Properties

Label 7225.2.a.ba
Level $7225$
Weight $2$
Character orbit 7225.a
Self dual yes
Analytic conductor $57.692$
Analytic rank $1$
Dimension $6$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [7225,2,Mod(1,7225)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(7225, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("7225.1");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 7225 = 5^{2} \cdot 17^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 7225.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(57.6919154604\)
Analytic rank: \(1\)
Dimension: \(6\)
Coefficient field: 6.6.93924352.2
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{6} - 17x^{4} + 73x^{2} - 67 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2, a_3]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 425)
Fricke sign: \(+1\)
Sato-Tate group: $\mathrm{SU}(2)$

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 

Coefficients of the \(q\)-expansion are expressed in terms of a basis \(1,\beta_1,\ldots,\beta_{5}\) for the coefficient ring described below. We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q + \beta_{2} q^{2} - \beta_1 q^{3} + ( - \beta_{3} - \beta_{2}) q^{4} + ( - \beta_{5} + \beta_{4}) q^{6} - \beta_{4} q^{7} + (\beta_{3} - 1) q^{8} + ( - 2 \beta_{3} + \beta_{2} + 3) q^{9} + ( - \beta_{5} - \beta_{4} + \beta_1) q^{11}+ \cdots + (\beta_{5} + 6 \beta_1) q^{99}+O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 6 q - 2 q^{2} + 2 q^{4} - 6 q^{8} + 16 q^{9} - 2 q^{13} - 6 q^{16} + 16 q^{18} - 12 q^{19} - 2 q^{21} - 22 q^{26} + 6 q^{32} - 28 q^{33} + 20 q^{36} - 32 q^{38} - 34 q^{42} - 8 q^{43} - 40 q^{47} - 4 q^{49}+ \cdots + 16 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Basis of coefficient ring in terms of a root \(\nu\) of \( x^{6} - 17x^{4} + 73x^{2} - 67 \) : Copy content Toggle raw display

\(\beta_{1}\)\(=\) \( \nu \) Copy content Toggle raw display
\(\beta_{2}\)\(=\) \( ( 2\nu^{4} - 21\nu^{2} + 18 ) / 17 \) Copy content Toggle raw display
\(\beta_{3}\)\(=\) \( ( \nu^{4} - 19\nu^{2} + 60 ) / 17 \) Copy content Toggle raw display
\(\beta_{4}\)\(=\) \( ( \nu^{5} - 19\nu^{3} + 77\nu ) / 17 \) Copy content Toggle raw display
\(\beta_{5}\)\(=\) \( ( 3\nu^{5} - 40\nu^{3} + 95\nu ) / 17 \) Copy content Toggle raw display
\(\nu\)\(=\) \( \beta_1 \) Copy content Toggle raw display
\(\nu^{2}\)\(=\) \( -2\beta_{3} + \beta_{2} + 6 \) Copy content Toggle raw display
\(\nu^{3}\)\(=\) \( \beta_{5} - 3\beta_{4} + 8\beta_1 \) Copy content Toggle raw display
\(\nu^{4}\)\(=\) \( -21\beta_{3} + 19\beta_{2} + 54 \) Copy content Toggle raw display
\(\nu^{5}\)\(=\) \( 19\beta_{5} - 40\beta_{4} + 75\beta_1 \) Copy content Toggle raw display

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field
 
gp: mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
1.1
2.21547
−2.21547
1.12261
−1.12261
3.29112
−3.29112
−2.17009 −2.21547 2.70928 0 4.80775 −1.02091 −1.53919 1.90829 0
1.2 −2.17009 2.21547 2.70928 0 −4.80775 1.02091 −1.53919 1.90829 0
1.3 −0.311108 −1.12261 −1.90321 0 0.349253 −3.60843 1.21432 −1.73975 0
1.4 −0.311108 1.12261 −1.90321 0 −0.349253 3.60843 1.21432 −1.73975 0
1.5 1.48119 −3.29112 0.193937 0 −4.87478 2.22194 −2.67513 7.83146 0
1.6 1.48119 3.29112 0.193937 0 4.87478 −2.22194 −2.67513 7.83146 0
\(n\): e.g. 2-40 or 990-1000
Embeddings: e.g. 1-3 or 1.6
Significant digits:
Format:

Atkin-Lehner signs

\( p \) Sign
\(5\) \( +1 \)
\(17\) \( +1 \)

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
17.b even 2 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 7225.2.a.ba 6
5.b even 2 1 7225.2.a.bg 6
17.b even 2 1 inner 7225.2.a.ba 6
17.c even 4 2 425.2.d.b yes 6
85.c even 2 1 7225.2.a.bg 6
85.f odd 4 2 425.2.c.c 12
85.i odd 4 2 425.2.c.c 12
85.j even 4 2 425.2.d.a 6
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
425.2.c.c 12 85.f odd 4 2
425.2.c.c 12 85.i odd 4 2
425.2.d.a 6 85.j even 4 2
425.2.d.b yes 6 17.c even 4 2
7225.2.a.ba 6 1.a even 1 1 trivial
7225.2.a.ba 6 17.b even 2 1 inner
7225.2.a.bg 6 5.b even 2 1
7225.2.a.bg 6 85.c even 2 1

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on \(S_{2}^{\mathrm{new}}(\Gamma_0(7225))\):

\( T_{2}^{3} + T_{2}^{2} - 3T_{2} - 1 \) Copy content Toggle raw display
\( T_{3}^{6} - 17T_{3}^{4} + 73T_{3}^{2} - 67 \) Copy content Toggle raw display
\( T_{7}^{6} - 19T_{7}^{4} + 83T_{7}^{2} - 67 \) Copy content Toggle raw display
\( T_{11}^{6} - 66T_{11}^{4} + 1292T_{11}^{2} - 6700 \) Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( (T^{3} + T^{2} - 3 T - 1)^{2} \) Copy content Toggle raw display
$3$ \( T^{6} - 17 T^{4} + \cdots - 67 \) Copy content Toggle raw display
$5$ \( T^{6} \) Copy content Toggle raw display
$7$ \( T^{6} - 19 T^{4} + \cdots - 67 \) Copy content Toggle raw display
$11$ \( T^{6} - 66 T^{4} + \cdots - 6700 \) Copy content Toggle raw display
$13$ \( (T^{3} + T^{2} - 13 T - 23)^{2} \) Copy content Toggle raw display
$17$ \( T^{6} \) Copy content Toggle raw display
$19$ \( (T^{3} + 6 T^{2} + \cdots - 100)^{2} \) Copy content Toggle raw display
$23$ \( T^{6} - 54 T^{4} + \cdots - 268 \) Copy content Toggle raw display
$29$ \( T^{6} - 116 T^{4} + \cdots - 1072 \) Copy content Toggle raw display
$31$ \( T^{6} - 89 T^{4} + \cdots - 1675 \) Copy content Toggle raw display
$37$ \( T^{6} - 144 T^{4} + \cdots - 1072 \) Copy content Toggle raw display
$41$ \( T^{6} - 100 T^{4} + \cdots - 26800 \) Copy content Toggle raw display
$43$ \( (T^{3} + 4 T^{2} + \cdots - 452)^{2} \) Copy content Toggle raw display
$47$ \( (T^{3} + 20 T^{2} + \cdots + 208)^{2} \) Copy content Toggle raw display
$53$ \( (T^{3} + 5 T^{2} - 69 T + 43)^{2} \) Copy content Toggle raw display
$59$ \( (T^{3} - 2 T^{2} - 44 T + 20)^{2} \) Copy content Toggle raw display
$61$ \( T^{6} - 228 T^{4} + \cdots - 107200 \) Copy content Toggle raw display
$67$ \( (T^{3} + 12 T^{2} + \cdots - 16)^{2} \) Copy content Toggle raw display
$71$ \( T^{6} - 91 T^{4} + \cdots - 1675 \) Copy content Toggle raw display
$73$ \( T^{6} - 32 T^{4} + \cdots - 1072 \) Copy content Toggle raw display
$79$ \( T^{6} - 135 T^{4} + \cdots - 67 \) Copy content Toggle raw display
$83$ \( (T^{3} + 10 T^{2} + \cdots + 184)^{2} \) Copy content Toggle raw display
$89$ \( (T^{3} + 4 T^{2} - 4 T - 20)^{2} \) Copy content Toggle raw display
$97$ \( T^{6} - 332 T^{4} + \cdots - 1239232 \) Copy content Toggle raw display
show more
show less