Properties

Label 722.2.c.f.653.1
Level $722$
Weight $2$
Character 722.653
Analytic conductor $5.765$
Analytic rank $0$
Dimension $2$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [722,2,Mod(429,722)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(722, base_ring=CyclotomicField(6))
 
chi = DirichletCharacter(H, H._module([4]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("722.429");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 722 = 2 \cdot 19^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 722.c (of order \(3\), degree \(2\), not minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(5.76519902594\)
Analytic rank: \(0\)
Dimension: \(2\)
Coefficient field: \(\Q(\zeta_{6})\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{2} - x + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 38)
Sato-Tate group: $\mathrm{SU}(2)[C_{3}]$

Embedding invariants

Embedding label 653.1
Root \(0.500000 - 0.866025i\) of defining polynomial
Character \(\chi\) \(=\) 722.653
Dual form 722.2.c.f.429.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(0.500000 + 0.866025i) q^{2} +(-0.500000 - 0.866025i) q^{3} +(-0.500000 + 0.866025i) q^{4} +(2.00000 + 3.46410i) q^{5} +(0.500000 - 0.866025i) q^{6} +3.00000 q^{7} -1.00000 q^{8} +(1.00000 - 1.73205i) q^{9} +(-2.00000 + 3.46410i) q^{10} +2.00000 q^{11} +1.00000 q^{12} +(-0.500000 + 0.866025i) q^{13} +(1.50000 + 2.59808i) q^{14} +(2.00000 - 3.46410i) q^{15} +(-0.500000 - 0.866025i) q^{16} +(-1.50000 - 2.59808i) q^{17} +2.00000 q^{18} -4.00000 q^{20} +(-1.50000 - 2.59808i) q^{21} +(1.00000 + 1.73205i) q^{22} +(0.500000 - 0.866025i) q^{23} +(0.500000 + 0.866025i) q^{24} +(-5.50000 + 9.52628i) q^{25} -1.00000 q^{26} -5.00000 q^{27} +(-1.50000 + 2.59808i) q^{28} +(-2.50000 + 4.33013i) q^{29} +4.00000 q^{30} +8.00000 q^{31} +(0.500000 - 0.866025i) q^{32} +(-1.00000 - 1.73205i) q^{33} +(1.50000 - 2.59808i) q^{34} +(6.00000 + 10.3923i) q^{35} +(1.00000 + 1.73205i) q^{36} +2.00000 q^{37} +1.00000 q^{39} +(-2.00000 - 3.46410i) q^{40} +(-4.00000 - 6.92820i) q^{41} +(1.50000 - 2.59808i) q^{42} +(-2.00000 - 3.46410i) q^{43} +(-1.00000 + 1.73205i) q^{44} +8.00000 q^{45} +1.00000 q^{46} +(-4.00000 + 6.92820i) q^{47} +(-0.500000 + 0.866025i) q^{48} +2.00000 q^{49} -11.0000 q^{50} +(-1.50000 + 2.59808i) q^{51} +(-0.500000 - 0.866025i) q^{52} +(-0.500000 + 0.866025i) q^{53} +(-2.50000 - 4.33013i) q^{54} +(4.00000 + 6.92820i) q^{55} -3.00000 q^{56} -5.00000 q^{58} +(7.50000 + 12.9904i) q^{59} +(2.00000 + 3.46410i) q^{60} +(-1.00000 + 1.73205i) q^{61} +(4.00000 + 6.92820i) q^{62} +(3.00000 - 5.19615i) q^{63} +1.00000 q^{64} -4.00000 q^{65} +(1.00000 - 1.73205i) q^{66} +(1.50000 - 2.59808i) q^{67} +3.00000 q^{68} -1.00000 q^{69} +(-6.00000 + 10.3923i) q^{70} +(1.00000 + 1.73205i) q^{71} +(-1.00000 + 1.73205i) q^{72} +(-4.50000 - 7.79423i) q^{73} +(1.00000 + 1.73205i) q^{74} +11.0000 q^{75} +6.00000 q^{77} +(0.500000 + 0.866025i) q^{78} +(-5.00000 - 8.66025i) q^{79} +(2.00000 - 3.46410i) q^{80} +(-0.500000 - 0.866025i) q^{81} +(4.00000 - 6.92820i) q^{82} -6.00000 q^{83} +3.00000 q^{84} +(6.00000 - 10.3923i) q^{85} +(2.00000 - 3.46410i) q^{86} +5.00000 q^{87} -2.00000 q^{88} +(4.00000 + 6.92820i) q^{90} +(-1.50000 + 2.59808i) q^{91} +(0.500000 + 0.866025i) q^{92} +(-4.00000 - 6.92820i) q^{93} -8.00000 q^{94} -1.00000 q^{96} +(-1.00000 - 1.73205i) q^{97} +(1.00000 + 1.73205i) q^{98} +(2.00000 - 3.46410i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 2 q + q^{2} - q^{3} - q^{4} + 4 q^{5} + q^{6} + 6 q^{7} - 2 q^{8} + 2 q^{9} - 4 q^{10} + 4 q^{11} + 2 q^{12} - q^{13} + 3 q^{14} + 4 q^{15} - q^{16} - 3 q^{17} + 4 q^{18} - 8 q^{20} - 3 q^{21} + 2 q^{22}+ \cdots + 4 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/722\mathbb{Z}\right)^\times\).

\(n\) \(363\)
\(\chi(n)\) \(e\left(\frac{1}{3}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0.500000 + 0.866025i 0.353553 + 0.612372i
\(3\) −0.500000 0.866025i −0.288675 0.500000i 0.684819 0.728714i \(-0.259881\pi\)
−0.973494 + 0.228714i \(0.926548\pi\)
\(4\) −0.500000 + 0.866025i −0.250000 + 0.433013i
\(5\) 2.00000 + 3.46410i 0.894427 + 1.54919i 0.834512 + 0.550990i \(0.185750\pi\)
0.0599153 + 0.998203i \(0.480917\pi\)
\(6\) 0.500000 0.866025i 0.204124 0.353553i
\(7\) 3.00000 1.13389 0.566947 0.823754i \(-0.308125\pi\)
0.566947 + 0.823754i \(0.308125\pi\)
\(8\) −1.00000 −0.353553
\(9\) 1.00000 1.73205i 0.333333 0.577350i
\(10\) −2.00000 + 3.46410i −0.632456 + 1.09545i
\(11\) 2.00000 0.603023 0.301511 0.953463i \(-0.402509\pi\)
0.301511 + 0.953463i \(0.402509\pi\)
\(12\) 1.00000 0.288675
\(13\) −0.500000 + 0.866025i −0.138675 + 0.240192i −0.926995 0.375073i \(-0.877618\pi\)
0.788320 + 0.615265i \(0.210951\pi\)
\(14\) 1.50000 + 2.59808i 0.400892 + 0.694365i
\(15\) 2.00000 3.46410i 0.516398 0.894427i
\(16\) −0.500000 0.866025i −0.125000 0.216506i
\(17\) −1.50000 2.59808i −0.363803 0.630126i 0.624780 0.780801i \(-0.285189\pi\)
−0.988583 + 0.150675i \(0.951855\pi\)
\(18\) 2.00000 0.471405
\(19\) 0 0
\(20\) −4.00000 −0.894427
\(21\) −1.50000 2.59808i −0.327327 0.566947i
\(22\) 1.00000 + 1.73205i 0.213201 + 0.369274i
\(23\) 0.500000 0.866025i 0.104257 0.180579i −0.809177 0.587565i \(-0.800087\pi\)
0.913434 + 0.406986i \(0.133420\pi\)
\(24\) 0.500000 + 0.866025i 0.102062 + 0.176777i
\(25\) −5.50000 + 9.52628i −1.10000 + 1.90526i
\(26\) −1.00000 −0.196116
\(27\) −5.00000 −0.962250
\(28\) −1.50000 + 2.59808i −0.283473 + 0.490990i
\(29\) −2.50000 + 4.33013i −0.464238 + 0.804084i −0.999167 0.0408130i \(-0.987005\pi\)
0.534928 + 0.844897i \(0.320339\pi\)
\(30\) 4.00000 0.730297
\(31\) 8.00000 1.43684 0.718421 0.695608i \(-0.244865\pi\)
0.718421 + 0.695608i \(0.244865\pi\)
\(32\) 0.500000 0.866025i 0.0883883 0.153093i
\(33\) −1.00000 1.73205i −0.174078 0.301511i
\(34\) 1.50000 2.59808i 0.257248 0.445566i
\(35\) 6.00000 + 10.3923i 1.01419 + 1.75662i
\(36\) 1.00000 + 1.73205i 0.166667 + 0.288675i
\(37\) 2.00000 0.328798 0.164399 0.986394i \(-0.447432\pi\)
0.164399 + 0.986394i \(0.447432\pi\)
\(38\) 0 0
\(39\) 1.00000 0.160128
\(40\) −2.00000 3.46410i −0.316228 0.547723i
\(41\) −4.00000 6.92820i −0.624695 1.08200i −0.988600 0.150567i \(-0.951890\pi\)
0.363905 0.931436i \(-0.381443\pi\)
\(42\) 1.50000 2.59808i 0.231455 0.400892i
\(43\) −2.00000 3.46410i −0.304997 0.528271i 0.672264 0.740312i \(-0.265322\pi\)
−0.977261 + 0.212041i \(0.931989\pi\)
\(44\) −1.00000 + 1.73205i −0.150756 + 0.261116i
\(45\) 8.00000 1.19257
\(46\) 1.00000 0.147442
\(47\) −4.00000 + 6.92820i −0.583460 + 1.01058i 0.411606 + 0.911362i \(0.364968\pi\)
−0.995066 + 0.0992202i \(0.968365\pi\)
\(48\) −0.500000 + 0.866025i −0.0721688 + 0.125000i
\(49\) 2.00000 0.285714
\(50\) −11.0000 −1.55563
\(51\) −1.50000 + 2.59808i −0.210042 + 0.363803i
\(52\) −0.500000 0.866025i −0.0693375 0.120096i
\(53\) −0.500000 + 0.866025i −0.0686803 + 0.118958i −0.898321 0.439340i \(-0.855212\pi\)
0.829640 + 0.558298i \(0.188546\pi\)
\(54\) −2.50000 4.33013i −0.340207 0.589256i
\(55\) 4.00000 + 6.92820i 0.539360 + 0.934199i
\(56\) −3.00000 −0.400892
\(57\) 0 0
\(58\) −5.00000 −0.656532
\(59\) 7.50000 + 12.9904i 0.976417 + 1.69120i 0.675178 + 0.737655i \(0.264067\pi\)
0.301239 + 0.953549i \(0.402600\pi\)
\(60\) 2.00000 + 3.46410i 0.258199 + 0.447214i
\(61\) −1.00000 + 1.73205i −0.128037 + 0.221766i −0.922916 0.385002i \(-0.874201\pi\)
0.794879 + 0.606768i \(0.207534\pi\)
\(62\) 4.00000 + 6.92820i 0.508001 + 0.879883i
\(63\) 3.00000 5.19615i 0.377964 0.654654i
\(64\) 1.00000 0.125000
\(65\) −4.00000 −0.496139
\(66\) 1.00000 1.73205i 0.123091 0.213201i
\(67\) 1.50000 2.59808i 0.183254 0.317406i −0.759733 0.650236i \(-0.774670\pi\)
0.942987 + 0.332830i \(0.108004\pi\)
\(68\) 3.00000 0.363803
\(69\) −1.00000 −0.120386
\(70\) −6.00000 + 10.3923i −0.717137 + 1.24212i
\(71\) 1.00000 + 1.73205i 0.118678 + 0.205557i 0.919244 0.393688i \(-0.128801\pi\)
−0.800566 + 0.599245i \(0.795468\pi\)
\(72\) −1.00000 + 1.73205i −0.117851 + 0.204124i
\(73\) −4.50000 7.79423i −0.526685 0.912245i −0.999517 0.0310925i \(-0.990101\pi\)
0.472831 0.881153i \(-0.343232\pi\)
\(74\) 1.00000 + 1.73205i 0.116248 + 0.201347i
\(75\) 11.0000 1.27017
\(76\) 0 0
\(77\) 6.00000 0.683763
\(78\) 0.500000 + 0.866025i 0.0566139 + 0.0980581i
\(79\) −5.00000 8.66025i −0.562544 0.974355i −0.997274 0.0737937i \(-0.976489\pi\)
0.434730 0.900561i \(-0.356844\pi\)
\(80\) 2.00000 3.46410i 0.223607 0.387298i
\(81\) −0.500000 0.866025i −0.0555556 0.0962250i
\(82\) 4.00000 6.92820i 0.441726 0.765092i
\(83\) −6.00000 −0.658586 −0.329293 0.944228i \(-0.606810\pi\)
−0.329293 + 0.944228i \(0.606810\pi\)
\(84\) 3.00000 0.327327
\(85\) 6.00000 10.3923i 0.650791 1.12720i
\(86\) 2.00000 3.46410i 0.215666 0.373544i
\(87\) 5.00000 0.536056
\(88\) −2.00000 −0.213201
\(89\) 0 0 −0.866025 0.500000i \(-0.833333\pi\)
0.866025 + 0.500000i \(0.166667\pi\)
\(90\) 4.00000 + 6.92820i 0.421637 + 0.730297i
\(91\) −1.50000 + 2.59808i −0.157243 + 0.272352i
\(92\) 0.500000 + 0.866025i 0.0521286 + 0.0902894i
\(93\) −4.00000 6.92820i −0.414781 0.718421i
\(94\) −8.00000 −0.825137
\(95\) 0 0
\(96\) −1.00000 −0.102062
\(97\) −1.00000 1.73205i −0.101535 0.175863i 0.810782 0.585348i \(-0.199042\pi\)
−0.912317 + 0.409484i \(0.865709\pi\)
\(98\) 1.00000 + 1.73205i 0.101015 + 0.174964i
\(99\) 2.00000 3.46410i 0.201008 0.348155i
\(100\) −5.50000 9.52628i −0.550000 0.952628i
\(101\) −1.00000 + 1.73205i −0.0995037 + 0.172345i −0.911479 0.411346i \(-0.865059\pi\)
0.811976 + 0.583691i \(0.198392\pi\)
\(102\) −3.00000 −0.297044
\(103\) 6.00000 0.591198 0.295599 0.955312i \(-0.404481\pi\)
0.295599 + 0.955312i \(0.404481\pi\)
\(104\) 0.500000 0.866025i 0.0490290 0.0849208i
\(105\) 6.00000 10.3923i 0.585540 1.01419i
\(106\) −1.00000 −0.0971286
\(107\) 7.00000 0.676716 0.338358 0.941018i \(-0.390129\pi\)
0.338358 + 0.941018i \(0.390129\pi\)
\(108\) 2.50000 4.33013i 0.240563 0.416667i
\(109\) −7.50000 12.9904i −0.718370 1.24425i −0.961645 0.274296i \(-0.911555\pi\)
0.243276 0.969957i \(-0.421778\pi\)
\(110\) −4.00000 + 6.92820i −0.381385 + 0.660578i
\(111\) −1.00000 1.73205i −0.0949158 0.164399i
\(112\) −1.50000 2.59808i −0.141737 0.245495i
\(113\) −14.0000 −1.31701 −0.658505 0.752577i \(-0.728811\pi\)
−0.658505 + 0.752577i \(0.728811\pi\)
\(114\) 0 0
\(115\) 4.00000 0.373002
\(116\) −2.50000 4.33013i −0.232119 0.402042i
\(117\) 1.00000 + 1.73205i 0.0924500 + 0.160128i
\(118\) −7.50000 + 12.9904i −0.690431 + 1.19586i
\(119\) −4.50000 7.79423i −0.412514 0.714496i
\(120\) −2.00000 + 3.46410i −0.182574 + 0.316228i
\(121\) −7.00000 −0.636364
\(122\) −2.00000 −0.181071
\(123\) −4.00000 + 6.92820i −0.360668 + 0.624695i
\(124\) −4.00000 + 6.92820i −0.359211 + 0.622171i
\(125\) −24.0000 −2.14663
\(126\) 6.00000 0.534522
\(127\) 9.00000 15.5885i 0.798621 1.38325i −0.121894 0.992543i \(-0.538897\pi\)
0.920514 0.390709i \(-0.127770\pi\)
\(128\) 0.500000 + 0.866025i 0.0441942 + 0.0765466i
\(129\) −2.00000 + 3.46410i −0.176090 + 0.304997i
\(130\) −2.00000 3.46410i −0.175412 0.303822i
\(131\) −6.00000 10.3923i −0.524222 0.907980i −0.999602 0.0281993i \(-0.991023\pi\)
0.475380 0.879781i \(-0.342311\pi\)
\(132\) 2.00000 0.174078
\(133\) 0 0
\(134\) 3.00000 0.259161
\(135\) −10.0000 17.3205i −0.860663 1.49071i
\(136\) 1.50000 + 2.59808i 0.128624 + 0.222783i
\(137\) 8.50000 14.7224i 0.726204 1.25782i −0.232273 0.972651i \(-0.574616\pi\)
0.958477 0.285171i \(-0.0920506\pi\)
\(138\) −0.500000 0.866025i −0.0425628 0.0737210i
\(139\) 0 0 −0.866025 0.500000i \(-0.833333\pi\)
0.866025 + 0.500000i \(0.166667\pi\)
\(140\) −12.0000 −1.01419
\(141\) 8.00000 0.673722
\(142\) −1.00000 + 1.73205i −0.0839181 + 0.145350i
\(143\) −1.00000 + 1.73205i −0.0836242 + 0.144841i
\(144\) −2.00000 −0.166667
\(145\) −20.0000 −1.66091
\(146\) 4.50000 7.79423i 0.372423 0.645055i
\(147\) −1.00000 1.73205i −0.0824786 0.142857i
\(148\) −1.00000 + 1.73205i −0.0821995 + 0.142374i
\(149\) 0 0 0.866025 0.500000i \(-0.166667\pi\)
−0.866025 + 0.500000i \(0.833333\pi\)
\(150\) 5.50000 + 9.52628i 0.449073 + 0.777817i
\(151\) −2.00000 −0.162758 −0.0813788 0.996683i \(-0.525932\pi\)
−0.0813788 + 0.996683i \(0.525932\pi\)
\(152\) 0 0
\(153\) −6.00000 −0.485071
\(154\) 3.00000 + 5.19615i 0.241747 + 0.418718i
\(155\) 16.0000 + 27.7128i 1.28515 + 2.22595i
\(156\) −0.500000 + 0.866025i −0.0400320 + 0.0693375i
\(157\) 1.00000 + 1.73205i 0.0798087 + 0.138233i 0.903167 0.429289i \(-0.141236\pi\)
−0.823359 + 0.567521i \(0.807902\pi\)
\(158\) 5.00000 8.66025i 0.397779 0.688973i
\(159\) 1.00000 0.0793052
\(160\) 4.00000 0.316228
\(161\) 1.50000 2.59808i 0.118217 0.204757i
\(162\) 0.500000 0.866025i 0.0392837 0.0680414i
\(163\) −16.0000 −1.25322 −0.626608 0.779334i \(-0.715557\pi\)
−0.626608 + 0.779334i \(0.715557\pi\)
\(164\) 8.00000 0.624695
\(165\) 4.00000 6.92820i 0.311400 0.539360i
\(166\) −3.00000 5.19615i −0.232845 0.403300i
\(167\) −6.00000 + 10.3923i −0.464294 + 0.804181i −0.999169 0.0407502i \(-0.987025\pi\)
0.534875 + 0.844931i \(0.320359\pi\)
\(168\) 1.50000 + 2.59808i 0.115728 + 0.200446i
\(169\) 6.00000 + 10.3923i 0.461538 + 0.799408i
\(170\) 12.0000 0.920358
\(171\) 0 0
\(172\) 4.00000 0.304997
\(173\) −3.00000 5.19615i −0.228086 0.395056i 0.729155 0.684349i \(-0.239913\pi\)
−0.957241 + 0.289292i \(0.906580\pi\)
\(174\) 2.50000 + 4.33013i 0.189525 + 0.328266i
\(175\) −16.5000 + 28.5788i −1.24728 + 2.16036i
\(176\) −1.00000 1.73205i −0.0753778 0.130558i
\(177\) 7.50000 12.9904i 0.563735 0.976417i
\(178\) 0 0
\(179\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(180\) −4.00000 + 6.92820i −0.298142 + 0.516398i
\(181\) 11.0000 19.0526i 0.817624 1.41617i −0.0898051 0.995959i \(-0.528624\pi\)
0.907429 0.420206i \(-0.138042\pi\)
\(182\) −3.00000 −0.222375
\(183\) 2.00000 0.147844
\(184\) −0.500000 + 0.866025i −0.0368605 + 0.0638442i
\(185\) 4.00000 + 6.92820i 0.294086 + 0.509372i
\(186\) 4.00000 6.92820i 0.293294 0.508001i
\(187\) −3.00000 5.19615i −0.219382 0.379980i
\(188\) −4.00000 6.92820i −0.291730 0.505291i
\(189\) −15.0000 −1.09109
\(190\) 0 0
\(191\) 7.00000 0.506502 0.253251 0.967401i \(-0.418500\pi\)
0.253251 + 0.967401i \(0.418500\pi\)
\(192\) −0.500000 0.866025i −0.0360844 0.0625000i
\(193\) −3.00000 5.19615i −0.215945 0.374027i 0.737620 0.675216i \(-0.235950\pi\)
−0.953564 + 0.301189i \(0.902616\pi\)
\(194\) 1.00000 1.73205i 0.0717958 0.124354i
\(195\) 2.00000 + 3.46410i 0.143223 + 0.248069i
\(196\) −1.00000 + 1.73205i −0.0714286 + 0.123718i
\(197\) 8.00000 0.569976 0.284988 0.958531i \(-0.408010\pi\)
0.284988 + 0.958531i \(0.408010\pi\)
\(198\) 4.00000 0.284268
\(199\) 12.5000 21.6506i 0.886102 1.53477i 0.0416556 0.999132i \(-0.486737\pi\)
0.844446 0.535641i \(-0.179930\pi\)
\(200\) 5.50000 9.52628i 0.388909 0.673610i
\(201\) −3.00000 −0.211604
\(202\) −2.00000 −0.140720
\(203\) −7.50000 + 12.9904i −0.526397 + 0.911746i
\(204\) −1.50000 2.59808i −0.105021 0.181902i
\(205\) 16.0000 27.7128i 1.11749 1.93555i
\(206\) 3.00000 + 5.19615i 0.209020 + 0.362033i
\(207\) −1.00000 1.73205i −0.0695048 0.120386i
\(208\) 1.00000 0.0693375
\(209\) 0 0
\(210\) 12.0000 0.828079
\(211\) 13.5000 + 23.3827i 0.929378 + 1.60973i 0.784364 + 0.620301i \(0.212990\pi\)
0.145014 + 0.989430i \(0.453677\pi\)
\(212\) −0.500000 0.866025i −0.0343401 0.0594789i
\(213\) 1.00000 1.73205i 0.0685189 0.118678i
\(214\) 3.50000 + 6.06218i 0.239255 + 0.414402i
\(215\) 8.00000 13.8564i 0.545595 0.944999i
\(216\) 5.00000 0.340207
\(217\) 24.0000 1.62923
\(218\) 7.50000 12.9904i 0.507964 0.879820i
\(219\) −4.50000 + 7.79423i −0.304082 + 0.526685i
\(220\) −8.00000 −0.539360
\(221\) 3.00000 0.201802
\(222\) 1.00000 1.73205i 0.0671156 0.116248i
\(223\) 7.00000 + 12.1244i 0.468755 + 0.811907i 0.999362 0.0357107i \(-0.0113695\pi\)
−0.530607 + 0.847618i \(0.678036\pi\)
\(224\) 1.50000 2.59808i 0.100223 0.173591i
\(225\) 11.0000 + 19.0526i 0.733333 + 1.27017i
\(226\) −7.00000 12.1244i −0.465633 0.806500i
\(227\) 17.0000 1.12833 0.564165 0.825662i \(-0.309198\pi\)
0.564165 + 0.825662i \(0.309198\pi\)
\(228\) 0 0
\(229\) −10.0000 −0.660819 −0.330409 0.943838i \(-0.607187\pi\)
−0.330409 + 0.943838i \(0.607187\pi\)
\(230\) 2.00000 + 3.46410i 0.131876 + 0.228416i
\(231\) −3.00000 5.19615i −0.197386 0.341882i
\(232\) 2.50000 4.33013i 0.164133 0.284287i
\(233\) 3.00000 + 5.19615i 0.196537 + 0.340411i 0.947403 0.320043i \(-0.103697\pi\)
−0.750867 + 0.660454i \(0.770364\pi\)
\(234\) −1.00000 + 1.73205i −0.0653720 + 0.113228i
\(235\) −32.0000 −2.08745
\(236\) −15.0000 −0.976417
\(237\) −5.00000 + 8.66025i −0.324785 + 0.562544i
\(238\) 4.50000 7.79423i 0.291692 0.505225i
\(239\) 15.0000 0.970269 0.485135 0.874439i \(-0.338771\pi\)
0.485135 + 0.874439i \(0.338771\pi\)
\(240\) −4.00000 −0.258199
\(241\) −4.00000 + 6.92820i −0.257663 + 0.446285i −0.965615 0.259975i \(-0.916286\pi\)
0.707953 + 0.706260i \(0.249619\pi\)
\(242\) −3.50000 6.06218i −0.224989 0.389692i
\(243\) −8.00000 + 13.8564i −0.513200 + 0.888889i
\(244\) −1.00000 1.73205i −0.0640184 0.110883i
\(245\) 4.00000 + 6.92820i 0.255551 + 0.442627i
\(246\) −8.00000 −0.510061
\(247\) 0 0
\(248\) −8.00000 −0.508001
\(249\) 3.00000 + 5.19615i 0.190117 + 0.329293i
\(250\) −12.0000 20.7846i −0.758947 1.31453i
\(251\) −1.00000 + 1.73205i −0.0631194 + 0.109326i −0.895858 0.444340i \(-0.853438\pi\)
0.832739 + 0.553666i \(0.186772\pi\)
\(252\) 3.00000 + 5.19615i 0.188982 + 0.327327i
\(253\) 1.00000 1.73205i 0.0628695 0.108893i
\(254\) 18.0000 1.12942
\(255\) −12.0000 −0.751469
\(256\) −0.500000 + 0.866025i −0.0312500 + 0.0541266i
\(257\) 4.00000 6.92820i 0.249513 0.432169i −0.713878 0.700270i \(-0.753063\pi\)
0.963391 + 0.268101i \(0.0863961\pi\)
\(258\) −4.00000 −0.249029
\(259\) 6.00000 0.372822
\(260\) 2.00000 3.46410i 0.124035 0.214834i
\(261\) 5.00000 + 8.66025i 0.309492 + 0.536056i
\(262\) 6.00000 10.3923i 0.370681 0.642039i
\(263\) −12.0000 20.7846i −0.739952 1.28163i −0.952517 0.304487i \(-0.901515\pi\)
0.212565 0.977147i \(-0.431818\pi\)
\(264\) 1.00000 + 1.73205i 0.0615457 + 0.106600i
\(265\) −4.00000 −0.245718
\(266\) 0 0
\(267\) 0 0
\(268\) 1.50000 + 2.59808i 0.0916271 + 0.158703i
\(269\) 15.0000 + 25.9808i 0.914566 + 1.58408i 0.807535 + 0.589819i \(0.200801\pi\)
0.107031 + 0.994256i \(0.465866\pi\)
\(270\) 10.0000 17.3205i 0.608581 1.05409i
\(271\) −3.50000 6.06218i −0.212610 0.368251i 0.739921 0.672694i \(-0.234863\pi\)
−0.952531 + 0.304443i \(0.901530\pi\)
\(272\) −1.50000 + 2.59808i −0.0909509 + 0.157532i
\(273\) 3.00000 0.181568
\(274\) 17.0000 1.02701
\(275\) −11.0000 + 19.0526i −0.663325 + 1.14891i
\(276\) 0.500000 0.866025i 0.0300965 0.0521286i
\(277\) 28.0000 1.68236 0.841178 0.540758i \(-0.181862\pi\)
0.841178 + 0.540758i \(0.181862\pi\)
\(278\) 0 0
\(279\) 8.00000 13.8564i 0.478947 0.829561i
\(280\) −6.00000 10.3923i −0.358569 0.621059i
\(281\) −4.00000 + 6.92820i −0.238620 + 0.413302i −0.960319 0.278906i \(-0.910028\pi\)
0.721699 + 0.692207i \(0.243362\pi\)
\(282\) 4.00000 + 6.92820i 0.238197 + 0.412568i
\(283\) 3.00000 + 5.19615i 0.178331 + 0.308879i 0.941309 0.337546i \(-0.109597\pi\)
−0.762978 + 0.646425i \(0.776263\pi\)
\(284\) −2.00000 −0.118678
\(285\) 0 0
\(286\) −2.00000 −0.118262
\(287\) −12.0000 20.7846i −0.708338 1.22688i
\(288\) −1.00000 1.73205i −0.0589256 0.102062i
\(289\) 4.00000 6.92820i 0.235294 0.407541i
\(290\) −10.0000 17.3205i −0.587220 1.01710i
\(291\) −1.00000 + 1.73205i −0.0586210 + 0.101535i
\(292\) 9.00000 0.526685
\(293\) −9.00000 −0.525786 −0.262893 0.964825i \(-0.584677\pi\)
−0.262893 + 0.964825i \(0.584677\pi\)
\(294\) 1.00000 1.73205i 0.0583212 0.101015i
\(295\) −30.0000 + 51.9615i −1.74667 + 3.02532i
\(296\) −2.00000 −0.116248
\(297\) −10.0000 −0.580259
\(298\) 0 0
\(299\) 0.500000 + 0.866025i 0.0289157 + 0.0500835i
\(300\) −5.50000 + 9.52628i −0.317543 + 0.550000i
\(301\) −6.00000 10.3923i −0.345834 0.599002i
\(302\) −1.00000 1.73205i −0.0575435 0.0996683i
\(303\) 2.00000 0.114897
\(304\) 0 0
\(305\) −8.00000 −0.458079
\(306\) −3.00000 5.19615i −0.171499 0.297044i
\(307\) −6.00000 10.3923i −0.342438 0.593120i 0.642447 0.766330i \(-0.277919\pi\)
−0.984885 + 0.173210i \(0.944586\pi\)
\(308\) −3.00000 + 5.19615i −0.170941 + 0.296078i
\(309\) −3.00000 5.19615i −0.170664 0.295599i
\(310\) −16.0000 + 27.7128i −0.908739 + 1.57398i
\(311\) 7.00000 0.396934 0.198467 0.980108i \(-0.436404\pi\)
0.198467 + 0.980108i \(0.436404\pi\)
\(312\) −1.00000 −0.0566139
\(313\) −14.5000 + 25.1147i −0.819588 + 1.41957i 0.0863973 + 0.996261i \(0.472465\pi\)
−0.905986 + 0.423308i \(0.860869\pi\)
\(314\) −1.00000 + 1.73205i −0.0564333 + 0.0977453i
\(315\) 24.0000 1.35225
\(316\) 10.0000 0.562544
\(317\) −13.5000 + 23.3827i −0.758236 + 1.31330i 0.185514 + 0.982642i \(0.440605\pi\)
−0.943750 + 0.330661i \(0.892728\pi\)
\(318\) 0.500000 + 0.866025i 0.0280386 + 0.0485643i
\(319\) −5.00000 + 8.66025i −0.279946 + 0.484881i
\(320\) 2.00000 + 3.46410i 0.111803 + 0.193649i
\(321\) −3.50000 6.06218i −0.195351 0.338358i
\(322\) 3.00000 0.167183
\(323\) 0 0
\(324\) 1.00000 0.0555556
\(325\) −5.50000 9.52628i −0.305085 0.528423i
\(326\) −8.00000 13.8564i −0.443079 0.767435i
\(327\) −7.50000 + 12.9904i −0.414751 + 0.718370i
\(328\) 4.00000 + 6.92820i 0.220863 + 0.382546i
\(329\) −12.0000 + 20.7846i −0.661581 + 1.14589i
\(330\) 8.00000 0.440386
\(331\) −17.0000 −0.934405 −0.467202 0.884150i \(-0.654738\pi\)
−0.467202 + 0.884150i \(0.654738\pi\)
\(332\) 3.00000 5.19615i 0.164646 0.285176i
\(333\) 2.00000 3.46410i 0.109599 0.189832i
\(334\) −12.0000 −0.656611
\(335\) 12.0000 0.655630
\(336\) −1.50000 + 2.59808i −0.0818317 + 0.141737i
\(337\) −16.0000 27.7128i −0.871576 1.50961i −0.860366 0.509676i \(-0.829765\pi\)
−0.0112091 0.999937i \(-0.503568\pi\)
\(338\) −6.00000 + 10.3923i −0.326357 + 0.565267i
\(339\) 7.00000 + 12.1244i 0.380188 + 0.658505i
\(340\) 6.00000 + 10.3923i 0.325396 + 0.563602i
\(341\) 16.0000 0.866449
\(342\) 0 0
\(343\) −15.0000 −0.809924
\(344\) 2.00000 + 3.46410i 0.107833 + 0.186772i
\(345\) −2.00000 3.46410i −0.107676 0.186501i
\(346\) 3.00000 5.19615i 0.161281 0.279347i
\(347\) 1.00000 + 1.73205i 0.0536828 + 0.0929814i 0.891618 0.452788i \(-0.149571\pi\)
−0.837935 + 0.545770i \(0.816237\pi\)
\(348\) −2.50000 + 4.33013i −0.134014 + 0.232119i
\(349\) 10.0000 0.535288 0.267644 0.963518i \(-0.413755\pi\)
0.267644 + 0.963518i \(0.413755\pi\)
\(350\) −33.0000 −1.76392
\(351\) 2.50000 4.33013i 0.133440 0.231125i
\(352\) 1.00000 1.73205i 0.0533002 0.0923186i
\(353\) 9.00000 0.479022 0.239511 0.970894i \(-0.423013\pi\)
0.239511 + 0.970894i \(0.423013\pi\)
\(354\) 15.0000 0.797241
\(355\) −4.00000 + 6.92820i −0.212298 + 0.367711i
\(356\) 0 0
\(357\) −4.50000 + 7.79423i −0.238165 + 0.412514i
\(358\) 0 0
\(359\) 7.50000 + 12.9904i 0.395835 + 0.685606i 0.993207 0.116358i \(-0.0371219\pi\)
−0.597372 + 0.801964i \(0.703789\pi\)
\(360\) −8.00000 −0.421637
\(361\) 0 0
\(362\) 22.0000 1.15629
\(363\) 3.50000 + 6.06218i 0.183702 + 0.318182i
\(364\) −1.50000 2.59808i −0.0786214 0.136176i
\(365\) 18.0000 31.1769i 0.942163 1.63187i
\(366\) 1.00000 + 1.73205i 0.0522708 + 0.0905357i
\(367\) −14.0000 + 24.2487i −0.730794 + 1.26577i 0.225750 + 0.974185i \(0.427517\pi\)
−0.956544 + 0.291587i \(0.905817\pi\)
\(368\) −1.00000 −0.0521286
\(369\) −16.0000 −0.832927
\(370\) −4.00000 + 6.92820i −0.207950 + 0.360180i
\(371\) −1.50000 + 2.59808i −0.0778761 + 0.134885i
\(372\) 8.00000 0.414781
\(373\) −29.0000 −1.50156 −0.750782 0.660551i \(-0.770323\pi\)
−0.750782 + 0.660551i \(0.770323\pi\)
\(374\) 3.00000 5.19615i 0.155126 0.268687i
\(375\) 12.0000 + 20.7846i 0.619677 + 1.07331i
\(376\) 4.00000 6.92820i 0.206284 0.357295i
\(377\) −2.50000 4.33013i −0.128757 0.223013i
\(378\) −7.50000 12.9904i −0.385758 0.668153i
\(379\) −15.0000 −0.770498 −0.385249 0.922813i \(-0.625884\pi\)
−0.385249 + 0.922813i \(0.625884\pi\)
\(380\) 0 0
\(381\) −18.0000 −0.922168
\(382\) 3.50000 + 6.06218i 0.179076 + 0.310168i
\(383\) −13.0000 22.5167i −0.664269 1.15055i −0.979483 0.201527i \(-0.935410\pi\)
0.315214 0.949021i \(-0.397924\pi\)
\(384\) 0.500000 0.866025i 0.0255155 0.0441942i
\(385\) 12.0000 + 20.7846i 0.611577 + 1.05928i
\(386\) 3.00000 5.19615i 0.152696 0.264477i
\(387\) −8.00000 −0.406663
\(388\) 2.00000 0.101535
\(389\) 15.0000 25.9808i 0.760530 1.31728i −0.182047 0.983290i \(-0.558272\pi\)
0.942578 0.333987i \(-0.108394\pi\)
\(390\) −2.00000 + 3.46410i −0.101274 + 0.175412i
\(391\) −3.00000 −0.151717
\(392\) −2.00000 −0.101015
\(393\) −6.00000 + 10.3923i −0.302660 + 0.524222i
\(394\) 4.00000 + 6.92820i 0.201517 + 0.349038i
\(395\) 20.0000 34.6410i 1.00631 1.74298i
\(396\) 2.00000 + 3.46410i 0.100504 + 0.174078i
\(397\) −4.00000 6.92820i −0.200754 0.347717i 0.748017 0.663679i \(-0.231006\pi\)
−0.948772 + 0.315963i \(0.897673\pi\)
\(398\) 25.0000 1.25314
\(399\) 0 0
\(400\) 11.0000 0.550000
\(401\) −4.00000 6.92820i −0.199750 0.345978i 0.748697 0.662912i \(-0.230680\pi\)
−0.948447 + 0.316934i \(0.897346\pi\)
\(402\) −1.50000 2.59808i −0.0748132 0.129580i
\(403\) −4.00000 + 6.92820i −0.199254 + 0.345118i
\(404\) −1.00000 1.73205i −0.0497519 0.0861727i
\(405\) 2.00000 3.46410i 0.0993808 0.172133i
\(406\) −15.0000 −0.744438
\(407\) 4.00000 0.198273
\(408\) 1.50000 2.59808i 0.0742611 0.128624i
\(409\) −10.0000 + 17.3205i −0.494468 + 0.856444i −0.999980 0.00637586i \(-0.997970\pi\)
0.505511 + 0.862820i \(0.331304\pi\)
\(410\) 32.0000 1.58037
\(411\) −17.0000 −0.838548
\(412\) −3.00000 + 5.19615i −0.147799 + 0.255996i
\(413\) 22.5000 + 38.9711i 1.10715 + 1.91764i
\(414\) 1.00000 1.73205i 0.0491473 0.0851257i
\(415\) −12.0000 20.7846i −0.589057 1.02028i
\(416\) 0.500000 + 0.866025i 0.0245145 + 0.0424604i
\(417\) 0 0
\(418\) 0 0
\(419\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(420\) 6.00000 + 10.3923i 0.292770 + 0.507093i
\(421\) −6.50000 11.2583i −0.316791 0.548697i 0.663026 0.748596i \(-0.269272\pi\)
−0.979817 + 0.199899i \(0.935939\pi\)
\(422\) −13.5000 + 23.3827i −0.657170 + 1.13825i
\(423\) 8.00000 + 13.8564i 0.388973 + 0.673722i
\(424\) 0.500000 0.866025i 0.0242821 0.0420579i
\(425\) 33.0000 1.60074
\(426\) 2.00000 0.0969003
\(427\) −3.00000 + 5.19615i −0.145180 + 0.251459i
\(428\) −3.50000 + 6.06218i −0.169179 + 0.293026i
\(429\) 2.00000 0.0965609
\(430\) 16.0000 0.771589
\(431\) −9.00000 + 15.5885i −0.433515 + 0.750870i −0.997173 0.0751385i \(-0.976060\pi\)
0.563658 + 0.826008i \(0.309393\pi\)
\(432\) 2.50000 + 4.33013i 0.120281 + 0.208333i
\(433\) 7.00000 12.1244i 0.336399 0.582659i −0.647354 0.762190i \(-0.724124\pi\)
0.983752 + 0.179530i \(0.0574578\pi\)
\(434\) 12.0000 + 20.7846i 0.576018 + 0.997693i
\(435\) 10.0000 + 17.3205i 0.479463 + 0.830455i
\(436\) 15.0000 0.718370
\(437\) 0 0
\(438\) −9.00000 −0.430037
\(439\) 10.0000 + 17.3205i 0.477274 + 0.826663i 0.999661 0.0260459i \(-0.00829161\pi\)
−0.522387 + 0.852709i \(0.674958\pi\)
\(440\) −4.00000 6.92820i −0.190693 0.330289i
\(441\) 2.00000 3.46410i 0.0952381 0.164957i
\(442\) 1.50000 + 2.59808i 0.0713477 + 0.123578i
\(443\) 13.0000 22.5167i 0.617649 1.06980i −0.372265 0.928126i \(-0.621419\pi\)
0.989914 0.141672i \(-0.0452479\pi\)
\(444\) 2.00000 0.0949158
\(445\) 0 0
\(446\) −7.00000 + 12.1244i −0.331460 + 0.574105i
\(447\) 0 0
\(448\) 3.00000 0.141737
\(449\) −10.0000 −0.471929 −0.235965 0.971762i \(-0.575825\pi\)
−0.235965 + 0.971762i \(0.575825\pi\)
\(450\) −11.0000 + 19.0526i −0.518545 + 0.898146i
\(451\) −8.00000 13.8564i −0.376705 0.652473i
\(452\) 7.00000 12.1244i 0.329252 0.570282i
\(453\) 1.00000 + 1.73205i 0.0469841 + 0.0813788i
\(454\) 8.50000 + 14.7224i 0.398925 + 0.690958i
\(455\) −12.0000 −0.562569
\(456\) 0 0
\(457\) −7.00000 −0.327446 −0.163723 0.986506i \(-0.552350\pi\)
−0.163723 + 0.986506i \(0.552350\pi\)
\(458\) −5.00000 8.66025i −0.233635 0.404667i
\(459\) 7.50000 + 12.9904i 0.350070 + 0.606339i
\(460\) −2.00000 + 3.46410i −0.0932505 + 0.161515i
\(461\) 14.0000 + 24.2487i 0.652045 + 1.12938i 0.982626 + 0.185597i \(0.0594220\pi\)
−0.330581 + 0.943778i \(0.607245\pi\)
\(462\) 3.00000 5.19615i 0.139573 0.241747i
\(463\) 4.00000 0.185896 0.0929479 0.995671i \(-0.470371\pi\)
0.0929479 + 0.995671i \(0.470371\pi\)
\(464\) 5.00000 0.232119
\(465\) 16.0000 27.7128i 0.741982 1.28515i
\(466\) −3.00000 + 5.19615i −0.138972 + 0.240707i
\(467\) −2.00000 −0.0925490 −0.0462745 0.998929i \(-0.514735\pi\)
−0.0462745 + 0.998929i \(0.514735\pi\)
\(468\) −2.00000 −0.0924500
\(469\) 4.50000 7.79423i 0.207791 0.359904i
\(470\) −16.0000 27.7128i −0.738025 1.27830i
\(471\) 1.00000 1.73205i 0.0460776 0.0798087i
\(472\) −7.50000 12.9904i −0.345215 0.597931i
\(473\) −4.00000 6.92820i −0.183920 0.318559i
\(474\) −10.0000 −0.459315
\(475\) 0 0
\(476\) 9.00000 0.412514
\(477\) 1.00000 + 1.73205i 0.0457869 + 0.0793052i
\(478\) 7.50000 + 12.9904i 0.343042 + 0.594166i
\(479\) 10.0000 17.3205i 0.456912 0.791394i −0.541884 0.840453i \(-0.682289\pi\)
0.998796 + 0.0490589i \(0.0156222\pi\)
\(480\) −2.00000 3.46410i −0.0912871 0.158114i
\(481\) −1.00000 + 1.73205i −0.0455961 + 0.0789747i
\(482\) −8.00000 −0.364390
\(483\) −3.00000 −0.136505
\(484\) 3.50000 6.06218i 0.159091 0.275554i
\(485\) 4.00000 6.92820i 0.181631 0.314594i
\(486\) −16.0000 −0.725775
\(487\) 2.00000 0.0906287 0.0453143 0.998973i \(-0.485571\pi\)
0.0453143 + 0.998973i \(0.485571\pi\)
\(488\) 1.00000 1.73205i 0.0452679 0.0784063i
\(489\) 8.00000 + 13.8564i 0.361773 + 0.626608i
\(490\) −4.00000 + 6.92820i −0.180702 + 0.312984i
\(491\) 14.0000 + 24.2487i 0.631811 + 1.09433i 0.987181 + 0.159603i \(0.0510215\pi\)
−0.355370 + 0.934726i \(0.615645\pi\)
\(492\) −4.00000 6.92820i −0.180334 0.312348i
\(493\) 15.0000 0.675566
\(494\) 0 0
\(495\) 16.0000 0.719147
\(496\) −4.00000 6.92820i −0.179605 0.311086i
\(497\) 3.00000 + 5.19615i 0.134568 + 0.233079i
\(498\) −3.00000 + 5.19615i −0.134433 + 0.232845i
\(499\) −20.0000 34.6410i −0.895323 1.55074i −0.833404 0.552664i \(-0.813611\pi\)
−0.0619186 0.998081i \(-0.519722\pi\)
\(500\) 12.0000 20.7846i 0.536656 0.929516i
\(501\) 12.0000 0.536120
\(502\) −2.00000 −0.0892644
\(503\) −19.5000 + 33.7750i −0.869462 + 1.50595i −0.00691465 + 0.999976i \(0.502201\pi\)
−0.862547 + 0.505976i \(0.831132\pi\)
\(504\) −3.00000 + 5.19615i −0.133631 + 0.231455i
\(505\) −8.00000 −0.355995
\(506\) 2.00000 0.0889108
\(507\) 6.00000 10.3923i 0.266469 0.461538i
\(508\) 9.00000 + 15.5885i 0.399310 + 0.691626i
\(509\) −15.0000 + 25.9808i −0.664863 + 1.15158i 0.314459 + 0.949271i \(0.398177\pi\)
−0.979322 + 0.202306i \(0.935156\pi\)
\(510\) −6.00000 10.3923i −0.265684 0.460179i
\(511\) −13.5000 23.3827i −0.597205 1.03439i
\(512\) −1.00000 −0.0441942
\(513\) 0 0
\(514\) 8.00000 0.352865
\(515\) 12.0000 + 20.7846i 0.528783 + 0.915879i
\(516\) −2.00000 3.46410i −0.0880451 0.152499i
\(517\) −8.00000 + 13.8564i −0.351840 + 0.609404i
\(518\) 3.00000 + 5.19615i 0.131812 + 0.228306i
\(519\) −3.00000 + 5.19615i −0.131685 + 0.228086i
\(520\) 4.00000 0.175412
\(521\) 28.0000 1.22670 0.613351 0.789810i \(-0.289821\pi\)
0.613351 + 0.789810i \(0.289821\pi\)
\(522\) −5.00000 + 8.66025i −0.218844 + 0.379049i
\(523\) 14.5000 25.1147i 0.634041 1.09819i −0.352677 0.935745i \(-0.614728\pi\)
0.986718 0.162446i \(-0.0519382\pi\)
\(524\) 12.0000 0.524222
\(525\) 33.0000 1.44024
\(526\) 12.0000 20.7846i 0.523225 0.906252i
\(527\) −12.0000 20.7846i −0.522728 0.905392i
\(528\) −1.00000 + 1.73205i −0.0435194 + 0.0753778i
\(529\) 11.0000 + 19.0526i 0.478261 + 0.828372i
\(530\) −2.00000 3.46410i −0.0868744 0.150471i
\(531\) 30.0000 1.30189
\(532\) 0 0
\(533\) 8.00000 0.346518
\(534\) 0 0
\(535\) 14.0000 + 24.2487i 0.605273 + 1.04836i
\(536\) −1.50000 + 2.59808i −0.0647901 + 0.112220i
\(537\) 0 0
\(538\) −15.0000 + 25.9808i −0.646696 + 1.12011i
\(539\) 4.00000 0.172292
\(540\) 20.0000 0.860663
\(541\) −1.00000 + 1.73205i −0.0429934 + 0.0744667i −0.886721 0.462304i \(-0.847023\pi\)
0.843728 + 0.536771i \(0.180356\pi\)
\(542\) 3.50000 6.06218i 0.150338 0.260393i
\(543\) −22.0000 −0.944110
\(544\) −3.00000 −0.128624
\(545\) 30.0000 51.9615i 1.28506 2.22579i
\(546\) 1.50000 + 2.59808i 0.0641941 + 0.111187i
\(547\) 14.0000 24.2487i 0.598597 1.03680i −0.394432 0.918925i \(-0.629059\pi\)
0.993028 0.117875i \(-0.0376081\pi\)
\(548\) 8.50000 + 14.7224i 0.363102 + 0.628911i
\(549\) 2.00000 + 3.46410i 0.0853579 + 0.147844i
\(550\) −22.0000 −0.938083
\(551\) 0 0
\(552\) 1.00000 0.0425628
\(553\) −15.0000 25.9808i −0.637865 1.10481i
\(554\) 14.0000 + 24.2487i 0.594803 + 1.03023i
\(555\) 4.00000 6.92820i 0.169791 0.294086i
\(556\) 0 0
\(557\) −14.0000 + 24.2487i −0.593199 + 1.02745i 0.400599 + 0.916253i \(0.368802\pi\)
−0.993798 + 0.111198i \(0.964531\pi\)
\(558\) 16.0000 0.677334
\(559\) 4.00000 0.169182
\(560\) 6.00000 10.3923i 0.253546 0.439155i
\(561\) −3.00000 + 5.19615i −0.126660 + 0.219382i
\(562\) −8.00000 −0.337460
\(563\) 36.0000 1.51722 0.758610 0.651546i \(-0.225879\pi\)
0.758610 + 0.651546i \(0.225879\pi\)
\(564\) −4.00000 + 6.92820i −0.168430 + 0.291730i
\(565\) −28.0000 48.4974i −1.17797 2.04030i
\(566\) −3.00000 + 5.19615i −0.126099 + 0.218411i
\(567\) −1.50000 2.59808i −0.0629941 0.109109i
\(568\) −1.00000 1.73205i −0.0419591 0.0726752i
\(569\) −40.0000 −1.67689 −0.838444 0.544988i \(-0.816534\pi\)
−0.838444 + 0.544988i \(0.816534\pi\)
\(570\) 0 0
\(571\) −28.0000 −1.17176 −0.585882 0.810397i \(-0.699252\pi\)
−0.585882 + 0.810397i \(0.699252\pi\)
\(572\) −1.00000 1.73205i −0.0418121 0.0724207i
\(573\) −3.50000 6.06218i −0.146215 0.253251i
\(574\) 12.0000 20.7846i 0.500870 0.867533i
\(575\) 5.50000 + 9.52628i 0.229366 + 0.397273i
\(576\) 1.00000 1.73205i 0.0416667 0.0721688i
\(577\) −37.0000 −1.54033 −0.770165 0.637845i \(-0.779826\pi\)
−0.770165 + 0.637845i \(0.779826\pi\)
\(578\) 8.00000 0.332756
\(579\) −3.00000 + 5.19615i −0.124676 + 0.215945i
\(580\) 10.0000 17.3205i 0.415227 0.719195i
\(581\) −18.0000 −0.746766
\(582\) −2.00000 −0.0829027
\(583\) −1.00000 + 1.73205i −0.0414158 + 0.0717342i
\(584\) 4.50000 + 7.79423i 0.186211 + 0.322527i
\(585\) −4.00000 + 6.92820i −0.165380 + 0.286446i
\(586\) −4.50000 7.79423i −0.185893 0.321977i
\(587\) 6.00000 + 10.3923i 0.247647 + 0.428936i 0.962872 0.269957i \(-0.0870095\pi\)
−0.715226 + 0.698893i \(0.753676\pi\)
\(588\) 2.00000 0.0824786
\(589\) 0 0
\(590\) −60.0000 −2.47016
\(591\) −4.00000 6.92820i −0.164538 0.284988i
\(592\) −1.00000 1.73205i −0.0410997 0.0711868i
\(593\) −17.0000 + 29.4449i −0.698106 + 1.20916i 0.271016 + 0.962575i \(0.412640\pi\)
−0.969122 + 0.246581i \(0.920693\pi\)
\(594\) −5.00000 8.66025i −0.205152 0.355335i
\(595\) 18.0000 31.1769i 0.737928 1.27813i
\(596\) 0 0
\(597\) −25.0000 −1.02318
\(598\) −0.500000 + 0.866025i −0.0204465 + 0.0354144i
\(599\) 0 0 −0.866025 0.500000i \(-0.833333\pi\)
0.866025 + 0.500000i \(0.166667\pi\)
\(600\) −11.0000 −0.449073
\(601\) 8.00000 0.326327 0.163163 0.986599i \(-0.447830\pi\)
0.163163 + 0.986599i \(0.447830\pi\)
\(602\) 6.00000 10.3923i 0.244542 0.423559i
\(603\) −3.00000 5.19615i −0.122169 0.211604i
\(604\) 1.00000 1.73205i 0.0406894 0.0704761i
\(605\) −14.0000 24.2487i −0.569181 0.985850i
\(606\) 1.00000 + 1.73205i 0.0406222 + 0.0703598i
\(607\) 22.0000 0.892952 0.446476 0.894795i \(-0.352679\pi\)
0.446476 + 0.894795i \(0.352679\pi\)
\(608\) 0 0
\(609\) 15.0000 0.607831
\(610\) −4.00000 6.92820i −0.161955 0.280515i
\(611\) −4.00000 6.92820i −0.161823 0.280285i
\(612\) 3.00000 5.19615i 0.121268 0.210042i
\(613\) −17.0000 29.4449i −0.686624 1.18927i −0.972924 0.231127i \(-0.925759\pi\)
0.286300 0.958140i \(-0.407575\pi\)
\(614\) 6.00000 10.3923i 0.242140 0.419399i
\(615\) −32.0000 −1.29036
\(616\) −6.00000 −0.241747
\(617\) −9.00000 + 15.5885i −0.362326 + 0.627568i −0.988343 0.152242i \(-0.951351\pi\)
0.626017 + 0.779809i \(0.284684\pi\)
\(618\) 3.00000 5.19615i 0.120678 0.209020i
\(619\) 10.0000 0.401934 0.200967 0.979598i \(-0.435592\pi\)
0.200967 + 0.979598i \(0.435592\pi\)
\(620\) −32.0000 −1.28515
\(621\) −2.50000 + 4.33013i −0.100322 + 0.173762i
\(622\) 3.50000 + 6.06218i 0.140337 + 0.243071i
\(623\) 0 0
\(624\) −0.500000 0.866025i −0.0200160 0.0346688i
\(625\) −20.5000 35.5070i −0.820000 1.42028i
\(626\) −29.0000 −1.15907
\(627\) 0 0
\(628\) −2.00000 −0.0798087
\(629\) −3.00000 5.19615i −0.119618 0.207184i
\(630\) 12.0000 + 20.7846i 0.478091 + 0.828079i
\(631\) −16.0000 + 27.7128i −0.636950 + 1.10323i 0.349148 + 0.937067i \(0.386471\pi\)
−0.986098 + 0.166162i \(0.946862\pi\)
\(632\) 5.00000 + 8.66025i 0.198889 + 0.344486i
\(633\) 13.5000 23.3827i 0.536577 0.929378i
\(634\) −27.0000 −1.07231
\(635\) 72.0000 2.85723
\(636\) −0.500000 + 0.866025i −0.0198263 + 0.0343401i
\(637\) −1.00000 + 1.73205i −0.0396214 + 0.0686264i
\(638\) −10.0000 −0.395904
\(639\) 4.00000 0.158238
\(640\) −2.00000 + 3.46410i −0.0790569 + 0.136931i
\(641\) 21.0000 + 36.3731i 0.829450 + 1.43665i 0.898470 + 0.439034i \(0.144679\pi\)
−0.0690201 + 0.997615i \(0.521987\pi\)
\(642\) 3.50000 6.06218i 0.138134 0.239255i
\(643\) 13.0000 + 22.5167i 0.512670 + 0.887970i 0.999892 + 0.0146923i \(0.00467688\pi\)
−0.487222 + 0.873278i \(0.661990\pi\)
\(644\) 1.50000 + 2.59808i 0.0591083 + 0.102379i
\(645\) −16.0000 −0.629999
\(646\) 0 0
\(647\) 23.0000 0.904223 0.452112 0.891961i \(-0.350671\pi\)
0.452112 + 0.891961i \(0.350671\pi\)
\(648\) 0.500000 + 0.866025i 0.0196419 + 0.0340207i
\(649\) 15.0000 + 25.9808i 0.588802 + 1.01983i
\(650\) 5.50000 9.52628i 0.215728 0.373651i
\(651\) −12.0000 20.7846i −0.470317 0.814613i
\(652\) 8.00000 13.8564i 0.313304 0.542659i
\(653\) −36.0000 −1.40879 −0.704394 0.709809i \(-0.748781\pi\)
−0.704394 + 0.709809i \(0.748781\pi\)
\(654\) −15.0000 −0.586546
\(655\) 24.0000 41.5692i 0.937758 1.62424i
\(656\) −4.00000 + 6.92820i −0.156174 + 0.270501i
\(657\) −18.0000 −0.702247
\(658\) −24.0000 −0.935617
\(659\) 2.50000 4.33013i 0.0973862 0.168678i −0.813216 0.581962i \(-0.802285\pi\)
0.910602 + 0.413284i \(0.135618\pi\)
\(660\) 4.00000 + 6.92820i 0.155700 + 0.269680i
\(661\) −11.5000 + 19.9186i −0.447298 + 0.774743i −0.998209 0.0598209i \(-0.980947\pi\)
0.550911 + 0.834564i \(0.314280\pi\)
\(662\) −8.50000 14.7224i −0.330362 0.572204i
\(663\) −1.50000 2.59808i −0.0582552 0.100901i
\(664\) 6.00000 0.232845
\(665\) 0 0
\(666\) 4.00000 0.154997
\(667\) 2.50000 + 4.33013i 0.0968004 + 0.167663i
\(668\) −6.00000 10.3923i −0.232147 0.402090i
\(669\) 7.00000 12.1244i 0.270636 0.468755i
\(670\) 6.00000 + 10.3923i 0.231800 + 0.401490i
\(671\) −2.00000 + 3.46410i −0.0772091 + 0.133730i
\(672\) −3.00000 −0.115728
\(673\) −44.0000 −1.69608 −0.848038 0.529936i \(-0.822216\pi\)
−0.848038 + 0.529936i \(0.822216\pi\)
\(674\) 16.0000 27.7128i 0.616297 1.06746i
\(675\) 27.5000 47.6314i 1.05848 1.83333i
\(676\) −12.0000 −0.461538
\(677\) −13.0000 −0.499631 −0.249815 0.968294i \(-0.580370\pi\)
−0.249815 + 0.968294i \(0.580370\pi\)
\(678\) −7.00000 + 12.1244i −0.268833 + 0.465633i
\(679\) −3.00000 5.19615i −0.115129 0.199410i
\(680\) −6.00000 + 10.3923i −0.230089 + 0.398527i
\(681\) −8.50000 14.7224i −0.325721 0.564165i
\(682\) 8.00000 + 13.8564i 0.306336 + 0.530589i
\(683\) −4.00000 −0.153056 −0.0765279 0.997067i \(-0.524383\pi\)
−0.0765279 + 0.997067i \(0.524383\pi\)
\(684\) 0 0
\(685\) 68.0000 2.59815
\(686\) −7.50000 12.9904i −0.286351 0.495975i
\(687\) 5.00000 + 8.66025i 0.190762 + 0.330409i
\(688\) −2.00000 + 3.46410i −0.0762493 + 0.132068i
\(689\) −0.500000 0.866025i −0.0190485 0.0329929i
\(690\) 2.00000 3.46410i 0.0761387 0.131876i
\(691\) 42.0000 1.59776 0.798878 0.601494i \(-0.205427\pi\)
0.798878 + 0.601494i \(0.205427\pi\)
\(692\) 6.00000 0.228086
\(693\) 6.00000 10.3923i 0.227921 0.394771i
\(694\) −1.00000 + 1.73205i −0.0379595 + 0.0657477i
\(695\) 0 0
\(696\) −5.00000 −0.189525
\(697\) −12.0000 + 20.7846i −0.454532 + 0.787273i
\(698\) 5.00000 + 8.66025i 0.189253 + 0.327795i
\(699\) 3.00000 5.19615i 0.113470 0.196537i
\(700\) −16.5000 28.5788i −0.623641 1.08018i
\(701\) 14.0000 + 24.2487i 0.528773 + 0.915861i 0.999437 + 0.0335489i \(0.0106809\pi\)
−0.470664 + 0.882312i \(0.655986\pi\)
\(702\) 5.00000 0.188713
\(703\) 0 0
\(704\) 2.00000 0.0753778
\(705\) 16.0000 + 27.7128i 0.602595 + 1.04372i
\(706\) 4.50000 + 7.79423i 0.169360 + 0.293340i
\(707\) −3.00000 + 5.19615i −0.112827 + 0.195421i
\(708\) 7.50000 + 12.9904i 0.281867 + 0.488208i
\(709\) 15.0000 25.9808i 0.563337 0.975728i −0.433865 0.900978i \(-0.642851\pi\)
0.997202 0.0747503i \(-0.0238160\pi\)
\(710\) −8.00000 −0.300235
\(711\) −20.0000 −0.750059
\(712\) 0 0
\(713\) 4.00000 6.92820i 0.149801 0.259463i
\(714\) −9.00000 −0.336817
\(715\) −8.00000 −0.299183
\(716\) 0 0
\(717\) −7.50000 12.9904i −0.280093 0.485135i
\(718\) −7.50000 + 12.9904i −0.279898 + 0.484797i
\(719\) 2.50000 + 4.33013i 0.0932343 + 0.161486i 0.908870 0.417079i \(-0.136946\pi\)
−0.815636 + 0.578565i \(0.803613\pi\)
\(720\) −4.00000 6.92820i −0.149071 0.258199i
\(721\) 18.0000 0.670355
\(722\) 0 0
\(723\) 8.00000 0.297523
\(724\) 11.0000 + 19.0526i 0.408812 + 0.708083i
\(725\) −27.5000 47.6314i −1.02132 1.76899i
\(726\) −3.50000 + 6.06218i −0.129897 + 0.224989i
\(727\) 8.50000 + 14.7224i 0.315248 + 0.546025i 0.979490 0.201492i \(-0.0645791\pi\)
−0.664243 + 0.747517i \(0.731246\pi\)
\(728\) 1.50000 2.59808i 0.0555937 0.0962911i
\(729\) 13.0000 0.481481
\(730\) 36.0000 1.33242
\(731\) −6.00000 + 10.3923i −0.221918 + 0.384373i
\(732\) −1.00000 + 1.73205i −0.0369611 + 0.0640184i
\(733\) −36.0000 −1.32969 −0.664845 0.746981i \(-0.731502\pi\)
−0.664845 + 0.746981i \(0.731502\pi\)
\(734\) −28.0000 −1.03350
\(735\) 4.00000 6.92820i 0.147542 0.255551i
\(736\) −0.500000 0.866025i −0.0184302 0.0319221i
\(737\) 3.00000 5.19615i 0.110506 0.191403i
\(738\) −8.00000 13.8564i −0.294484 0.510061i
\(739\) 20.0000 + 34.6410i 0.735712 + 1.27429i 0.954410 + 0.298498i \(0.0964856\pi\)
−0.218698 + 0.975793i \(0.570181\pi\)
\(740\) −8.00000 −0.294086
\(741\) 0 0
\(742\) −3.00000 −0.110133
\(743\) −8.00000 13.8564i −0.293492 0.508342i 0.681141 0.732152i \(-0.261484\pi\)
−0.974633 + 0.223810i \(0.928151\pi\)
\(744\) 4.00000 + 6.92820i 0.146647 + 0.254000i
\(745\) 0 0
\(746\) −14.5000 25.1147i −0.530883 0.919516i
\(747\) −6.00000 + 10.3923i −0.219529 + 0.380235i
\(748\) 6.00000 0.219382
\(749\) 21.0000 0.767323
\(750\) −12.0000 + 20.7846i −0.438178 + 0.758947i
\(751\) 16.0000 27.7128i 0.583848 1.01125i −0.411170 0.911559i \(-0.634880\pi\)
0.995018 0.0996961i \(-0.0317870\pi\)
\(752\) 8.00000 0.291730
\(753\) 2.00000 0.0728841
\(754\) 2.50000 4.33013i 0.0910446 0.157694i
\(755\) −4.00000 6.92820i −0.145575 0.252143i
\(756\) 7.50000 12.9904i 0.272772 0.472456i
\(757\) 1.00000 + 1.73205i 0.0363456 + 0.0629525i 0.883626 0.468193i \(-0.155095\pi\)
−0.847280 + 0.531146i \(0.821762\pi\)
\(758\) −7.50000 12.9904i −0.272412 0.471832i
\(759\) −2.00000 −0.0725954
\(760\) 0 0
\(761\) 27.0000 0.978749 0.489375 0.872074i \(-0.337225\pi\)
0.489375 + 0.872074i \(0.337225\pi\)
\(762\) −9.00000 15.5885i −0.326036 0.564710i
\(763\) −22.5000 38.9711i −0.814555 1.41085i
\(764\) −3.50000 + 6.06218i −0.126626 + 0.219322i
\(765\) −12.0000 20.7846i −0.433861 0.751469i
\(766\) 13.0000 22.5167i 0.469709 0.813560i
\(767\) −15.0000 −0.541619
\(768\) 1.00000 0.0360844
\(769\) 17.5000 30.3109i 0.631066 1.09304i −0.356268 0.934384i \(-0.615951\pi\)
0.987334 0.158655i \(-0.0507157\pi\)
\(770\) −12.0000 + 20.7846i −0.432450 + 0.749025i
\(771\) −8.00000 −0.288113
\(772\) 6.00000 0.215945
\(773\) 4.50000 7.79423i 0.161854 0.280339i −0.773680 0.633577i \(-0.781586\pi\)
0.935534 + 0.353238i \(0.114919\pi\)
\(774\) −4.00000 6.92820i −0.143777 0.249029i
\(775\) −44.0000 + 76.2102i −1.58053 + 2.73755i
\(776\) 1.00000 + 1.73205i 0.0358979 + 0.0621770i
\(777\) −3.00000 5.19615i −0.107624 0.186411i
\(778\) 30.0000 1.07555
\(779\) 0 0
\(780\) −4.00000 −0.143223
\(781\) 2.00000 + 3.46410i 0.0715656 + 0.123955i
\(782\) −1.50000 2.59808i −0.0536399 0.0929070i
\(783\) 12.5000 21.6506i 0.446714 0.773731i
\(784\) −1.00000 1.73205i −0.0357143 0.0618590i
\(785\) −4.00000 + 6.92820i −0.142766 + 0.247278i
\(786\) −12.0000 −0.428026
\(787\) 17.0000 0.605985 0.302992 0.952993i \(-0.402014\pi\)
0.302992 + 0.952993i \(0.402014\pi\)
\(788\) −4.00000 + 6.92820i −0.142494 + 0.246807i
\(789\) −12.0000 + 20.7846i −0.427211 + 0.739952i
\(790\) 40.0000 1.42314
\(791\) −42.0000 −1.49335
\(792\) −2.00000 + 3.46410i −0.0710669 + 0.123091i
\(793\) −1.00000 1.73205i −0.0355110 0.0615069i
\(794\) 4.00000 6.92820i 0.141955 0.245873i
\(795\) 2.00000 + 3.46410i 0.0709327 + 0.122859i
\(796\) 12.5000 + 21.6506i 0.443051 + 0.767386i
\(797\) −3.00000 −0.106265 −0.0531327 0.998587i \(-0.516921\pi\)
−0.0531327 + 0.998587i \(0.516921\pi\)
\(798\) 0 0
\(799\) 24.0000 0.849059
\(800\) 5.50000 + 9.52628i 0.194454 + 0.336805i
\(801\) 0 0
\(802\) 4.00000 6.92820i 0.141245 0.244643i
\(803\) −9.00000 15.5885i −0.317603 0.550105i
\(804\) 1.50000 2.59808i 0.0529009 0.0916271i
\(805\) 12.0000 0.422944
\(806\) −8.00000 −0.281788
\(807\) 15.0000 25.9808i 0.528025 0.914566i
\(808\) 1.00000 1.73205i 0.0351799 0.0609333i
\(809\) −15.0000 −0.527372 −0.263686 0.964609i \(-0.584938\pi\)
−0.263686 + 0.964609i \(0.584938\pi\)
\(810\) 4.00000 0.140546
\(811\) −1.50000 + 2.59808i −0.0526721 + 0.0912308i −0.891159 0.453691i \(-0.850107\pi\)
0.838487 + 0.544921i \(0.183440\pi\)
\(812\) −7.50000 12.9904i −0.263198 0.455873i
\(813\) −3.50000 + 6.06218i −0.122750 + 0.212610i
\(814\) 2.00000 + 3.46410i 0.0701000 + 0.121417i
\(815\) −32.0000 55.4256i −1.12091 1.94147i
\(816\) 3.00000 0.105021
\(817\) 0 0
\(818\) −20.0000 −0.699284
\(819\) 3.00000 + 5.19615i 0.104828 + 0.181568i
\(820\) 16.0000 + 27.7128i 0.558744 + 0.967773i
\(821\) −6.00000 + 10.3923i −0.209401 + 0.362694i −0.951526 0.307568i \(-0.900485\pi\)
0.742125 + 0.670262i \(0.233818\pi\)
\(822\) −8.50000 14.7224i −0.296472 0.513504i
\(823\) −14.5000 + 25.1147i −0.505438 + 0.875445i 0.494542 + 0.869154i \(0.335336\pi\)
−0.999980 + 0.00629095i \(0.997998\pi\)
\(824\) −6.00000 −0.209020
\(825\) 22.0000 0.765942
\(826\) −22.5000 + 38.9711i −0.782875 + 1.35598i
\(827\) 11.5000 19.9186i 0.399894 0.692637i −0.593818 0.804599i \(-0.702380\pi\)
0.993712 + 0.111962i \(0.0357135\pi\)
\(828\) 2.00000 0.0695048
\(829\) 15.0000 0.520972 0.260486 0.965478i \(-0.416117\pi\)
0.260486 + 0.965478i \(0.416117\pi\)
\(830\) 12.0000 20.7846i 0.416526 0.721444i
\(831\) −14.0000 24.2487i −0.485655 0.841178i
\(832\) −0.500000 + 0.866025i −0.0173344 + 0.0300240i
\(833\) −3.00000 5.19615i −0.103944 0.180036i
\(834\) 0 0
\(835\) −48.0000 −1.66111
\(836\) 0 0
\(837\) −40.0000 −1.38260
\(838\) 0 0
\(839\) 10.0000 + 17.3205i 0.345238 + 0.597970i 0.985397 0.170272i \(-0.0544647\pi\)
−0.640159 + 0.768243i \(0.721131\pi\)
\(840\) −6.00000 + 10.3923i −0.207020 + 0.358569i
\(841\) 2.00000 + 3.46410i 0.0689655 + 0.119452i
\(842\) 6.50000 11.2583i 0.224005 0.387988i
\(843\) 8.00000 0.275535
\(844\) −27.0000 −0.929378
\(845\) −24.0000 + 41.5692i −0.825625 + 1.43002i
\(846\) −8.00000 + 13.8564i −0.275046 + 0.476393i
\(847\) −21.0000 −0.721569
\(848\) 1.00000 0.0343401
\(849\) 3.00000 5.19615i 0.102960 0.178331i
\(850\) 16.5000 + 28.5788i 0.565945 + 0.980246i
\(851\) 1.00000 1.73205i 0.0342796 0.0593739i
\(852\) 1.00000 + 1.73205i 0.0342594 + 0.0593391i
\(853\) 3.00000 + 5.19615i 0.102718 + 0.177913i 0.912804 0.408399i \(-0.133913\pi\)
−0.810086 + 0.586312i \(0.800579\pi\)
\(854\) −6.00000 −0.205316
\(855\) 0 0
\(856\) −7.00000 −0.239255
\(857\) −6.00000 10.3923i −0.204956 0.354994i 0.745163 0.666883i \(-0.232372\pi\)
−0.950119 + 0.311888i \(0.899038\pi\)
\(858\) 1.00000 + 1.73205i 0.0341394 + 0.0591312i
\(859\) 25.0000 43.3013i 0.852989 1.47742i −0.0255092 0.999675i \(-0.508121\pi\)
0.878498 0.477746i \(-0.158546\pi\)
\(860\) 8.00000 + 13.8564i 0.272798 + 0.472500i
\(861\) −12.0000 + 20.7846i −0.408959 + 0.708338i
\(862\) −18.0000 −0.613082
\(863\) −54.0000 −1.83818 −0.919091 0.394046i \(-0.871075\pi\)
−0.919091 + 0.394046i \(0.871075\pi\)
\(864\) −2.50000 + 4.33013i −0.0850517 + 0.147314i
\(865\) 12.0000 20.7846i 0.408012 0.706698i
\(866\) 14.0000 0.475739
\(867\) −8.00000 −0.271694
\(868\) −12.0000 + 20.7846i −0.407307 + 0.705476i
\(869\) −10.0000 17.3205i −0.339227 0.587558i
\(870\) −10.0000 + 17.3205i −0.339032 + 0.587220i
\(871\) 1.50000 + 2.59808i 0.0508256 + 0.0880325i
\(872\) 7.50000 + 12.9904i 0.253982 + 0.439910i
\(873\) −4.00000 −0.135379
\(874\) 0 0
\(875\) −72.0000 −2.43404
\(876\) −4.50000 7.79423i −0.152041 0.263343i
\(877\) 6.50000 + 11.2583i 0.219489 + 0.380167i 0.954652 0.297724i \(-0.0962275\pi\)
−0.735163 + 0.677891i \(0.762894\pi\)
\(878\) −10.0000 + 17.3205i −0.337484 + 0.584539i
\(879\) 4.50000 + 7.79423i 0.151781 + 0.262893i
\(880\) 4.00000 6.92820i 0.134840 0.233550i
\(881\) −18.0000 −0.606435 −0.303218 0.952921i \(-0.598061\pi\)
−0.303218 + 0.952921i \(0.598061\pi\)
\(882\) 4.00000 0.134687
\(883\) −17.0000 + 29.4449i −0.572096 + 0.990899i 0.424255 + 0.905543i \(0.360536\pi\)
−0.996351 + 0.0853558i \(0.972797\pi\)
\(884\) −1.50000 + 2.59808i −0.0504505 + 0.0873828i
\(885\) 60.0000 2.01688
\(886\) 26.0000 0.873487
\(887\) −1.00000 + 1.73205i −0.0335767 + 0.0581566i −0.882325 0.470640i \(-0.844023\pi\)
0.848749 + 0.528796i \(0.177356\pi\)
\(888\) 1.00000 + 1.73205i 0.0335578 + 0.0581238i
\(889\) 27.0000 46.7654i 0.905551 1.56846i
\(890\) 0 0
\(891\) −1.00000 1.73205i −0.0335013 0.0580259i
\(892\) −14.0000 −0.468755
\(893\) 0 0
\(894\) 0 0
\(895\) 0 0
\(896\) 1.50000 + 2.59808i 0.0501115 + 0.0867956i
\(897\) 0.500000 0.866025i 0.0166945 0.0289157i
\(898\) −5.00000 8.66025i −0.166852 0.288996i
\(899\) −20.0000 + 34.6410i −0.667037 + 1.15534i
\(900\) −22.0000 −0.733333
\(901\) 3.00000 0.0999445
\(902\) 8.00000 13.8564i 0.266371 0.461368i
\(903\) −6.00000 + 10.3923i −0.199667 + 0.345834i
\(904\) 14.0000 0.465633
\(905\) 88.0000 2.92522
\(906\) −1.00000 + 1.73205i −0.0332228 + 0.0575435i
\(907\) 26.5000 + 45.8993i 0.879918 + 1.52406i 0.851430 + 0.524469i \(0.175736\pi\)
0.0284883 + 0.999594i \(0.490931\pi\)
\(908\) −8.50000 + 14.7224i −0.282082 + 0.488581i
\(909\) 2.00000 + 3.46410i 0.0663358 + 0.114897i
\(910\) −6.00000 10.3923i −0.198898 0.344502i
\(911\) −12.0000 −0.397578 −0.198789 0.980042i \(-0.563701\pi\)
−0.198789 + 0.980042i \(0.563701\pi\)
\(912\) 0 0
\(913\) −12.0000 −0.397142
\(914\) −3.50000 6.06218i −0.115770 0.200519i
\(915\) 4.00000 + 6.92820i 0.132236 + 0.229039i
\(916\) 5.00000 8.66025i 0.165205 0.286143i
\(917\) −18.0000 31.1769i −0.594412 1.02955i
\(918\) −7.50000 + 12.9904i −0.247537 + 0.428746i
\(919\) 5.00000 0.164935 0.0824674 0.996594i \(-0.473720\pi\)
0.0824674 + 0.996594i \(0.473720\pi\)
\(920\) −4.00000 −0.131876
\(921\) −6.00000 + 10.3923i −0.197707 + 0.342438i
\(922\) −14.0000 + 24.2487i −0.461065 + 0.798589i
\(923\) −2.00000 −0.0658308
\(924\) 6.00000 0.197386
\(925\) −11.0000 + 19.0526i −0.361678 + 0.626444i
\(926\) 2.00000 + 3.46410i 0.0657241 + 0.113837i
\(927\) 6.00000 10.3923i 0.197066 0.341328i
\(928\) 2.50000 + 4.33013i 0.0820665 + 0.142143i
\(929\) 27.5000 + 47.6314i 0.902246 + 1.56274i 0.824572 + 0.565757i \(0.191416\pi\)
0.0776734 + 0.996979i \(0.475251\pi\)
\(930\) 32.0000 1.04932
\(931\) 0 0
\(932\) −6.00000 −0.196537
\(933\) −3.50000 6.06218i −0.114585 0.198467i
\(934\) −1.00000 1.73205i −0.0327210 0.0566744i
\(935\) 12.0000 20.7846i 0.392442 0.679729i
\(936\) −1.00000 1.73205i −0.0326860 0.0566139i
\(937\) 3.50000 6.06218i 0.114340 0.198043i −0.803176 0.595742i \(-0.796858\pi\)
0.917516 + 0.397699i \(0.130191\pi\)
\(938\) 9.00000 0.293860
\(939\) 29.0000 0.946379
\(940\) 16.0000 27.7128i 0.521862 0.903892i
\(941\) 3.50000 6.06218i 0.114097 0.197621i −0.803322 0.595545i \(-0.796936\pi\)
0.917418 + 0.397924i \(0.130269\pi\)
\(942\) 2.00000 0.0651635
\(943\) −8.00000 −0.260516
\(944\) 7.50000 12.9904i 0.244104 0.422801i
\(945\) −30.0000 51.9615i −0.975900 1.69031i
\(946\) 4.00000 6.92820i 0.130051 0.225255i
\(947\) 6.00000 + 10.3923i 0.194974 + 0.337705i 0.946892 0.321552i \(-0.104204\pi\)
−0.751918 + 0.659256i \(0.770871\pi\)
\(948\) −5.00000 8.66025i −0.162392 0.281272i
\(949\) 9.00000 0.292152
\(950\) 0 0
\(951\) 27.0000 0.875535
\(952\) 4.50000 + 7.79423i 0.145846 + 0.252612i
\(953\) −23.0000 39.8372i −0.745043 1.29045i −0.950175 0.311718i \(-0.899096\pi\)
0.205132 0.978734i \(-0.434238\pi\)
\(954\) −1.00000 + 1.73205i −0.0323762 + 0.0560772i
\(955\) 14.0000 + 24.2487i 0.453029 + 0.784670i
\(956\) −7.50000 + 12.9904i −0.242567 + 0.420139i
\(957\) 10.0000 0.323254
\(958\) 20.0000 0.646171
\(959\) 25.5000 44.1673i 0.823438 1.42624i
\(960\) 2.00000 3.46410i 0.0645497 0.111803i
\(961\) 33.0000 1.06452
\(962\) −2.00000 −0.0644826
\(963\) 7.00000 12.1244i 0.225572 0.390702i
\(964\) −4.00000 6.92820i −0.128831 0.223142i
\(965\) 12.0000 20.7846i 0.386294 0.669080i
\(966\) −1.50000 2.59808i −0.0482617 0.0835917i
\(967\) −24.0000 41.5692i −0.771788 1.33678i −0.936582 0.350448i \(-0.886029\pi\)
0.164794 0.986328i \(-0.447304\pi\)
\(968\) 7.00000 0.224989
\(969\) 0 0
\(970\) 8.00000 0.256865
\(971\) −14.0000 24.2487i −0.449281 0.778178i 0.549058 0.835784i \(-0.314987\pi\)
−0.998339 + 0.0576061i \(0.981653\pi\)
\(972\) −8.00000 13.8564i −0.256600 0.444444i
\(973\) 0 0
\(974\) 1.00000 + 1.73205i 0.0320421 + 0.0554985i
\(975\) −5.50000 + 9.52628i −0.176141 + 0.305085i
\(976\) 2.00000 0.0640184
\(977\) −8.00000 −0.255943 −0.127971 0.991778i \(-0.540847\pi\)
−0.127971 + 0.991778i \(0.540847\pi\)
\(978\) −8.00000 + 13.8564i −0.255812 + 0.443079i
\(979\) 0 0
\(980\) −8.00000 −0.255551
\(981\) −30.0000 −0.957826
\(982\) −14.0000 + 24.2487i −0.446758 + 0.773807i
\(983\) −3.00000 5.19615i −0.0956851 0.165732i 0.814209 0.580572i \(-0.197171\pi\)
−0.909894 + 0.414840i \(0.863838\pi\)
\(984\) 4.00000 6.92820i 0.127515 0.220863i
\(985\) 16.0000 + 27.7128i 0.509802 + 0.883004i
\(986\) 7.50000 + 12.9904i 0.238849 + 0.413698i
\(987\) 24.0000 0.763928
\(988\) 0 0
\(989\) −4.00000 −0.127193
\(990\) 8.00000 + 13.8564i 0.254257 + 0.440386i
\(991\) −4.00000 6.92820i −0.127064 0.220082i 0.795474 0.605988i \(-0.207222\pi\)
−0.922538 + 0.385906i \(0.873889\pi\)
\(992\) 4.00000 6.92820i 0.127000 0.219971i
\(993\) 8.50000 + 14.7224i 0.269739 + 0.467202i
\(994\) −3.00000 + 5.19615i −0.0951542 + 0.164812i
\(995\) 100.000 3.17021
\(996\) −6.00000 −0.190117
\(997\) −14.0000 + 24.2487i −0.443384 + 0.767964i −0.997938 0.0641836i \(-0.979556\pi\)
0.554554 + 0.832148i \(0.312889\pi\)
\(998\) 20.0000 34.6410i 0.633089 1.09654i
\(999\) −10.0000 −0.316386
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 722.2.c.f.653.1 2
19.2 odd 18 722.2.e.c.389.1 6
19.3 odd 18 722.2.e.c.595.1 6
19.4 even 9 722.2.e.d.245.1 6
19.5 even 9 722.2.e.d.99.1 6
19.6 even 9 722.2.e.d.423.1 6
19.7 even 3 722.2.a.b.1.1 1
19.8 odd 6 722.2.c.d.429.1 2
19.9 even 9 722.2.e.d.415.1 6
19.10 odd 18 722.2.e.c.415.1 6
19.11 even 3 inner 722.2.c.f.429.1 2
19.12 odd 6 38.2.a.b.1.1 1
19.13 odd 18 722.2.e.c.423.1 6
19.14 odd 18 722.2.e.c.99.1 6
19.15 odd 18 722.2.e.c.245.1 6
19.16 even 9 722.2.e.d.595.1 6
19.17 even 9 722.2.e.d.389.1 6
19.18 odd 2 722.2.c.d.653.1 2
57.26 odd 6 6498.2.a.y.1.1 1
57.50 even 6 342.2.a.d.1.1 1
76.7 odd 6 5776.2.a.d.1.1 1
76.31 even 6 304.2.a.d.1.1 1
95.12 even 12 950.2.b.c.799.2 2
95.69 odd 6 950.2.a.b.1.1 1
95.88 even 12 950.2.b.c.799.1 2
133.69 even 6 1862.2.a.f.1.1 1
152.69 odd 6 1216.2.a.n.1.1 1
152.107 even 6 1216.2.a.g.1.1 1
209.164 even 6 4598.2.a.a.1.1 1
228.107 odd 6 2736.2.a.w.1.1 1
247.12 odd 6 6422.2.a.b.1.1 1
285.164 even 6 8550.2.a.u.1.1 1
380.259 even 6 7600.2.a.h.1.1 1
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
38.2.a.b.1.1 1 19.12 odd 6
304.2.a.d.1.1 1 76.31 even 6
342.2.a.d.1.1 1 57.50 even 6
722.2.a.b.1.1 1 19.7 even 3
722.2.c.d.429.1 2 19.8 odd 6
722.2.c.d.653.1 2 19.18 odd 2
722.2.c.f.429.1 2 19.11 even 3 inner
722.2.c.f.653.1 2 1.1 even 1 trivial
722.2.e.c.99.1 6 19.14 odd 18
722.2.e.c.245.1 6 19.15 odd 18
722.2.e.c.389.1 6 19.2 odd 18
722.2.e.c.415.1 6 19.10 odd 18
722.2.e.c.423.1 6 19.13 odd 18
722.2.e.c.595.1 6 19.3 odd 18
722.2.e.d.99.1 6 19.5 even 9
722.2.e.d.245.1 6 19.4 even 9
722.2.e.d.389.1 6 19.17 even 9
722.2.e.d.415.1 6 19.9 even 9
722.2.e.d.423.1 6 19.6 even 9
722.2.e.d.595.1 6 19.16 even 9
950.2.a.b.1.1 1 95.69 odd 6
950.2.b.c.799.1 2 95.88 even 12
950.2.b.c.799.2 2 95.12 even 12
1216.2.a.g.1.1 1 152.107 even 6
1216.2.a.n.1.1 1 152.69 odd 6
1862.2.a.f.1.1 1 133.69 even 6
2736.2.a.w.1.1 1 228.107 odd 6
4598.2.a.a.1.1 1 209.164 even 6
5776.2.a.d.1.1 1 76.7 odd 6
6422.2.a.b.1.1 1 247.12 odd 6
6498.2.a.y.1.1 1 57.26 odd 6
7600.2.a.h.1.1 1 380.259 even 6
8550.2.a.u.1.1 1 285.164 even 6