Properties

Label 7225.2.a.bd
Level 72257225
Weight 22
Character orbit 7225.a
Self dual yes
Analytic conductor 57.69257.692
Analytic rank 00
Dimension 66
CM no
Inner twists 11

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [7225,2,Mod(1,7225)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(7225, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("7225.1");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: N N == 7225=52172 7225 = 5^{2} \cdot 17^{2}
Weight: k k == 2 2
Character orbit: [χ][\chi] == 7225.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: 57.691915460457.6919154604
Analytic rank: 00
Dimension: 66
Coefficient field: 6.6.199789929.1
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: x6x59x4+5x3+21x23x3 x^{6} - x^{5} - 9x^{4} + 5x^{3} + 21x^{2} - 3x - 3 Copy content Toggle raw display
Coefficient ring: Z[a1,a2]\Z[a_1, a_2]
Coefficient ring index: 1 1
Twist minimal: yes
Fricke sign: 1-1
Sato-Tate group: SU(2)\mathrm{SU}(2)

qq-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 

Coefficients of the qq-expansion are expressed in terms of a basis 1,β1,,β51,\beta_1,\ldots,\beta_{5} for the coefficient ring described below. We also show the integral qq-expansion of the trace form.

f(q)f(q) == qβ1q2+β3q3+(β2+β1+1)q4+(β4β3β21)q6+(β4+1)q7+(β3β2β11)q8+(β5+β3+β2+1)q9++(3β5+2β4β3+7)q99+O(q100) q - \beta_1 q^{2} + \beta_{3} q^{3} + (\beta_{2} + \beta_1 + 1) q^{4} + ( - \beta_{4} - \beta_{3} - \beta_{2} - 1) q^{6} + (\beta_{4} + 1) q^{7} + ( - \beta_{3} - \beta_{2} - \beta_1 - 1) q^{8} + ( - \beta_{5} + \beta_{3} + \beta_{2} + 1) q^{9}+ \cdots + (3 \beta_{5} + 2 \beta_{4} - \beta_{3} + \cdots - 7) q^{99}+O(q^{100}) Copy content Toggle raw display
Tr(f)(q)\operatorname{Tr}(f)(q) == 6qq2+2q3+7q48q6+6q79q8+10q96q112q12q133q14+5q164q186q199q215q22+16q2326q2415q26+42q99+O(q100) 6 q - q^{2} + 2 q^{3} + 7 q^{4} - 8 q^{6} + 6 q^{7} - 9 q^{8} + 10 q^{9} - 6 q^{11} - 2 q^{12} - q^{13} - 3 q^{14} + 5 q^{16} - 4 q^{18} - 6 q^{19} - 9 q^{21} - 5 q^{22} + 16 q^{23} - 26 q^{24} - 15 q^{26}+ \cdots - 42 q^{99}+O(q^{100}) Copy content Toggle raw display

Basis of coefficient ring in terms of a root ν\nu of x6x59x4+5x3+21x23x3 x^{6} - x^{5} - 9x^{4} + 5x^{3} + 21x^{2} - 3x - 3 : Copy content Toggle raw display

β1\beta_{1}== ν \nu Copy content Toggle raw display
β2\beta_{2}== ν2ν3 \nu^{2} - \nu - 3 Copy content Toggle raw display
β3\beta_{3}== ν3ν24ν+2 \nu^{3} - \nu^{2} - 4\nu + 2 Copy content Toggle raw display
β4\beta_{4}== ν42ν34ν2+7ν \nu^{4} - 2\nu^{3} - 4\nu^{2} + 7\nu Copy content Toggle raw display
β5\beta_{5}== ν52ν46ν3+9ν2+8ν4 \nu^{5} - 2\nu^{4} - 6\nu^{3} + 9\nu^{2} + 8\nu - 4 Copy content Toggle raw display
ν\nu== β1 \beta_1 Copy content Toggle raw display
ν2\nu^{2}== β2+β1+3 \beta_{2} + \beta _1 + 3 Copy content Toggle raw display
ν3\nu^{3}== β3+β2+5β1+1 \beta_{3} + \beta_{2} + 5\beta _1 + 1 Copy content Toggle raw display
ν4\nu^{4}== β4+2β3+6β2+7β1+14 \beta_{4} + 2\beta_{3} + 6\beta_{2} + 7\beta _1 + 14 Copy content Toggle raw display
ν5\nu^{5}== β5+2β4+10β3+9β2+27β1+11 \beta_{5} + 2\beta_{4} + 10\beta_{3} + 9\beta_{2} + 27\beta _1 + 11 Copy content Toggle raw display

Embeddings

For each embedding ιm\iota_m of the coefficient field, the values ιm(an)\iota_m(a_n) are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field
 
gp: mfembed(f)
 
Label   ιm(ν)\iota_m(\nu) a2 a_{2} a3 a_{3} a4 a_{4} a5 a_{5} a6 a_{6} a7 a_{7} a8 a_{8} a9 a_{9} a10 a_{10}
1.1
2.63233
2.08568
0.451353
−0.330308
−1.78030
−2.05876
−2.63233 2.78135 4.92916 0 −7.32143 3.24325 −7.71051 4.73590 0
1.2 −2.08568 −1.61993 2.35007 0 3.37867 −1.02312 −0.730139 −0.375818 0
1.3 −0.451353 0.0828196 −1.79628 0 −0.0373808 3.20219 1.71346 −2.99314 0
1.4 0.330308 3.17609 −1.89090 0 1.04909 −1.66459 −1.28519 7.08755 0
1.5 1.78030 0.309133 1.16947 0 0.550349 −2.80925 −1.47860 −2.90444 0
1.6 2.05876 −2.72946 2.23848 0 −5.61929 5.05151 0.490977 4.44994 0
nn: e.g. 2-40 or 990-1000
Embeddings: e.g. 1-3 or 1.6
Significant digits:
Format:

Atkin-Lehner signs

p p Sign
55 1 -1
1717 +1 +1

Inner twists

This newform does not admit any (nontrivial) inner twists.

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 7225.2.a.bd yes 6
5.b even 2 1 7225.2.a.be yes 6
17.b even 2 1 7225.2.a.bc 6
85.c even 2 1 7225.2.a.bf yes 6
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
7225.2.a.bc 6 17.b even 2 1
7225.2.a.bd yes 6 1.a even 1 1 trivial
7225.2.a.be yes 6 5.b even 2 1
7225.2.a.bf yes 6 85.c even 2 1

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on S2new(Γ0(7225))S_{2}^{\mathrm{new}}(\Gamma_0(7225)):

T26+T259T245T23+21T22+3T23 T_{2}^{6} + T_{2}^{5} - 9T_{2}^{4} - 5T_{2}^{3} + 21T_{2}^{2} + 3T_{2} - 3 Copy content Toggle raw display
T362T3512T34+17T33+34T3215T3+1 T_{3}^{6} - 2T_{3}^{5} - 12T_{3}^{4} + 17T_{3}^{3} + 34T_{3}^{2} - 15T_{3} + 1 Copy content Toggle raw display
T766T7511T74+82T73+54T72280T7251 T_{7}^{6} - 6T_{7}^{5} - 11T_{7}^{4} + 82T_{7}^{3} + 54T_{7}^{2} - 280T_{7} - 251 Copy content Toggle raw display
T116+6T11532T114161T113+348T112+747T111317 T_{11}^{6} + 6T_{11}^{5} - 32T_{11}^{4} - 161T_{11}^{3} + 348T_{11}^{2} + 747T_{11} - 1317 Copy content Toggle raw display

Hecke characteristic polynomials

pp Fp(T)F_p(T)
22 T6+T59T4+3 T^{6} + T^{5} - 9 T^{4} + \cdots - 3 Copy content Toggle raw display
33 T62T5++1 T^{6} - 2 T^{5} + \cdots + 1 Copy content Toggle raw display
55 T6 T^{6} Copy content Toggle raw display
77 T66T5+251 T^{6} - 6 T^{5} + \cdots - 251 Copy content Toggle raw display
1111 T6+6T5+1317 T^{6} + 6 T^{5} + \cdots - 1317 Copy content Toggle raw display
1313 T6+T5++529 T^{6} + T^{5} + \cdots + 529 Copy content Toggle raw display
1717 T6 T^{6} Copy content Toggle raw display
1919 T6+6T5++27 T^{6} + 6 T^{5} + \cdots + 27 Copy content Toggle raw display
2323 T616T5++81 T^{6} - 16 T^{5} + \cdots + 81 Copy content Toggle raw display
2929 T619T5+216 T^{6} - 19 T^{5} + \cdots - 216 Copy content Toggle raw display
3131 T67T5+8523 T^{6} - 7 T^{5} + \cdots - 8523 Copy content Toggle raw display
3737 T65T5+293 T^{6} - 5 T^{5} + \cdots - 293 Copy content Toggle raw display
4141 T613T5++53691 T^{6} - 13 T^{5} + \cdots + 53691 Copy content Toggle raw display
4343 T6+T5++1657 T^{6} + T^{5} + \cdots + 1657 Copy content Toggle raw display
4747 T614T5++35829 T^{6} - 14 T^{5} + \cdots + 35829 Copy content Toggle raw display
5353 T65T5++170109 T^{6} - 5 T^{5} + \cdots + 170109 Copy content Toggle raw display
5959 T611T5+115377 T^{6} - 11 T^{5} + \cdots - 115377 Copy content Toggle raw display
6161 T619T5+2699 T^{6} - 19 T^{5} + \cdots - 2699 Copy content Toggle raw display
6767 T623T5++338167 T^{6} - 23 T^{5} + \cdots + 338167 Copy content Toggle raw display
7171 T68T5++11691 T^{6} - 8 T^{5} + \cdots + 11691 Copy content Toggle raw display
7373 T633T5+34184 T^{6} - 33 T^{5} + \cdots - 34184 Copy content Toggle raw display
7979 T612T5+2393 T^{6} - 12 T^{5} + \cdots - 2393 Copy content Toggle raw display
8383 T63T5++14961 T^{6} - 3 T^{5} + \cdots + 14961 Copy content Toggle raw display
8989 T623T5++843021 T^{6} - 23 T^{5} + \cdots + 843021 Copy content Toggle raw display
9797 T6+10T5++137939 T^{6} + 10 T^{5} + \cdots + 137939 Copy content Toggle raw display
show more
show less