Properties

Label 722.2.e.d.415.1
Level $722$
Weight $2$
Character 722.415
Analytic conductor $5.765$
Analytic rank $0$
Dimension $6$
Inner twists $6$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [722,2,Mod(99,722)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(722, base_ring=CyclotomicField(18))
 
chi = DirichletCharacter(H, H._module([2]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("722.99");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 722 = 2 \cdot 19^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 722.e (of order \(9\), degree \(6\), not minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(5.76519902594\)
Analytic rank: \(0\)
Dimension: \(6\)
Coefficient field: \(\Q(\zeta_{18})\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{6} - x^{3} + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 38)
Sato-Tate group: $\mathrm{SU}(2)[C_{9}]$

Embedding invariants

Embedding label 415.1
Root \(0.939693 - 0.342020i\) of defining polynomial
Character \(\chi\) \(=\) 722.415
Dual form 722.2.e.d.595.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-0.766044 - 0.642788i) q^{2} +(-0.939693 + 0.342020i) q^{3} +(0.173648 + 0.984808i) q^{4} +(-0.694593 + 3.93923i) q^{5} +(0.939693 + 0.342020i) q^{6} +(-1.50000 - 2.59808i) q^{7} +(0.500000 - 0.866025i) q^{8} +(-1.53209 + 1.28558i) q^{9} +(3.06418 - 2.57115i) q^{10} +(-1.00000 + 1.73205i) q^{11} +(-0.500000 - 0.866025i) q^{12} +(-0.939693 - 0.342020i) q^{13} +(-0.520945 + 2.95442i) q^{14} +(-0.694593 - 3.93923i) q^{15} +(-0.939693 + 0.342020i) q^{16} +(2.29813 + 1.92836i) q^{17} +2.00000 q^{18} -4.00000 q^{20} +(2.29813 + 1.92836i) q^{21} +(1.87939 - 0.684040i) q^{22} +(-0.173648 - 0.984808i) q^{23} +(-0.173648 + 0.984808i) q^{24} +(-10.3366 - 3.76222i) q^{25} +(0.500000 + 0.866025i) q^{26} +(2.50000 - 4.33013i) q^{27} +(2.29813 - 1.92836i) q^{28} +(3.83022 - 3.21394i) q^{29} +(-2.00000 + 3.46410i) q^{30} +(-4.00000 - 6.92820i) q^{31} +(0.939693 + 0.342020i) q^{32} +(0.347296 - 1.96962i) q^{33} +(-0.520945 - 2.95442i) q^{34} +(11.2763 - 4.10424i) q^{35} +(-1.53209 - 1.28558i) q^{36} +2.00000 q^{37} +1.00000 q^{39} +(3.06418 + 2.57115i) q^{40} +(-7.51754 + 2.73616i) q^{41} +(-0.520945 - 2.95442i) q^{42} +(0.694593 - 3.93923i) q^{43} +(-1.87939 - 0.684040i) q^{44} +(-4.00000 - 6.92820i) q^{45} +(-0.500000 + 0.866025i) q^{46} +(6.12836 - 5.14230i) q^{47} +(0.766044 - 0.642788i) q^{48} +(-1.00000 + 1.73205i) q^{49} +(5.50000 + 9.52628i) q^{50} +(-2.81908 - 1.02606i) q^{51} +(0.173648 - 0.984808i) q^{52} +(0.173648 + 0.984808i) q^{53} +(-4.69846 + 1.71010i) q^{54} +(-6.12836 - 5.14230i) q^{55} -3.00000 q^{56} -5.00000 q^{58} +(-11.4907 - 9.64181i) q^{59} +(3.75877 - 1.36808i) q^{60} +(0.347296 + 1.96962i) q^{61} +(-1.38919 + 7.87846i) q^{62} +(5.63816 + 2.05212i) q^{63} +(-0.500000 - 0.866025i) q^{64} +(2.00000 - 3.46410i) q^{65} +(-1.53209 + 1.28558i) q^{66} +(-2.29813 + 1.92836i) q^{67} +(-1.50000 + 2.59808i) q^{68} +(0.500000 + 0.866025i) q^{69} +(-11.2763 - 4.10424i) q^{70} +(-0.347296 + 1.96962i) q^{71} +(0.347296 + 1.96962i) q^{72} +(-8.45723 + 3.07818i) q^{73} +(-1.53209 - 1.28558i) q^{74} +11.0000 q^{75} +6.00000 q^{77} +(-0.766044 - 0.642788i) q^{78} +(-9.39693 + 3.42020i) q^{79} +(-0.694593 - 3.93923i) q^{80} +(0.173648 - 0.984808i) q^{81} +(7.51754 + 2.73616i) q^{82} +(3.00000 + 5.19615i) q^{83} +(-1.50000 + 2.59808i) q^{84} +(-9.19253 + 7.71345i) q^{85} +(-3.06418 + 2.57115i) q^{86} +(-2.50000 + 4.33013i) q^{87} +(1.00000 + 1.73205i) q^{88} +(-1.38919 + 7.87846i) q^{90} +(0.520945 + 2.95442i) q^{91} +(0.939693 - 0.342020i) q^{92} +(6.12836 + 5.14230i) q^{93} -8.00000 q^{94} -1.00000 q^{96} +(1.53209 + 1.28558i) q^{97} +(1.87939 - 0.684040i) q^{98} +(-0.694593 - 3.93923i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 6 q - 9 q^{7} + 3 q^{8} - 6 q^{11} - 3 q^{12} + 12 q^{18} - 24 q^{20} + 3 q^{26} + 15 q^{27} - 12 q^{30} - 24 q^{31} + 12 q^{37} + 6 q^{39} - 24 q^{45} - 3 q^{46} - 6 q^{49} + 33 q^{50} - 18 q^{56} - 30 q^{58}+ \cdots - 6 q^{96}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/722\mathbb{Z}\right)^\times\).

\(n\) \(363\)
\(\chi(n)\) \(e\left(\frac{2}{9}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −0.766044 0.642788i −0.541675 0.454519i
\(3\) −0.939693 + 0.342020i −0.542532 + 0.197465i −0.598725 0.800954i \(-0.704326\pi\)
0.0561935 + 0.998420i \(0.482104\pi\)
\(4\) 0.173648 + 0.984808i 0.0868241 + 0.492404i
\(5\) −0.694593 + 3.93923i −0.310631 + 1.76168i 0.285104 + 0.958497i \(0.407972\pi\)
−0.595735 + 0.803181i \(0.703139\pi\)
\(6\) 0.939693 + 0.342020i 0.383628 + 0.139629i
\(7\) −1.50000 2.59808i −0.566947 0.981981i −0.996866 0.0791130i \(-0.974791\pi\)
0.429919 0.902867i \(-0.358542\pi\)
\(8\) 0.500000 0.866025i 0.176777 0.306186i
\(9\) −1.53209 + 1.28558i −0.510696 + 0.428525i
\(10\) 3.06418 2.57115i 0.968978 0.813069i
\(11\) −1.00000 + 1.73205i −0.301511 + 0.522233i −0.976478 0.215615i \(-0.930824\pi\)
0.674967 + 0.737848i \(0.264158\pi\)
\(12\) −0.500000 0.866025i −0.144338 0.250000i
\(13\) −0.939693 0.342020i −0.260624 0.0948593i 0.208404 0.978043i \(-0.433173\pi\)
−0.469027 + 0.883184i \(0.655395\pi\)
\(14\) −0.520945 + 2.95442i −0.139228 + 0.789603i
\(15\) −0.694593 3.93923i −0.179343 1.01711i
\(16\) −0.939693 + 0.342020i −0.234923 + 0.0855050i
\(17\) 2.29813 + 1.92836i 0.557379 + 0.467697i 0.877431 0.479703i \(-0.159256\pi\)
−0.320051 + 0.947400i \(0.603700\pi\)
\(18\) 2.00000 0.471405
\(19\) 0 0
\(20\) −4.00000 −0.894427
\(21\) 2.29813 + 1.92836i 0.501494 + 0.420803i
\(22\) 1.87939 0.684040i 0.400686 0.145838i
\(23\) −0.173648 0.984808i −0.0362081 0.205347i 0.961337 0.275375i \(-0.0888021\pi\)
−0.997545 + 0.0700286i \(0.977691\pi\)
\(24\) −0.173648 + 0.984808i −0.0354458 + 0.201023i
\(25\) −10.3366 3.76222i −2.06732 0.752444i
\(26\) 0.500000 + 0.866025i 0.0980581 + 0.169842i
\(27\) 2.50000 4.33013i 0.481125 0.833333i
\(28\) 2.29813 1.92836i 0.434306 0.364426i
\(29\) 3.83022 3.21394i 0.711254 0.596813i −0.213696 0.976900i \(-0.568550\pi\)
0.924951 + 0.380087i \(0.124106\pi\)
\(30\) −2.00000 + 3.46410i −0.365148 + 0.632456i
\(31\) −4.00000 6.92820i −0.718421 1.24434i −0.961625 0.274367i \(-0.911532\pi\)
0.243204 0.969975i \(-0.421802\pi\)
\(32\) 0.939693 + 0.342020i 0.166116 + 0.0604612i
\(33\) 0.347296 1.96962i 0.0604565 0.342866i
\(34\) −0.520945 2.95442i −0.0893413 0.506679i
\(35\) 11.2763 4.10424i 1.90604 0.693743i
\(36\) −1.53209 1.28558i −0.255348 0.214263i
\(37\) 2.00000 0.328798 0.164399 0.986394i \(-0.447432\pi\)
0.164399 + 0.986394i \(0.447432\pi\)
\(38\) 0 0
\(39\) 1.00000 0.160128
\(40\) 3.06418 + 2.57115i 0.484489 + 0.406535i
\(41\) −7.51754 + 2.73616i −1.17404 + 0.427317i −0.854094 0.520118i \(-0.825888\pi\)
−0.319948 + 0.947435i \(0.603666\pi\)
\(42\) −0.520945 2.95442i −0.0803835 0.455877i
\(43\) 0.694593 3.93923i 0.105924 0.600727i −0.884923 0.465738i \(-0.845789\pi\)
0.990847 0.134989i \(-0.0431000\pi\)
\(44\) −1.87939 0.684040i −0.283328 0.103123i
\(45\) −4.00000 6.92820i −0.596285 1.03280i
\(46\) −0.500000 + 0.866025i −0.0737210 + 0.127688i
\(47\) 6.12836 5.14230i 0.893913 0.750082i −0.0750785 0.997178i \(-0.523921\pi\)
0.968991 + 0.247096i \(0.0794763\pi\)
\(48\) 0.766044 0.642788i 0.110569 0.0927784i
\(49\) −1.00000 + 1.73205i −0.142857 + 0.247436i
\(50\) 5.50000 + 9.52628i 0.777817 + 1.34722i
\(51\) −2.81908 1.02606i −0.394750 0.143677i
\(52\) 0.173648 0.984808i 0.0240807 0.136568i
\(53\) 0.173648 + 0.984808i 0.0238524 + 0.135274i 0.994409 0.105601i \(-0.0336767\pi\)
−0.970556 + 0.240875i \(0.922566\pi\)
\(54\) −4.69846 + 1.71010i −0.639380 + 0.232715i
\(55\) −6.12836 5.14230i −0.826347 0.693388i
\(56\) −3.00000 −0.400892
\(57\) 0 0
\(58\) −5.00000 −0.656532
\(59\) −11.4907 9.64181i −1.49596 1.25526i −0.886753 0.462244i \(-0.847044\pi\)
−0.609205 0.793013i \(-0.708511\pi\)
\(60\) 3.75877 1.36808i 0.485255 0.176618i
\(61\) 0.347296 + 1.96962i 0.0444667 + 0.252183i 0.998936 0.0461272i \(-0.0146880\pi\)
−0.954469 + 0.298311i \(0.903577\pi\)
\(62\) −1.38919 + 7.87846i −0.176427 + 1.00057i
\(63\) 5.63816 + 2.05212i 0.710341 + 0.258543i
\(64\) −0.500000 0.866025i −0.0625000 0.108253i
\(65\) 2.00000 3.46410i 0.248069 0.429669i
\(66\) −1.53209 + 1.28558i −0.188587 + 0.158243i
\(67\) −2.29813 + 1.92836i −0.280762 + 0.235587i −0.772283 0.635278i \(-0.780885\pi\)
0.491522 + 0.870865i \(0.336441\pi\)
\(68\) −1.50000 + 2.59808i −0.181902 + 0.315063i
\(69\) 0.500000 + 0.866025i 0.0601929 + 0.104257i
\(70\) −11.2763 4.10424i −1.34778 0.490551i
\(71\) −0.347296 + 1.96962i −0.0412165 + 0.233750i −0.998456 0.0555458i \(-0.982310\pi\)
0.957240 + 0.289296i \(0.0934212\pi\)
\(72\) 0.347296 + 1.96962i 0.0409293 + 0.232121i
\(73\) −8.45723 + 3.07818i −0.989844 + 0.360274i −0.785660 0.618659i \(-0.787676\pi\)
−0.204184 + 0.978932i \(0.565454\pi\)
\(74\) −1.53209 1.28558i −0.178102 0.149445i
\(75\) 11.0000 1.27017
\(76\) 0 0
\(77\) 6.00000 0.683763
\(78\) −0.766044 0.642788i −0.0867375 0.0727814i
\(79\) −9.39693 + 3.42020i −1.05724 + 0.384803i −0.811389 0.584506i \(-0.801288\pi\)
−0.245847 + 0.969309i \(0.579066\pi\)
\(80\) −0.694593 3.93923i −0.0776578 0.440419i
\(81\) 0.173648 0.984808i 0.0192942 0.109423i
\(82\) 7.51754 + 2.73616i 0.830174 + 0.302158i
\(83\) 3.00000 + 5.19615i 0.329293 + 0.570352i 0.982372 0.186938i \(-0.0598564\pi\)
−0.653079 + 0.757290i \(0.726523\pi\)
\(84\) −1.50000 + 2.59808i −0.163663 + 0.283473i
\(85\) −9.19253 + 7.71345i −0.997070 + 0.836641i
\(86\) −3.06418 + 2.57115i −0.330419 + 0.277254i
\(87\) −2.50000 + 4.33013i −0.268028 + 0.464238i
\(88\) 1.00000 + 1.73205i 0.106600 + 0.184637i
\(89\) 0 0 0.342020 0.939693i \(-0.388889\pi\)
−0.342020 + 0.939693i \(0.611111\pi\)
\(90\) −1.38919 + 7.87846i −0.146433 + 0.830463i
\(91\) 0.520945 + 2.95442i 0.0546098 + 0.309708i
\(92\) 0.939693 0.342020i 0.0979697 0.0356581i
\(93\) 6.12836 + 5.14230i 0.635481 + 0.533232i
\(94\) −8.00000 −0.825137
\(95\) 0 0
\(96\) −1.00000 −0.102062
\(97\) 1.53209 + 1.28558i 0.155560 + 0.130530i 0.717246 0.696820i \(-0.245403\pi\)
−0.561686 + 0.827351i \(0.689847\pi\)
\(98\) 1.87939 0.684040i 0.189847 0.0690985i
\(99\) −0.694593 3.93923i −0.0698092 0.395908i
\(100\) 1.91013 10.8329i 0.191013 1.08329i
\(101\) −1.87939 0.684040i −0.187006 0.0680646i 0.246820 0.969061i \(-0.420614\pi\)
−0.433826 + 0.900997i \(0.642837\pi\)
\(102\) 1.50000 + 2.59808i 0.148522 + 0.257248i
\(103\) −3.00000 + 5.19615i −0.295599 + 0.511992i −0.975124 0.221660i \(-0.928852\pi\)
0.679525 + 0.733652i \(0.262186\pi\)
\(104\) −0.766044 + 0.642788i −0.0751168 + 0.0630305i
\(105\) −9.19253 + 7.71345i −0.897099 + 0.752756i
\(106\) 0.500000 0.866025i 0.0485643 0.0841158i
\(107\) −3.50000 6.06218i −0.338358 0.586053i 0.645766 0.763535i \(-0.276538\pi\)
−0.984124 + 0.177482i \(0.943205\pi\)
\(108\) 4.69846 + 1.71010i 0.452110 + 0.164555i
\(109\) 2.60472 14.7721i 0.249487 1.41491i −0.560349 0.828256i \(-0.689333\pi\)
0.809836 0.586656i \(-0.199556\pi\)
\(110\) 1.38919 + 7.87846i 0.132454 + 0.751182i
\(111\) −1.87939 + 0.684040i −0.178383 + 0.0649262i
\(112\) 2.29813 + 1.92836i 0.217153 + 0.182213i
\(113\) −14.0000 −1.31701 −0.658505 0.752577i \(-0.728811\pi\)
−0.658505 + 0.752577i \(0.728811\pi\)
\(114\) 0 0
\(115\) 4.00000 0.373002
\(116\) 3.83022 + 3.21394i 0.355627 + 0.298407i
\(117\) 1.87939 0.684040i 0.173749 0.0632395i
\(118\) 2.60472 + 14.7721i 0.239784 + 1.35988i
\(119\) 1.56283 8.86327i 0.143265 0.812495i
\(120\) −3.75877 1.36808i −0.343127 0.124888i
\(121\) 3.50000 + 6.06218i 0.318182 + 0.551107i
\(122\) 1.00000 1.73205i 0.0905357 0.156813i
\(123\) 6.12836 5.14230i 0.552575 0.463666i
\(124\) 6.12836 5.14230i 0.550343 0.461792i
\(125\) 12.0000 20.7846i 1.07331 1.85903i
\(126\) −3.00000 5.19615i −0.267261 0.462910i
\(127\) 16.9145 + 6.15636i 1.50092 + 0.546289i 0.956298 0.292395i \(-0.0944522\pi\)
0.544619 + 0.838684i \(0.316674\pi\)
\(128\) −0.173648 + 0.984808i −0.0153485 + 0.0870455i
\(129\) 0.694593 + 3.93923i 0.0611555 + 0.346830i
\(130\) −3.75877 + 1.36808i −0.329666 + 0.119989i
\(131\) 9.19253 + 7.71345i 0.803155 + 0.673927i 0.948964 0.315385i \(-0.102134\pi\)
−0.145808 + 0.989313i \(0.546578\pi\)
\(132\) 2.00000 0.174078
\(133\) 0 0
\(134\) 3.00000 0.259161
\(135\) 15.3209 + 12.8558i 1.31861 + 1.10645i
\(136\) 2.81908 1.02606i 0.241734 0.0879840i
\(137\) −2.95202 16.7417i −0.252208 1.43034i −0.803139 0.595792i \(-0.796838\pi\)
0.550931 0.834551i \(-0.314273\pi\)
\(138\) 0.173648 0.984808i 0.0147819 0.0838324i
\(139\) 0 0 0.342020 0.939693i \(-0.388889\pi\)
−0.342020 + 0.939693i \(0.611111\pi\)
\(140\) 6.00000 + 10.3923i 0.507093 + 0.878310i
\(141\) −4.00000 + 6.92820i −0.336861 + 0.583460i
\(142\) 1.53209 1.28558i 0.128570 0.107883i
\(143\) 1.53209 1.28558i 0.128120 0.107505i
\(144\) 1.00000 1.73205i 0.0833333 0.144338i
\(145\) 10.0000 + 17.3205i 0.830455 + 1.43839i
\(146\) 8.45723 + 3.07818i 0.699926 + 0.254752i
\(147\) 0.347296 1.96962i 0.0286445 0.162451i
\(148\) 0.347296 + 1.96962i 0.0285476 + 0.161901i
\(149\) 0 0 −0.342020 0.939693i \(-0.611111\pi\)
0.342020 + 0.939693i \(0.388889\pi\)
\(150\) −8.42649 7.07066i −0.688020 0.577317i
\(151\) −2.00000 −0.162758 −0.0813788 0.996683i \(-0.525932\pi\)
−0.0813788 + 0.996683i \(0.525932\pi\)
\(152\) 0 0
\(153\) −6.00000 −0.485071
\(154\) −4.59627 3.85673i −0.370378 0.310784i
\(155\) 30.0702 10.9446i 2.41529 0.879095i
\(156\) 0.173648 + 0.984808i 0.0139030 + 0.0788477i
\(157\) −0.347296 + 1.96962i −0.0277173 + 0.157192i −0.995525 0.0944981i \(-0.969875\pi\)
0.967808 + 0.251690i \(0.0809865\pi\)
\(158\) 9.39693 + 3.42020i 0.747579 + 0.272097i
\(159\) −0.500000 0.866025i −0.0396526 0.0686803i
\(160\) −2.00000 + 3.46410i −0.158114 + 0.273861i
\(161\) −2.29813 + 1.92836i −0.181118 + 0.151976i
\(162\) −0.766044 + 0.642788i −0.0601861 + 0.0505022i
\(163\) 8.00000 13.8564i 0.626608 1.08532i −0.361619 0.932326i \(-0.617776\pi\)
0.988227 0.152992i \(-0.0488907\pi\)
\(164\) −4.00000 6.92820i −0.312348 0.541002i
\(165\) 7.51754 + 2.73616i 0.585240 + 0.213010i
\(166\) 1.04189 5.90885i 0.0808663 0.458615i
\(167\) 2.08378 + 11.8177i 0.161248 + 0.914481i 0.952849 + 0.303443i \(0.0981363\pi\)
−0.791602 + 0.611037i \(0.790753\pi\)
\(168\) 2.81908 1.02606i 0.217497 0.0791623i
\(169\) −9.19253 7.71345i −0.707118 0.593342i
\(170\) 12.0000 0.920358
\(171\) 0 0
\(172\) 4.00000 0.304997
\(173\) 4.59627 + 3.85673i 0.349448 + 0.293221i 0.800568 0.599242i \(-0.204531\pi\)
−0.451121 + 0.892463i \(0.648976\pi\)
\(174\) 4.69846 1.71010i 0.356190 0.129642i
\(175\) 5.73039 + 32.4987i 0.433177 + 2.45667i
\(176\) 0.347296 1.96962i 0.0261784 0.148465i
\(177\) 14.0954 + 5.13030i 1.05947 + 0.385617i
\(178\) 0 0
\(179\) 0 0 −0.866025 0.500000i \(-0.833333\pi\)
0.866025 + 0.500000i \(0.166667\pi\)
\(180\) 6.12836 5.14230i 0.456781 0.383284i
\(181\) −16.8530 + 14.1413i −1.25267 + 1.05112i −0.256249 + 0.966611i \(0.582487\pi\)
−0.996423 + 0.0845058i \(0.973069\pi\)
\(182\) 1.50000 2.59808i 0.111187 0.192582i
\(183\) −1.00000 1.73205i −0.0739221 0.128037i
\(184\) −0.939693 0.342020i −0.0692751 0.0252141i
\(185\) −1.38919 + 7.87846i −0.102135 + 0.579236i
\(186\) −1.38919 7.87846i −0.101860 0.577677i
\(187\) −5.63816 + 2.05212i −0.412303 + 0.150066i
\(188\) 6.12836 + 5.14230i 0.446956 + 0.375041i
\(189\) −15.0000 −1.09109
\(190\) 0 0
\(191\) 7.00000 0.506502 0.253251 0.967401i \(-0.418500\pi\)
0.253251 + 0.967401i \(0.418500\pi\)
\(192\) 0.766044 + 0.642788i 0.0552845 + 0.0463892i
\(193\) −5.63816 + 2.05212i −0.405843 + 0.147715i −0.536872 0.843664i \(-0.680394\pi\)
0.131029 + 0.991379i \(0.458172\pi\)
\(194\) −0.347296 1.96962i −0.0249344 0.141410i
\(195\) −0.694593 + 3.93923i −0.0497408 + 0.282094i
\(196\) −1.87939 0.684040i −0.134242 0.0488600i
\(197\) −4.00000 6.92820i −0.284988 0.493614i 0.687618 0.726073i \(-0.258656\pi\)
−0.972606 + 0.232458i \(0.925323\pi\)
\(198\) −2.00000 + 3.46410i −0.142134 + 0.246183i
\(199\) −19.1511 + 16.0697i −1.35759 + 1.13915i −0.380867 + 0.924630i \(0.624374\pi\)
−0.976720 + 0.214520i \(0.931181\pi\)
\(200\) −8.42649 + 7.07066i −0.595843 + 0.499971i
\(201\) 1.50000 2.59808i 0.105802 0.183254i
\(202\) 1.00000 + 1.73205i 0.0703598 + 0.121867i
\(203\) −14.0954 5.13030i −0.989302 0.360077i
\(204\) 0.520945 2.95442i 0.0364734 0.206851i
\(205\) −5.55674 31.5138i −0.388100 2.20102i
\(206\) 5.63816 2.05212i 0.392829 0.142978i
\(207\) 1.53209 + 1.28558i 0.106488 + 0.0893537i
\(208\) 1.00000 0.0693375
\(209\) 0 0
\(210\) 12.0000 0.828079
\(211\) −20.6832 17.3553i −1.42389 1.19479i −0.949216 0.314624i \(-0.898122\pi\)
−0.474674 0.880162i \(-0.657434\pi\)
\(212\) −0.939693 + 0.342020i −0.0645384 + 0.0234900i
\(213\) −0.347296 1.96962i −0.0237964 0.134956i
\(214\) −1.21554 + 6.89365i −0.0830924 + 0.471241i
\(215\) 15.0351 + 5.47232i 1.02538 + 0.373209i
\(216\) −2.50000 4.33013i −0.170103 0.294628i
\(217\) −12.0000 + 20.7846i −0.814613 + 1.41095i
\(218\) −11.4907 + 9.64181i −0.778246 + 0.653026i
\(219\) 6.89440 5.78509i 0.465880 0.390920i
\(220\) 4.00000 6.92820i 0.269680 0.467099i
\(221\) −1.50000 2.59808i −0.100901 0.174766i
\(222\) 1.87939 + 0.684040i 0.126136 + 0.0459098i
\(223\) −2.43107 + 13.7873i −0.162797 + 0.923266i 0.788510 + 0.615022i \(0.210853\pi\)
−0.951307 + 0.308245i \(0.900258\pi\)
\(224\) −0.520945 2.95442i −0.0348071 0.197401i
\(225\) 20.6732 7.52444i 1.37822 0.501630i
\(226\) 10.7246 + 8.99903i 0.713391 + 0.598606i
\(227\) 17.0000 1.12833 0.564165 0.825662i \(-0.309198\pi\)
0.564165 + 0.825662i \(0.309198\pi\)
\(228\) 0 0
\(229\) −10.0000 −0.660819 −0.330409 0.943838i \(-0.607187\pi\)
−0.330409 + 0.943838i \(0.607187\pi\)
\(230\) −3.06418 2.57115i −0.202046 0.169537i
\(231\) −5.63816 + 2.05212i −0.370963 + 0.135020i
\(232\) −0.868241 4.92404i −0.0570028 0.323279i
\(233\) −1.04189 + 5.90885i −0.0682564 + 0.387101i 0.931472 + 0.363812i \(0.118525\pi\)
−0.999729 + 0.0232893i \(0.992586\pi\)
\(234\) −1.87939 0.684040i −0.122859 0.0447171i
\(235\) 16.0000 + 27.7128i 1.04372 + 1.80778i
\(236\) 7.50000 12.9904i 0.488208 0.845602i
\(237\) 7.66044 6.42788i 0.497599 0.417535i
\(238\) −6.89440 + 5.78509i −0.446898 + 0.374992i
\(239\) −7.50000 + 12.9904i −0.485135 + 0.840278i −0.999854 0.0170808i \(-0.994563\pi\)
0.514719 + 0.857359i \(0.327896\pi\)
\(240\) 2.00000 + 3.46410i 0.129099 + 0.223607i
\(241\) −7.51754 2.73616i −0.484247 0.176252i 0.0883481 0.996090i \(-0.471841\pi\)
−0.572596 + 0.819838i \(0.694063\pi\)
\(242\) 1.21554 6.89365i 0.0781377 0.443141i
\(243\) 2.77837 + 15.7569i 0.178233 + 1.01081i
\(244\) −1.87939 + 0.684040i −0.120315 + 0.0437912i
\(245\) −6.12836 5.14230i −0.391526 0.328530i
\(246\) −8.00000 −0.510061
\(247\) 0 0
\(248\) −8.00000 −0.508001
\(249\) −4.59627 3.85673i −0.291277 0.244410i
\(250\) −22.5526 + 8.20848i −1.42635 + 0.519150i
\(251\) 0.347296 + 1.96962i 0.0219212 + 0.124321i 0.993805 0.111141i \(-0.0354506\pi\)
−0.971883 + 0.235462i \(0.924340\pi\)
\(252\) −1.04189 + 5.90885i −0.0656328 + 0.372222i
\(253\) 1.87939 + 0.684040i 0.118156 + 0.0430052i
\(254\) −9.00000 15.5885i −0.564710 0.978107i
\(255\) 6.00000 10.3923i 0.375735 0.650791i
\(256\) 0.766044 0.642788i 0.0478778 0.0401742i
\(257\) −6.12836 + 5.14230i −0.382276 + 0.320768i −0.813595 0.581432i \(-0.802493\pi\)
0.431319 + 0.902199i \(0.358048\pi\)
\(258\) 2.00000 3.46410i 0.124515 0.215666i
\(259\) −3.00000 5.19615i −0.186411 0.322873i
\(260\) 3.75877 + 1.36808i 0.233109 + 0.0848448i
\(261\) −1.73648 + 9.84808i −0.107486 + 0.609581i
\(262\) −2.08378 11.8177i −0.128736 0.730100i
\(263\) −22.5526 + 8.20848i −1.39065 + 0.506157i −0.925390 0.379015i \(-0.876263\pi\)
−0.465264 + 0.885172i \(0.654041\pi\)
\(264\) −1.53209 1.28558i −0.0942936 0.0791217i
\(265\) −4.00000 −0.245718
\(266\) 0 0
\(267\) 0 0
\(268\) −2.29813 1.92836i −0.140381 0.117794i
\(269\) 28.1908 10.2606i 1.71882 0.625600i 0.721086 0.692846i \(-0.243643\pi\)
0.997736 + 0.0672458i \(0.0214212\pi\)
\(270\) −3.47296 19.6962i −0.211358 1.19867i
\(271\) 1.21554 6.89365i 0.0738386 0.418760i −0.925373 0.379058i \(-0.876248\pi\)
0.999212 0.0397017i \(-0.0126408\pi\)
\(272\) −2.81908 1.02606i −0.170932 0.0622141i
\(273\) −1.50000 2.59808i −0.0907841 0.157243i
\(274\) −8.50000 + 14.7224i −0.513504 + 0.889415i
\(275\) 16.8530 14.1413i 1.01627 0.852754i
\(276\) −0.766044 + 0.642788i −0.0461105 + 0.0386913i
\(277\) −14.0000 + 24.2487i −0.841178 + 1.45696i 0.0477206 + 0.998861i \(0.484804\pi\)
−0.888899 + 0.458103i \(0.848529\pi\)
\(278\) 0 0
\(279\) 15.0351 + 5.47232i 0.900127 + 0.327619i
\(280\) 2.08378 11.8177i 0.124530 0.706242i
\(281\) 1.38919 + 7.87846i 0.0828719 + 0.469990i 0.997796 + 0.0663628i \(0.0211395\pi\)
−0.914924 + 0.403627i \(0.867749\pi\)
\(282\) 7.51754 2.73616i 0.447663 0.162936i
\(283\) −4.59627 3.85673i −0.273220 0.229259i 0.495874 0.868394i \(-0.334848\pi\)
−0.769094 + 0.639136i \(0.779292\pi\)
\(284\) −2.00000 −0.118678
\(285\) 0 0
\(286\) −2.00000 −0.118262
\(287\) 18.3851 + 15.4269i 1.08524 + 0.910621i
\(288\) −1.87939 + 0.684040i −0.110744 + 0.0403075i
\(289\) −1.38919 7.87846i −0.0817168 0.463439i
\(290\) 3.47296 19.6962i 0.203939 1.15660i
\(291\) −1.87939 0.684040i −0.110172 0.0400992i
\(292\) −4.50000 7.79423i −0.263343 0.456123i
\(293\) 4.50000 7.79423i 0.262893 0.455344i −0.704117 0.710084i \(-0.748657\pi\)
0.967009 + 0.254741i \(0.0819901\pi\)
\(294\) −1.53209 + 1.28558i −0.0893532 + 0.0749763i
\(295\) 45.9627 38.5673i 2.67605 2.24547i
\(296\) 1.00000 1.73205i 0.0581238 0.100673i
\(297\) 5.00000 + 8.66025i 0.290129 + 0.502519i
\(298\) 0 0
\(299\) −0.173648 + 0.984808i −0.0100423 + 0.0569529i
\(300\) 1.91013 + 10.8329i 0.110281 + 0.625437i
\(301\) −11.2763 + 4.10424i −0.649956 + 0.236565i
\(302\) 1.53209 + 1.28558i 0.0881618 + 0.0739765i
\(303\) 2.00000 0.114897
\(304\) 0 0
\(305\) −8.00000 −0.458079
\(306\) 4.59627 + 3.85673i 0.262751 + 0.220474i
\(307\) −11.2763 + 4.10424i −0.643573 + 0.234241i −0.643128 0.765758i \(-0.722364\pi\)
−0.000444803 1.00000i \(0.500142\pi\)
\(308\) 1.04189 + 5.90885i 0.0593671 + 0.336688i
\(309\) 1.04189 5.90885i 0.0592710 0.336143i
\(310\) −30.0702 10.9446i −1.70787 0.621614i
\(311\) −3.50000 6.06218i −0.198467 0.343755i 0.749565 0.661931i \(-0.230263\pi\)
−0.948031 + 0.318177i \(0.896930\pi\)
\(312\) 0.500000 0.866025i 0.0283069 0.0490290i
\(313\) 22.2153 18.6408i 1.25568 1.05364i 0.259554 0.965729i \(-0.416424\pi\)
0.996128 0.0879141i \(-0.0280201\pi\)
\(314\) 1.53209 1.28558i 0.0864608 0.0725492i
\(315\) −12.0000 + 20.7846i −0.676123 + 1.17108i
\(316\) −5.00000 8.66025i −0.281272 0.487177i
\(317\) −25.3717 9.23454i −1.42502 0.518664i −0.489518 0.871993i \(-0.662827\pi\)
−0.935499 + 0.353330i \(0.885049\pi\)
\(318\) −0.173648 + 0.984808i −0.00973771 + 0.0552253i
\(319\) 1.73648 + 9.84808i 0.0972243 + 0.551386i
\(320\) 3.75877 1.36808i 0.210122 0.0764780i
\(321\) 5.36231 + 4.49951i 0.299295 + 0.251138i
\(322\) 3.00000 0.167183
\(323\) 0 0
\(324\) 1.00000 0.0555556
\(325\) 8.42649 + 7.07066i 0.467418 + 0.392210i
\(326\) −15.0351 + 5.47232i −0.832716 + 0.303084i
\(327\) 2.60472 + 14.7721i 0.144041 + 0.816900i
\(328\) −1.38919 + 7.87846i −0.0767049 + 0.435015i
\(329\) −22.5526 8.20848i −1.24337 0.452548i
\(330\) −4.00000 6.92820i −0.220193 0.381385i
\(331\) 8.50000 14.7224i 0.467202 0.809218i −0.532096 0.846684i \(-0.678595\pi\)
0.999298 + 0.0374662i \(0.0119287\pi\)
\(332\) −4.59627 + 3.85673i −0.252253 + 0.211665i
\(333\) −3.06418 + 2.57115i −0.167916 + 0.140898i
\(334\) 6.00000 10.3923i 0.328305 0.568642i
\(335\) −6.00000 10.3923i −0.327815 0.567792i
\(336\) −2.81908 1.02606i −0.153793 0.0559762i
\(337\) 5.55674 31.5138i 0.302695 1.71667i −0.331466 0.943467i \(-0.607543\pi\)
0.634161 0.773201i \(-0.281346\pi\)
\(338\) 2.08378 + 11.8177i 0.113343 + 0.642798i
\(339\) 13.1557 4.78828i 0.714519 0.260064i
\(340\) −9.19253 7.71345i −0.498535 0.418321i
\(341\) 16.0000 0.866449
\(342\) 0 0
\(343\) −15.0000 −0.809924
\(344\) −3.06418 2.57115i −0.165209 0.138627i
\(345\) −3.75877 + 1.36808i −0.202365 + 0.0736550i
\(346\) −1.04189 5.90885i −0.0560123 0.317662i
\(347\) −0.347296 + 1.96962i −0.0186438 + 0.105735i −0.992710 0.120531i \(-0.961540\pi\)
0.974066 + 0.226265i \(0.0726515\pi\)
\(348\) −4.69846 1.71010i −0.251864 0.0916710i
\(349\) −5.00000 8.66025i −0.267644 0.463573i 0.700609 0.713545i \(-0.252912\pi\)
−0.968253 + 0.249973i \(0.919578\pi\)
\(350\) 16.5000 28.5788i 0.881962 1.52760i
\(351\) −3.83022 + 3.21394i −0.204442 + 0.171547i
\(352\) −1.53209 + 1.28558i −0.0816606 + 0.0685214i
\(353\) −4.50000 + 7.79423i −0.239511 + 0.414845i −0.960574 0.278024i \(-0.910320\pi\)
0.721063 + 0.692869i \(0.243654\pi\)
\(354\) −7.50000 12.9904i −0.398621 0.690431i
\(355\) −7.51754 2.73616i −0.398990 0.145220i
\(356\) 0 0
\(357\) 1.56283 + 8.86327i 0.0827139 + 0.469094i
\(358\) 0 0
\(359\) −11.4907 9.64181i −0.606454 0.508875i 0.287059 0.957913i \(-0.407323\pi\)
−0.893513 + 0.449037i \(0.851767\pi\)
\(360\) −8.00000 −0.421637
\(361\) 0 0
\(362\) 22.0000 1.15629
\(363\) −5.36231 4.49951i −0.281448 0.236163i
\(364\) −2.81908 + 1.02606i −0.147760 + 0.0537802i
\(365\) −6.25133 35.4531i −0.327210 1.85570i
\(366\) −0.347296 + 1.96962i −0.0181535 + 0.102953i
\(367\) −26.3114 9.57656i −1.37344 0.499893i −0.453260 0.891379i \(-0.649739\pi\)
−0.920184 + 0.391486i \(0.871961\pi\)
\(368\) 0.500000 + 0.866025i 0.0260643 + 0.0451447i
\(369\) 8.00000 13.8564i 0.416463 0.721336i
\(370\) 6.12836 5.14230i 0.318598 0.267335i
\(371\) 2.29813 1.92836i 0.119313 0.100116i
\(372\) −4.00000 + 6.92820i −0.207390 + 0.359211i
\(373\) 14.5000 + 25.1147i 0.750782 + 1.30039i 0.947444 + 0.319921i \(0.103656\pi\)
−0.196663 + 0.980471i \(0.563010\pi\)
\(374\) 5.63816 + 2.05212i 0.291542 + 0.106113i
\(375\) −4.16756 + 23.6354i −0.215212 + 1.22053i
\(376\) −1.38919 7.87846i −0.0716418 0.406301i
\(377\) −4.69846 + 1.71010i −0.241983 + 0.0880747i
\(378\) 11.4907 + 9.64181i 0.591016 + 0.495921i
\(379\) −15.0000 −0.770498 −0.385249 0.922813i \(-0.625884\pi\)
−0.385249 + 0.922813i \(0.625884\pi\)
\(380\) 0 0
\(381\) −18.0000 −0.922168
\(382\) −5.36231 4.49951i −0.274360 0.230215i
\(383\) −24.4320 + 8.89252i −1.24842 + 0.454387i −0.879867 0.475221i \(-0.842368\pi\)
−0.368551 + 0.929608i \(0.620146\pi\)
\(384\) −0.173648 0.984808i −0.00886145 0.0502558i
\(385\) −4.16756 + 23.6354i −0.212398 + 1.20457i
\(386\) 5.63816 + 2.05212i 0.286975 + 0.104450i
\(387\) 4.00000 + 6.92820i 0.203331 + 0.352180i
\(388\) −1.00000 + 1.73205i −0.0507673 + 0.0879316i
\(389\) −22.9813 + 19.2836i −1.16520 + 0.977719i −0.999964 0.00853524i \(-0.997283\pi\)
−0.165236 + 0.986254i \(0.552839\pi\)
\(390\) 3.06418 2.57115i 0.155161 0.130195i
\(391\) 1.50000 2.59808i 0.0758583 0.131390i
\(392\) 1.00000 + 1.73205i 0.0505076 + 0.0874818i
\(393\) −11.2763 4.10424i −0.568815 0.207032i
\(394\) −1.38919 + 7.87846i −0.0699862 + 0.396911i
\(395\) −6.94593 39.3923i −0.349488 1.98204i
\(396\) 3.75877 1.36808i 0.188885 0.0687486i
\(397\) 6.12836 + 5.14230i 0.307573 + 0.258085i 0.783488 0.621407i \(-0.213439\pi\)
−0.475915 + 0.879491i \(0.657883\pi\)
\(398\) 25.0000 1.25314
\(399\) 0 0
\(400\) 11.0000 0.550000
\(401\) 6.12836 + 5.14230i 0.306035 + 0.256794i 0.782851 0.622209i \(-0.213765\pi\)
−0.476816 + 0.879003i \(0.658209\pi\)
\(402\) −2.81908 + 1.02606i −0.140603 + 0.0511752i
\(403\) 1.38919 + 7.87846i 0.0692003 + 0.392454i
\(404\) 0.347296 1.96962i 0.0172786 0.0979920i
\(405\) 3.75877 + 1.36808i 0.186775 + 0.0679805i
\(406\) 7.50000 + 12.9904i 0.372219 + 0.644702i
\(407\) −2.00000 + 3.46410i −0.0991363 + 0.171709i
\(408\) −2.29813 + 1.92836i −0.113775 + 0.0954682i
\(409\) 15.3209 12.8558i 0.757569 0.635676i −0.179924 0.983681i \(-0.557585\pi\)
0.937493 + 0.348005i \(0.113141\pi\)
\(410\) −16.0000 + 27.7128i −0.790184 + 1.36864i
\(411\) 8.50000 + 14.7224i 0.419274 + 0.726204i
\(412\) −5.63816 2.05212i −0.277772 0.101101i
\(413\) −7.81417 + 44.3163i −0.384510 + 2.18066i
\(414\) −0.347296 1.96962i −0.0170687 0.0968013i
\(415\) −22.5526 + 8.20848i −1.10706 + 0.402939i
\(416\) −0.766044 0.642788i −0.0375584 0.0315153i
\(417\) 0 0
\(418\) 0 0
\(419\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(420\) −9.19253 7.71345i −0.448550 0.376378i
\(421\) −12.2160 + 4.44626i −0.595372 + 0.216698i −0.622090 0.782945i \(-0.713716\pi\)
0.0267188 + 0.999643i \(0.491494\pi\)
\(422\) 4.68850 + 26.5898i 0.228233 + 1.29437i
\(423\) −2.77837 + 15.7569i −0.135089 + 0.766128i
\(424\) 0.939693 + 0.342020i 0.0456355 + 0.0166100i
\(425\) −16.5000 28.5788i −0.800368 1.38628i
\(426\) −1.00000 + 1.73205i −0.0484502 + 0.0839181i
\(427\) 4.59627 3.85673i 0.222429 0.186640i
\(428\) 5.36231 4.49951i 0.259197 0.217492i
\(429\) −1.00000 + 1.73205i −0.0482805 + 0.0836242i
\(430\) −8.00000 13.8564i −0.385794 0.668215i
\(431\) −16.9145 6.15636i −0.814741 0.296542i −0.0991604 0.995071i \(-0.531616\pi\)
−0.715581 + 0.698530i \(0.753838\pi\)
\(432\) −0.868241 + 4.92404i −0.0417733 + 0.236908i
\(433\) −2.43107 13.7873i −0.116830 0.662576i −0.985828 0.167760i \(-0.946347\pi\)
0.868998 0.494816i \(-0.164764\pi\)
\(434\) 22.5526 8.20848i 1.08256 0.394020i
\(435\) −15.3209 12.8558i −0.734580 0.616386i
\(436\) 15.0000 0.718370
\(437\) 0 0
\(438\) −9.00000 −0.430037
\(439\) −15.3209 12.8558i −0.731226 0.613572i 0.199239 0.979951i \(-0.436153\pi\)
−0.930466 + 0.366379i \(0.880597\pi\)
\(440\) −7.51754 + 2.73616i −0.358385 + 0.130441i
\(441\) −0.694593 3.93923i −0.0330758 0.187582i
\(442\) −0.520945 + 2.95442i −0.0247788 + 0.140528i
\(443\) 24.4320 + 8.89252i 1.16080 + 0.422497i 0.849383 0.527777i \(-0.176974\pi\)
0.311417 + 0.950273i \(0.399197\pi\)
\(444\) −1.00000 1.73205i −0.0474579 0.0821995i
\(445\) 0 0
\(446\) 10.7246 8.99903i 0.507826 0.426116i
\(447\) 0 0
\(448\) −1.50000 + 2.59808i −0.0708683 + 0.122748i
\(449\) 5.00000 + 8.66025i 0.235965 + 0.408703i 0.959553 0.281529i \(-0.0908417\pi\)
−0.723588 + 0.690232i \(0.757508\pi\)
\(450\) −20.6732 7.52444i −0.974546 0.354706i
\(451\) 2.77837 15.7569i 0.130828 0.741965i
\(452\) −2.43107 13.7873i −0.114348 0.648500i
\(453\) 1.87939 0.684040i 0.0883012 0.0321390i
\(454\) −13.0228 10.9274i −0.611188 0.512848i
\(455\) −12.0000 −0.562569
\(456\) 0 0
\(457\) −7.00000 −0.327446 −0.163723 0.986506i \(-0.552350\pi\)
−0.163723 + 0.986506i \(0.552350\pi\)
\(458\) 7.66044 + 6.42788i 0.357949 + 0.300355i
\(459\) 14.0954 5.13030i 0.657916 0.239462i
\(460\) 0.694593 + 3.93923i 0.0323856 + 0.183668i
\(461\) −4.86215 + 27.5746i −0.226453 + 1.28428i 0.633435 + 0.773796i \(0.281644\pi\)
−0.859888 + 0.510482i \(0.829467\pi\)
\(462\) 5.63816 + 2.05212i 0.262311 + 0.0954733i
\(463\) −2.00000 3.46410i −0.0929479 0.160990i 0.815802 0.578331i \(-0.196296\pi\)
−0.908750 + 0.417340i \(0.862962\pi\)
\(464\) −2.50000 + 4.33013i −0.116060 + 0.201021i
\(465\) −24.5134 + 20.5692i −1.13678 + 0.953874i
\(466\) 4.59627 3.85673i 0.212918 0.178659i
\(467\) 1.00000 1.73205i 0.0462745 0.0801498i −0.841960 0.539539i \(-0.818598\pi\)
0.888235 + 0.459390i \(0.151932\pi\)
\(468\) 1.00000 + 1.73205i 0.0462250 + 0.0800641i
\(469\) 8.45723 + 3.07818i 0.390519 + 0.142137i
\(470\) 5.55674 31.5138i 0.256313 1.45363i
\(471\) −0.347296 1.96962i −0.0160026 0.0907551i
\(472\) −14.0954 + 5.13030i −0.648793 + 0.236141i
\(473\) 6.12836 + 5.14230i 0.281782 + 0.236443i
\(474\) −10.0000 −0.459315
\(475\) 0 0
\(476\) 9.00000 0.412514
\(477\) −1.53209 1.28558i −0.0701495 0.0588624i
\(478\) 14.0954 5.13030i 0.644708 0.234655i
\(479\) −3.47296 19.6962i −0.158684 0.899940i −0.955340 0.295508i \(-0.904511\pi\)
0.796657 0.604432i \(-0.206600\pi\)
\(480\) 0.694593 3.93923i 0.0317037 0.179800i
\(481\) −1.87939 0.684040i −0.0856926 0.0311896i
\(482\) 4.00000 + 6.92820i 0.182195 + 0.315571i
\(483\) 1.50000 2.59808i 0.0682524 0.118217i
\(484\) −5.36231 + 4.49951i −0.243741 + 0.204523i
\(485\) −6.12836 + 5.14230i −0.278274 + 0.233500i
\(486\) 8.00000 13.8564i 0.362887 0.628539i
\(487\) −1.00000 1.73205i −0.0453143 0.0784867i 0.842479 0.538730i \(-0.181096\pi\)
−0.887793 + 0.460243i \(0.847762\pi\)
\(488\) 1.87939 + 0.684040i 0.0850758 + 0.0309650i
\(489\) −2.77837 + 15.7569i −0.125642 + 0.712553i
\(490\) 1.38919 + 7.87846i 0.0627570 + 0.355913i
\(491\) 26.3114 9.57656i 1.18742 0.432184i 0.328601 0.944469i \(-0.393423\pi\)
0.858816 + 0.512285i \(0.171201\pi\)
\(492\) 6.12836 + 5.14230i 0.276288 + 0.231833i
\(493\) 15.0000 0.675566
\(494\) 0 0
\(495\) 16.0000 0.719147
\(496\) 6.12836 + 5.14230i 0.275171 + 0.230896i
\(497\) 5.63816 2.05212i 0.252906 0.0920502i
\(498\) 1.04189 + 5.90885i 0.0466882 + 0.264782i
\(499\) 6.94593 39.3923i 0.310942 1.76344i −0.283179 0.959067i \(-0.591389\pi\)
0.594122 0.804375i \(-0.297500\pi\)
\(500\) 22.5526 + 8.20848i 1.00858 + 0.367095i
\(501\) −6.00000 10.3923i −0.268060 0.464294i
\(502\) 1.00000 1.73205i 0.0446322 0.0773052i
\(503\) 29.8757 25.0687i 1.33209 1.11776i 0.348510 0.937305i \(-0.386688\pi\)
0.983583 0.180454i \(-0.0577566\pi\)
\(504\) 4.59627 3.85673i 0.204734 0.171792i
\(505\) 4.00000 6.92820i 0.177998 0.308301i
\(506\) −1.00000 1.73205i −0.0444554 0.0769991i
\(507\) 11.2763 + 4.10424i 0.500799 + 0.182276i
\(508\) −3.12567 + 17.7265i −0.138679 + 0.786488i
\(509\) 5.20945 + 29.5442i 0.230905 + 1.30953i 0.851069 + 0.525053i \(0.175955\pi\)
−0.620165 + 0.784472i \(0.712934\pi\)
\(510\) −11.2763 + 4.10424i −0.499323 + 0.181739i
\(511\) 20.6832 + 17.3553i 0.914971 + 0.767752i
\(512\) −1.00000 −0.0441942
\(513\) 0 0
\(514\) 8.00000 0.352865
\(515\) −18.3851 15.4269i −0.810143 0.679791i
\(516\) −3.75877 + 1.36808i −0.165471 + 0.0602264i
\(517\) 2.77837 + 15.7569i 0.122193 + 0.692989i
\(518\) −1.04189 + 5.90885i −0.0457780 + 0.259620i
\(519\) −5.63816 2.05212i −0.247488 0.0900781i
\(520\) −2.00000 3.46410i −0.0877058 0.151911i
\(521\) −14.0000 + 24.2487i −0.613351 + 1.06236i 0.377320 + 0.926083i \(0.376846\pi\)
−0.990671 + 0.136272i \(0.956488\pi\)
\(522\) 7.66044 6.42788i 0.335289 0.281340i
\(523\) −22.2153 + 18.6408i −0.971407 + 0.815107i −0.982771 0.184828i \(-0.940827\pi\)
0.0113641 + 0.999935i \(0.496383\pi\)
\(524\) −6.00000 + 10.3923i −0.262111 + 0.453990i
\(525\) −16.5000 28.5788i −0.720119 1.24728i
\(526\) 22.5526 + 8.20848i 0.983341 + 0.357907i
\(527\) 4.16756 23.6354i 0.181542 1.02957i
\(528\) 0.347296 + 1.96962i 0.0151141 + 0.0857165i
\(529\) 20.6732 7.52444i 0.898836 0.327150i
\(530\) 3.06418 + 2.57115i 0.133099 + 0.111684i
\(531\) 30.0000 1.30189
\(532\) 0 0
\(533\) 8.00000 0.346518
\(534\) 0 0
\(535\) 26.3114 9.57656i 1.13754 0.414031i
\(536\) 0.520945 + 2.95442i 0.0225014 + 0.127612i
\(537\) 0 0
\(538\) −28.1908 10.2606i −1.21539 0.442366i
\(539\) −2.00000 3.46410i −0.0861461 0.149209i
\(540\) −10.0000 + 17.3205i −0.430331 + 0.745356i
\(541\) 1.53209 1.28558i 0.0658696 0.0552712i −0.609258 0.792972i \(-0.708533\pi\)
0.675128 + 0.737701i \(0.264088\pi\)
\(542\) −5.36231 + 4.49951i −0.230331 + 0.193271i
\(543\) 11.0000 19.0526i 0.472055 0.817624i
\(544\) 1.50000 + 2.59808i 0.0643120 + 0.111392i
\(545\) 56.3816 + 20.5212i 2.41512 + 0.879032i
\(546\) −0.520945 + 2.95442i −0.0222944 + 0.126438i
\(547\) −4.86215 27.5746i −0.207890 1.17901i −0.892826 0.450402i \(-0.851281\pi\)
0.684936 0.728604i \(-0.259830\pi\)
\(548\) 15.9748 5.81434i 0.682409 0.248376i
\(549\) −3.06418 2.57115i −0.130776 0.109734i
\(550\) −22.0000 −0.938083
\(551\) 0 0
\(552\) 1.00000 0.0425628
\(553\) 22.9813 + 19.2836i 0.977266 + 0.820023i
\(554\) 26.3114 9.57656i 1.11786 0.406869i
\(555\) −1.38919 7.87846i −0.0589676 0.334422i
\(556\) 0 0
\(557\) −26.3114 9.57656i −1.11485 0.405772i −0.282079 0.959391i \(-0.591024\pi\)
−0.832770 + 0.553619i \(0.813246\pi\)
\(558\) −8.00000 13.8564i −0.338667 0.586588i
\(559\) −2.00000 + 3.46410i −0.0845910 + 0.146516i
\(560\) −9.19253 + 7.71345i −0.388455 + 0.325953i
\(561\) 4.59627 3.85673i 0.194055 0.162831i
\(562\) 4.00000 6.92820i 0.168730 0.292249i
\(563\) −18.0000 31.1769i −0.758610 1.31395i −0.943560 0.331202i \(-0.892546\pi\)
0.184950 0.982748i \(-0.440788\pi\)
\(564\) −7.51754 2.73616i −0.316546 0.115213i
\(565\) 9.72430 55.1492i 0.409104 2.32015i
\(566\) 1.04189 + 5.90885i 0.0437939 + 0.248367i
\(567\) −2.81908 + 1.02606i −0.118390 + 0.0430905i
\(568\) 1.53209 + 1.28558i 0.0642850 + 0.0539415i
\(569\) −40.0000 −1.67689 −0.838444 0.544988i \(-0.816534\pi\)
−0.838444 + 0.544988i \(0.816534\pi\)
\(570\) 0 0
\(571\) −28.0000 −1.17176 −0.585882 0.810397i \(-0.699252\pi\)
−0.585882 + 0.810397i \(0.699252\pi\)
\(572\) 1.53209 + 1.28558i 0.0640599 + 0.0537526i
\(573\) −6.57785 + 2.39414i −0.274794 + 0.100017i
\(574\) −4.16756 23.6354i −0.173950 0.986522i
\(575\) −1.91013 + 10.8329i −0.0796579 + 0.451763i
\(576\) 1.87939 + 0.684040i 0.0783077 + 0.0285017i
\(577\) 18.5000 + 32.0429i 0.770165 + 1.33397i 0.937472 + 0.348060i \(0.113160\pi\)
−0.167307 + 0.985905i \(0.553507\pi\)
\(578\) −4.00000 + 6.92820i −0.166378 + 0.288175i
\(579\) 4.59627 3.85673i 0.191014 0.160280i
\(580\) −15.3209 + 12.8558i −0.636165 + 0.533806i
\(581\) 9.00000 15.5885i 0.373383 0.646718i
\(582\) 1.00000 + 1.73205i 0.0414513 + 0.0717958i
\(583\) −1.87939 0.684040i −0.0778362 0.0283301i
\(584\) −1.56283 + 8.86327i −0.0646705 + 0.366765i
\(585\) 1.38919 + 7.87846i 0.0574357 + 0.325734i
\(586\) −8.45723 + 3.07818i −0.349365 + 0.127158i
\(587\) −9.19253 7.71345i −0.379416 0.318368i 0.433057 0.901367i \(-0.357435\pi\)
−0.812473 + 0.582998i \(0.801879\pi\)
\(588\) 2.00000 0.0824786
\(589\) 0 0
\(590\) −60.0000 −2.47016
\(591\) 6.12836 + 5.14230i 0.252087 + 0.211526i
\(592\) −1.87939 + 0.684040i −0.0772423 + 0.0281139i
\(593\) 5.90404 + 33.4835i 0.242450 + 1.37500i 0.826341 + 0.563169i \(0.190418\pi\)
−0.583892 + 0.811832i \(0.698471\pi\)
\(594\) 1.73648 9.84808i 0.0712487 0.404072i
\(595\) 33.8289 + 12.3127i 1.38685 + 0.504773i
\(596\) 0 0
\(597\) 12.5000 21.6506i 0.511591 0.886102i
\(598\) 0.766044 0.642788i 0.0313259 0.0262855i
\(599\) 0 0 −0.642788 0.766044i \(-0.722222\pi\)
0.642788 + 0.766044i \(0.277778\pi\)
\(600\) 5.50000 9.52628i 0.224537 0.388909i
\(601\) −4.00000 6.92820i −0.163163 0.282607i 0.772838 0.634603i \(-0.218836\pi\)
−0.936002 + 0.351996i \(0.885503\pi\)
\(602\) 11.2763 + 4.10424i 0.459588 + 0.167276i
\(603\) 1.04189 5.90885i 0.0424290 0.240627i
\(604\) −0.347296 1.96962i −0.0141313 0.0801425i
\(605\) −26.3114 + 9.57656i −1.06971 + 0.389343i
\(606\) −1.53209 1.28558i −0.0622369 0.0522229i
\(607\) 22.0000 0.892952 0.446476 0.894795i \(-0.352679\pi\)
0.446476 + 0.894795i \(0.352679\pi\)
\(608\) 0 0
\(609\) 15.0000 0.607831
\(610\) 6.12836 + 5.14230i 0.248130 + 0.208206i
\(611\) −7.51754 + 2.73616i −0.304127 + 0.110693i
\(612\) −1.04189 5.90885i −0.0421159 0.238851i
\(613\) 5.90404 33.4835i 0.238462 1.35238i −0.596737 0.802437i \(-0.703537\pi\)
0.835199 0.549948i \(-0.185352\pi\)
\(614\) 11.2763 + 4.10424i 0.455075 + 0.165634i
\(615\) 16.0000 + 27.7128i 0.645182 + 1.11749i
\(616\) 3.00000 5.19615i 0.120873 0.209359i
\(617\) 13.7888 11.5702i 0.555116 0.465798i −0.321553 0.946892i \(-0.604205\pi\)
0.876669 + 0.481094i \(0.159760\pi\)
\(618\) −4.59627 + 3.85673i −0.184889 + 0.155140i
\(619\) −5.00000 + 8.66025i −0.200967 + 0.348085i −0.948840 0.315757i \(-0.897742\pi\)
0.747873 + 0.663842i \(0.231075\pi\)
\(620\) 16.0000 + 27.7128i 0.642575 + 1.11297i
\(621\) −4.69846 1.71010i −0.188543 0.0686240i
\(622\) −1.21554 + 6.89365i −0.0487386 + 0.276410i
\(623\) 0 0
\(624\) −0.939693 + 0.342020i −0.0376178 + 0.0136918i
\(625\) 31.4078 + 26.3543i 1.25631 + 1.05417i
\(626\) −29.0000 −1.15907
\(627\) 0 0
\(628\) −2.00000 −0.0798087
\(629\) 4.59627 + 3.85673i 0.183265 + 0.153778i
\(630\) 22.5526 8.20848i 0.898518 0.327034i
\(631\) 5.55674 + 31.5138i 0.221210 + 1.25455i 0.869799 + 0.493407i \(0.164249\pi\)
−0.648588 + 0.761140i \(0.724640\pi\)
\(632\) −1.73648 + 9.84808i −0.0690735 + 0.391735i
\(633\) 25.3717 + 9.23454i 1.00843 + 0.367040i
\(634\) 13.5000 + 23.3827i 0.536153 + 0.928645i
\(635\) −36.0000 + 62.3538i −1.42862 + 2.47444i
\(636\) 0.766044 0.642788i 0.0303756 0.0254882i
\(637\) 1.53209 1.28558i 0.0607036 0.0509363i
\(638\) 5.00000 8.66025i 0.197952 0.342863i
\(639\) −2.00000 3.46410i −0.0791188 0.137038i
\(640\) −3.75877 1.36808i −0.148578 0.0540781i
\(641\) −7.29322 + 41.3619i −0.288065 + 1.63370i 0.406062 + 0.913845i \(0.366902\pi\)
−0.694127 + 0.719852i \(0.744209\pi\)
\(642\) −1.21554 6.89365i −0.0479734 0.272071i
\(643\) 24.4320 8.89252i 0.963504 0.350687i 0.188099 0.982150i \(-0.439768\pi\)
0.775406 + 0.631463i \(0.217545\pi\)
\(644\) −2.29813 1.92836i −0.0905591 0.0759881i
\(645\) −16.0000 −0.629999
\(646\) 0 0
\(647\) 23.0000 0.904223 0.452112 0.891961i \(-0.350671\pi\)
0.452112 + 0.891961i \(0.350671\pi\)
\(648\) −0.766044 0.642788i −0.0300931 0.0252511i
\(649\) 28.1908 10.2606i 1.10658 0.402764i
\(650\) −1.91013 10.8329i −0.0749215 0.424901i
\(651\) 4.16756 23.6354i 0.163339 0.926344i
\(652\) 15.0351 + 5.47232i 0.588819 + 0.214313i
\(653\) 18.0000 + 31.1769i 0.704394 + 1.22005i 0.966910 + 0.255119i \(0.0821147\pi\)
−0.262515 + 0.964928i \(0.584552\pi\)
\(654\) 7.50000 12.9904i 0.293273 0.507964i
\(655\) −36.7701 + 30.8538i −1.43673 + 1.20556i
\(656\) 6.12836 5.14230i 0.239272 0.200773i
\(657\) 9.00000 15.5885i 0.351123 0.608164i
\(658\) 12.0000 + 20.7846i 0.467809 + 0.810268i
\(659\) 4.69846 + 1.71010i 0.183026 + 0.0666161i 0.431907 0.901918i \(-0.357841\pi\)
−0.248881 + 0.968534i \(0.580063\pi\)
\(660\) −1.38919 + 7.87846i −0.0540740 + 0.306669i
\(661\) 3.99391 + 22.6506i 0.155345 + 0.881005i 0.958470 + 0.285194i \(0.0920582\pi\)
−0.803125 + 0.595811i \(0.796831\pi\)
\(662\) −15.9748 + 5.81434i −0.620877 + 0.225981i
\(663\) 2.29813 + 1.92836i 0.0892521 + 0.0748914i
\(664\) 6.00000 0.232845
\(665\) 0 0
\(666\) 4.00000 0.154997
\(667\) −3.83022 3.21394i −0.148307 0.124444i
\(668\) −11.2763 + 4.10424i −0.436294 + 0.158798i
\(669\) −2.43107 13.7873i −0.0939908 0.533048i
\(670\) −2.08378 + 11.8177i −0.0805034 + 0.456557i
\(671\) −3.75877 1.36808i −0.145106 0.0528142i
\(672\) 1.50000 + 2.59808i 0.0578638 + 0.100223i
\(673\) 22.0000 38.1051i 0.848038 1.46884i −0.0349191 0.999390i \(-0.511117\pi\)
0.882957 0.469454i \(-0.155549\pi\)
\(674\) −24.5134 + 20.5692i −0.944222 + 0.792296i
\(675\) −42.1324 + 35.3533i −1.62168 + 1.36075i
\(676\) 6.00000 10.3923i 0.230769 0.399704i
\(677\) 6.50000 + 11.2583i 0.249815 + 0.432693i 0.963474 0.267800i \(-0.0862968\pi\)
−0.713659 + 0.700493i \(0.752963\pi\)
\(678\) −13.1557 4.78828i −0.505241 0.183893i
\(679\) 1.04189 5.90885i 0.0399840 0.226761i
\(680\) 2.08378 + 11.8177i 0.0799092 + 0.453188i
\(681\) −15.9748 + 5.81434i −0.612155 + 0.222806i
\(682\) −12.2567 10.2846i −0.469334 0.393818i
\(683\) −4.00000 −0.153056 −0.0765279 0.997067i \(-0.524383\pi\)
−0.0765279 + 0.997067i \(0.524383\pi\)
\(684\) 0 0
\(685\) 68.0000 2.59815
\(686\) 11.4907 + 9.64181i 0.438716 + 0.368126i
\(687\) 9.39693 3.42020i 0.358515 0.130489i
\(688\) 0.694593 + 3.93923i 0.0264811 + 0.150182i
\(689\) 0.173648 0.984808i 0.00661547 0.0375182i
\(690\) 3.75877 + 1.36808i 0.143094 + 0.0520819i
\(691\) −21.0000 36.3731i −0.798878 1.38370i −0.920348 0.391102i \(-0.872094\pi\)
0.121470 0.992595i \(-0.461239\pi\)
\(692\) −3.00000 + 5.19615i −0.114043 + 0.197528i
\(693\) −9.19253 + 7.71345i −0.349195 + 0.293010i
\(694\) 1.53209 1.28558i 0.0581573 0.0487998i
\(695\) 0 0
\(696\) 2.50000 + 4.33013i 0.0947623 + 0.164133i
\(697\) −22.5526 8.20848i −0.854242 0.310918i
\(698\) −1.73648 + 9.84808i −0.0657268 + 0.372755i
\(699\) −1.04189 5.90885i −0.0394079 0.223493i
\(700\) −31.0099 + 11.2867i −1.17206 + 0.426596i
\(701\) −21.4492 17.9981i −0.810127 0.679777i 0.140511 0.990079i \(-0.455125\pi\)
−0.950638 + 0.310302i \(0.899570\pi\)
\(702\) 5.00000 0.188713
\(703\) 0 0
\(704\) 2.00000 0.0753778
\(705\) −24.5134 20.5692i −0.923229 0.774681i
\(706\) 8.45723 3.07818i 0.318292 0.115849i
\(707\) 1.04189 + 5.90885i 0.0391843 + 0.222225i
\(708\) −2.60472 + 14.7721i −0.0978915 + 0.555170i
\(709\) 28.1908 + 10.2606i 1.05873 + 0.385345i 0.811950 0.583727i \(-0.198406\pi\)
0.246777 + 0.969072i \(0.420628\pi\)
\(710\) 4.00000 + 6.92820i 0.150117 + 0.260011i
\(711\) 10.0000 17.3205i 0.375029 0.649570i
\(712\) 0 0
\(713\) −6.12836 + 5.14230i −0.229509 + 0.192581i
\(714\) 4.50000 7.79423i 0.168408 0.291692i
\(715\) 4.00000 + 6.92820i 0.149592 + 0.259100i
\(716\) 0 0
\(717\) 2.60472 14.7721i 0.0972752 0.551675i
\(718\) 2.60472 + 14.7721i 0.0972074 + 0.551290i
\(719\) 4.69846 1.71010i 0.175223 0.0637760i −0.252919 0.967488i \(-0.581391\pi\)
0.428142 + 0.903712i \(0.359168\pi\)
\(720\) 6.12836 + 5.14230i 0.228390 + 0.191642i
\(721\) 18.0000 0.670355
\(722\) 0 0
\(723\) 8.00000 0.297523
\(724\) −16.8530 14.1413i −0.626336 0.525558i
\(725\) −51.6831 + 18.8111i −1.91946 + 0.698627i
\(726\) 1.21554 + 6.89365i 0.0451128 + 0.255848i
\(727\) −2.95202 + 16.7417i −0.109484 + 0.620916i 0.879850 + 0.475252i \(0.157643\pi\)
−0.989334 + 0.145664i \(0.953468\pi\)
\(728\) 2.81908 + 1.02606i 0.104482 + 0.0380283i
\(729\) −6.50000 11.2583i −0.240741 0.416975i
\(730\) −18.0000 + 31.1769i −0.666210 + 1.15391i
\(731\) 9.19253 7.71345i 0.339998 0.285292i
\(732\) 1.53209 1.28558i 0.0566276 0.0475162i
\(733\) 18.0000 31.1769i 0.664845 1.15155i −0.314482 0.949263i \(-0.601831\pi\)
0.979327 0.202282i \(-0.0648358\pi\)
\(734\) 14.0000 + 24.2487i 0.516749 + 0.895036i
\(735\) 7.51754 + 2.73616i 0.277289 + 0.100925i
\(736\) 0.173648 0.984808i 0.00640076 0.0363005i
\(737\) −1.04189 5.90885i −0.0383785 0.217655i
\(738\) −15.0351 + 5.47232i −0.553449 + 0.201439i
\(739\) −30.6418 25.7115i −1.12718 0.945813i −0.128231 0.991744i \(-0.540930\pi\)
−0.998945 + 0.0459313i \(0.985374\pi\)
\(740\) −8.00000 −0.294086
\(741\) 0 0
\(742\) −3.00000 −0.110133
\(743\) 12.2567 + 10.2846i 0.449655 + 0.377305i 0.839308 0.543656i \(-0.182961\pi\)
−0.389653 + 0.920962i \(0.627405\pi\)
\(744\) 7.51754 2.73616i 0.275606 0.100313i
\(745\) 0 0
\(746\) 5.03580 28.5594i 0.184374 1.04563i
\(747\) −11.2763 4.10424i −0.412579 0.150166i
\(748\) −3.00000 5.19615i −0.109691 0.189990i
\(749\) −10.5000 + 18.1865i −0.383662 + 0.664521i
\(750\) 18.3851 15.4269i 0.671328 0.563311i
\(751\) −24.5134 + 20.5692i −0.894507 + 0.750581i −0.969109 0.246633i \(-0.920676\pi\)
0.0746016 + 0.997213i \(0.476231\pi\)
\(752\) −4.00000 + 6.92820i −0.145865 + 0.252646i
\(753\) −1.00000 1.73205i −0.0364420 0.0631194i
\(754\) 4.69846 + 1.71010i 0.171108 + 0.0622782i
\(755\) 1.38919 7.87846i 0.0505576 0.286727i
\(756\) −2.60472 14.7721i −0.0947328 0.537257i
\(757\) 1.87939 0.684040i 0.0683074 0.0248619i −0.307640 0.951503i \(-0.599539\pi\)
0.375948 + 0.926641i \(0.377317\pi\)
\(758\) 11.4907 + 9.64181i 0.417360 + 0.350206i
\(759\) −2.00000 −0.0725954
\(760\) 0 0
\(761\) 27.0000 0.978749 0.489375 0.872074i \(-0.337225\pi\)
0.489375 + 0.872074i \(0.337225\pi\)
\(762\) 13.7888 + 11.5702i 0.499516 + 0.419143i
\(763\) −42.2862 + 15.3909i −1.53086 + 0.557188i
\(764\) 1.21554 + 6.89365i 0.0439766 + 0.249404i
\(765\) 4.16756 23.6354i 0.150678 0.854539i
\(766\) 24.4320 + 8.89252i 0.882764 + 0.321300i
\(767\) 7.50000 + 12.9904i 0.270809 + 0.469055i
\(768\) −0.500000 + 0.866025i −0.0180422 + 0.0312500i
\(769\) −26.8116 + 22.4976i −0.966849 + 0.811283i −0.982054 0.188601i \(-0.939605\pi\)
0.0152043 + 0.999884i \(0.495160\pi\)
\(770\) 18.3851 15.4269i 0.662552 0.555947i
\(771\) 4.00000 6.92820i 0.144056 0.249513i
\(772\) −3.00000 5.19615i −0.107972 0.187014i
\(773\) 8.45723 + 3.07818i 0.304186 + 0.110714i 0.489603 0.871945i \(-0.337142\pi\)
−0.185418 + 0.982660i \(0.559364\pi\)
\(774\) 1.38919 7.87846i 0.0499332 0.283185i
\(775\) 15.2810 + 86.6631i 0.548911 + 3.11303i
\(776\) 1.87939 0.684040i 0.0674660 0.0245556i
\(777\) 4.59627 + 3.85673i 0.164890 + 0.138359i
\(778\) 30.0000 1.07555
\(779\) 0 0
\(780\) −4.00000 −0.143223
\(781\) −3.06418 2.57115i −0.109645 0.0920030i
\(782\) −2.81908 + 1.02606i −0.100810 + 0.0366918i
\(783\) −4.34120 24.6202i −0.155142 0.879854i
\(784\) 0.347296 1.96962i 0.0124034 0.0703434i
\(785\) −7.51754 2.73616i −0.268313 0.0976578i
\(786\) 6.00000 + 10.3923i 0.214013 + 0.370681i
\(787\) −8.50000 + 14.7224i −0.302992 + 0.524798i −0.976812 0.214097i \(-0.931319\pi\)
0.673820 + 0.738896i \(0.264652\pi\)
\(788\) 6.12836 5.14230i 0.218314 0.183187i
\(789\) 18.3851 15.4269i 0.654526 0.549212i
\(790\) −20.0000 + 34.6410i −0.711568 + 1.23247i
\(791\) 21.0000 + 36.3731i 0.746674 + 1.29328i
\(792\) −3.75877 1.36808i −0.133562 0.0486126i
\(793\) 0.347296 1.96962i 0.0123329 0.0699431i
\(794\) −1.38919 7.87846i −0.0493003 0.279596i
\(795\) 3.75877 1.36808i 0.133310 0.0485208i
\(796\) −19.1511 16.0697i −0.678793 0.569575i
\(797\) −3.00000 −0.106265 −0.0531327 0.998587i \(-0.516921\pi\)
−0.0531327 + 0.998587i \(0.516921\pi\)
\(798\) 0 0
\(799\) 24.0000 0.849059
\(800\) −8.42649 7.07066i −0.297921 0.249986i
\(801\) 0 0
\(802\) −1.38919 7.87846i −0.0490538 0.278198i
\(803\) 3.12567 17.7265i 0.110302 0.625556i
\(804\) 2.81908 + 1.02606i 0.0994212 + 0.0361864i
\(805\) −6.00000 10.3923i −0.211472 0.366281i
\(806\) 4.00000 6.92820i 0.140894 0.244036i
\(807\) −22.9813 + 19.2836i −0.808981 + 0.678816i
\(808\) −1.53209 + 1.28558i −0.0538987 + 0.0452264i
\(809\) 7.50000 12.9904i 0.263686 0.456717i −0.703533 0.710663i \(-0.748395\pi\)
0.967219 + 0.253946i \(0.0817284\pi\)
\(810\) −2.00000 3.46410i −0.0702728 0.121716i
\(811\) −2.81908 1.02606i −0.0989912 0.0360299i 0.292050 0.956403i \(-0.405663\pi\)
−0.391041 + 0.920373i \(0.627885\pi\)
\(812\) 2.60472 14.7721i 0.0914078 0.518400i
\(813\) 1.21554 + 6.89365i 0.0426308 + 0.241771i
\(814\) 3.75877 1.36808i 0.131745 0.0479512i
\(815\) 49.0268 + 41.1384i 1.71734 + 1.44102i
\(816\) 3.00000 0.105021
\(817\) 0 0
\(818\) −20.0000 −0.699284
\(819\) −4.59627 3.85673i −0.160607 0.134765i
\(820\) 30.0702 10.9446i 1.05010 0.382204i
\(821\) 2.08378 + 11.8177i 0.0727244 + 0.412440i 0.999337 + 0.0364218i \(0.0115960\pi\)
−0.926612 + 0.376019i \(0.877293\pi\)
\(822\) 2.95202 16.7417i 0.102963 0.583935i
\(823\) −27.2511 9.91858i −0.949913 0.345740i −0.179840 0.983696i \(-0.557558\pi\)
−0.770073 + 0.637956i \(0.779780\pi\)
\(824\) 3.00000 + 5.19615i 0.104510 + 0.181017i
\(825\) −11.0000 + 19.0526i −0.382971 + 0.663325i
\(826\) 34.4720 28.9254i 1.19943 1.00644i
\(827\) −17.6190 + 14.7841i −0.612673 + 0.514094i −0.895491 0.445080i \(-0.853175\pi\)
0.282818 + 0.959174i \(0.408731\pi\)
\(828\) −1.00000 + 1.73205i −0.0347524 + 0.0601929i
\(829\) −7.50000 12.9904i −0.260486 0.451175i 0.705885 0.708326i \(-0.250549\pi\)
−0.966371 + 0.257152i \(0.917216\pi\)
\(830\) 22.5526 + 8.20848i 0.782813 + 0.284921i
\(831\) 4.86215 27.5746i 0.168666 0.956553i
\(832\) 0.173648 + 0.984808i 0.00602017 + 0.0341421i
\(833\) −5.63816 + 2.05212i −0.195351 + 0.0711018i
\(834\) 0 0
\(835\) −48.0000 −1.66111
\(836\) 0 0
\(837\) −40.0000 −1.38260
\(838\) 0 0
\(839\) 18.7939 6.84040i 0.648836 0.236157i 0.00342687 0.999994i \(-0.498909\pi\)
0.645409 + 0.763837i \(0.276687\pi\)
\(840\) 2.08378 + 11.8177i 0.0718972 + 0.407749i
\(841\) −0.694593 + 3.93923i −0.0239515 + 0.135836i
\(842\) 12.2160 + 4.44626i 0.420991 + 0.153228i
\(843\) −4.00000 6.92820i −0.137767 0.238620i
\(844\) 13.5000 23.3827i 0.464689 0.804865i
\(845\) 36.7701 30.8538i 1.26493 1.06140i
\(846\) 12.2567 10.2846i 0.421394 0.353592i
\(847\) 10.5000 18.1865i 0.360784 0.624897i
\(848\) −0.500000 0.866025i −0.0171701 0.0297394i
\(849\) 5.63816 + 2.05212i 0.193501 + 0.0704286i
\(850\) −5.73039 + 32.4987i −0.196551 + 1.11469i
\(851\) −0.347296 1.96962i −0.0119052 0.0675175i
\(852\) 1.87939 0.684040i 0.0643867 0.0234348i
\(853\) −4.59627 3.85673i −0.157373 0.132052i 0.560701 0.828018i \(-0.310532\pi\)
−0.718074 + 0.695967i \(0.754976\pi\)
\(854\) −6.00000 −0.205316
\(855\) 0 0
\(856\) −7.00000 −0.239255
\(857\) 9.19253 + 7.71345i 0.314011 + 0.263486i 0.786147 0.618039i \(-0.212073\pi\)
−0.472137 + 0.881525i \(0.656517\pi\)
\(858\) 1.87939 0.684040i 0.0641612 0.0233528i
\(859\) −8.68241 49.2404i −0.296240 1.68006i −0.662120 0.749398i \(-0.730343\pi\)
0.365880 0.930662i \(-0.380768\pi\)
\(860\) −2.77837 + 15.7569i −0.0947417 + 0.537307i
\(861\) −22.5526 8.20848i −0.768591 0.279744i
\(862\) 9.00000 + 15.5885i 0.306541 + 0.530945i
\(863\) 27.0000 46.7654i 0.919091 1.59191i 0.118291 0.992979i \(-0.462258\pi\)
0.800799 0.598933i \(-0.204408\pi\)
\(864\) 3.83022 3.21394i 0.130307 0.109340i
\(865\) −18.3851 + 15.4269i −0.625111 + 0.524530i
\(866\) −7.00000 + 12.1244i −0.237870 + 0.412002i
\(867\) 4.00000 + 6.92820i 0.135847 + 0.235294i
\(868\) −22.5526 8.20848i −0.765486 0.278614i
\(869\) 3.47296 19.6962i 0.117812 0.668146i
\(870\) 3.47296 + 19.6962i 0.117744 + 0.667762i
\(871\) 2.81908 1.02606i 0.0955208 0.0347667i
\(872\) −11.4907 9.64181i −0.389123 0.326513i
\(873\) −4.00000 −0.135379
\(874\) 0 0
\(875\) −72.0000 −2.43404
\(876\) 6.89440 + 5.78509i 0.232940 + 0.195460i
\(877\) 12.2160 4.44626i 0.412505 0.150140i −0.127427 0.991848i \(-0.540672\pi\)
0.539933 + 0.841708i \(0.318450\pi\)
\(878\) 3.47296 + 19.6962i 0.117207 + 0.664713i
\(879\) −1.56283 + 8.86327i −0.0527131 + 0.298951i
\(880\) 7.51754 + 2.73616i 0.253416 + 0.0922360i
\(881\) 9.00000 + 15.5885i 0.303218 + 0.525188i 0.976863 0.213866i \(-0.0686057\pi\)
−0.673645 + 0.739055i \(0.735272\pi\)
\(882\) −2.00000 + 3.46410i −0.0673435 + 0.116642i
\(883\) 26.0455 21.8548i 0.876501 0.735472i −0.0889554 0.996036i \(-0.528353\pi\)
0.965457 + 0.260564i \(0.0839084\pi\)
\(884\) 2.29813 1.92836i 0.0772946 0.0648579i
\(885\) −30.0000 + 51.9615i −1.00844 + 1.74667i
\(886\) −13.0000 22.5167i −0.436744 0.756462i
\(887\) −1.87939 0.684040i −0.0631036 0.0229678i 0.310276 0.950647i \(-0.399579\pi\)
−0.373379 + 0.927679i \(0.621801\pi\)
\(888\) −0.347296 + 1.96962i −0.0116545 + 0.0660960i
\(889\) −9.37700 53.1796i −0.314495 1.78359i
\(890\) 0 0
\(891\) 1.53209 + 1.28558i 0.0513269 + 0.0430684i
\(892\) −14.0000 −0.468755
\(893\) 0 0
\(894\) 0 0
\(895\) 0 0
\(896\) 2.81908 1.02606i 0.0941788 0.0342783i
\(897\) −0.173648 0.984808i −0.00579794 0.0328818i
\(898\) 1.73648 9.84808i 0.0579471 0.328635i
\(899\) −37.5877 13.6808i −1.25362 0.456280i
\(900\) 11.0000 + 19.0526i 0.366667 + 0.635085i
\(901\) −1.50000 + 2.59808i −0.0499722 + 0.0865545i
\(902\) −12.2567 + 10.2846i −0.408104 + 0.342440i
\(903\) 9.19253 7.71345i 0.305908 0.256688i
\(904\) −7.00000 + 12.1244i −0.232817 + 0.403250i
\(905\) −44.0000 76.2102i −1.46261 2.53331i
\(906\) −1.87939 0.684040i −0.0624384 0.0227257i
\(907\) −9.20335 + 52.1948i −0.305592 + 1.73310i 0.315111 + 0.949055i \(0.397958\pi\)
−0.620703 + 0.784045i \(0.713153\pi\)
\(908\) 2.95202 + 16.7417i 0.0979662 + 0.555594i
\(909\) 3.75877 1.36808i 0.124671 0.0453764i
\(910\) 9.19253 + 7.71345i 0.304730 + 0.255698i
\(911\) −12.0000 −0.397578 −0.198789 0.980042i \(-0.563701\pi\)
−0.198789 + 0.980042i \(0.563701\pi\)
\(912\) 0 0
\(913\) −12.0000 −0.397142
\(914\) 5.36231 + 4.49951i 0.177369 + 0.148831i
\(915\) 7.51754 2.73616i 0.248522 0.0904547i
\(916\) −1.73648 9.84808i −0.0573750 0.325390i
\(917\) 6.25133 35.4531i 0.206437 1.17076i
\(918\) −14.0954 5.13030i −0.465217 0.169325i
\(919\) −2.50000 4.33013i −0.0824674 0.142838i 0.821842 0.569716i \(-0.192947\pi\)
−0.904309 + 0.426878i \(0.859613\pi\)
\(920\) 2.00000 3.46410i 0.0659380 0.114208i
\(921\) 9.19253 7.71345i 0.302904 0.254167i
\(922\) 21.4492 17.9981i 0.706393 0.592734i
\(923\) 1.00000 1.73205i 0.0329154 0.0570111i
\(924\) −3.00000 5.19615i −0.0986928 0.170941i
\(925\) −20.6732 7.52444i −0.679732 0.247402i
\(926\) −0.694593 + 3.93923i −0.0228257 + 0.129451i
\(927\) −2.08378 11.8177i −0.0684403 0.388144i
\(928\) 4.69846 1.71010i 0.154235 0.0561368i
\(929\) −42.1324 35.3533i −1.38232 1.15990i −0.968345 0.249617i \(-0.919695\pi\)
−0.413976 0.910288i \(-0.635860\pi\)
\(930\) 32.0000 1.04932
\(931\) 0 0
\(932\) −6.00000 −0.196537
\(933\) 5.36231 + 4.49951i 0.175554 + 0.147307i
\(934\) −1.87939 + 0.684040i −0.0614954 + 0.0223825i
\(935\) −4.16756 23.6354i −0.136294 0.772960i
\(936\) 0.347296 1.96962i 0.0113517 0.0643789i
\(937\) 6.57785 + 2.39414i 0.214889 + 0.0782132i 0.447222 0.894423i \(-0.352414\pi\)
−0.232333 + 0.972636i \(0.574636\pi\)
\(938\) −4.50000 7.79423i −0.146930 0.254491i
\(939\) −14.5000 + 25.1147i −0.473190 + 0.819588i
\(940\) −24.5134 + 20.5692i −0.799540 + 0.670893i
\(941\) −5.36231 + 4.49951i −0.174806 + 0.146680i −0.725993 0.687702i \(-0.758620\pi\)
0.551187 + 0.834382i \(0.314175\pi\)
\(942\) −1.00000 + 1.73205i −0.0325818 + 0.0564333i
\(943\) 4.00000 + 6.92820i 0.130258 + 0.225613i
\(944\) 14.0954 + 5.13030i 0.458766 + 0.166977i
\(945\) 10.4189 59.0885i 0.338927 1.92215i
\(946\) −1.38919 7.87846i −0.0451663 0.256151i
\(947\) 11.2763 4.10424i 0.366431 0.133370i −0.152241 0.988343i \(-0.548649\pi\)
0.518672 + 0.854973i \(0.326427\pi\)
\(948\) 7.66044 + 6.42788i 0.248800 + 0.208768i
\(949\) 9.00000 0.292152
\(950\) 0 0
\(951\) 27.0000 0.875535
\(952\) −6.89440 5.78509i −0.223449 0.187496i
\(953\) −43.2259 + 15.7329i −1.40022 + 0.509639i −0.928245 0.371971i \(-0.878682\pi\)
−0.471978 + 0.881610i \(0.656460\pi\)
\(954\) 0.347296 + 1.96962i 0.0112441 + 0.0637687i
\(955\) −4.86215 + 27.5746i −0.157335 + 0.892294i
\(956\) −14.0954 5.13030i −0.455877 0.165926i
\(957\) −5.00000 8.66025i −0.161627 0.279946i
\(958\) −10.0000 + 17.3205i −0.323085 + 0.559600i
\(959\) −39.0683 + 32.7822i −1.26158 + 1.05859i
\(960\) −3.06418 + 2.57115i −0.0988959 + 0.0829835i
\(961\) −16.5000 + 28.5788i −0.532258 + 0.921898i
\(962\) 1.00000 + 1.73205i 0.0322413 + 0.0558436i
\(963\) 13.1557 + 4.78828i 0.423936 + 0.154300i
\(964\) 1.38919 7.87846i 0.0447426 0.253748i
\(965\) −4.16756 23.6354i −0.134158 0.760850i
\(966\) −2.81908 + 1.02606i −0.0907023 + 0.0330130i
\(967\) 36.7701 + 30.8538i 1.18245 + 0.992191i 0.999960 + 0.00898343i \(0.00285955\pi\)
0.182488 + 0.983208i \(0.441585\pi\)
\(968\) 7.00000 0.224989
\(969\) 0 0
\(970\) 8.00000 0.256865
\(971\) 21.4492 + 17.9981i 0.688339 + 0.577585i 0.918430 0.395584i \(-0.129458\pi\)
−0.230091 + 0.973169i \(0.573902\pi\)
\(972\) −15.0351 + 5.47232i −0.482250 + 0.175525i
\(973\) 0 0
\(974\) −0.347296 + 1.96962i −0.0111281 + 0.0631106i
\(975\) −10.3366 3.76222i −0.331037 0.120488i
\(976\) −1.00000 1.73205i −0.0320092 0.0554416i
\(977\) 4.00000 6.92820i 0.127971 0.221653i −0.794919 0.606715i \(-0.792487\pi\)
0.922890 + 0.385063i \(0.125820\pi\)
\(978\) 12.2567 10.2846i 0.391926 0.328865i
\(979\) 0 0
\(980\) 4.00000 6.92820i 0.127775 0.221313i
\(981\) 15.0000 + 25.9808i 0.478913 + 0.829502i
\(982\) −26.3114 9.57656i −0.839630 0.305600i
\(983\) 1.04189 5.90885i 0.0332311 0.188463i −0.963674 0.267083i \(-0.913940\pi\)
0.996905 + 0.0786200i \(0.0250514\pi\)
\(984\) −1.38919 7.87846i −0.0442856 0.251156i
\(985\) 30.0702 10.9446i 0.958115 0.348725i
\(986\) −11.4907 9.64181i −0.365937 0.307058i
\(987\) 24.0000 0.763928
\(988\) 0 0
\(989\) −4.00000 −0.127193
\(990\) −12.2567 10.2846i −0.389544 0.326866i
\(991\) −7.51754 + 2.73616i −0.238803 + 0.0869170i −0.458649 0.888617i \(-0.651667\pi\)
0.219847 + 0.975534i \(0.429444\pi\)
\(992\) −1.38919 7.87846i −0.0441067 0.250141i
\(993\) −2.95202 + 16.7417i −0.0936795 + 0.531283i
\(994\) −5.63816 2.05212i −0.178831 0.0650893i
\(995\) −50.0000 86.6025i −1.58511 2.74549i
\(996\) 3.00000 5.19615i 0.0950586 0.164646i
\(997\) 21.4492 17.9981i 0.679304 0.570004i −0.236499 0.971632i \(-0.576000\pi\)
0.915803 + 0.401628i \(0.131555\pi\)
\(998\) −30.6418 + 25.7115i −0.969949 + 0.813883i
\(999\) 5.00000 8.66025i 0.158193 0.273998i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 722.2.e.d.415.1 6
19.2 odd 18 722.2.c.d.653.1 2
19.3 odd 18 722.2.c.d.429.1 2
19.4 even 9 inner 722.2.e.d.389.1 6
19.5 even 9 722.2.a.b.1.1 1
19.6 even 9 inner 722.2.e.d.595.1 6
19.7 even 3 inner 722.2.e.d.423.1 6
19.8 odd 6 722.2.e.c.245.1 6
19.9 even 9 inner 722.2.e.d.99.1 6
19.10 odd 18 722.2.e.c.99.1 6
19.11 even 3 inner 722.2.e.d.245.1 6
19.12 odd 6 722.2.e.c.423.1 6
19.13 odd 18 722.2.e.c.595.1 6
19.14 odd 18 38.2.a.b.1.1 1
19.15 odd 18 722.2.e.c.389.1 6
19.16 even 9 722.2.c.f.429.1 2
19.17 even 9 722.2.c.f.653.1 2
19.18 odd 2 722.2.e.c.415.1 6
57.5 odd 18 6498.2.a.y.1.1 1
57.14 even 18 342.2.a.d.1.1 1
76.43 odd 18 5776.2.a.d.1.1 1
76.71 even 18 304.2.a.d.1.1 1
95.14 odd 18 950.2.a.b.1.1 1
95.33 even 36 950.2.b.c.799.1 2
95.52 even 36 950.2.b.c.799.2 2
133.90 even 18 1862.2.a.f.1.1 1
152.109 odd 18 1216.2.a.n.1.1 1
152.147 even 18 1216.2.a.g.1.1 1
209.109 even 18 4598.2.a.a.1.1 1
228.71 odd 18 2736.2.a.w.1.1 1
247.90 odd 18 6422.2.a.b.1.1 1
285.14 even 18 8550.2.a.u.1.1 1
380.299 even 18 7600.2.a.h.1.1 1
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
38.2.a.b.1.1 1 19.14 odd 18
304.2.a.d.1.1 1 76.71 even 18
342.2.a.d.1.1 1 57.14 even 18
722.2.a.b.1.1 1 19.5 even 9
722.2.c.d.429.1 2 19.3 odd 18
722.2.c.d.653.1 2 19.2 odd 18
722.2.c.f.429.1 2 19.16 even 9
722.2.c.f.653.1 2 19.17 even 9
722.2.e.c.99.1 6 19.10 odd 18
722.2.e.c.245.1 6 19.8 odd 6
722.2.e.c.389.1 6 19.15 odd 18
722.2.e.c.415.1 6 19.18 odd 2
722.2.e.c.423.1 6 19.12 odd 6
722.2.e.c.595.1 6 19.13 odd 18
722.2.e.d.99.1 6 19.9 even 9 inner
722.2.e.d.245.1 6 19.11 even 3 inner
722.2.e.d.389.1 6 19.4 even 9 inner
722.2.e.d.415.1 6 1.1 even 1 trivial
722.2.e.d.423.1 6 19.7 even 3 inner
722.2.e.d.595.1 6 19.6 even 9 inner
950.2.a.b.1.1 1 95.14 odd 18
950.2.b.c.799.1 2 95.33 even 36
950.2.b.c.799.2 2 95.52 even 36
1216.2.a.g.1.1 1 152.147 even 18
1216.2.a.n.1.1 1 152.109 odd 18
1862.2.a.f.1.1 1 133.90 even 18
2736.2.a.w.1.1 1 228.71 odd 18
4598.2.a.a.1.1 1 209.109 even 18
5776.2.a.d.1.1 1 76.43 odd 18
6422.2.a.b.1.1 1 247.90 odd 18
6498.2.a.y.1.1 1 57.5 odd 18
7600.2.a.h.1.1 1 380.299 even 18
8550.2.a.u.1.1 1 285.14 even 18