Properties

Label 7225.2.a.ba
Level 72257225
Weight 22
Character orbit 7225.a
Self dual yes
Analytic conductor 57.69257.692
Analytic rank 11
Dimension 66
Inner twists 22

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [7225,2,Mod(1,7225)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(7225, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("7225.1");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: N N == 7225=52172 7225 = 5^{2} \cdot 17^{2}
Weight: k k == 2 2
Character orbit: [χ][\chi] == 7225.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: 57.691915460457.6919154604
Analytic rank: 11
Dimension: 66
Coefficient field: 6.6.93924352.2
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: x617x4+73x267 x^{6} - 17x^{4} + 73x^{2} - 67 Copy content Toggle raw display
Coefficient ring: Z[a1,a2,a3]\Z[a_1, a_2, a_3]
Coefficient ring index: 1 1
Twist minimal: no (minimal twist has level 425)
Fricke sign: +1+1
Sato-Tate group: SU(2)\mathrm{SU}(2)

qq-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 

Coefficients of the qq-expansion are expressed in terms of a basis 1,β1,,β51,\beta_1,\ldots,\beta_{5} for the coefficient ring described below. We also show the integral qq-expansion of the trace form.

f(q)f(q) == q+β2q2β1q3+(β3β2)q4+(β5+β4)q6β4q7+(β31)q8+(2β3+β2+3)q9+(β5β4+β1)q11++(β5+6β1)q99+O(q100) q + \beta_{2} q^{2} - \beta_1 q^{3} + ( - \beta_{3} - \beta_{2}) q^{4} + ( - \beta_{5} + \beta_{4}) q^{6} - \beta_{4} q^{7} + (\beta_{3} - 1) q^{8} + ( - 2 \beta_{3} + \beta_{2} + 3) q^{9} + ( - \beta_{5} - \beta_{4} + \beta_1) q^{11}+ \cdots + (\beta_{5} + 6 \beta_1) q^{99}+O(q^{100}) Copy content Toggle raw display
Tr(f)(q)\operatorname{Tr}(f)(q) == 6q2q2+2q46q8+16q92q136q16+16q1812q192q2122q26+6q3228q33+20q3632q3834q428q4340q474q49++16q98+O(q100) 6 q - 2 q^{2} + 2 q^{4} - 6 q^{8} + 16 q^{9} - 2 q^{13} - 6 q^{16} + 16 q^{18} - 12 q^{19} - 2 q^{21} - 22 q^{26} + 6 q^{32} - 28 q^{33} + 20 q^{36} - 32 q^{38} - 34 q^{42} - 8 q^{43} - 40 q^{47} - 4 q^{49}+ \cdots + 16 q^{98}+O(q^{100}) Copy content Toggle raw display

Basis of coefficient ring in terms of a root ν\nu of x617x4+73x267 x^{6} - 17x^{4} + 73x^{2} - 67 : Copy content Toggle raw display

β1\beta_{1}== ν \nu Copy content Toggle raw display
β2\beta_{2}== (2ν421ν2+18)/17 ( 2\nu^{4} - 21\nu^{2} + 18 ) / 17 Copy content Toggle raw display
β3\beta_{3}== (ν419ν2+60)/17 ( \nu^{4} - 19\nu^{2} + 60 ) / 17 Copy content Toggle raw display
β4\beta_{4}== (ν519ν3+77ν)/17 ( \nu^{5} - 19\nu^{3} + 77\nu ) / 17 Copy content Toggle raw display
β5\beta_{5}== (3ν540ν3+95ν)/17 ( 3\nu^{5} - 40\nu^{3} + 95\nu ) / 17 Copy content Toggle raw display
ν\nu== β1 \beta_1 Copy content Toggle raw display
ν2\nu^{2}== 2β3+β2+6 -2\beta_{3} + \beta_{2} + 6 Copy content Toggle raw display
ν3\nu^{3}== β53β4+8β1 \beta_{5} - 3\beta_{4} + 8\beta_1 Copy content Toggle raw display
ν4\nu^{4}== 21β3+19β2+54 -21\beta_{3} + 19\beta_{2} + 54 Copy content Toggle raw display
ν5\nu^{5}== 19β540β4+75β1 19\beta_{5} - 40\beta_{4} + 75\beta_1 Copy content Toggle raw display

Embeddings

For each embedding ιm\iota_m of the coefficient field, the values ιm(an)\iota_m(a_n) are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field
 
gp: mfembed(f)
 
Label   ιm(ν)\iota_m(\nu) a2 a_{2} a3 a_{3} a4 a_{4} a5 a_{5} a6 a_{6} a7 a_{7} a8 a_{8} a9 a_{9} a10 a_{10}
1.1
2.21547
−2.21547
1.12261
−1.12261
3.29112
−3.29112
−2.17009 −2.21547 2.70928 0 4.80775 −1.02091 −1.53919 1.90829 0
1.2 −2.17009 2.21547 2.70928 0 −4.80775 1.02091 −1.53919 1.90829 0
1.3 −0.311108 −1.12261 −1.90321 0 0.349253 −3.60843 1.21432 −1.73975 0
1.4 −0.311108 1.12261 −1.90321 0 −0.349253 3.60843 1.21432 −1.73975 0
1.5 1.48119 −3.29112 0.193937 0 −4.87478 2.22194 −2.67513 7.83146 0
1.6 1.48119 3.29112 0.193937 0 4.87478 −2.22194 −2.67513 7.83146 0
nn: e.g. 2-40 or 990-1000
Embeddings: e.g. 1-3 or 1.6
Significant digits:
Format:

Atkin-Lehner signs

p p Sign
55 +1 +1
1717 +1 +1

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
17.b even 2 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 7225.2.a.ba 6
5.b even 2 1 7225.2.a.bg 6
17.b even 2 1 inner 7225.2.a.ba 6
17.c even 4 2 425.2.d.b yes 6
85.c even 2 1 7225.2.a.bg 6
85.f odd 4 2 425.2.c.c 12
85.i odd 4 2 425.2.c.c 12
85.j even 4 2 425.2.d.a 6
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
425.2.c.c 12 85.f odd 4 2
425.2.c.c 12 85.i odd 4 2
425.2.d.a 6 85.j even 4 2
425.2.d.b yes 6 17.c even 4 2
7225.2.a.ba 6 1.a even 1 1 trivial
7225.2.a.ba 6 17.b even 2 1 inner
7225.2.a.bg 6 5.b even 2 1
7225.2.a.bg 6 85.c even 2 1

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on S2new(Γ0(7225))S_{2}^{\mathrm{new}}(\Gamma_0(7225)):

T23+T223T21 T_{2}^{3} + T_{2}^{2} - 3T_{2} - 1 Copy content Toggle raw display
T3617T34+73T3267 T_{3}^{6} - 17T_{3}^{4} + 73T_{3}^{2} - 67 Copy content Toggle raw display
T7619T74+83T7267 T_{7}^{6} - 19T_{7}^{4} + 83T_{7}^{2} - 67 Copy content Toggle raw display
T11666T114+1292T1126700 T_{11}^{6} - 66T_{11}^{4} + 1292T_{11}^{2} - 6700 Copy content Toggle raw display

Hecke characteristic polynomials

pp Fp(T)F_p(T)
22 (T3+T23T1)2 (T^{3} + T^{2} - 3 T - 1)^{2} Copy content Toggle raw display
33 T617T4+67 T^{6} - 17 T^{4} + \cdots - 67 Copy content Toggle raw display
55 T6 T^{6} Copy content Toggle raw display
77 T619T4+67 T^{6} - 19 T^{4} + \cdots - 67 Copy content Toggle raw display
1111 T666T4+6700 T^{6} - 66 T^{4} + \cdots - 6700 Copy content Toggle raw display
1313 (T3+T213T23)2 (T^{3} + T^{2} - 13 T - 23)^{2} Copy content Toggle raw display
1717 T6 T^{6} Copy content Toggle raw display
1919 (T3+6T2+100)2 (T^{3} + 6 T^{2} + \cdots - 100)^{2} Copy content Toggle raw display
2323 T654T4+268 T^{6} - 54 T^{4} + \cdots - 268 Copy content Toggle raw display
2929 T6116T4+1072 T^{6} - 116 T^{4} + \cdots - 1072 Copy content Toggle raw display
3131 T689T4+1675 T^{6} - 89 T^{4} + \cdots - 1675 Copy content Toggle raw display
3737 T6144T4+1072 T^{6} - 144 T^{4} + \cdots - 1072 Copy content Toggle raw display
4141 T6100T4+26800 T^{6} - 100 T^{4} + \cdots - 26800 Copy content Toggle raw display
4343 (T3+4T2+452)2 (T^{3} + 4 T^{2} + \cdots - 452)^{2} Copy content Toggle raw display
4747 (T3+20T2++208)2 (T^{3} + 20 T^{2} + \cdots + 208)^{2} Copy content Toggle raw display
5353 (T3+5T269T+43)2 (T^{3} + 5 T^{2} - 69 T + 43)^{2} Copy content Toggle raw display
5959 (T32T244T+20)2 (T^{3} - 2 T^{2} - 44 T + 20)^{2} Copy content Toggle raw display
6161 T6228T4+107200 T^{6} - 228 T^{4} + \cdots - 107200 Copy content Toggle raw display
6767 (T3+12T2+16)2 (T^{3} + 12 T^{2} + \cdots - 16)^{2} Copy content Toggle raw display
7171 T691T4+1675 T^{6} - 91 T^{4} + \cdots - 1675 Copy content Toggle raw display
7373 T632T4+1072 T^{6} - 32 T^{4} + \cdots - 1072 Copy content Toggle raw display
7979 T6135T4+67 T^{6} - 135 T^{4} + \cdots - 67 Copy content Toggle raw display
8383 (T3+10T2++184)2 (T^{3} + 10 T^{2} + \cdots + 184)^{2} Copy content Toggle raw display
8989 (T3+4T24T20)2 (T^{3} + 4 T^{2} - 4 T - 20)^{2} Copy content Toggle raw display
9797 T6332T4+1239232 T^{6} - 332 T^{4} + \cdots - 1239232 Copy content Toggle raw display
show more
show less