Newspace parameters
comment: Compute space of new eigenforms
[N,k,chi] = [7225,2,Mod(1,7225)]
mf = mfinit([N,k,chi],0)
lf = mfeigenbasis(mf)
from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(7225, base_ring=CyclotomicField(2))
chi = DirichletCharacter(H, H._module([0, 0]))
N = Newforms(chi, 2, names="a")
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
chi := DirichletCharacter("7225.1");
S:= CuspForms(chi, 2);
N := Newforms(S);
Level: | |||
Weight: | |||
Character orbit: | 7225.a (trivial) |
Newform invariants
comment: select newform
sage: f = N[0] # Warning: the index may be different
gp: f = lf[1] \\ Warning: the index may be different
Self dual: | yes |
Analytic conductor: | |
Analytic rank: | |
Dimension: | |
Coefficient field: | 6.6.93924352.2 |
comment: defining polynomial
gp: f.mod \\ as an extension of the character field
|
|
Defining polynomial: |
|
Coefficient ring: | |
Coefficient ring index: | |
Twist minimal: | no (minimal twist has level 425) |
Fricke sign: | |
Sato-Tate group: |
-expansion
comment: q-expansion
sage: f.q_expansion() # note that sage often uses an isomorphic number field
gp: mfcoefs(f, 20)
Coefficients of the -expansion are expressed in terms of a basis for the coefficient ring described below. We also show the integral -expansion of the trace form.
Basis of coefficient ring in terms of a root of
:
Embeddings
For each embedding of the coefficient field, the values are shown below.
For more information on an embedded modular form you can click on its label.
comment: embeddings in the coefficient field
gp: mfembed(f)
Label | ||||||||||||||||||||||||||||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
1.1 |
|
−2.17009 | −2.21547 | 2.70928 | 0 | 4.80775 | −1.02091 | −1.53919 | 1.90829 | 0 | ||||||||||||||||||||||||||||||||||||
1.2 | −2.17009 | 2.21547 | 2.70928 | 0 | −4.80775 | 1.02091 | −1.53919 | 1.90829 | 0 | |||||||||||||||||||||||||||||||||||||
1.3 | −0.311108 | −1.12261 | −1.90321 | 0 | 0.349253 | −3.60843 | 1.21432 | −1.73975 | 0 | |||||||||||||||||||||||||||||||||||||
1.4 | −0.311108 | 1.12261 | −1.90321 | 0 | −0.349253 | 3.60843 | 1.21432 | −1.73975 | 0 | |||||||||||||||||||||||||||||||||||||
1.5 | 1.48119 | −3.29112 | 0.193937 | 0 | −4.87478 | 2.22194 | −2.67513 | 7.83146 | 0 | |||||||||||||||||||||||||||||||||||||
1.6 | 1.48119 | 3.29112 | 0.193937 | 0 | 4.87478 | −2.22194 | −2.67513 | 7.83146 | 0 | |||||||||||||||||||||||||||||||||||||
Atkin-Lehner signs
Sign | |
---|---|
Inner twists
Char | Parity | Ord | Mult | Type |
---|---|---|---|---|
1.a | even | 1 | 1 | trivial |
17.b | even | 2 | 1 | inner |
Twists
By twisting character orbit | |||||||
---|---|---|---|---|---|---|---|
Char | Parity | Ord | Mult | Type | Twist | Min | Dim |
1.a | even | 1 | 1 | trivial | 7225.2.a.ba | 6 | |
5.b | even | 2 | 1 | 7225.2.a.bg | 6 | ||
17.b | even | 2 | 1 | inner | 7225.2.a.ba | 6 | |
17.c | even | 4 | 2 | 425.2.d.b | yes | 6 | |
85.c | even | 2 | 1 | 7225.2.a.bg | 6 | ||
85.f | odd | 4 | 2 | 425.2.c.c | 12 | ||
85.i | odd | 4 | 2 | 425.2.c.c | 12 | ||
85.j | even | 4 | 2 | 425.2.d.a | ✓ | 6 |
By twisted newform orbit | |||||||
---|---|---|---|---|---|---|---|
Twist | Min | Dim | Char | Parity | Ord | Mult | Type |
425.2.c.c | 12 | 85.f | odd | 4 | 2 | ||
425.2.c.c | 12 | 85.i | odd | 4 | 2 | ||
425.2.d.a | ✓ | 6 | 85.j | even | 4 | 2 | |
425.2.d.b | yes | 6 | 17.c | even | 4 | 2 | |
7225.2.a.ba | 6 | 1.a | even | 1 | 1 | trivial | |
7225.2.a.ba | 6 | 17.b | even | 2 | 1 | inner | |
7225.2.a.bg | 6 | 5.b | even | 2 | 1 | ||
7225.2.a.bg | 6 | 85.c | even | 2 | 1 |
Hecke kernels
This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on :
|
|
|
|