.2 4
180.119 even 6 648.2.n.k.109.1 4
180.139 odd 6 648.2.n.c.541.1 4
240.29 odd 4 768.2.a.d.1.1 1
240.59 even 4 768.2.a.a.1.1 1
240.149 odd 4 768.2.a.e.1.1 1
240.179 even 4 768.2.a.h.1.1 1
360.29 odd 6 2592.2.r.f.433.2 4
360.59 even 6 648.2.n.k.541.1 4
360.139 odd 6 648.2.n.c.541.2 4
360.149 odd 6 2592.2.r.f.2161.1 4
360.229 even 6 2592.2.r.g.2161.2 4
360.259 odd 6 648.2.n.c.109.1 4
360.299 even 6 648.2.n.k.109.2 4
360.349 even 6 2592.2.r.g.433.1 4
420.419 odd 2 1176.2.c.a.589.1 2
840.419 odd 2 1176.2.c.a.589.2 2
840.629 even 2 4704.2.c.a.2353.2 2
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
24.2.d.a.13.1 2 60.59 even 2
24.2.d.a.13.2 yes 2 120.59 even 2
72.2.d.b.37.1 2 40.19 odd 2
72.2.d.b.37.2 2 20.19 odd 2
96.2.d.a.49.1 2 120.29 odd 2
96.2.d.a.49.2 2 15.14 odd 2
288.2.d.b.145.1 2 5.4 even 2
288.2.d.b.145.2 2 40.29 even 2
600.2.d.b.349.1 2 120.83 odd 4
600.2.d.b.349.2 2 60.47 odd 4
600.2.d.c.349.1 2 60.23 odd 4
600.2.d.c.349.2 2 120.107 odd 4
600.2.k.b.301.1 2 24.11 even 2
600.2.k.b.301.2 2 12.11 even 2
648.2.n.c.109.1 4 360.259 odd 6
648.2.n.c.109.2 4 180.79 odd 6
648.2.n.c.541.1 4 180.139 odd 6
648.2.n.c.541.2 4 360.139 odd 6
648.2.n.k.109.1 4 180.119 even 6
648.2.n.k.109.2 4 360.299 even 6
648.2.n.k.541.1 4 360.59 even 6
648.2.n.k.541.2 4 180.59 even 6
768.2.a.a.1.1 1 240.59 even 4
768.2.a.d.1.1 1 240.29 odd 4
768.2.a.e.1.1 1 240.149 odd 4
768.2.a.h.1.1 1 240.179 even 4
1176.2.c.a.589.1 2 420.419 odd 2
1176.2.c.a.589.2 2 840.419 odd 2
1800.2.d.b.1549.1 2 40.27 even 4
1800.2.d.b.1549.2 2 20.3 even 4
1800.2.d.i.1549.1 2 20.7 even 4
1800.2.d.i.1549.2 2 40.3 even 4
1800.2.k.a.901.1 2 4.3 odd 2
1800.2.k.a.901.2 2 8.3 odd 2
2304.2.a.b.1.1 1 80.29 even 4
2304.2.a.e.1.1 1 80.19 odd 4
2304.2.a.l.1.1 1 80.69 even 4
2304.2.a.o.1.1 1 80.59 odd 4
2400.2.d.b.49.1 2 15.2 even 4
2400.2.d.b.49.2 2 120.53 even 4
2400.2.d.c.49.1 2 120.77 even 4
2400.2.d.c.49.2 2 15.8 even 4
2400.2.k.a.1201.1 2 3.2 odd 2
2400.2.k.a.1201.2 2 24.5 odd 2
2592.2.r.f.433.1 4 45.29 odd 6
2592.2.r.f.433.2 4 360.29 odd 6
2592.2.r.f.2161.1 4 360.149 odd 6
2592.2.r.f.2161.2 4 45.14 odd 6
2592.2.r.g.433.1 4 360.349 even 6
2592.2.r.g.433.2 4 45.34 even 6
2592.2.r.g.2161.1 4 45.4 even 6
2592.2.r.g.2161.2 4 360.229 even 6
4704.2.c.a.2353.1 2 105.104 even 2
4704.2.c.a.2353.2 2 840.629 even 2
7200.2.d.d.2449.1 2 40.37 odd 4
7200.2.d.d.2449.2 2 5.3 odd 4
7200.2.d.g.2449.1 2 5.2 odd 4
7200.2.d.g.2449.2 2 40.13 odd 4
7200.2.k.d.3601.1 2 8.5 even 2 inner
7200.2.k.d.3601.2 2 1.1 even 1 trivial