Properties

Label 7200.2.k.d.3601.2
Level 72007200
Weight 22
Character 7200.3601
Analytic conductor 57.49257.492
Analytic rank 00
Dimension 22
Inner twists 22

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [7200,2,Mod(3601,7200)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(7200, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 1, 0, 0])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("7200.3601"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: N N == 7200=253252 7200 = 2^{5} \cdot 3^{2} \cdot 5^{2}
Weight: k k == 2 2
Character orbit: [χ][\chi] == 7200.k (of order 22, degree 11, not minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [2,0,0,0,0,0,-4,0,0,0,0,0,0,0,0,0,-4,0,0,0,0,0,-8,0,0,0,0,0,0, 0,-4] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(31)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: 57.492289455357.4922894553
Analytic rank: 00
Dimension: 22
Coefficient field: Q(i)\Q(i)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: x2+1 x^{2} + 1 Copy content Toggle raw display
Coefficient ring: Z[a1,,a29]\Z[a_1, \ldots, a_{29}]
Coefficient ring index: 2 2
Twist minimal: no (minimal twist has level 24)
Sato-Tate group: SU(2)[C2]\mathrm{SU}(2)[C_{2}]

Embedding invariants

Embedding label 3601.2
Root 1.00000i1.00000i of defining polynomial
Character χ\chi == 7200.3601
Dual form 7200.2.k.d.3601.1

qq-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
f(q)f(q) == q2.00000q7+4.00000iq132.00000q174.00000iq194.00000q23+6.00000iq292.00000q318.00000iq372.00000q414.00000iq43+12.0000q473.00000q49+6.00000iq53+4.00000iq5912.0000iq67+12.0000q71+6.00000q7310.0000q7916.0000iq83+10.0000q898.00000iq91+2.00000q97+O(q100)q-2.00000 q^{7} +4.00000i q^{13} -2.00000 q^{17} -4.00000i q^{19} -4.00000 q^{23} +6.00000i q^{29} -2.00000 q^{31} -8.00000i q^{37} -2.00000 q^{41} -4.00000i q^{43} +12.0000 q^{47} -3.00000 q^{49} +6.00000i q^{53} +4.00000i q^{59} -12.0000i q^{67} +12.0000 q^{71} +6.00000 q^{73} -10.0000 q^{79} -16.0000i q^{83} +10.0000 q^{89} -8.00000i q^{91} +2.00000 q^{97} +O(q^{100})
Tr(f)(q)\operatorname{Tr}(f)(q) == 2q4q74q178q234q314q41+24q476q49+24q71+12q7320q79+20q89+4q97+O(q100) 2 q - 4 q^{7} - 4 q^{17} - 8 q^{23} - 4 q^{31} - 4 q^{41} + 24 q^{47} - 6 q^{49} + 24 q^{71} + 12 q^{73} - 20 q^{79} + 20 q^{89} + 4 q^{97}+O(q^{100}) Copy content Toggle raw display

Character values

We give the values of χ\chi on generators for (Z/7200Z)×\left(\mathbb{Z}/7200\mathbb{Z}\right)^\times.

nn 577577 901901 64016401 67516751
χ(n)\chi(n) 11 1-1 11 11

Coefficient data

For each nn we display the coefficients of the qq-expansion ana_n, the Satake parameters αp\alpha_p, and the Satake angles θp=Arg(αp)\theta_p = \textrm{Arg}(\alpha_p).



Display apa_p with pp up to: 50 250 1000 (See ana_n instead) (See ana_n instead) (See ana_n instead) Display ana_n with nn up to: 50 250 1000 (See only apa_p) (See only apa_p) (See only apa_p)
Significant digits:
nn ana_n an/n(k1)/2a_n / n^{(k-1)/2} αn \alpha_n θn \theta_n
pp apa_p ap/p(k1)/2a_p / p^{(k-1)/2} αp \alpha_p θp \theta_p
22 0 0
33 0 0
44 0 0
55 0 0
66 0 0
77 −2.00000 −0.755929 −0.377964 0.925820i 0.623376π-0.623376\pi
−0.377964 + 0.925820i 0.623376π0.623376\pi
88 0 0
99 0 0
1010 0 0
1111 0 0 1.00000 00
−1.00000 π\pi
1212 0 0
1313 4.00000i 1.10940i 0.832050 + 0.554700i 0.187167π0.187167\pi
−0.832050 + 0.554700i 0.812833π0.812833\pi
1414 0 0
1515 0 0
1616 0 0
1717 −2.00000 −0.485071 −0.242536 0.970143i 0.577979π-0.577979\pi
−0.242536 + 0.970143i 0.577979π0.577979\pi
1818 0 0
1919 − 4.00000i − 0.917663i −0.888523 0.458831i 0.848268π-0.848268\pi
0.888523 0.458831i 0.151732π-0.151732\pi
2020 0 0
2121 0 0
2222 0 0
2323 −4.00000 −0.834058 −0.417029 0.908893i 0.636929π-0.636929\pi
−0.417029 + 0.908893i 0.636929π0.636929\pi
2424 0 0
2525 0 0
2626 0 0
2727 0 0
2828 0 0
2929 6.00000i 1.11417i 0.830455 + 0.557086i 0.188081π0.188081\pi
−0.830455 + 0.557086i 0.811919π0.811919\pi
3030 0 0
3131 −2.00000 −0.359211 −0.179605 0.983739i 0.557482π-0.557482\pi
−0.179605 + 0.983739i 0.557482π0.557482\pi
3232 0 0
3333 0 0
3434 0 0
3535 0 0
3636 0 0
3737 − 8.00000i − 1.31519i −0.753371 0.657596i 0.771573π-0.771573\pi
0.753371 0.657596i 0.228427π-0.228427\pi
3838 0 0
3939 0 0
4040 0 0
4141 −2.00000 −0.312348 −0.156174 0.987730i 0.549916π-0.549916\pi
−0.156174 + 0.987730i 0.549916π0.549916\pi
4242 0 0
4343 − 4.00000i − 0.609994i −0.952353 0.304997i 0.901344π-0.901344\pi
0.952353 0.304997i 0.0986555π-0.0986555\pi
4444 0 0
4545 0 0
4646 0 0
4747 12.0000 1.75038 0.875190 0.483779i 0.160736π-0.160736\pi
0.875190 + 0.483779i 0.160736π0.160736\pi
4848 0 0
4949 −3.00000 −0.428571
5050 0 0
5151 0 0
5252 0 0
5353 6.00000i 0.824163i 0.911147 + 0.412082i 0.135198π0.135198\pi
−0.911147 + 0.412082i 0.864802π0.864802\pi
5454 0 0
5555 0 0
5656 0 0
5757 0 0
5858 0 0
5959 4.00000i 0.520756i 0.965507 + 0.260378i 0.0838471π0.0838471\pi
−0.965507 + 0.260378i 0.916153π0.916153\pi
6060 0 0
6161 0 0 1.00000 00
−1.00000 π\pi
6262 0 0
6363 0 0
6464 0 0
6565 0 0
6666 0 0
6767 − 12.0000i − 1.46603i −0.680211 0.733017i 0.738112π-0.738112\pi
0.680211 0.733017i 0.261888π-0.261888\pi
6868 0 0
6969 0 0
7070 0 0
7171 12.0000 1.42414 0.712069 0.702109i 0.247758π-0.247758\pi
0.712069 + 0.702109i 0.247758π0.247758\pi
7272 0 0
7373 6.00000 0.702247 0.351123 0.936329i 0.385800π-0.385800\pi
0.351123 + 0.936329i 0.385800π0.385800\pi
7474 0 0
7575 0 0
7676 0 0
7777 0 0
7878 0 0
7979 −10.0000 −1.12509 −0.562544 0.826767i 0.690177π-0.690177\pi
−0.562544 + 0.826767i 0.690177π0.690177\pi
8080 0 0
8181 0 0
8282 0 0
8383 − 16.0000i − 1.75623i −0.478451 0.878114i 0.658802π-0.658802\pi
0.478451 0.878114i 0.341198π-0.341198\pi
8484 0 0
8585 0 0
8686 0 0
8787 0 0
8888 0 0
8989 10.0000 1.06000 0.529999 0.847998i 0.322192π-0.322192\pi
0.529999 + 0.847998i 0.322192π0.322192\pi
9090 0 0
9191 − 8.00000i − 0.838628i
9292 0 0
9393 0 0
9494 0 0
9595 0 0
9696 0 0
9797 2.00000 0.203069 0.101535 0.994832i 0.467625π-0.467625\pi
0.101535 + 0.994832i 0.467625π0.467625\pi
9898 0 0
9999 0 0
100100 0 0
101101 10.0000i 0.995037i 0.867453 + 0.497519i 0.165755π0.165755\pi
−0.867453 + 0.497519i 0.834245π0.834245\pi
102102 0 0
103103 −6.00000 −0.591198 −0.295599 0.955312i 0.595519π-0.595519\pi
−0.295599 + 0.955312i 0.595519π0.595519\pi
104104 0 0
105105 0 0
106106 0 0
107107 12.0000i 1.16008i 0.814587 + 0.580042i 0.196964π0.196964\pi
−0.814587 + 0.580042i 0.803036π0.803036\pi
108108 0 0
109109 4.00000i 0.383131i 0.981480 + 0.191565i 0.0613564π0.0613564\pi
−0.981480 + 0.191565i 0.938644π0.938644\pi
110110 0 0
111111 0 0
112112 0 0
113113 −6.00000 −0.564433 −0.282216 0.959351i 0.591070π-0.591070\pi
−0.282216 + 0.959351i 0.591070π0.591070\pi
114114 0 0
115115 0 0
116116 0 0
117117 0 0
118118 0 0
119119 4.00000 0.366679
120120 0 0
121121 11.0000 1.00000
122122 0 0
123123 0 0
124124 0 0
125125 0 0
126126 0 0
127127 −2.00000 −0.177471 −0.0887357 0.996055i 0.528283π-0.528283\pi
−0.0887357 + 0.996055i 0.528283π0.528283\pi
128128 0 0
129129 0 0
130130 0 0
131131 − 20.0000i − 1.74741i −0.486458 0.873704i 0.661711π-0.661711\pi
0.486458 0.873704i 0.338289π-0.338289\pi
132132 0 0
133133 8.00000i 0.693688i
134134 0 0
135135 0 0
136136 0 0
137137 18.0000 1.53784 0.768922 0.639343i 0.220793π-0.220793\pi
0.768922 + 0.639343i 0.220793π0.220793\pi
138138 0 0
139139 − 4.00000i − 0.339276i −0.985506 0.169638i 0.945740π-0.945740\pi
0.985506 0.169638i 0.0542598π-0.0542598\pi
140140 0 0
141141 0 0
142142 0 0
143143 0 0
144144 0 0
145145 0 0
146146 0 0
147147 0 0
148148 0 0
149149 6.00000i 0.491539i 0.969328 + 0.245770i 0.0790407π0.0790407\pi
−0.969328 + 0.245770i 0.920959π0.920959\pi
150150 0 0
151151 18.0000 1.46482 0.732410 0.680864i 0.238396π-0.238396\pi
0.732410 + 0.680864i 0.238396π0.238396\pi
152152 0 0
153153 0 0
154154 0 0
155155 0 0
156156 0 0
157157 − 8.00000i − 0.638470i −0.947676 0.319235i 0.896574π-0.896574\pi
0.947676 0.319235i 0.103426π-0.103426\pi
158158 0 0
159159 0 0
160160 0 0
161161 8.00000 0.630488
162162 0 0
163163 − 4.00000i − 0.313304i −0.987654 0.156652i 0.949930π-0.949930\pi
0.987654 0.156652i 0.0500701π-0.0500701\pi
164164 0 0
165165 0 0
166166 0 0
167167 −8.00000 −0.619059 −0.309529 0.950890i 0.600171π-0.600171\pi
−0.309529 + 0.950890i 0.600171π0.600171\pi
168168 0 0
169169 −3.00000 −0.230769
170170 0 0
171171 0 0
172172 0 0
173173 6.00000i 0.456172i 0.973641 + 0.228086i 0.0732467π0.0732467\pi
−0.973641 + 0.228086i 0.926753π0.926753\pi
174174 0 0
175175 0 0
176176 0 0
177177 0 0
178178 0 0
179179 4.00000i 0.298974i 0.988764 + 0.149487i 0.0477622π0.0477622\pi
−0.988764 + 0.149487i 0.952238π0.952238\pi
180180 0 0
181181 − 20.0000i − 1.48659i −0.668965 0.743294i 0.733262π-0.733262\pi
0.668965 0.743294i 0.266738π-0.266738\pi
182182 0 0
183183 0 0
184184 0 0
185185 0 0
186186 0 0
187187 0 0
188188 0 0
189189 0 0
190190 0 0
191191 −8.00000 −0.578860 −0.289430 0.957199i 0.593466π-0.593466\pi
−0.289430 + 0.957199i 0.593466π0.593466\pi
192192 0 0
193193 6.00000 0.431889 0.215945 0.976406i 0.430717π-0.430717\pi
0.215945 + 0.976406i 0.430717π0.430717\pi
194194 0 0
195195 0 0
196196 0 0
197197 − 2.00000i − 0.142494i −0.997459 0.0712470i 0.977302π-0.977302\pi
0.997459 0.0712470i 0.0226979π-0.0226979\pi
198198 0 0
199199 −10.0000 −0.708881 −0.354441 0.935079i 0.615329π-0.615329\pi
−0.354441 + 0.935079i 0.615329π0.615329\pi
200200 0 0
201201 0 0
202202 0 0
203203 − 12.0000i − 0.842235i
204204 0 0
205205 0 0
206206 0 0
207207 0 0
208208 0 0
209209 0 0
210210 0 0
211211 − 20.0000i − 1.37686i −0.725304 0.688428i 0.758301π-0.758301\pi
0.725304 0.688428i 0.241699π-0.241699\pi
212212 0 0
213213 0 0
214214 0 0
215215 0 0
216216 0 0
217217 4.00000 0.271538
218218 0 0
219219 0 0
220220 0 0
221221 − 8.00000i − 0.538138i
222222 0 0
223223 14.0000 0.937509 0.468755 0.883328i 0.344703π-0.344703\pi
0.468755 + 0.883328i 0.344703π0.344703\pi
224224 0 0
225225 0 0
226226 0 0
227227 − 8.00000i − 0.530979i −0.964114 0.265489i 0.914466π-0.914466\pi
0.964114 0.265489i 0.0855335π-0.0855335\pi
228228 0 0
229229 4.00000i 0.264327i 0.991228 + 0.132164i 0.0421925π0.0421925\pi
−0.991228 + 0.132164i 0.957808π0.957808\pi
230230 0 0
231231 0 0
232232 0 0
233233 14.0000 0.917170 0.458585 0.888650i 0.348356π-0.348356\pi
0.458585 + 0.888650i 0.348356π0.348356\pi
234234 0 0
235235 0 0
236236 0 0
237237 0 0
238238 0 0
239239 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
240240 0 0
241241 2.00000 0.128831 0.0644157 0.997923i 0.479482π-0.479482\pi
0.0644157 + 0.997923i 0.479482π0.479482\pi
242242 0 0
243243 0 0
244244 0 0
245245 0 0
246246 0 0
247247 16.0000 1.01806
248248 0 0
249249 0 0
250250 0 0
251251 0 0 1.00000 00
−1.00000 π\pi
252252 0 0
253253 0 0
254254 0 0
255255 0 0
256256 0 0
257257 18.0000 1.12281 0.561405 0.827541i 0.310261π-0.310261\pi
0.561405 + 0.827541i 0.310261π0.310261\pi
258258 0 0
259259 16.0000i 0.994192i
260260 0 0
261261 0 0
262262 0 0
263263 16.0000 0.986602 0.493301 0.869859i 0.335790π-0.335790\pi
0.493301 + 0.869859i 0.335790π0.335790\pi
264264 0 0
265265 0 0
266266 0 0
267267 0 0
268268 0 0
269269 6.00000i 0.365826i 0.983129 + 0.182913i 0.0585527π0.0585527\pi
−0.983129 + 0.182913i 0.941447π0.941447\pi
270270 0 0
271271 18.0000 1.09342 0.546711 0.837321i 0.315880π-0.315880\pi
0.546711 + 0.837321i 0.315880π0.315880\pi
272272 0 0
273273 0 0
274274 0 0
275275 0 0
276276 0 0
277277 − 28.0000i − 1.68236i −0.540758 0.841178i 0.681862π-0.681862\pi
0.540758 0.841178i 0.318138π-0.318138\pi
278278 0 0
279279 0 0
280280 0 0
281281 18.0000 1.07379 0.536895 0.843649i 0.319597π-0.319597\pi
0.536895 + 0.843649i 0.319597π0.319597\pi
282282 0 0
283283 − 4.00000i − 0.237775i −0.992908 0.118888i 0.962067π-0.962067\pi
0.992908 0.118888i 0.0379328π-0.0379328\pi
284284 0 0
285285 0 0
286286 0 0
287287 4.00000 0.236113
288288 0 0
289289 −13.0000 −0.764706
290290 0 0
291291 0 0
292292 0 0
293293 6.00000i 0.350524i 0.984522 + 0.175262i 0.0560772π0.0560772\pi
−0.984522 + 0.175262i 0.943923π0.943923\pi
294294 0 0
295295 0 0
296296 0 0
297297 0 0
298298 0 0
299299 − 16.0000i − 0.925304i
300300 0 0
301301 8.00000i 0.461112i
302302 0 0
303303 0 0
304304 0 0
305305 0 0
306306 0 0
307307 − 12.0000i − 0.684876i −0.939540 0.342438i 0.888747π-0.888747\pi
0.939540 0.342438i 0.111253π-0.111253\pi
308308 0 0
309309 0 0
310310 0 0
311311 −8.00000 −0.453638 −0.226819 0.973937i 0.572833π-0.572833\pi
−0.226819 + 0.973937i 0.572833π0.572833\pi
312312 0 0
313313 −14.0000 −0.791327 −0.395663 0.918396i 0.629485π-0.629485\pi
−0.395663 + 0.918396i 0.629485π0.629485\pi
314314 0 0
315315 0 0
316316 0 0
317317 − 22.0000i − 1.23564i −0.786318 0.617822i 0.788015π-0.788015\pi
0.786318 0.617822i 0.211985π-0.211985\pi
318318 0 0
319319 0 0
320320 0 0
321321 0 0
322322 0 0
323323 8.00000i 0.445132i
324324 0 0
325325 0 0
326326 0 0
327327 0 0
328328 0 0
329329 −24.0000 −1.32316
330330 0 0
331331 − 20.0000i − 1.09930i −0.835395 0.549650i 0.814761π-0.814761\pi
0.835395 0.549650i 0.185239π-0.185239\pi
332332 0 0
333333 0 0
334334 0 0
335335 0 0
336336 0 0
337337 2.00000 0.108947 0.0544735 0.998515i 0.482652π-0.482652\pi
0.0544735 + 0.998515i 0.482652π0.482652\pi
338338 0 0
339339 0 0
340340 0 0
341341 0 0
342342 0 0
343343 20.0000 1.07990
344344 0 0
345345 0 0
346346 0 0
347347 − 8.00000i − 0.429463i −0.976673 0.214731i 0.931112π-0.931112\pi
0.976673 0.214731i 0.0688876π-0.0688876\pi
348348 0 0
349349 − 16.0000i − 0.856460i −0.903670 0.428230i 0.859137π-0.859137\pi
0.903670 0.428230i 0.140863π-0.140863\pi
350350 0 0
351351 0 0
352352 0 0
353353 −6.00000 −0.319348 −0.159674 0.987170i 0.551044π-0.551044\pi
−0.159674 + 0.987170i 0.551044π0.551044\pi
354354 0 0
355355 0 0
356356 0 0
357357 0 0
358358 0 0
359359 −20.0000 −1.05556 −0.527780 0.849381i 0.676975π-0.676975\pi
−0.527780 + 0.849381i 0.676975π0.676975\pi
360360 0 0
361361 3.00000 0.157895
362362 0 0
363363 0 0
364364 0 0
365365 0 0
366366 0 0
367367 18.0000 0.939592 0.469796 0.882775i 0.344327π-0.344327\pi
0.469796 + 0.882775i 0.344327π0.344327\pi
368368 0 0
369369 0 0
370370 0 0
371371 − 12.0000i − 0.623009i
372372 0 0
373373 − 16.0000i − 0.828449i −0.910175 0.414224i 0.864053π-0.864053\pi
0.910175 0.414224i 0.135947π-0.135947\pi
374374 0 0
375375 0 0
376376 0 0
377377 −24.0000 −1.23606
378378 0 0
379379 − 4.00000i − 0.205466i −0.994709 0.102733i 0.967241π-0.967241\pi
0.994709 0.102733i 0.0327588π-0.0327588\pi
380380 0 0
381381 0 0
382382 0 0
383383 −24.0000 −1.22634 −0.613171 0.789950i 0.710106π-0.710106\pi
−0.613171 + 0.789950i 0.710106π0.710106\pi
384384 0 0
385385 0 0
386386 0 0
387387 0 0
388388 0 0
389389 − 34.0000i − 1.72387i −0.507020 0.861934i 0.669253π-0.669253\pi
0.507020 0.861934i 0.330747π-0.330747\pi
390390 0 0
391391 8.00000 0.404577
392392 0 0
393393 0 0
394394 0 0
395395 0 0
396396 0 0
397397 32.0000i 1.60603i 0.595956 + 0.803017i 0.296773π0.296773\pi
−0.595956 + 0.803017i 0.703227π0.703227\pi
398398 0 0
399399 0 0
400400 0 0
401401 18.0000 0.898877 0.449439 0.893311i 0.351624π-0.351624\pi
0.449439 + 0.893311i 0.351624π0.351624\pi
402402 0 0
403403 − 8.00000i − 0.398508i
404404 0 0
405405 0 0
406406 0 0
407407 0 0
408408 0 0
409409 10.0000 0.494468 0.247234 0.968956i 0.420478π-0.420478\pi
0.247234 + 0.968956i 0.420478π0.420478\pi
410410 0 0
411411 0 0
412412 0 0
413413 − 8.00000i − 0.393654i
414414 0 0
415415 0 0
416416 0 0
417417 0 0
418418 0 0
419419 24.0000i 1.17248i 0.810139 + 0.586238i 0.199392π0.199392\pi
−0.810139 + 0.586238i 0.800608π0.800608\pi
420420 0 0
421421 − 20.0000i − 0.974740i −0.873195 0.487370i 0.837956π-0.837956\pi
0.873195 0.487370i 0.162044π-0.162044\pi
422422 0 0
423423 0 0
424424 0 0
425425 0 0
426426 0 0
427427 0 0
428428 0 0
429429 0 0
430430 0 0
431431 12.0000 0.578020 0.289010 0.957326i 0.406674π-0.406674\pi
0.289010 + 0.957326i 0.406674π0.406674\pi
432432 0 0
433433 −14.0000 −0.672797 −0.336399 0.941720i 0.609209π-0.609209\pi
−0.336399 + 0.941720i 0.609209π0.609209\pi
434434 0 0
435435 0 0
436436 0 0
437437 16.0000i 0.765384i
438438 0 0
439439 30.0000 1.43182 0.715911 0.698192i 0.246012π-0.246012\pi
0.715911 + 0.698192i 0.246012π0.246012\pi
440440 0 0
441441 0 0
442442 0 0
443443 24.0000i 1.14027i 0.821549 + 0.570137i 0.193110π0.193110\pi
−0.821549 + 0.570137i 0.806890π0.806890\pi
444444 0 0
445445 0 0
446446 0 0
447447 0 0
448448 0 0
449449 −30.0000 −1.41579 −0.707894 0.706319i 0.750354π-0.750354\pi
−0.707894 + 0.706319i 0.750354π0.750354\pi
450450 0 0
451451 0 0
452452 0 0
453453 0 0
454454 0 0
455455 0 0
456456 0 0
457457 22.0000 1.02912 0.514558 0.857455i 0.327956π-0.327956\pi
0.514558 + 0.857455i 0.327956π0.327956\pi
458458 0 0
459459 0 0
460460 0 0
461461 − 30.0000i − 1.39724i −0.715493 0.698620i 0.753798π-0.753798\pi
0.715493 0.698620i 0.246202π-0.246202\pi
462462 0 0
463463 −26.0000 −1.20832 −0.604161 0.796862i 0.706492π-0.706492\pi
−0.604161 + 0.796862i 0.706492π0.706492\pi
464464 0 0
465465 0 0
466466 0 0
467467 − 8.00000i − 0.370196i −0.982720 0.185098i 0.940740π-0.940740\pi
0.982720 0.185098i 0.0592602π-0.0592602\pi
468468 0 0
469469 24.0000i 1.10822i
470470 0 0
471471 0 0
472472 0 0
473473 0 0
474474 0 0
475475 0 0
476476 0 0
477477 0 0
478478 0 0
479479 20.0000 0.913823 0.456912 0.889512i 0.348956π-0.348956\pi
0.456912 + 0.889512i 0.348956π0.348956\pi
480480 0 0
481481 32.0000 1.45907
482482 0 0
483483 0 0
484484 0 0
485485 0 0
486486 0 0
487487 38.0000 1.72194 0.860972 0.508652i 0.169856π-0.169856\pi
0.860972 + 0.508652i 0.169856π0.169856\pi
488488 0 0
489489 0 0
490490 0 0
491491 − 20.0000i − 0.902587i −0.892375 0.451294i 0.850963π-0.850963\pi
0.892375 0.451294i 0.149037π-0.149037\pi
492492 0 0
493493 − 12.0000i − 0.540453i
494494 0 0
495495 0 0
496496 0 0
497497 −24.0000 −1.07655
498498 0 0
499499 36.0000i 1.61158i 0.592200 + 0.805791i 0.298259π0.298259\pi
−0.592200 + 0.805791i 0.701741π0.701741\pi
500500 0 0
501501 0 0
502502 0 0
503503 36.0000 1.60516 0.802580 0.596544i 0.203460π-0.203460\pi
0.802580 + 0.596544i 0.203460π0.203460\pi
504504 0 0
505505 0 0
506506 0 0
507507 0 0
508508 0 0
509509 6.00000i 0.265945i 0.991120 + 0.132973i 0.0424523π0.0424523\pi
−0.991120 + 0.132973i 0.957548π0.957548\pi
510510 0 0
511511 −12.0000 −0.530849
512512 0 0
513513 0 0
514514 0 0
515515 0 0
516516 0 0
517517 0 0
518518 0 0
519519 0 0
520520 0 0
521521 −42.0000 −1.84005 −0.920027 0.391856i 0.871833π-0.871833\pi
−0.920027 + 0.391856i 0.871833π0.871833\pi
522522 0 0
523523 36.0000i 1.57417i 0.616844 + 0.787085i 0.288411π0.288411\pi
−0.616844 + 0.787085i 0.711589π0.711589\pi
524524 0 0
525525 0 0
526526 0 0
527527 4.00000 0.174243
528528 0 0
529529 −7.00000 −0.304348
530530 0 0
531531 0 0
532532 0 0
533533 − 8.00000i − 0.346518i
534534 0 0
535535 0 0
536536 0 0
537537 0 0
538538 0 0
539539 0 0
540540 0 0
541541 20.0000i 0.859867i 0.902861 + 0.429934i 0.141463π0.141463\pi
−0.902861 + 0.429934i 0.858537π0.858537\pi
542542 0 0
543543 0 0
544544 0 0
545545 0 0
546546 0 0
547547 28.0000i 1.19719i 0.801050 + 0.598597i 0.204275π0.204275\pi
−0.801050 + 0.598597i 0.795725π0.795725\pi
548548 0 0
549549 0 0
550550 0 0
551551 24.0000 1.02243
552552 0 0
553553 20.0000 0.850487
554554 0 0
555555 0 0
556556 0 0
557557 − 42.0000i − 1.77960i −0.456354 0.889799i 0.650845π-0.650845\pi
0.456354 0.889799i 0.349155π-0.349155\pi
558558 0 0
559559 16.0000 0.676728
560560 0 0
561561 0 0
562562 0 0
563563 24.0000i 1.01148i 0.862686 + 0.505740i 0.168780π0.168780\pi
−0.862686 + 0.505740i 0.831220π0.831220\pi
564564 0 0
565565 0 0
566566 0 0
567567 0 0
568568 0 0
569569 30.0000 1.25767 0.628833 0.777541i 0.283533π-0.283533\pi
0.628833 + 0.777541i 0.283533π0.283533\pi
570570 0 0
571571 20.0000i 0.836974i 0.908223 + 0.418487i 0.137439π0.137439\pi
−0.908223 + 0.418487i 0.862561π0.862561\pi
572572 0 0
573573 0 0
574574 0 0
575575 0 0
576576 0 0
577577 42.0000 1.74848 0.874241 0.485491i 0.161359π-0.161359\pi
0.874241 + 0.485491i 0.161359π0.161359\pi
578578 0 0
579579 0 0
580580 0 0
581581 32.0000i 1.32758i
582582 0 0
583583 0 0
584584 0 0
585585 0 0
586586 0 0
587587 − 28.0000i − 1.15568i −0.816149 0.577842i 0.803895π-0.803895\pi
0.816149 0.577842i 0.196105π-0.196105\pi
588588 0 0
589589 8.00000i 0.329634i
590590 0 0
591591 0 0
592592 0 0
593593 −6.00000 −0.246390 −0.123195 0.992382i 0.539314π-0.539314\pi
−0.123195 + 0.992382i 0.539314π0.539314\pi
594594 0 0
595595 0 0
596596 0 0
597597 0 0
598598 0 0
599599 −20.0000 −0.817178 −0.408589 0.912719i 0.633979π-0.633979\pi
−0.408589 + 0.912719i 0.633979π0.633979\pi
600600 0 0
601601 2.00000 0.0815817 0.0407909 0.999168i 0.487012π-0.487012\pi
0.0407909 + 0.999168i 0.487012π0.487012\pi
602602 0 0
603603 0 0
604604 0 0
605605 0 0
606606 0 0
607607 −2.00000 −0.0811775 −0.0405887 0.999176i 0.512923π-0.512923\pi
−0.0405887 + 0.999176i 0.512923π0.512923\pi
608608 0 0
609609 0 0
610610 0 0
611611 48.0000i 1.94187i
612612 0 0
613613 − 16.0000i − 0.646234i −0.946359 0.323117i 0.895269π-0.895269\pi
0.946359 0.323117i 0.104731π-0.104731\pi
614614 0 0
615615 0 0
616616 0 0
617617 −2.00000 −0.0805170 −0.0402585 0.999189i 0.512818π-0.512818\pi
−0.0402585 + 0.999189i 0.512818π0.512818\pi
618618 0 0
619619 36.0000i 1.44696i 0.690344 + 0.723481i 0.257459π0.257459\pi
−0.690344 + 0.723481i 0.742541π0.742541\pi
620620 0 0
621621 0 0
622622 0 0
623623 −20.0000 −0.801283
624624 0 0
625625 0 0
626626 0 0
627627 0 0
628628 0 0
629629 16.0000i 0.637962i
630630 0 0
631631 −22.0000 −0.875806 −0.437903 0.899022i 0.644279π-0.644279\pi
−0.437903 + 0.899022i 0.644279π0.644279\pi
632632 0 0
633633 0 0
634634 0 0
635635 0 0
636636 0 0
637637 − 12.0000i − 0.475457i
638638 0 0
639639 0 0
640640 0 0
641641 −22.0000 −0.868948 −0.434474 0.900684i 0.643066π-0.643066\pi
−0.434474 + 0.900684i 0.643066π0.643066\pi
642642 0 0
643643 − 4.00000i − 0.157745i −0.996885 0.0788723i 0.974868π-0.974868\pi
0.996885 0.0788723i 0.0251319π-0.0251319\pi
644644 0 0
645645 0 0
646646 0 0
647647 12.0000 0.471769 0.235884 0.971781i 0.424201π-0.424201\pi
0.235884 + 0.971781i 0.424201π0.424201\pi
648648 0 0
649649 0 0
650650 0 0
651651 0 0
652652 0 0
653653 6.00000i 0.234798i 0.993085 + 0.117399i 0.0374557π0.0374557\pi
−0.993085 + 0.117399i 0.962544π0.962544\pi
654654 0 0
655655 0 0
656656 0 0
657657 0 0
658658 0 0
659659 − 36.0000i − 1.40236i −0.712984 0.701180i 0.752657π-0.752657\pi
0.712984 0.701180i 0.247343π-0.247343\pi
660660 0 0
661661 − 40.0000i − 1.55582i −0.628376 0.777910i 0.716280π-0.716280\pi
0.628376 0.777910i 0.283720π-0.283720\pi
662662 0 0
663663 0 0
664664 0 0
665665 0 0
666666 0 0
667667 − 24.0000i − 0.929284i
668668 0 0
669669 0 0
670670 0 0
671671 0 0
672672 0 0
673673 −14.0000 −0.539660 −0.269830 0.962908i 0.586968π-0.586968\pi
−0.269830 + 0.962908i 0.586968π0.586968\pi
674674 0 0
675675 0 0
676676 0 0
677677 18.0000i 0.691796i 0.938272 + 0.345898i 0.112426π0.112426\pi
−0.938272 + 0.345898i 0.887574π0.887574\pi
678678 0 0
679679 −4.00000 −0.153506
680680 0 0
681681 0 0
682682 0 0
683683 − 16.0000i − 0.612223i −0.951996 0.306111i 0.900972π-0.900972\pi
0.951996 0.306111i 0.0990280π-0.0990280\pi
684684 0 0
685685 0 0
686686 0 0
687687 0 0
688688 0 0
689689 −24.0000 −0.914327
690690 0 0
691691 20.0000i 0.760836i 0.924815 + 0.380418i 0.124220π0.124220\pi
−0.924815 + 0.380418i 0.875780π0.875780\pi
692692 0 0
693693 0 0
694694 0 0
695695 0 0
696696 0 0
697697 4.00000 0.151511
698698 0 0
699699 0 0
700700 0 0
701701 − 50.0000i − 1.88847i −0.329267 0.944237i 0.606802π-0.606802\pi
0.329267 0.944237i 0.393198π-0.393198\pi
702702 0 0
703703 −32.0000 −1.20690
704704 0 0
705705 0 0
706706 0 0
707707 − 20.0000i − 0.752177i
708708 0 0
709709 4.00000i 0.150223i 0.997175 + 0.0751116i 0.0239313π0.0239313\pi
−0.997175 + 0.0751116i 0.976069π0.976069\pi
710710 0 0
711711 0 0
712712 0 0
713713 8.00000 0.299602
714714 0 0
715715 0 0
716716 0 0
717717 0 0
718718 0 0
719719 −20.0000 −0.745874 −0.372937 0.927857i 0.621649π-0.621649\pi
−0.372937 + 0.927857i 0.621649π0.621649\pi
720720 0 0
721721 12.0000 0.446903
722722 0 0
723723 0 0
724724 0 0
725725 0 0
726726 0 0
727727 −42.0000 −1.55769 −0.778847 0.627214i 0.784195π-0.784195\pi
−0.778847 + 0.627214i 0.784195π0.784195\pi
728728 0 0
729729 0 0
730730 0 0
731731 8.00000i 0.295891i
732732 0 0
733733 4.00000i 0.147743i 0.997268 + 0.0738717i 0.0235355π0.0235355\pi
−0.997268 + 0.0738717i 0.976464π0.976464\pi
734734 0 0
735735 0 0
736736 0 0
737737 0 0
738738 0 0
739739 − 44.0000i − 1.61857i −0.587419 0.809283i 0.699856π-0.699856\pi
0.587419 0.809283i 0.300144π-0.300144\pi
740740 0 0
741741 0 0
742742 0 0
743743 16.0000 0.586983 0.293492 0.955962i 0.405183π-0.405183\pi
0.293492 + 0.955962i 0.405183π0.405183\pi
744744 0 0
745745 0 0
746746 0 0
747747 0 0
748748 0 0
749749 − 24.0000i − 0.876941i
750750 0 0
751751 −2.00000 −0.0729810 −0.0364905 0.999334i 0.511618π-0.511618\pi
−0.0364905 + 0.999334i 0.511618π0.511618\pi
752752 0 0
753753 0 0
754754 0 0
755755 0 0
756756 0 0
757757 12.0000i 0.436147i 0.975932 + 0.218074i 0.0699773π0.0699773\pi
−0.975932 + 0.218074i 0.930023π0.930023\pi
758758 0 0
759759 0 0
760760 0 0
761761 38.0000 1.37750 0.688749 0.724999i 0.258160π-0.258160\pi
0.688749 + 0.724999i 0.258160π0.258160\pi
762762 0 0
763763 − 8.00000i − 0.289619i
764764 0 0
765765 0 0
766766 0 0
767767 −16.0000 −0.577727
768768 0 0
769769 10.0000 0.360609 0.180305 0.983611i 0.442292π-0.442292\pi
0.180305 + 0.983611i 0.442292π0.442292\pi
770770 0 0
771771 0 0
772772 0 0
773773 − 34.0000i − 1.22290i −0.791285 0.611448i 0.790588π-0.790588\pi
0.791285 0.611448i 0.209412π-0.209412\pi
774774 0 0
775775 0 0
776776 0 0
777777 0 0
778778 0 0
779779 8.00000i 0.286630i
780780 0 0
781781 0 0
782782 0 0
783783 0 0
784784 0 0
785785 0 0
786786 0 0
787787 − 12.0000i − 0.427754i −0.976861 0.213877i 0.931391π-0.931391\pi
0.976861 0.213877i 0.0686091π-0.0686091\pi
788788 0 0
789789 0 0
790790 0 0
791791 12.0000 0.426671
792792 0 0
793793 0 0
794794 0 0
795795 0 0
796796 0 0
797797 − 2.00000i − 0.0708436i −0.999372 0.0354218i 0.988723π-0.988723\pi
0.999372 0.0354218i 0.0112775π-0.0112775\pi
798798 0 0
799799 −24.0000 −0.849059
800800 0 0
801801 0 0
802802 0 0
803803 0 0
804804 0 0
805805 0 0
806806 0 0
807807 0 0
808808 0 0
809809 30.0000 1.05474 0.527372 0.849635i 0.323177π-0.323177\pi
0.527372 + 0.849635i 0.323177π0.323177\pi
810810 0 0
811811 − 20.0000i − 0.702295i −0.936320 0.351147i 0.885792π-0.885792\pi
0.936320 0.351147i 0.114208π-0.114208\pi
812812 0 0
813813 0 0
814814 0 0
815815 0 0
816816 0 0
817817 −16.0000 −0.559769
818818 0 0
819819 0 0
820820 0 0
821821 10.0000i 0.349002i 0.984657 + 0.174501i 0.0558313π0.0558313\pi
−0.984657 + 0.174501i 0.944169π0.944169\pi
822822 0 0
823823 14.0000 0.488009 0.244005 0.969774i 0.421539π-0.421539\pi
0.244005 + 0.969774i 0.421539π0.421539\pi
824824 0 0
825825 0 0
826826 0 0
827827 12.0000i 0.417281i 0.977992 + 0.208640i 0.0669038π0.0669038\pi
−0.977992 + 0.208640i 0.933096π0.933096\pi
828828 0 0
829829 4.00000i 0.138926i 0.997585 + 0.0694629i 0.0221285π0.0221285\pi
−0.997585 + 0.0694629i 0.977871π0.977871\pi
830830 0 0
831831 0 0
832832 0 0
833833 6.00000 0.207888
834834 0 0
835835 0 0
836836 0 0
837837 0 0
838838 0 0
839839 20.0000 0.690477 0.345238 0.938515i 0.387798π-0.387798\pi
0.345238 + 0.938515i 0.387798π0.387798\pi
840840 0 0
841841 −7.00000 −0.241379
842842 0 0
843843 0 0
844844 0 0
845845 0 0
846846 0 0
847847 −22.0000 −0.755929
848848 0 0
849849 0 0
850850 0 0
851851 32.0000i 1.09695i
852852 0 0
853853 24.0000i 0.821744i 0.911693 + 0.410872i 0.134776π0.134776\pi
−0.911693 + 0.410872i 0.865224π0.865224\pi
854854 0 0
855855 0 0
856856 0 0
857857 18.0000 0.614868 0.307434 0.951569i 0.400530π-0.400530\pi
0.307434 + 0.951569i 0.400530π0.400530\pi
858858 0 0
859859 − 44.0000i − 1.50126i −0.660722 0.750630i 0.729750π-0.729750\pi
0.660722 0.750630i 0.270250π-0.270250\pi
860860 0 0
861861 0 0
862862 0 0
863863 −24.0000 −0.816970 −0.408485 0.912765i 0.633943π-0.633943\pi
−0.408485 + 0.912765i 0.633943π0.633943\pi
864864 0 0
865865 0 0
866866 0 0
867867 0 0
868868 0 0
869869 0 0
870870 0 0
871871 48.0000 1.62642
872872 0 0
873873 0 0
874874 0 0
875875 0 0
876876 0 0
877877 32.0000i 1.08056i 0.841484 + 0.540282i 0.181682π0.181682\pi
−0.841484 + 0.540282i 0.818318π0.818318\pi
878878 0 0
879879 0 0
880880 0 0
881881 −2.00000 −0.0673817 −0.0336909 0.999432i 0.510726π-0.510726\pi
−0.0336909 + 0.999432i 0.510726π0.510726\pi
882882 0 0
883883 − 4.00000i − 0.134611i −0.997732 0.0673054i 0.978560π-0.978560\pi
0.997732 0.0673054i 0.0214402π-0.0214402\pi
884884 0 0
885885 0 0
886886 0 0
887887 −48.0000 −1.61168 −0.805841 0.592132i 0.798286π-0.798286\pi
−0.805841 + 0.592132i 0.798286π0.798286\pi
888888 0 0
889889 4.00000 0.134156
890890 0 0
891891 0 0
892892 0 0
893893 − 48.0000i − 1.60626i
894894 0 0
895895 0 0
896896 0 0
897897 0 0
898898 0 0
899899 − 12.0000i − 0.400222i
900900 0 0
901901 − 12.0000i − 0.399778i
902902 0 0
903903 0 0
904904 0 0
905905 0 0
906906 0 0
907907 28.0000i 0.929725i 0.885383 + 0.464862i 0.153896π0.153896\pi
−0.885383 + 0.464862i 0.846104π0.846104\pi
908908 0 0
909909 0 0
910910 0 0
911911 −48.0000 −1.59031 −0.795155 0.606406i 0.792611π-0.792611\pi
−0.795155 + 0.606406i 0.792611π0.792611\pi
912912 0 0
913913 0 0
914914 0 0
915915 0 0
916916 0 0
917917 40.0000i 1.32092i
918918 0 0
919919 −30.0000 −0.989609 −0.494804 0.869004i 0.664760π-0.664760\pi
−0.494804 + 0.869004i 0.664760π0.664760\pi
920920 0 0
921921 0 0
922922 0 0
923923 48.0000i 1.57994i
924924 0 0
925925 0 0
926926 0 0
927927 0 0
928928 0 0
929929 50.0000 1.64045 0.820223 0.572043i 0.193849π-0.193849\pi
0.820223 + 0.572043i 0.193849π0.193849\pi
930930 0 0
931931 12.0000i 0.393284i
932932 0 0
933933 0 0
934934 0 0
935935 0 0
936936 0 0
937937 −38.0000 −1.24141 −0.620703 0.784046i 0.713153π-0.713153\pi
−0.620703 + 0.784046i 0.713153π0.713153\pi
938938 0 0
939939 0 0
940940 0 0
941941 − 30.0000i − 0.977972i −0.872292 0.488986i 0.837367π-0.837367\pi
0.872292 0.488986i 0.162633π-0.162633\pi
942942 0 0
943943 8.00000 0.260516
944944 0 0
945945 0 0
946946 0 0
947947 12.0000i 0.389948i 0.980808 + 0.194974i 0.0624622π0.0624622\pi
−0.980808 + 0.194974i 0.937538π0.937538\pi
948948 0 0
949949 24.0000i 0.779073i
950950 0 0
951951 0 0
952952 0 0
953953 −6.00000 −0.194359 −0.0971795 0.995267i 0.530982π-0.530982\pi
−0.0971795 + 0.995267i 0.530982π0.530982\pi
954954 0 0
955955 0 0
956956 0 0
957957 0 0
958958 0 0
959959 −36.0000 −1.16250
960960 0 0
961961 −27.0000 −0.870968
962962 0 0
963963 0 0
964964 0 0
965965 0 0
966966 0 0
967967 −22.0000 −0.707472 −0.353736 0.935345i 0.615089π-0.615089\pi
−0.353736 + 0.935345i 0.615089π0.615089\pi
968968 0 0
969969 0 0
970970 0 0
971971 0 0 1.00000 00
−1.00000 π\pi
972972 0 0
973973 8.00000i 0.256468i
974974 0 0
975975 0 0
976976 0 0
977977 −2.00000 −0.0639857 −0.0319928 0.999488i 0.510185π-0.510185\pi
−0.0319928 + 0.999488i 0.510185π0.510185\pi
978978 0 0
979979 0 0
980980 0 0
981981 0 0
982982 0 0
983983 16.0000 0.510321 0.255160 0.966899i 0.417872π-0.417872\pi
0.255160 + 0.966899i 0.417872π0.417872\pi
984984 0 0
985985 0 0
986986 0 0
987987 0 0
988988 0 0
989989 16.0000i 0.508770i
990990 0 0
991991 −2.00000 −0.0635321 −0.0317660 0.999495i 0.510113π-0.510113\pi
−0.0317660 + 0.999495i 0.510113π0.510113\pi
992992 0 0
993993 0 0
994994 0 0
995995 0 0
996996 0 0
997997 − 48.0000i − 1.52018i −0.649821 0.760088i 0.725156π-0.725156\pi
0.649821 0.760088i 0.274844π-0.274844\pi
998998 0 0
999999 0 0
Display apa_p with pp up to: 50 250 1000 (See ana_n instead) (See ana_n instead) (See ana_n instead) Display ana_n with nn up to: 50 250 1000 (See only apa_p) (See only apa_p) (See only apa_p)

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 7200.2.k.d.3601.2 2
3.2 odd 2 2400.2.k.a.1201.1 2
4.3 odd 2 1800.2.k.a.901.1 2
5.2 odd 4 7200.2.d.g.2449.1 2
5.3 odd 4 7200.2.d.d.2449.2 2
5.4 even 2 288.2.d.b.145.1 2
8.3 odd 2 1800.2.k.a.901.2 2
8.5 even 2 inner 7200.2.k.d.3601.1 2
12.11 even 2 600.2.k.b.301.2 2
15.2 even 4 2400.2.d.b.49.1 2
15.8 even 4 2400.2.d.c.49.2 2
15.14 odd 2 96.2.d.a.49.2 2
20.3 even 4 1800.2.d.b.1549.2 2
20.7 even 4 1800.2.d.i.1549.1 2
20.19 odd 2 72.2.d.b.37.2 2
24.5 odd 2 2400.2.k.a.1201.2 2
24.11 even 2 600.2.k.b.301.1 2
40.3 even 4 1800.2.d.i.1549.2 2
40.13 odd 4 7200.2.d.g.2449.2 2
40.19 odd 2 72.2.d.b.37.1 2
40.27 even 4 1800.2.d.b.1549.1 2
40.29 even 2 288.2.d.b.145.2 2
40.37 odd 4 7200.2.d.d.2449.1 2
45.4 even 6 2592.2.r.g.2161.1 4
45.14 odd 6 2592.2.r.f.2161.2 4
45.29 odd 6 2592.2.r.f.433.1 4
45.34 even 6 2592.2.r.g.433.2 4
60.23 odd 4 600.2.d.c.349.1 2
60.47 odd 4 600.2.d.b.349.2 2
60.59 even 2 24.2.d.a.13.1 2
80.19 odd 4 2304.2.a.e.1.1 1
80.29 even 4 2304.2.a.b.1.1 1
80.59 odd 4 2304.2.a.o.1.1 1
80.69 even 4 2304.2.a.l.1.1 1
105.104 even 2 4704.2.c.a.2353.1 2
120.29 odd 2 96.2.d.a.49.1 2
120.53 even 4 2400.2.d.b.49.2 2
120.59 even 2 24.2.d.a.13.2 yes 2
120.77 even 4 2400.2.d.c.49.1 2
120.83 odd 4 600.2.d.b.349.1 2
120.107 odd 4 600.2.d.c.349.2 2
180.59 even 6 648.2.n.k.541.2 4
180.79 odd 6 648.2.n.c.109.2 4
180.119 even 6 648.2.n.k.109.1 4
180.139 odd 6 648.2.n.c.541.1 4
240.29 odd 4 768.2.a.d.1.1 1
240.59 even 4 768.2.a.a.1.1 1
240.149 odd 4 768.2.a.e.1.1 1
240.179 even 4 768.2.a.h.1.1 1
360.29 odd 6 2592.2.r.f.433.2 4
360.59 even 6 648.2.n.k.541.1 4
360.139 odd 6 648.2.n.c.541.2 4
360.149 odd 6 2592.2.r.f.2161.1 4
360.229 even 6 2592.2.r.g.2161.2 4
360.259 odd 6 648.2.n.c.109.1 4
360.299 even 6 648.2.n.k.109.2 4
360.349 even 6 2592.2.r.g.433.1 4
420.419 odd 2 1176.2.c.a.589.1 2
840.419 odd 2 1176.2.c.a.589.2 2
840.629 even 2 4704.2.c.a.2353.2 2
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
24.2.d.a.13.1 2 60.59 even 2
24.2.d.a.13.2 yes 2 120.59 even 2
72.2.d.b.37.1 2 40.19 odd 2
72.2.d.b.37.2 2 20.19 odd 2
96.2.d.a.49.1 2 120.29 odd 2
96.2.d.a.49.2 2 15.14 odd 2
288.2.d.b.145.1 2 5.4 even 2
288.2.d.b.145.2 2 40.29 even 2
600.2.d.b.349.1 2 120.83 odd 4
600.2.d.b.349.2 2 60.47 odd 4
600.2.d.c.349.1 2 60.23 odd 4
600.2.d.c.349.2 2 120.107 odd 4
600.2.k.b.301.1 2 24.11 even 2
600.2.k.b.301.2 2 12.11 even 2
648.2.n.c.109.1 4 360.259 odd 6
648.2.n.c.109.2 4 180.79 odd 6
648.2.n.c.541.1 4 180.139 odd 6
648.2.n.c.541.2 4 360.139 odd 6
648.2.n.k.109.1 4 180.119 even 6
648.2.n.k.109.2 4 360.299 even 6
648.2.n.k.541.1 4 360.59 even 6
648.2.n.k.541.2 4 180.59 even 6
768.2.a.a.1.1 1 240.59 even 4
768.2.a.d.1.1 1 240.29 odd 4
768.2.a.e.1.1 1 240.149 odd 4
768.2.a.h.1.1 1 240.179 even 4
1176.2.c.a.589.1 2 420.419 odd 2
1176.2.c.a.589.2 2 840.419 odd 2
1800.2.d.b.1549.1 2 40.27 even 4
1800.2.d.b.1549.2 2 20.3 even 4
1800.2.d.i.1549.1 2 20.7 even 4
1800.2.d.i.1549.2 2 40.3 even 4
1800.2.k.a.901.1 2 4.3 odd 2
1800.2.k.a.901.2 2 8.3 odd 2
2304.2.a.b.1.1 1 80.29 even 4
2304.2.a.e.1.1 1 80.19 odd 4
2304.2.a.l.1.1 1 80.69 even 4
2304.2.a.o.1.1 1 80.59 odd 4
2400.2.d.b.49.1 2 15.2 even 4
2400.2.d.b.49.2 2 120.53 even 4
2400.2.d.c.49.1 2 120.77 even 4
2400.2.d.c.49.2 2 15.8 even 4
2400.2.k.a.1201.1 2 3.2 odd 2
2400.2.k.a.1201.2 2 24.5 odd 2
2592.2.r.f.433.1 4 45.29 odd 6
2592.2.r.f.433.2 4 360.29 odd 6
2592.2.r.f.2161.1 4 360.149 odd 6
2592.2.r.f.2161.2 4 45.14 odd 6
2592.2.r.g.433.1 4 360.349 even 6
2592.2.r.g.433.2 4 45.34 even 6
2592.2.r.g.2161.1 4 45.4 even 6
2592.2.r.g.2161.2 4 360.229 even 6
4704.2.c.a.2353.1 2 105.104 even 2
4704.2.c.a.2353.2 2 840.629 even 2
7200.2.d.d.2449.1 2 40.37 odd 4
7200.2.d.d.2449.2 2 5.3 odd 4
7200.2.d.g.2449.1 2 5.2 odd 4
7200.2.d.g.2449.2 2 40.13 odd 4
7200.2.k.d.3601.1 2 8.5 even 2 inner
7200.2.k.d.3601.2 2 1.1 even 1 trivial