Properties

Label 648.2.n.c.109.1
Level $648$
Weight $2$
Character 648.109
Analytic conductor $5.174$
Analytic rank $0$
Dimension $4$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [648,2,Mod(109,648)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(648, base_ring=CyclotomicField(6))
 
chi = DirichletCharacter(H, H._module([0, 3, 2]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("648.109");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 648 = 2^{3} \cdot 3^{4} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 648.n (of order \(6\), degree \(2\), not minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(5.17430605098\)
Analytic rank: \(0\)
Dimension: \(4\)
Relative dimension: \(2\) over \(\Q(\zeta_{6})\)
Coefficient field: \(\Q(\zeta_{12})\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{4} - x^{2} + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{25}]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 24)
Sato-Tate group: $\mathrm{SU}(2)[C_{6}]$

Embedding invariants

Embedding label 109.1
Root \(0.866025 + 0.500000i\) of defining polynomial
Character \(\chi\) \(=\) 648.109
Dual form 648.2.n.c.541.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-1.36603 - 0.366025i) q^{2} +(1.73205 + 1.00000i) q^{4} +(-1.73205 - 1.00000i) q^{5} +(1.00000 + 1.73205i) q^{7} +(-2.00000 - 2.00000i) q^{8} +(2.00000 + 2.00000i) q^{10} +(-3.46410 - 2.00000i) q^{13} +(-0.732051 - 2.73205i) q^{14} +(2.00000 + 3.46410i) q^{16} +2.00000 q^{17} -4.00000i q^{19} +(-2.00000 - 3.46410i) q^{20} +(2.00000 - 3.46410i) q^{23} +(-0.500000 - 0.866025i) q^{25} +(4.00000 + 4.00000i) q^{26} +4.00000i q^{28} +(-5.19615 + 3.00000i) q^{29} +(-1.00000 + 1.73205i) q^{31} +(-1.46410 - 5.46410i) q^{32} +(-2.73205 - 0.732051i) q^{34} -4.00000i q^{35} -8.00000i q^{37} +(-1.46410 + 5.46410i) q^{38} +(1.46410 + 5.46410i) q^{40} +(1.00000 - 1.73205i) q^{41} +(3.46410 - 2.00000i) q^{43} +(-4.00000 + 4.00000i) q^{46} +(-6.00000 - 10.3923i) q^{47} +(1.50000 - 2.59808i) q^{49} +(0.366025 + 1.36603i) q^{50} +(-4.00000 - 6.92820i) q^{52} +6.00000i q^{53} +(1.46410 - 5.46410i) q^{56} +(8.19615 - 2.19615i) q^{58} +(-3.46410 - 2.00000i) q^{59} +(2.00000 - 2.00000i) q^{62} +8.00000i q^{64} +(4.00000 + 6.92820i) q^{65} +(-10.3923 - 6.00000i) q^{67} +(3.46410 + 2.00000i) q^{68} +(-1.46410 + 5.46410i) q^{70} -12.0000 q^{71} -6.00000 q^{73} +(-2.92820 + 10.9282i) q^{74} +(4.00000 - 6.92820i) q^{76} +(-5.00000 - 8.66025i) q^{79} -8.00000i q^{80} +(-2.00000 + 2.00000i) q^{82} +(13.8564 - 8.00000i) q^{83} +(-3.46410 - 2.00000i) q^{85} +(-5.46410 + 1.46410i) q^{86} +10.0000 q^{89} -8.00000i q^{91} +(6.92820 - 4.00000i) q^{92} +(4.39230 + 16.3923i) q^{94} +(-4.00000 + 6.92820i) q^{95} +(1.00000 + 1.73205i) q^{97} +(-3.00000 + 3.00000i) q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 4 q - 2 q^{2} + 4 q^{7} - 8 q^{8} + 8 q^{10} + 4 q^{14} + 8 q^{16} + 8 q^{17} - 8 q^{20} + 8 q^{23} - 2 q^{25} + 16 q^{26} - 4 q^{31} + 8 q^{32} - 4 q^{34} + 8 q^{38} - 8 q^{40} + 4 q^{41} - 16 q^{46} - 24 q^{47}+ \cdots - 12 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/648\mathbb{Z}\right)^\times\).

\(n\) \(325\) \(487\) \(569\)
\(\chi(n)\) \(-1\) \(1\) \(e\left(\frac{1}{3}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −1.36603 0.366025i −0.965926 0.258819i
\(3\) 0 0
\(4\) 1.73205 + 1.00000i 0.866025 + 0.500000i
\(5\) −1.73205 1.00000i −0.774597 0.447214i 0.0599153 0.998203i \(-0.480917\pi\)
−0.834512 + 0.550990i \(0.814250\pi\)
\(6\) 0 0
\(7\) 1.00000 + 1.73205i 0.377964 + 0.654654i 0.990766 0.135583i \(-0.0432908\pi\)
−0.612801 + 0.790237i \(0.709957\pi\)
\(8\) −2.00000 2.00000i −0.707107 0.707107i
\(9\) 0 0
\(10\) 2.00000 + 2.00000i 0.632456 + 0.632456i
\(11\) 0 0 −0.500000 0.866025i \(-0.666667\pi\)
0.500000 + 0.866025i \(0.333333\pi\)
\(12\) 0 0
\(13\) −3.46410 2.00000i −0.960769 0.554700i −0.0643593 0.997927i \(-0.520500\pi\)
−0.896410 + 0.443227i \(0.853834\pi\)
\(14\) −0.732051 2.73205i −0.195649 0.730171i
\(15\) 0 0
\(16\) 2.00000 + 3.46410i 0.500000 + 0.866025i
\(17\) 2.00000 0.485071 0.242536 0.970143i \(-0.422021\pi\)
0.242536 + 0.970143i \(0.422021\pi\)
\(18\) 0 0
\(19\) 4.00000i 0.917663i −0.888523 0.458831i \(-0.848268\pi\)
0.888523 0.458831i \(-0.151732\pi\)
\(20\) −2.00000 3.46410i −0.447214 0.774597i
\(21\) 0 0
\(22\) 0 0
\(23\) 2.00000 3.46410i 0.417029 0.722315i −0.578610 0.815604i \(-0.696405\pi\)
0.995639 + 0.0932891i \(0.0297381\pi\)
\(24\) 0 0
\(25\) −0.500000 0.866025i −0.100000 0.173205i
\(26\) 4.00000 + 4.00000i 0.784465 + 0.784465i
\(27\) 0 0
\(28\) 4.00000i 0.755929i
\(29\) −5.19615 + 3.00000i −0.964901 + 0.557086i −0.897678 0.440652i \(-0.854747\pi\)
−0.0672232 + 0.997738i \(0.521414\pi\)
\(30\) 0 0
\(31\) −1.00000 + 1.73205i −0.179605 + 0.311086i −0.941745 0.336327i \(-0.890815\pi\)
0.762140 + 0.647412i \(0.224149\pi\)
\(32\) −1.46410 5.46410i −0.258819 0.965926i
\(33\) 0 0
\(34\) −2.73205 0.732051i −0.468543 0.125546i
\(35\) 4.00000i 0.676123i
\(36\) 0 0
\(37\) 8.00000i 1.31519i −0.753371 0.657596i \(-0.771573\pi\)
0.753371 0.657596i \(-0.228427\pi\)
\(38\) −1.46410 + 5.46410i −0.237509 + 0.886394i
\(39\) 0 0
\(40\) 1.46410 + 5.46410i 0.231495 + 0.863950i
\(41\) 1.00000 1.73205i 0.156174 0.270501i −0.777312 0.629115i \(-0.783417\pi\)
0.933486 + 0.358614i \(0.116751\pi\)
\(42\) 0 0
\(43\) 3.46410 2.00000i 0.528271 0.304997i −0.212041 0.977261i \(-0.568011\pi\)
0.740312 + 0.672264i \(0.234678\pi\)
\(44\) 0 0
\(45\) 0 0
\(46\) −4.00000 + 4.00000i −0.589768 + 0.589768i
\(47\) −6.00000 10.3923i −0.875190 1.51587i −0.856560 0.516047i \(-0.827403\pi\)
−0.0186297 0.999826i \(-0.505930\pi\)
\(48\) 0 0
\(49\) 1.50000 2.59808i 0.214286 0.371154i
\(50\) 0.366025 + 1.36603i 0.0517638 + 0.193185i
\(51\) 0 0
\(52\) −4.00000 6.92820i −0.554700 0.960769i
\(53\) 6.00000i 0.824163i 0.911147 + 0.412082i \(0.135198\pi\)
−0.911147 + 0.412082i \(0.864802\pi\)
\(54\) 0 0
\(55\) 0 0
\(56\) 1.46410 5.46410i 0.195649 0.730171i
\(57\) 0 0
\(58\) 8.19615 2.19615i 1.07621 0.288369i
\(59\) −3.46410 2.00000i −0.450988 0.260378i 0.257260 0.966342i \(-0.417180\pi\)
−0.708247 + 0.705965i \(0.750514\pi\)
\(60\) 0 0
\(61\) 0 0 −0.500000 0.866025i \(-0.666667\pi\)
0.500000 + 0.866025i \(0.333333\pi\)
\(62\) 2.00000 2.00000i 0.254000 0.254000i
\(63\) 0 0
\(64\) 8.00000i 1.00000i
\(65\) 4.00000 + 6.92820i 0.496139 + 0.859338i
\(66\) 0 0
\(67\) −10.3923 6.00000i −1.26962 0.733017i −0.294706 0.955588i \(-0.595222\pi\)
−0.974916 + 0.222571i \(0.928555\pi\)
\(68\) 3.46410 + 2.00000i 0.420084 + 0.242536i
\(69\) 0 0
\(70\) −1.46410 + 5.46410i −0.174994 + 0.653085i
\(71\) −12.0000 −1.42414 −0.712069 0.702109i \(-0.752242\pi\)
−0.712069 + 0.702109i \(0.752242\pi\)
\(72\) 0 0
\(73\) −6.00000 −0.702247 −0.351123 0.936329i \(-0.614200\pi\)
−0.351123 + 0.936329i \(0.614200\pi\)
\(74\) −2.92820 + 10.9282i −0.340397 + 1.27038i
\(75\) 0 0
\(76\) 4.00000 6.92820i 0.458831 0.794719i
\(77\) 0 0
\(78\) 0 0
\(79\) −5.00000 8.66025i −0.562544 0.974355i −0.997274 0.0737937i \(-0.976489\pi\)
0.434730 0.900561i \(-0.356844\pi\)
\(80\) 8.00000i 0.894427i
\(81\) 0 0
\(82\) −2.00000 + 2.00000i −0.220863 + 0.220863i
\(83\) 13.8564 8.00000i 1.52094 0.878114i 0.521243 0.853408i \(-0.325468\pi\)
0.999695 0.0247060i \(-0.00786498\pi\)
\(84\) 0 0
\(85\) −3.46410 2.00000i −0.375735 0.216930i
\(86\) −5.46410 + 1.46410i −0.589209 + 0.157878i
\(87\) 0 0
\(88\) 0 0
\(89\) 10.0000 1.06000 0.529999 0.847998i \(-0.322192\pi\)
0.529999 + 0.847998i \(0.322192\pi\)
\(90\) 0 0
\(91\) 8.00000i 0.838628i
\(92\) 6.92820 4.00000i 0.722315 0.417029i
\(93\) 0 0
\(94\) 4.39230 + 16.3923i 0.453032 + 1.69074i
\(95\) −4.00000 + 6.92820i −0.410391 + 0.710819i
\(96\) 0 0
\(97\) 1.00000 + 1.73205i 0.101535 + 0.175863i 0.912317 0.409484i \(-0.134291\pi\)
−0.810782 + 0.585348i \(0.800958\pi\)
\(98\) −3.00000 + 3.00000i −0.303046 + 0.303046i
\(99\) 0 0
\(100\) 2.00000i 0.200000i
\(101\) −8.66025 + 5.00000i −0.861727 + 0.497519i −0.864590 0.502477i \(-0.832422\pi\)
0.00286291 + 0.999996i \(0.499089\pi\)
\(102\) 0 0
\(103\) 3.00000 5.19615i 0.295599 0.511992i −0.679525 0.733652i \(-0.737814\pi\)
0.975124 + 0.221660i \(0.0711475\pi\)
\(104\) 2.92820 + 10.9282i 0.287134 + 1.07160i
\(105\) 0 0
\(106\) 2.19615 8.19615i 0.213309 0.796081i
\(107\) 12.0000i 1.16008i −0.814587 0.580042i \(-0.803036\pi\)
0.814587 0.580042i \(-0.196964\pi\)
\(108\) 0 0
\(109\) 4.00000i 0.383131i −0.981480 0.191565i \(-0.938644\pi\)
0.981480 0.191565i \(-0.0613564\pi\)
\(110\) 0 0
\(111\) 0 0
\(112\) −4.00000 + 6.92820i −0.377964 + 0.654654i
\(113\) −3.00000 + 5.19615i −0.282216 + 0.488813i −0.971930 0.235269i \(-0.924403\pi\)
0.689714 + 0.724082i \(0.257736\pi\)
\(114\) 0 0
\(115\) −6.92820 + 4.00000i −0.646058 + 0.373002i
\(116\) −12.0000 −1.11417
\(117\) 0 0
\(118\) 4.00000 + 4.00000i 0.368230 + 0.368230i
\(119\) 2.00000 + 3.46410i 0.183340 + 0.317554i
\(120\) 0 0
\(121\) −5.50000 + 9.52628i −0.500000 + 0.866025i
\(122\) 0 0
\(123\) 0 0
\(124\) −3.46410 + 2.00000i −0.311086 + 0.179605i
\(125\) 12.0000i 1.07331i
\(126\) 0 0
\(127\) −2.00000 −0.177471 −0.0887357 0.996055i \(-0.528283\pi\)
−0.0887357 + 0.996055i \(0.528283\pi\)
\(128\) 2.92820 10.9282i 0.258819 0.965926i
\(129\) 0 0
\(130\) −2.92820 10.9282i −0.256820 0.958467i
\(131\) 17.3205 + 10.0000i 1.51330 + 0.873704i 0.999879 + 0.0155672i \(0.00495539\pi\)
0.513421 + 0.858137i \(0.328378\pi\)
\(132\) 0 0
\(133\) 6.92820 4.00000i 0.600751 0.346844i
\(134\) 12.0000 + 12.0000i 1.03664 + 1.03664i
\(135\) 0 0
\(136\) −4.00000 4.00000i −0.342997 0.342997i
\(137\) 9.00000 + 15.5885i 0.768922 + 1.33181i 0.938148 + 0.346235i \(0.112540\pi\)
−0.169226 + 0.985577i \(0.554127\pi\)
\(138\) 0 0
\(139\) 3.46410 + 2.00000i 0.293821 + 0.169638i 0.639664 0.768655i \(-0.279074\pi\)
−0.345843 + 0.938293i \(0.612407\pi\)
\(140\) 4.00000 6.92820i 0.338062 0.585540i
\(141\) 0 0
\(142\) 16.3923 + 4.39230i 1.37561 + 0.368594i
\(143\) 0 0
\(144\) 0 0
\(145\) 12.0000 0.996546
\(146\) 8.19615 + 2.19615i 0.678318 + 0.181755i
\(147\) 0 0
\(148\) 8.00000 13.8564i 0.657596 1.13899i
\(149\) 5.19615 + 3.00000i 0.425685 + 0.245770i 0.697507 0.716578i \(-0.254293\pi\)
−0.271821 + 0.962348i \(0.587626\pi\)
\(150\) 0 0
\(151\) 9.00000 + 15.5885i 0.732410 + 1.26857i 0.955851 + 0.293853i \(0.0949377\pi\)
−0.223441 + 0.974717i \(0.571729\pi\)
\(152\) −8.00000 + 8.00000i −0.648886 + 0.648886i
\(153\) 0 0
\(154\) 0 0
\(155\) 3.46410 2.00000i 0.278243 0.160644i
\(156\) 0 0
\(157\) 6.92820 + 4.00000i 0.552931 + 0.319235i 0.750303 0.661094i \(-0.229907\pi\)
−0.197372 + 0.980329i \(0.563241\pi\)
\(158\) 3.66025 + 13.6603i 0.291194 + 1.08675i
\(159\) 0 0
\(160\) −2.92820 + 10.9282i −0.231495 + 0.863950i
\(161\) 8.00000 0.630488
\(162\) 0 0
\(163\) 4.00000i 0.313304i 0.987654 + 0.156652i \(0.0500701\pi\)
−0.987654 + 0.156652i \(0.949930\pi\)
\(164\) 3.46410 2.00000i 0.270501 0.156174i
\(165\) 0 0
\(166\) −21.8564 + 5.85641i −1.69639 + 0.454545i
\(167\) 4.00000 6.92820i 0.309529 0.536120i −0.668730 0.743505i \(-0.733162\pi\)
0.978259 + 0.207385i \(0.0664952\pi\)
\(168\) 0 0
\(169\) 1.50000 + 2.59808i 0.115385 + 0.199852i
\(170\) 4.00000 + 4.00000i 0.306786 + 0.306786i
\(171\) 0 0
\(172\) 8.00000 0.609994
\(173\) 5.19615 3.00000i 0.395056 0.228086i −0.289292 0.957241i \(-0.593420\pi\)
0.684349 + 0.729155i \(0.260087\pi\)
\(174\) 0 0
\(175\) 1.00000 1.73205i 0.0755929 0.130931i
\(176\) 0 0
\(177\) 0 0
\(178\) −13.6603 3.66025i −1.02388 0.274348i
\(179\) 4.00000i 0.298974i 0.988764 + 0.149487i \(0.0477622\pi\)
−0.988764 + 0.149487i \(0.952238\pi\)
\(180\) 0 0
\(181\) 20.0000i 1.48659i 0.668965 + 0.743294i \(0.266738\pi\)
−0.668965 + 0.743294i \(0.733262\pi\)
\(182\) −2.92820 + 10.9282i −0.217053 + 0.810052i
\(183\) 0 0
\(184\) −10.9282 + 2.92820i −0.805638 + 0.215870i
\(185\) −8.00000 + 13.8564i −0.588172 + 1.01874i
\(186\) 0 0
\(187\) 0 0
\(188\) 24.0000i 1.75038i
\(189\) 0 0
\(190\) 8.00000 8.00000i 0.580381 0.580381i
\(191\) −4.00000 6.92820i −0.289430 0.501307i 0.684244 0.729253i \(-0.260132\pi\)
−0.973674 + 0.227946i \(0.926799\pi\)
\(192\) 0 0
\(193\) 3.00000 5.19615i 0.215945 0.374027i −0.737620 0.675216i \(-0.764050\pi\)
0.953564 + 0.301189i \(0.0973836\pi\)
\(194\) −0.732051 2.73205i −0.0525582 0.196150i
\(195\) 0 0
\(196\) 5.19615 3.00000i 0.371154 0.214286i
\(197\) 2.00000i 0.142494i −0.997459 0.0712470i \(-0.977302\pi\)
0.997459 0.0712470i \(-0.0226979\pi\)
\(198\) 0 0
\(199\) 10.0000 0.708881 0.354441 0.935079i \(-0.384671\pi\)
0.354441 + 0.935079i \(0.384671\pi\)
\(200\) −0.732051 + 2.73205i −0.0517638 + 0.193185i
\(201\) 0 0
\(202\) 13.6603 3.66025i 0.961132 0.257535i
\(203\) −10.3923 6.00000i −0.729397 0.421117i
\(204\) 0 0
\(205\) −3.46410 + 2.00000i −0.241943 + 0.139686i
\(206\) −6.00000 + 6.00000i −0.418040 + 0.418040i
\(207\) 0 0
\(208\) 16.0000i 1.10940i
\(209\) 0 0
\(210\) 0 0
\(211\) 17.3205 + 10.0000i 1.19239 + 0.688428i 0.958849 0.283918i \(-0.0916343\pi\)
0.233544 + 0.972346i \(0.424968\pi\)
\(212\) −6.00000 + 10.3923i −0.412082 + 0.713746i
\(213\) 0 0
\(214\) −4.39230 + 16.3923i −0.300252 + 1.12055i
\(215\) −8.00000 −0.545595
\(216\) 0 0
\(217\) −4.00000 −0.271538
\(218\) −1.46410 + 5.46410i −0.0991615 + 0.370076i
\(219\) 0 0
\(220\) 0 0
\(221\) −6.92820 4.00000i −0.466041 0.269069i
\(222\) 0 0
\(223\) −7.00000 12.1244i −0.468755 0.811907i 0.530607 0.847618i \(-0.321964\pi\)
−0.999362 + 0.0357107i \(0.988630\pi\)
\(224\) 8.00000 8.00000i 0.534522 0.534522i
\(225\) 0 0
\(226\) 6.00000 6.00000i 0.399114 0.399114i
\(227\) 6.92820 4.00000i 0.459841 0.265489i −0.252136 0.967692i \(-0.581133\pi\)
0.711977 + 0.702202i \(0.247800\pi\)
\(228\) 0 0
\(229\) 3.46410 + 2.00000i 0.228914 + 0.132164i 0.610071 0.792347i \(-0.291141\pi\)
−0.381157 + 0.924510i \(0.624474\pi\)
\(230\) 10.9282 2.92820i 0.720584 0.193080i
\(231\) 0 0
\(232\) 16.3923 + 4.39230i 1.07621 + 0.288369i
\(233\) −14.0000 −0.917170 −0.458585 0.888650i \(-0.651644\pi\)
−0.458585 + 0.888650i \(0.651644\pi\)
\(234\) 0 0
\(235\) 24.0000i 1.56559i
\(236\) −4.00000 6.92820i −0.260378 0.450988i
\(237\) 0 0
\(238\) −1.46410 5.46410i −0.0949036 0.354185i
\(239\) 0 0 −0.866025 0.500000i \(-0.833333\pi\)
0.866025 + 0.500000i \(0.166667\pi\)
\(240\) 0 0
\(241\) −1.00000 1.73205i −0.0644157 0.111571i 0.832019 0.554747i \(-0.187185\pi\)
−0.896435 + 0.443176i \(0.853852\pi\)
\(242\) 11.0000 11.0000i 0.707107 0.707107i
\(243\) 0 0
\(244\) 0 0
\(245\) −5.19615 + 3.00000i −0.331970 + 0.191663i
\(246\) 0 0
\(247\) −8.00000 + 13.8564i −0.509028 + 0.881662i
\(248\) 5.46410 1.46410i 0.346971 0.0929705i
\(249\) 0 0
\(250\) 4.39230 16.3923i 0.277794 1.03674i
\(251\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(252\) 0 0
\(253\) 0 0
\(254\) 2.73205 + 0.732051i 0.171424 + 0.0459330i
\(255\) 0 0
\(256\) −8.00000 + 13.8564i −0.500000 + 0.866025i
\(257\) 9.00000 15.5885i 0.561405 0.972381i −0.435970 0.899961i \(-0.643595\pi\)
0.997374 0.0724199i \(-0.0230722\pi\)
\(258\) 0 0
\(259\) 13.8564 8.00000i 0.860995 0.497096i
\(260\) 16.0000i 0.992278i
\(261\) 0 0
\(262\) −20.0000 20.0000i −1.23560 1.23560i
\(263\) −8.00000 13.8564i −0.493301 0.854423i 0.506669 0.862141i \(-0.330877\pi\)
−0.999970 + 0.00771799i \(0.997543\pi\)
\(264\) 0 0
\(265\) 6.00000 10.3923i 0.368577 0.638394i
\(266\) −10.9282 + 2.92820i −0.670051 + 0.179540i
\(267\) 0 0
\(268\) −12.0000 20.7846i −0.733017 1.26962i
\(269\) 6.00000i 0.365826i −0.983129 0.182913i \(-0.941447\pi\)
0.983129 0.182913i \(-0.0585527\pi\)
\(270\) 0 0
\(271\) −18.0000 −1.09342 −0.546711 0.837321i \(-0.684120\pi\)
−0.546711 + 0.837321i \(0.684120\pi\)
\(272\) 4.00000 + 6.92820i 0.242536 + 0.420084i
\(273\) 0 0
\(274\) −6.58846 24.5885i −0.398023 1.48544i
\(275\) 0 0
\(276\) 0 0
\(277\) −24.2487 + 14.0000i −1.45696 + 0.841178i −0.998861 0.0477206i \(-0.984804\pi\)
−0.458103 + 0.888899i \(0.651471\pi\)
\(278\) −4.00000 4.00000i −0.239904 0.239904i
\(279\) 0 0
\(280\) −8.00000 + 8.00000i −0.478091 + 0.478091i
\(281\) −9.00000 15.5885i −0.536895 0.929929i −0.999069 0.0431402i \(-0.986264\pi\)
0.462174 0.886789i \(-0.347070\pi\)
\(282\) 0 0
\(283\) −3.46410 2.00000i −0.205919 0.118888i 0.393494 0.919327i \(-0.371266\pi\)
−0.599414 + 0.800439i \(0.704600\pi\)
\(284\) −20.7846 12.0000i −1.23334 0.712069i
\(285\) 0 0
\(286\) 0 0
\(287\) 4.00000 0.236113
\(288\) 0 0
\(289\) −13.0000 −0.764706
\(290\) −16.3923 4.39230i −0.962589 0.257925i
\(291\) 0 0
\(292\) −10.3923 6.00000i −0.608164 0.351123i
\(293\) −5.19615 3.00000i −0.303562 0.175262i 0.340480 0.940252i \(-0.389411\pi\)
−0.644042 + 0.764990i \(0.722744\pi\)
\(294\) 0 0
\(295\) 4.00000 + 6.92820i 0.232889 + 0.403376i
\(296\) −16.0000 + 16.0000i −0.929981 + 0.929981i
\(297\) 0 0
\(298\) −6.00000 6.00000i −0.347571 0.347571i
\(299\) −13.8564 + 8.00000i −0.801337 + 0.462652i
\(300\) 0 0
\(301\) 6.92820 + 4.00000i 0.399335 + 0.230556i
\(302\) −6.58846 24.5885i −0.379123 1.41491i
\(303\) 0 0
\(304\) 13.8564 8.00000i 0.794719 0.458831i
\(305\) 0 0
\(306\) 0 0
\(307\) 12.0000i 0.684876i 0.939540 + 0.342438i \(0.111253\pi\)
−0.939540 + 0.342438i \(0.888747\pi\)
\(308\) 0 0
\(309\) 0 0
\(310\) −5.46410 + 1.46410i −0.310340 + 0.0831554i
\(311\) −4.00000 + 6.92820i −0.226819 + 0.392862i −0.956864 0.290537i \(-0.906166\pi\)
0.730044 + 0.683400i \(0.239499\pi\)
\(312\) 0 0
\(313\) −7.00000 12.1244i −0.395663 0.685309i 0.597522 0.801852i \(-0.296152\pi\)
−0.993186 + 0.116543i \(0.962819\pi\)
\(314\) −8.00000 8.00000i −0.451466 0.451466i
\(315\) 0 0
\(316\) 20.0000i 1.12509i
\(317\) −19.0526 + 11.0000i −1.07010 + 0.617822i −0.928208 0.372061i \(-0.878651\pi\)
−0.141890 + 0.989882i \(0.545318\pi\)
\(318\) 0 0
\(319\) 0 0
\(320\) 8.00000 13.8564i 0.447214 0.774597i
\(321\) 0 0
\(322\) −10.9282 2.92820i −0.609005 0.163182i
\(323\) 8.00000i 0.445132i
\(324\) 0 0
\(325\) 4.00000i 0.221880i
\(326\) 1.46410 5.46410i 0.0810891 0.302629i
\(327\) 0 0
\(328\) −5.46410 + 1.46410i −0.301705 + 0.0808415i
\(329\) 12.0000 20.7846i 0.661581 1.14589i
\(330\) 0 0
\(331\) −17.3205 + 10.0000i −0.952021 + 0.549650i −0.893708 0.448649i \(-0.851905\pi\)
−0.0583130 + 0.998298i \(0.518572\pi\)
\(332\) 32.0000 1.75623
\(333\) 0 0
\(334\) −8.00000 + 8.00000i −0.437741 + 0.437741i
\(335\) 12.0000 + 20.7846i 0.655630 + 1.13558i
\(336\) 0 0
\(337\) 1.00000 1.73205i 0.0544735 0.0943508i −0.837503 0.546433i \(-0.815985\pi\)
0.891976 + 0.452082i \(0.149319\pi\)
\(338\) −1.09808 4.09808i −0.0597275 0.222906i
\(339\) 0 0
\(340\) −4.00000 6.92820i −0.216930 0.375735i
\(341\) 0 0
\(342\) 0 0
\(343\) 20.0000 1.07990
\(344\) −10.9282 2.92820i −0.589209 0.157878i
\(345\) 0 0
\(346\) −8.19615 + 2.19615i −0.440628 + 0.118066i
\(347\) −6.92820 4.00000i −0.371925 0.214731i 0.302374 0.953189i \(-0.402221\pi\)
−0.674299 + 0.738458i \(0.735554\pi\)
\(348\) 0 0
\(349\) 13.8564 8.00000i 0.741716 0.428230i −0.0809766 0.996716i \(-0.525804\pi\)
0.822693 + 0.568486i \(0.192471\pi\)
\(350\) −2.00000 + 2.00000i −0.106904 + 0.106904i
\(351\) 0 0
\(352\) 0 0
\(353\) −3.00000 5.19615i −0.159674 0.276563i 0.775077 0.631867i \(-0.217711\pi\)
−0.934751 + 0.355303i \(0.884378\pi\)
\(354\) 0 0
\(355\) 20.7846 + 12.0000i 1.10313 + 0.636894i
\(356\) 17.3205 + 10.0000i 0.917985 + 0.529999i
\(357\) 0 0
\(358\) 1.46410 5.46410i 0.0773802 0.288787i
\(359\) 20.0000 1.05556 0.527780 0.849381i \(-0.323025\pi\)
0.527780 + 0.849381i \(0.323025\pi\)
\(360\) 0 0
\(361\) 3.00000 0.157895
\(362\) 7.32051 27.3205i 0.384757 1.43593i
\(363\) 0 0
\(364\) 8.00000 13.8564i 0.419314 0.726273i
\(365\) 10.3923 + 6.00000i 0.543958 + 0.314054i
\(366\) 0 0
\(367\) −9.00000 15.5885i −0.469796 0.813711i 0.529607 0.848243i \(-0.322339\pi\)
−0.999404 + 0.0345320i \(0.989006\pi\)
\(368\) 16.0000 0.834058
\(369\) 0 0
\(370\) 16.0000 16.0000i 0.831800 0.831800i
\(371\) −10.3923 + 6.00000i −0.539542 + 0.311504i
\(372\) 0 0
\(373\) 13.8564 + 8.00000i 0.717458 + 0.414224i 0.813816 0.581122i \(-0.197386\pi\)
−0.0963587 + 0.995347i \(0.530720\pi\)
\(374\) 0 0
\(375\) 0 0
\(376\) −8.78461 + 32.7846i −0.453032 + 1.69074i
\(377\) 24.0000 1.23606
\(378\) 0 0
\(379\) 4.00000i 0.205466i −0.994709 0.102733i \(-0.967241\pi\)
0.994709 0.102733i \(-0.0327588\pi\)
\(380\) −13.8564 + 8.00000i −0.710819 + 0.410391i
\(381\) 0 0
\(382\) 2.92820 + 10.9282i 0.149820 + 0.559136i
\(383\) 12.0000 20.7846i 0.613171 1.06204i −0.377531 0.925997i \(-0.623227\pi\)
0.990702 0.136047i \(-0.0434398\pi\)
\(384\) 0 0
\(385\) 0 0
\(386\) −6.00000 + 6.00000i −0.305392 + 0.305392i
\(387\) 0 0
\(388\) 4.00000i 0.203069i
\(389\) 29.4449 17.0000i 1.49291 0.861934i 0.492947 0.870059i \(-0.335920\pi\)
0.999967 + 0.00812520i \(0.00258636\pi\)
\(390\) 0 0
\(391\) 4.00000 6.92820i 0.202289 0.350374i
\(392\) −8.19615 + 2.19615i −0.413968 + 0.110922i
\(393\) 0 0
\(394\) −0.732051 + 2.73205i −0.0368802 + 0.137639i
\(395\) 20.0000i 1.00631i
\(396\) 0 0
\(397\) 32.0000i 1.60603i 0.595956 + 0.803017i \(0.296773\pi\)
−0.595956 + 0.803017i \(0.703227\pi\)
\(398\) −13.6603 3.66025i −0.684727 0.183472i
\(399\) 0 0
\(400\) 2.00000 3.46410i 0.100000 0.173205i
\(401\) −9.00000 + 15.5885i −0.449439 + 0.778450i −0.998350 0.0574304i \(-0.981709\pi\)
0.548911 + 0.835881i \(0.315043\pi\)
\(402\) 0 0
\(403\) 6.92820 4.00000i 0.345118 0.199254i
\(404\) −20.0000 −0.995037
\(405\) 0 0
\(406\) 12.0000 + 12.0000i 0.595550 + 0.595550i
\(407\) 0 0
\(408\) 0 0
\(409\) −5.00000 + 8.66025i −0.247234 + 0.428222i −0.962757 0.270367i \(-0.912855\pi\)
0.715523 + 0.698589i \(0.246188\pi\)
\(410\) 5.46410 1.46410i 0.269853 0.0723068i
\(411\) 0 0
\(412\) 10.3923 6.00000i 0.511992 0.295599i
\(413\) 8.00000i 0.393654i
\(414\) 0 0
\(415\) −32.0000 −1.57082
\(416\) −5.85641 + 21.8564i −0.287134 + 1.07160i
\(417\) 0 0
\(418\) 0 0
\(419\) −20.7846 12.0000i −1.01539 0.586238i −0.102628 0.994720i \(-0.532725\pi\)
−0.912767 + 0.408481i \(0.866058\pi\)
\(420\) 0 0
\(421\) 17.3205 10.0000i 0.844150 0.487370i −0.0145228 0.999895i \(-0.504623\pi\)
0.858673 + 0.512524i \(0.171290\pi\)
\(422\) −20.0000 20.0000i −0.973585 0.973585i
\(423\) 0 0
\(424\) 12.0000 12.0000i 0.582772 0.582772i
\(425\) −1.00000 1.73205i −0.0485071 0.0840168i
\(426\) 0 0
\(427\) 0 0
\(428\) 12.0000 20.7846i 0.580042 1.00466i
\(429\) 0 0
\(430\) 10.9282 + 2.92820i 0.527005 + 0.141210i
\(431\) −12.0000 −0.578020 −0.289010 0.957326i \(-0.593326\pi\)
−0.289010 + 0.957326i \(0.593326\pi\)
\(432\) 0 0
\(433\) 14.0000 0.672797 0.336399 0.941720i \(-0.390791\pi\)
0.336399 + 0.941720i \(0.390791\pi\)
\(434\) 5.46410 + 1.46410i 0.262285 + 0.0702791i
\(435\) 0 0
\(436\) 4.00000 6.92820i 0.191565 0.331801i
\(437\) −13.8564 8.00000i −0.662842 0.382692i
\(438\) 0 0
\(439\) 15.0000 + 25.9808i 0.715911 + 1.23999i 0.962607 + 0.270901i \(0.0873217\pi\)
−0.246696 + 0.969093i \(0.579345\pi\)
\(440\) 0 0
\(441\) 0 0
\(442\) 8.00000 + 8.00000i 0.380521 + 0.380521i
\(443\) −20.7846 + 12.0000i −0.987507 + 0.570137i −0.904528 0.426414i \(-0.859777\pi\)
−0.0829786 + 0.996551i \(0.526443\pi\)
\(444\) 0 0
\(445\) −17.3205 10.0000i −0.821071 0.474045i
\(446\) 5.12436 + 19.1244i 0.242645 + 0.905564i
\(447\) 0 0
\(448\) −13.8564 + 8.00000i −0.654654 + 0.377964i
\(449\) −30.0000 −1.41579 −0.707894 0.706319i \(-0.750354\pi\)
−0.707894 + 0.706319i \(0.750354\pi\)
\(450\) 0 0
\(451\) 0 0
\(452\) −10.3923 + 6.00000i −0.488813 + 0.282216i
\(453\) 0 0
\(454\) −10.9282 + 2.92820i −0.512886 + 0.137427i
\(455\) −8.00000 + 13.8564i −0.375046 + 0.649598i
\(456\) 0 0
\(457\) 11.0000 + 19.0526i 0.514558 + 0.891241i 0.999857 + 0.0168929i \(0.00537742\pi\)
−0.485299 + 0.874348i \(0.661289\pi\)
\(458\) −4.00000 4.00000i −0.186908 0.186908i
\(459\) 0 0
\(460\) −16.0000 −0.746004
\(461\) 25.9808 15.0000i 1.21004 0.698620i 0.247276 0.968945i \(-0.420465\pi\)
0.962769 + 0.270326i \(0.0871313\pi\)
\(462\) 0 0
\(463\) 13.0000 22.5167i 0.604161 1.04644i −0.388022 0.921650i \(-0.626842\pi\)
0.992183 0.124788i \(-0.0398251\pi\)
\(464\) −20.7846 12.0000i −0.964901 0.557086i
\(465\) 0 0
\(466\) 19.1244 + 5.12436i 0.885919 + 0.237381i
\(467\) 8.00000i 0.370196i 0.982720 + 0.185098i \(0.0592602\pi\)
−0.982720 + 0.185098i \(0.940740\pi\)
\(468\) 0 0
\(469\) 24.0000i 1.10822i
\(470\) 8.78461 32.7846i 0.405204 1.51224i
\(471\) 0 0
\(472\) 2.92820 + 10.9282i 0.134781 + 0.503011i
\(473\) 0 0
\(474\) 0 0
\(475\) −3.46410 + 2.00000i −0.158944 + 0.0917663i
\(476\) 8.00000i 0.366679i
\(477\) 0 0
\(478\) 0 0
\(479\) 10.0000 + 17.3205i 0.456912 + 0.791394i 0.998796 0.0490589i \(-0.0156222\pi\)
−0.541884 + 0.840453i \(0.682289\pi\)
\(480\) 0 0
\(481\) −16.0000 + 27.7128i −0.729537 + 1.26360i
\(482\) 0.732051 + 2.73205i 0.0333440 + 0.124442i
\(483\) 0 0
\(484\) −19.0526 + 11.0000i −0.866025 + 0.500000i
\(485\) 4.00000i 0.181631i
\(486\) 0 0
\(487\) 38.0000 1.72194 0.860972 0.508652i \(-0.169856\pi\)
0.860972 + 0.508652i \(0.169856\pi\)
\(488\) 0 0
\(489\) 0 0
\(490\) 8.19615 2.19615i 0.370264 0.0992121i
\(491\) 17.3205 + 10.0000i 0.781664 + 0.451294i 0.837020 0.547173i \(-0.184296\pi\)
−0.0553560 + 0.998467i \(0.517629\pi\)
\(492\) 0 0
\(493\) −10.3923 + 6.00000i −0.468046 + 0.270226i
\(494\) 16.0000 16.0000i 0.719874 0.719874i
\(495\) 0 0
\(496\) −8.00000 −0.359211
\(497\) −12.0000 20.7846i −0.538274 0.932317i
\(498\) 0 0
\(499\) −31.1769 18.0000i −1.39567 0.805791i −0.401735 0.915756i \(-0.631593\pi\)
−0.993935 + 0.109965i \(0.964926\pi\)
\(500\) −12.0000 + 20.7846i −0.536656 + 0.929516i
\(501\) 0 0
\(502\) 0 0
\(503\) 36.0000 1.60516 0.802580 0.596544i \(-0.203460\pi\)
0.802580 + 0.596544i \(0.203460\pi\)
\(504\) 0 0
\(505\) 20.0000 0.889988
\(506\) 0 0
\(507\) 0 0
\(508\) −3.46410 2.00000i −0.153695 0.0887357i
\(509\) 5.19615 + 3.00000i 0.230315 + 0.132973i 0.610718 0.791849i \(-0.290881\pi\)
−0.380402 + 0.924821i \(0.624214\pi\)
\(510\) 0 0
\(511\) −6.00000 10.3923i −0.265424 0.459728i
\(512\) 16.0000 16.0000i 0.707107 0.707107i
\(513\) 0 0
\(514\) −18.0000 + 18.0000i −0.793946 + 0.793946i
\(515\) −10.3923 + 6.00000i −0.457940 + 0.264392i
\(516\) 0 0
\(517\) 0 0
\(518\) −21.8564 + 5.85641i −0.960315 + 0.257316i
\(519\) 0 0
\(520\) 5.85641 21.8564i 0.256820 0.958467i
\(521\) −42.0000 −1.84005 −0.920027 0.391856i \(-0.871833\pi\)
−0.920027 + 0.391856i \(0.871833\pi\)
\(522\) 0 0
\(523\) 36.0000i 1.57417i −0.616844 0.787085i \(-0.711589\pi\)
0.616844 0.787085i \(-0.288411\pi\)
\(524\) 20.0000 + 34.6410i 0.873704 + 1.51330i
\(525\) 0 0
\(526\) 5.85641 + 21.8564i 0.255351 + 0.952985i
\(527\) −2.00000 + 3.46410i −0.0871214 + 0.150899i
\(528\) 0 0
\(529\) 3.50000 + 6.06218i 0.152174 + 0.263573i
\(530\) −12.0000 + 12.0000i −0.521247 + 0.521247i
\(531\) 0 0
\(532\) 16.0000 0.693688
\(533\) −6.92820 + 4.00000i −0.300094 + 0.173259i
\(534\) 0 0
\(535\) −12.0000 + 20.7846i −0.518805 + 0.898597i
\(536\) 8.78461 + 32.7846i 0.379437 + 1.41608i
\(537\) 0 0
\(538\) −2.19615 + 8.19615i −0.0946829 + 0.353361i
\(539\) 0 0
\(540\) 0 0
\(541\) 20.0000i 0.859867i −0.902861 0.429934i \(-0.858537\pi\)
0.902861 0.429934i \(-0.141463\pi\)
\(542\) 24.5885 + 6.58846i 1.05616 + 0.282998i
\(543\) 0 0
\(544\) −2.92820 10.9282i −0.125546 0.468543i
\(545\) −4.00000 + 6.92820i −0.171341 + 0.296772i
\(546\) 0 0
\(547\) −24.2487 + 14.0000i −1.03680 + 0.598597i −0.918925 0.394432i \(-0.870941\pi\)
−0.117875 + 0.993028i \(0.537608\pi\)
\(548\) 36.0000i 1.53784i
\(549\) 0 0
\(550\) 0 0
\(551\) 12.0000 + 20.7846i 0.511217 + 0.885454i
\(552\) 0 0
\(553\) 10.0000 17.3205i 0.425243 0.736543i
\(554\) 38.2487 10.2487i 1.62503 0.435426i
\(555\) 0 0
\(556\) 4.00000 + 6.92820i 0.169638 + 0.293821i
\(557\) 42.0000i 1.77960i −0.456354 0.889799i \(-0.650845\pi\)
0.456354 0.889799i \(-0.349155\pi\)
\(558\) 0 0
\(559\) −16.0000 −0.676728
\(560\) 13.8564 8.00000i 0.585540 0.338062i
\(561\) 0 0
\(562\) 6.58846 + 24.5885i 0.277917 + 1.03720i
\(563\) 20.7846 + 12.0000i 0.875967 + 0.505740i 0.869326 0.494238i \(-0.164553\pi\)
0.00664037 + 0.999978i \(0.497886\pi\)
\(564\) 0 0
\(565\) 10.3923 6.00000i 0.437208 0.252422i
\(566\) 4.00000 + 4.00000i 0.168133 + 0.168133i
\(567\) 0 0
\(568\) 24.0000 + 24.0000i 1.00702 + 1.00702i
\(569\) −15.0000 25.9808i −0.628833 1.08917i −0.987786 0.155815i \(-0.950200\pi\)
0.358954 0.933355i \(-0.383134\pi\)
\(570\) 0 0
\(571\) −17.3205 10.0000i −0.724841 0.418487i 0.0916910 0.995788i \(-0.470773\pi\)
−0.816532 + 0.577301i \(0.804106\pi\)
\(572\) 0 0
\(573\) 0 0
\(574\) −5.46410 1.46410i −0.228067 0.0611104i
\(575\) −4.00000 −0.166812
\(576\) 0 0
\(577\) −42.0000 −1.74848 −0.874241 0.485491i \(-0.838641\pi\)
−0.874241 + 0.485491i \(0.838641\pi\)
\(578\) 17.7583 + 4.75833i 0.738649 + 0.197920i
\(579\) 0 0
\(580\) 20.7846 + 12.0000i 0.863034 + 0.498273i
\(581\) 27.7128 + 16.0000i 1.14972 + 0.663792i
\(582\) 0 0
\(583\) 0 0
\(584\) 12.0000 + 12.0000i 0.496564 + 0.496564i
\(585\) 0 0
\(586\) 6.00000 + 6.00000i 0.247858 + 0.247858i
\(587\) 24.2487 14.0000i 1.00085 0.577842i 0.0923513 0.995726i \(-0.470562\pi\)
0.908500 + 0.417885i \(0.137228\pi\)
\(588\) 0 0
\(589\) 6.92820 + 4.00000i 0.285472 + 0.164817i
\(590\) −2.92820 10.9282i −0.120552 0.449907i
\(591\) 0 0
\(592\) 27.7128 16.0000i 1.13899 0.657596i
\(593\) 6.00000 0.246390 0.123195 0.992382i \(-0.460686\pi\)
0.123195 + 0.992382i \(0.460686\pi\)
\(594\) 0 0
\(595\) 8.00000i 0.327968i
\(596\) 6.00000 + 10.3923i 0.245770 + 0.425685i
\(597\) 0 0
\(598\) 21.8564 5.85641i 0.893775 0.239486i
\(599\) −10.0000 + 17.3205i −0.408589 + 0.707697i −0.994732 0.102511i \(-0.967312\pi\)
0.586143 + 0.810208i \(0.300646\pi\)
\(600\) 0 0
\(601\) −1.00000 1.73205i −0.0407909 0.0706518i 0.844909 0.534910i \(-0.179654\pi\)
−0.885700 + 0.464258i \(0.846321\pi\)
\(602\) −8.00000 8.00000i −0.326056 0.326056i
\(603\) 0 0
\(604\) 36.0000i 1.46482i
\(605\) 19.0526 11.0000i 0.774597 0.447214i
\(606\) 0 0
\(607\) 1.00000 1.73205i 0.0405887 0.0703018i −0.845017 0.534739i \(-0.820410\pi\)
0.885606 + 0.464437i \(0.153743\pi\)
\(608\) −21.8564 + 5.85641i −0.886394 + 0.237509i
\(609\) 0 0
\(610\) 0 0
\(611\) 48.0000i 1.94187i
\(612\) 0 0
\(613\) 16.0000i 0.646234i −0.946359 0.323117i \(-0.895269\pi\)
0.946359 0.323117i \(-0.104731\pi\)
\(614\) 4.39230 16.3923i 0.177259 0.661540i
\(615\) 0 0
\(616\) 0 0
\(617\) −1.00000 + 1.73205i −0.0402585 + 0.0697297i −0.885453 0.464730i \(-0.846151\pi\)
0.845194 + 0.534460i \(0.179485\pi\)
\(618\) 0 0
\(619\) 31.1769 18.0000i 1.25311 0.723481i 0.281381 0.959596i \(-0.409208\pi\)
0.971725 + 0.236115i \(0.0758742\pi\)
\(620\) 8.00000 0.321288
\(621\) 0 0
\(622\) 8.00000 8.00000i 0.320771 0.320771i
\(623\) 10.0000 + 17.3205i 0.400642 + 0.693932i
\(624\) 0 0
\(625\) 9.50000 16.4545i 0.380000 0.658179i
\(626\) 5.12436 + 19.1244i 0.204810 + 0.764363i
\(627\) 0 0
\(628\) 8.00000 + 13.8564i 0.319235 + 0.552931i
\(629\) 16.0000i 0.637962i
\(630\) 0 0
\(631\) 22.0000 0.875806 0.437903 0.899022i \(-0.355721\pi\)
0.437903 + 0.899022i \(0.355721\pi\)
\(632\) −7.32051 + 27.3205i −0.291194 + 1.08675i
\(633\) 0 0
\(634\) 30.0526 8.05256i 1.19354 0.319808i
\(635\) 3.46410 + 2.00000i 0.137469 + 0.0793676i
\(636\) 0 0
\(637\) −10.3923 + 6.00000i −0.411758 + 0.237729i
\(638\) 0 0
\(639\) 0 0
\(640\) −16.0000 + 16.0000i −0.632456 + 0.632456i
\(641\) 11.0000 + 19.0526i 0.434474 + 0.752531i 0.997253 0.0740768i \(-0.0236010\pi\)
−0.562779 + 0.826608i \(0.690268\pi\)
\(642\) 0 0
\(643\) −3.46410 2.00000i −0.136611 0.0788723i 0.430137 0.902764i \(-0.358465\pi\)
−0.566748 + 0.823891i \(0.691799\pi\)
\(644\) 13.8564 + 8.00000i 0.546019 + 0.315244i
\(645\) 0 0
\(646\) −2.92820 + 10.9282i −0.115209 + 0.429964i
\(647\) 12.0000 0.471769 0.235884 0.971781i \(-0.424201\pi\)
0.235884 + 0.971781i \(0.424201\pi\)
\(648\) 0 0
\(649\) 0 0
\(650\) 1.46410 5.46410i 0.0574268 0.214320i
\(651\) 0 0
\(652\) −4.00000 + 6.92820i −0.156652 + 0.271329i
\(653\) −5.19615 3.00000i −0.203341 0.117399i 0.394872 0.918736i \(-0.370789\pi\)
−0.598213 + 0.801337i \(0.704122\pi\)
\(654\) 0 0
\(655\) −20.0000 34.6410i −0.781465 1.35354i
\(656\) 8.00000 0.312348
\(657\) 0 0
\(658\) −24.0000 + 24.0000i −0.935617 + 0.935617i
\(659\) −31.1769 + 18.0000i −1.21448 + 0.701180i −0.963732 0.266872i \(-0.914010\pi\)
−0.250748 + 0.968052i \(0.580677\pi\)
\(660\) 0 0
\(661\) −34.6410 20.0000i −1.34738 0.777910i −0.359502 0.933144i \(-0.617053\pi\)
−0.987878 + 0.155235i \(0.950387\pi\)
\(662\) 27.3205 7.32051i 1.06184 0.284520i
\(663\) 0 0
\(664\) −43.7128 11.7128i −1.69639 0.454545i
\(665\) −16.0000 −0.620453
\(666\) 0 0
\(667\) 24.0000i 0.929284i
\(668\) 13.8564 8.00000i 0.536120 0.309529i
\(669\) 0 0
\(670\) −8.78461 32.7846i −0.339379 1.26658i
\(671\) 0 0
\(672\) 0 0
\(673\) −7.00000 12.1244i −0.269830 0.467360i 0.698988 0.715134i \(-0.253634\pi\)
−0.968818 + 0.247774i \(0.920301\pi\)
\(674\) −2.00000 + 2.00000i −0.0770371 + 0.0770371i
\(675\) 0 0
\(676\) 6.00000i 0.230769i
\(677\) 15.5885 9.00000i 0.599113 0.345898i −0.169580 0.985517i \(-0.554241\pi\)
0.768693 + 0.639618i \(0.220908\pi\)
\(678\) 0 0
\(679\) −2.00000 + 3.46410i −0.0767530 + 0.132940i
\(680\) 2.92820 + 10.9282i 0.112291 + 0.419077i
\(681\) 0 0
\(682\) 0 0
\(683\) 16.0000i 0.612223i 0.951996 + 0.306111i \(0.0990280\pi\)
−0.951996 + 0.306111i \(0.900972\pi\)
\(684\) 0 0
\(685\) 36.0000i 1.37549i
\(686\) −27.3205 7.32051i −1.04310 0.279498i
\(687\) 0 0
\(688\) 13.8564 + 8.00000i 0.528271 + 0.304997i
\(689\) 12.0000 20.7846i 0.457164 0.791831i
\(690\) 0 0
\(691\) 17.3205 10.0000i 0.658903 0.380418i −0.132956 0.991122i \(-0.542447\pi\)
0.791859 + 0.610704i \(0.209113\pi\)
\(692\) 12.0000 0.456172
\(693\) 0 0
\(694\) 8.00000 + 8.00000i 0.303676 + 0.303676i
\(695\) −4.00000 6.92820i −0.151729 0.262802i
\(696\) 0 0
\(697\) 2.00000 3.46410i 0.0757554 0.131212i
\(698\) −21.8564 + 5.85641i −0.827277 + 0.221668i
\(699\) 0 0
\(700\) 3.46410 2.00000i 0.130931 0.0755929i
\(701\) 50.0000i 1.88847i 0.329267 + 0.944237i \(0.393198\pi\)
−0.329267 + 0.944237i \(0.606802\pi\)
\(702\) 0 0
\(703\) −32.0000 −1.20690
\(704\) 0 0
\(705\) 0 0
\(706\) 2.19615 + 8.19615i 0.0826533 + 0.308466i
\(707\) −17.3205 10.0000i −0.651405 0.376089i
\(708\) 0 0
\(709\) −3.46410 + 2.00000i −0.130097 + 0.0751116i −0.563636 0.826023i \(-0.690598\pi\)
0.433539 + 0.901135i \(0.357265\pi\)
\(710\) −24.0000 24.0000i −0.900704 0.900704i
\(711\) 0 0
\(712\) −20.0000 20.0000i −0.749532 0.749532i
\(713\) 4.00000 + 6.92820i 0.149801 + 0.259463i
\(714\) 0 0
\(715\) 0 0
\(716\) −4.00000 + 6.92820i −0.149487 + 0.258919i
\(717\) 0 0
\(718\) −27.3205 7.32051i −1.01959 0.273199i
\(719\) 20.0000 0.745874 0.372937 0.927857i \(-0.378351\pi\)
0.372937 + 0.927857i \(0.378351\pi\)
\(720\) 0 0
\(721\) 12.0000 0.446903
\(722\) −4.09808 1.09808i −0.152515 0.0408662i
\(723\) 0 0
\(724\) −20.0000 + 34.6410i −0.743294 + 1.28742i
\(725\) 5.19615 + 3.00000i 0.192980 + 0.111417i
\(726\) 0 0
\(727\) 21.0000 + 36.3731i 0.778847 + 1.34900i 0.932607 + 0.360894i \(0.117528\pi\)
−0.153760 + 0.988108i \(0.549138\pi\)
\(728\) −16.0000 + 16.0000i −0.592999 + 0.592999i
\(729\) 0 0
\(730\) −12.0000 12.0000i −0.444140 0.444140i
\(731\) 6.92820 4.00000i 0.256249 0.147945i
\(732\) 0 0
\(733\) −3.46410 2.00000i −0.127950 0.0738717i 0.434659 0.900595i \(-0.356869\pi\)
−0.562609 + 0.826723i \(0.690202\pi\)
\(734\) 6.58846 + 24.5885i 0.243184 + 0.907577i
\(735\) 0 0
\(736\) −21.8564 5.85641i −0.805638 0.215870i
\(737\) 0 0
\(738\) 0 0
\(739\) 44.0000i 1.61857i −0.587419 0.809283i \(-0.699856\pi\)
0.587419 0.809283i \(-0.300144\pi\)
\(740\) −27.7128 + 16.0000i −1.01874 + 0.588172i
\(741\) 0 0
\(742\) 16.3923 4.39230i 0.601780 0.161247i
\(743\) −8.00000 + 13.8564i −0.293492 + 0.508342i −0.974633 0.223810i \(-0.928151\pi\)
0.681141 + 0.732152i \(0.261484\pi\)
\(744\) 0 0
\(745\) −6.00000 10.3923i −0.219823 0.380745i
\(746\) −16.0000 16.0000i −0.585802 0.585802i
\(747\) 0 0
\(748\) 0 0
\(749\) 20.7846 12.0000i 0.759453 0.438470i
\(750\) 0 0
\(751\) −1.00000 + 1.73205i −0.0364905 + 0.0632034i −0.883694 0.468065i \(-0.844951\pi\)
0.847203 + 0.531269i \(0.178285\pi\)
\(752\) 24.0000 41.5692i 0.875190 1.51587i
\(753\) 0 0
\(754\) −32.7846 8.78461i −1.19395 0.319917i
\(755\) 36.0000i 1.31017i
\(756\) 0 0
\(757\) 12.0000i 0.436147i 0.975932 + 0.218074i \(0.0699773\pi\)
−0.975932 + 0.218074i \(0.930023\pi\)
\(758\) −1.46410 + 5.46410i −0.0531786 + 0.198465i
\(759\) 0 0
\(760\) 21.8564 5.85641i 0.792815 0.212434i
\(761\) −19.0000 + 32.9090i −0.688749 + 1.19295i 0.283493 + 0.958974i \(0.408507\pi\)
−0.972243 + 0.233975i \(0.924827\pi\)
\(762\) 0 0
\(763\) 6.92820 4.00000i 0.250818 0.144810i
\(764\) 16.0000i 0.578860i
\(765\) 0 0
\(766\) −24.0000 + 24.0000i −0.867155 + 0.867155i
\(767\) 8.00000 + 13.8564i 0.288863 + 0.500326i
\(768\) 0 0
\(769\) −5.00000 + 8.66025i −0.180305 + 0.312297i −0.941984 0.335657i \(-0.891042\pi\)
0.761680 + 0.647954i \(0.224375\pi\)
\(770\) 0 0
\(771\) 0 0
\(772\) 10.3923 6.00000i 0.374027 0.215945i
\(773\) 34.0000i 1.22290i −0.791285 0.611448i \(-0.790588\pi\)
0.791285 0.611448i \(-0.209412\pi\)
\(774\) 0 0
\(775\) 2.00000 0.0718421
\(776\) 1.46410 5.46410i 0.0525582 0.196150i
\(777\) 0 0
\(778\) −46.4449 + 12.4449i −1.66513 + 0.446170i
\(779\) −6.92820 4.00000i −0.248229 0.143315i
\(780\) 0 0
\(781\) 0 0
\(782\) −8.00000 + 8.00000i −0.286079 + 0.286079i
\(783\) 0 0
\(784\) 12.0000 0.428571
\(785\) −8.00000 13.8564i −0.285532 0.494556i
\(786\) 0 0
\(787\) −10.3923 6.00000i −0.370446 0.213877i 0.303207 0.952925i \(-0.401942\pi\)
−0.673653 + 0.739048i \(0.735276\pi\)
\(788\) 2.00000 3.46410i 0.0712470 0.123404i
\(789\) 0 0
\(790\) 7.32051 27.3205i 0.260452 0.972020i
\(791\) −12.0000 −0.426671
\(792\) 0 0
\(793\) 0 0
\(794\) 11.7128 43.7128i 0.415672 1.55131i
\(795\) 0 0
\(796\) 17.3205 + 10.0000i 0.613909 + 0.354441i
\(797\) 1.73205 + 1.00000i 0.0613524 + 0.0354218i 0.530362 0.847771i \(-0.322056\pi\)
−0.469010 + 0.883193i \(0.655389\pi\)
\(798\) 0 0
\(799\) −12.0000 20.7846i −0.424529 0.735307i
\(800\) −4.00000 + 4.00000i −0.141421 + 0.141421i
\(801\) 0 0
\(802\) 18.0000 18.0000i 0.635602 0.635602i
\(803\) 0 0
\(804\) 0 0
\(805\) −13.8564 8.00000i −0.488374 0.281963i
\(806\) −10.9282 + 2.92820i −0.384930 + 0.103142i
\(807\) 0 0
\(808\) 27.3205 + 7.32051i 0.961132 + 0.257535i
\(809\) 30.0000 1.05474 0.527372 0.849635i \(-0.323177\pi\)
0.527372 + 0.849635i \(0.323177\pi\)
\(810\) 0 0
\(811\) 20.0000i 0.702295i −0.936320 0.351147i \(-0.885792\pi\)
0.936320 0.351147i \(-0.114208\pi\)
\(812\) −12.0000 20.7846i −0.421117 0.729397i
\(813\) 0 0
\(814\) 0 0
\(815\) 4.00000 6.92820i 0.140114 0.242684i
\(816\) 0 0
\(817\) −8.00000 13.8564i −0.279885 0.484774i
\(818\) 10.0000 10.0000i 0.349642 0.349642i
\(819\) 0 0
\(820\) −8.00000 −0.279372
\(821\) −8.66025 + 5.00000i −0.302245 + 0.174501i −0.643451 0.765487i \(-0.722498\pi\)
0.341206 + 0.939989i \(0.389165\pi\)
\(822\) 0 0
\(823\) −7.00000 + 12.1244i −0.244005 + 0.422628i −0.961851 0.273573i \(-0.911795\pi\)
0.717847 + 0.696201i \(0.245128\pi\)
\(824\) −16.3923 + 4.39230i −0.571053 + 0.153013i
\(825\) 0 0
\(826\) −2.92820 + 10.9282i −0.101885 + 0.380241i
\(827\) 12.0000i 0.417281i −0.977992 0.208640i \(-0.933096\pi\)
0.977992 0.208640i \(-0.0669038\pi\)
\(828\) 0 0
\(829\) 4.00000i 0.138926i −0.997585 0.0694629i \(-0.977871\pi\)
0.997585 0.0694629i \(-0.0221285\pi\)
\(830\) 43.7128 + 11.7128i 1.51729 + 0.406558i
\(831\) 0 0
\(832\) 16.0000 27.7128i 0.554700 0.960769i
\(833\) 3.00000 5.19615i 0.103944 0.180036i
\(834\) 0 0
\(835\) −13.8564 + 8.00000i −0.479521 + 0.276851i
\(836\) 0 0
\(837\) 0 0
\(838\) 24.0000 + 24.0000i 0.829066 + 0.829066i
\(839\) 10.0000 + 17.3205i 0.345238 + 0.597970i 0.985397 0.170272i \(-0.0544647\pi\)
−0.640159 + 0.768243i \(0.721131\pi\)
\(840\) 0 0
\(841\) 3.50000 6.06218i 0.120690 0.209041i
\(842\) −27.3205 + 7.32051i −0.941527 + 0.252281i
\(843\) 0 0
\(844\) 20.0000 + 34.6410i 0.688428 + 1.19239i
\(845\) 6.00000i 0.206406i
\(846\) 0 0
\(847\) −22.0000 −0.755929
\(848\) −20.7846 + 12.0000i −0.713746 + 0.412082i
\(849\) 0 0
\(850\) 0.732051 + 2.73205i 0.0251091 + 0.0937086i
\(851\) −27.7128 16.0000i −0.949983 0.548473i
\(852\) 0 0
\(853\) 20.7846 12.0000i 0.711651 0.410872i −0.100021 0.994985i \(-0.531891\pi\)
0.811672 + 0.584113i \(0.198558\pi\)
\(854\) 0 0
\(855\) 0 0
\(856\) −24.0000 + 24.0000i −0.820303 + 0.820303i
\(857\) 9.00000 + 15.5885i 0.307434 + 0.532492i 0.977800 0.209539i \(-0.0671963\pi\)
−0.670366 + 0.742030i \(0.733863\pi\)
\(858\) 0 0
\(859\) 38.1051 + 22.0000i 1.30013 + 0.750630i 0.980426 0.196887i \(-0.0630833\pi\)
0.319704 + 0.947518i \(0.396417\pi\)
\(860\) −13.8564 8.00000i −0.472500 0.272798i
\(861\) 0 0
\(862\) 16.3923 + 4.39230i 0.558324 + 0.149602i
\(863\) −24.0000 −0.816970 −0.408485 0.912765i \(-0.633943\pi\)
−0.408485 + 0.912765i \(0.633943\pi\)
\(864\) 0 0
\(865\) −12.0000 −0.408012
\(866\) −19.1244 5.12436i −0.649872 0.174133i
\(867\) 0 0
\(868\) −6.92820 4.00000i −0.235159 0.135769i
\(869\) 0 0
\(870\) 0 0
\(871\) 24.0000 + 41.5692i 0.813209 + 1.40852i
\(872\) −8.00000 + 8.00000i −0.270914 + 0.270914i
\(873\) 0 0
\(874\) 16.0000 + 16.0000i 0.541208 + 0.541208i
\(875\) −20.7846 + 12.0000i −0.702648 + 0.405674i
\(876\) 0 0
\(877\) −27.7128 16.0000i −0.935795 0.540282i −0.0471555 0.998888i \(-0.515016\pi\)
−0.888640 + 0.458606i \(0.848349\pi\)
\(878\) −10.9808 40.9808i −0.370583 1.38303i
\(879\) 0 0
\(880\) 0 0
\(881\) −2.00000 −0.0673817 −0.0336909 0.999432i \(-0.510726\pi\)
−0.0336909 + 0.999432i \(0.510726\pi\)
\(882\) 0 0
\(883\) 4.00000i 0.134611i 0.997732 + 0.0673054i \(0.0214402\pi\)
−0.997732 + 0.0673054i \(0.978560\pi\)
\(884\) −8.00000 13.8564i −0.269069 0.466041i
\(885\) 0 0
\(886\) 32.7846 8.78461i 1.10142 0.295125i
\(887\) 24.0000 41.5692i 0.805841 1.39576i −0.109881 0.993945i \(-0.535047\pi\)
0.915722 0.401813i \(-0.131620\pi\)
\(888\) 0 0
\(889\) −2.00000 3.46410i −0.0670778 0.116182i
\(890\) 20.0000 + 20.0000i 0.670402 + 0.670402i
\(891\) 0 0
\(892\) 28.0000i 0.937509i
\(893\) −41.5692 + 24.0000i −1.39106 + 0.803129i
\(894\) 0 0
\(895\) 4.00000 6.92820i 0.133705 0.231584i
\(896\) 21.8564 5.85641i 0.730171 0.195649i
\(897\) 0 0
\(898\) 40.9808 + 10.9808i 1.36755 + 0.366433i
\(899\) 12.0000i 0.400222i
\(900\) 0 0
\(901\) 12.0000i 0.399778i
\(902\) 0 0
\(903\) 0 0
\(904\) 16.3923 4.39230i 0.545200 0.146086i
\(905\) 20.0000 34.6410i 0.664822 1.15151i
\(906\) 0 0
\(907\) −24.2487 + 14.0000i −0.805165 + 0.464862i −0.845274 0.534333i \(-0.820563\pi\)
0.0401089 + 0.999195i \(0.487230\pi\)
\(908\) 16.0000 0.530979
\(909\) 0 0
\(910\) 16.0000 16.0000i 0.530395 0.530395i
\(911\) −24.0000 41.5692i −0.795155 1.37725i −0.922740 0.385422i \(-0.874056\pi\)
0.127585 0.991828i \(-0.459277\pi\)
\(912\) 0 0
\(913\) 0 0
\(914\) −8.05256 30.0526i −0.266355 0.994050i
\(915\) 0 0
\(916\) 4.00000 + 6.92820i 0.132164 + 0.228914i
\(917\) 40.0000i 1.32092i
\(918\) 0 0
\(919\) 30.0000 0.989609 0.494804 0.869004i \(-0.335240\pi\)
0.494804 + 0.869004i \(0.335240\pi\)
\(920\) 21.8564 + 5.85641i 0.720584 + 0.193080i
\(921\) 0 0
\(922\) −40.9808 + 10.9808i −1.34963 + 0.361632i
\(923\) 41.5692 + 24.0000i 1.36827 + 0.789970i
\(924\) 0 0
\(925\) −6.92820 + 4.00000i −0.227798 + 0.131519i
\(926\) −26.0000 + 26.0000i −0.854413 + 0.854413i
\(927\) 0 0
\(928\) 24.0000 + 24.0000i 0.787839 + 0.787839i
\(929\) −25.0000 43.3013i −0.820223 1.42067i −0.905516 0.424313i \(-0.860516\pi\)
0.0852924 0.996356i \(-0.472818\pi\)
\(930\) 0 0
\(931\) −10.3923 6.00000i −0.340594 0.196642i
\(932\) −24.2487 14.0000i −0.794293 0.458585i
\(933\) 0 0
\(934\) 2.92820 10.9282i 0.0958137 0.357582i
\(935\) 0 0
\(936\) 0 0
\(937\) 38.0000 1.24141 0.620703 0.784046i \(-0.286847\pi\)
0.620703 + 0.784046i \(0.286847\pi\)
\(938\) −8.78461 + 32.7846i −0.286828 + 1.07046i
\(939\) 0 0
\(940\) −24.0000 + 41.5692i −0.782794 + 1.35584i
\(941\) −25.9808 15.0000i −0.846949 0.488986i 0.0126715 0.999920i \(-0.495966\pi\)
−0.859620 + 0.510934i \(0.829300\pi\)
\(942\) 0 0
\(943\) −4.00000 6.92820i −0.130258 0.225613i
\(944\) 16.0000i 0.520756i
\(945\) 0 0
\(946\) 0 0
\(947\) −10.3923 + 6.00000i −0.337705 + 0.194974i −0.659256 0.751918i \(-0.729129\pi\)
0.321552 + 0.946892i \(0.395796\pi\)
\(948\) 0 0
\(949\) 20.7846 + 12.0000i 0.674697 + 0.389536i
\(950\) 5.46410 1.46410i 0.177279 0.0475017i
\(951\) 0 0
\(952\) 2.92820 10.9282i 0.0949036 0.354185i
\(953\) 6.00000 0.194359 0.0971795 0.995267i \(-0.469018\pi\)
0.0971795 + 0.995267i \(0.469018\pi\)
\(954\) 0 0
\(955\) 16.0000i 0.517748i
\(956\) 0 0
\(957\) 0 0
\(958\) −7.32051 27.3205i −0.236515 0.882686i
\(959\) −18.0000 + 31.1769i −0.581250 + 1.00676i
\(960\) 0 0
\(961\) 13.5000 + 23.3827i 0.435484 + 0.754280i
\(962\) 32.0000 32.0000i 1.03172 1.03172i
\(963\) 0 0
\(964\) 4.00000i 0.128831i
\(965\) −10.3923 + 6.00000i −0.334540 + 0.193147i
\(966\) 0 0
\(967\) 11.0000 19.0526i 0.353736 0.612689i −0.633165 0.774017i \(-0.718244\pi\)
0.986901 + 0.161328i \(0.0515777\pi\)
\(968\) 30.0526 8.05256i 0.965926 0.258819i
\(969\) 0 0
\(970\) −1.46410 + 5.46410i −0.0470095 + 0.175442i
\(971\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(972\) 0 0
\(973\) 8.00000i 0.256468i
\(974\) −51.9090 13.9090i −1.66327 0.445672i
\(975\) 0 0
\(976\) 0 0
\(977\) −1.00000 + 1.73205i −0.0319928 + 0.0554132i −0.881579 0.472037i \(-0.843519\pi\)
0.849586 + 0.527451i \(0.176852\pi\)
\(978\) 0 0
\(979\) 0 0
\(980\) −12.0000 −0.383326
\(981\) 0 0
\(982\) −20.0000 20.0000i −0.638226 0.638226i
\(983\) −8.00000 13.8564i −0.255160 0.441951i 0.709779 0.704425i \(-0.248795\pi\)
−0.964939 + 0.262474i \(0.915462\pi\)
\(984\) 0 0
\(985\) −2.00000 + 3.46410i −0.0637253 + 0.110375i
\(986\) 16.3923 4.39230i 0.522037 0.139879i
\(987\) 0 0
\(988\) −27.7128 + 16.0000i −0.881662 + 0.509028i
\(989\) 16.0000i 0.508770i
\(990\) 0 0
\(991\) 2.00000 0.0635321 0.0317660 0.999495i \(-0.489887\pi\)
0.0317660 + 0.999495i \(0.489887\pi\)
\(992\) 10.9282 + 2.92820i 0.346971 + 0.0929705i
\(993\) 0 0
\(994\) 8.78461 + 32.7846i 0.278631 + 1.03986i
\(995\) −17.3205 10.0000i −0.549097 0.317021i
\(996\) 0 0
\(997\) −41.5692 + 24.0000i −1.31651 + 0.760088i −0.983165 0.182717i \(-0.941511\pi\)
−0.333345 + 0.942805i \(0.608177\pi\)
\(998\) 36.0000 + 36.0000i 1.13956 + 1.13956i
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 648.2.n.c.109.1 4
3.2 odd 2 648.2.n.k.109.2 4
4.3 odd 2 2592.2.r.g.433.1 4
8.3 odd 2 2592.2.r.g.433.2 4
8.5 even 2 inner 648.2.n.c.109.2 4
9.2 odd 6 648.2.n.k.541.1 4
9.4 even 3 72.2.d.b.37.1 2
9.5 odd 6 24.2.d.a.13.2 yes 2
9.7 even 3 inner 648.2.n.c.541.2 4
12.11 even 2 2592.2.r.f.433.2 4
24.5 odd 2 648.2.n.k.109.1 4
24.11 even 2 2592.2.r.f.433.1 4
36.7 odd 6 2592.2.r.g.2161.2 4
36.11 even 6 2592.2.r.f.2161.1 4
36.23 even 6 96.2.d.a.49.1 2
36.31 odd 6 288.2.d.b.145.2 2
45.4 even 6 1800.2.k.a.901.2 2
45.13 odd 12 1800.2.d.b.1549.1 2
45.14 odd 6 600.2.k.b.301.1 2
45.22 odd 12 1800.2.d.i.1549.2 2
45.23 even 12 600.2.d.c.349.2 2
45.32 even 12 600.2.d.b.349.1 2
63.41 even 6 1176.2.c.a.589.2 2
72.5 odd 6 24.2.d.a.13.1 2
72.11 even 6 2592.2.r.f.2161.2 4
72.13 even 6 72.2.d.b.37.2 2
72.29 odd 6 648.2.n.k.541.2 4
72.43 odd 6 2592.2.r.g.2161.1 4
72.59 even 6 96.2.d.a.49.2 2
72.61 even 6 inner 648.2.n.c.541.1 4
72.67 odd 6 288.2.d.b.145.1 2
144.5 odd 12 768.2.a.h.1.1 1
144.13 even 12 2304.2.a.o.1.1 1
144.59 even 12 768.2.a.d.1.1 1
144.67 odd 12 2304.2.a.l.1.1 1
144.77 odd 12 768.2.a.a.1.1 1
144.85 even 12 2304.2.a.e.1.1 1
144.131 even 12 768.2.a.e.1.1 1
144.139 odd 12 2304.2.a.b.1.1 1
180.23 odd 12 2400.2.d.c.49.1 2
180.59 even 6 2400.2.k.a.1201.2 2
180.67 even 12 7200.2.d.g.2449.2 2
180.103 even 12 7200.2.d.d.2449.1 2
180.139 odd 6 7200.2.k.d.3601.1 2
180.167 odd 12 2400.2.d.b.49.2 2
252.167 odd 6 4704.2.c.a.2353.2 2
360.13 odd 12 1800.2.d.i.1549.1 2
360.59 even 6 2400.2.k.a.1201.1 2
360.67 even 12 7200.2.d.d.2449.2 2
360.77 even 12 600.2.d.c.349.1 2
360.139 odd 6 7200.2.k.d.3601.2 2
360.149 odd 6 600.2.k.b.301.2 2
360.157 odd 12 1800.2.d.b.1549.2 2
360.203 odd 12 2400.2.d.b.49.1 2
360.229 even 6 1800.2.k.a.901.1 2
360.283 even 12 7200.2.d.g.2449.1 2
360.293 even 12 600.2.d.b.349.2 2
360.347 odd 12 2400.2.d.c.49.2 2
504.293 even 6 1176.2.c.a.589.1 2
504.419 odd 6 4704.2.c.a.2353.1 2
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
24.2.d.a.13.1 2 72.5 odd 6
24.2.d.a.13.2 yes 2 9.5 odd 6
72.2.d.b.37.1 2 9.4 even 3
72.2.d.b.37.2 2 72.13 even 6
96.2.d.a.49.1 2 36.23 even 6
96.2.d.a.49.2 2 72.59 even 6
288.2.d.b.145.1 2 72.67 odd 6
288.2.d.b.145.2 2 36.31 odd 6
600.2.d.b.349.1 2 45.32 even 12
600.2.d.b.349.2 2 360.293 even 12
600.2.d.c.349.1 2 360.77 even 12
600.2.d.c.349.2 2 45.23 even 12
600.2.k.b.301.1 2 45.14 odd 6
600.2.k.b.301.2 2 360.149 odd 6
648.2.n.c.109.1 4 1.1 even 1 trivial
648.2.n.c.109.2 4 8.5 even 2 inner
648.2.n.c.541.1 4 72.61 even 6 inner
648.2.n.c.541.2 4 9.7 even 3 inner
648.2.n.k.109.1 4 24.5 odd 2
648.2.n.k.109.2 4 3.2 odd 2
648.2.n.k.541.1 4 9.2 odd 6
648.2.n.k.541.2 4 72.29 odd 6
768.2.a.a.1.1 1 144.77 odd 12
768.2.a.d.1.1 1 144.59 even 12
768.2.a.e.1.1 1 144.131 even 12
768.2.a.h.1.1 1 144.5 odd 12
1176.2.c.a.589.1 2 504.293 even 6
1176.2.c.a.589.2 2 63.41 even 6
1800.2.d.b.1549.1 2 45.13 odd 12
1800.2.d.b.1549.2 2 360.157 odd 12
1800.2.d.i.1549.1 2 360.13 odd 12
1800.2.d.i.1549.2 2 45.22 odd 12
1800.2.k.a.901.1 2 360.229 even 6
1800.2.k.a.901.2 2 45.4 even 6
2304.2.a.b.1.1 1 144.139 odd 12
2304.2.a.e.1.1 1 144.85 even 12
2304.2.a.l.1.1 1 144.67 odd 12
2304.2.a.o.1.1 1 144.13 even 12
2400.2.d.b.49.1 2 360.203 odd 12
2400.2.d.b.49.2 2 180.167 odd 12
2400.2.d.c.49.1 2 180.23 odd 12
2400.2.d.c.49.2 2 360.347 odd 12
2400.2.k.a.1201.1 2 360.59 even 6
2400.2.k.a.1201.2 2 180.59 even 6
2592.2.r.f.433.1 4 24.11 even 2
2592.2.r.f.433.2 4 12.11 even 2
2592.2.r.f.2161.1 4 36.11 even 6
2592.2.r.f.2161.2 4 72.11 even 6
2592.2.r.g.433.1 4 4.3 odd 2
2592.2.r.g.433.2 4 8.3 odd 2
2592.2.r.g.2161.1 4 72.43 odd 6
2592.2.r.g.2161.2 4 36.7 odd 6
4704.2.c.a.2353.1 2 504.419 odd 6
4704.2.c.a.2353.2 2 252.167 odd 6
7200.2.d.d.2449.1 2 180.103 even 12
7200.2.d.d.2449.2 2 360.67 even 12
7200.2.d.g.2449.1 2 360.283 even 12
7200.2.d.g.2449.2 2 180.67 even 12
7200.2.k.d.3601.1 2 180.139 odd 6
7200.2.k.d.3601.2 2 360.139 odd 6