Properties

Label 7225.2.a.bd
Level $7225$
Weight $2$
Character orbit 7225.a
Self dual yes
Analytic conductor $57.692$
Analytic rank $0$
Dimension $6$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [7225,2,Mod(1,7225)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(7225, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("7225.1");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 7225 = 5^{2} \cdot 17^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 7225.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(57.6919154604\)
Analytic rank: \(0\)
Dimension: \(6\)
Coefficient field: 6.6.199789929.1
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{6} - x^{5} - 9x^{4} + 5x^{3} + 21x^{2} - 3x - 3 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2]\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 

Coefficients of the \(q\)-expansion are expressed in terms of a basis \(1,\beta_1,\ldots,\beta_{5}\) for the coefficient ring described below. We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q - \beta_1 q^{2} + \beta_{3} q^{3} + (\beta_{2} + \beta_1 + 1) q^{4} + ( - \beta_{4} - \beta_{3} - \beta_{2} - 1) q^{6} + (\beta_{4} + 1) q^{7} + ( - \beta_{3} - \beta_{2} - \beta_1 - 1) q^{8} + ( - \beta_{5} + \beta_{3} + \beta_{2} + 1) q^{9}+ \cdots + (3 \beta_{5} + 2 \beta_{4} - \beta_{3} + \cdots - 7) q^{99}+O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 6 q - q^{2} + 2 q^{3} + 7 q^{4} - 8 q^{6} + 6 q^{7} - 9 q^{8} + 10 q^{9} - 6 q^{11} - 2 q^{12} - q^{13} - 3 q^{14} + 5 q^{16} - 4 q^{18} - 6 q^{19} - 9 q^{21} - 5 q^{22} + 16 q^{23} - 26 q^{24} - 15 q^{26}+ \cdots - 42 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Basis of coefficient ring in terms of a root \(\nu\) of \( x^{6} - x^{5} - 9x^{4} + 5x^{3} + 21x^{2} - 3x - 3 \) : Copy content Toggle raw display

\(\beta_{1}\)\(=\) \( \nu \) Copy content Toggle raw display
\(\beta_{2}\)\(=\) \( \nu^{2} - \nu - 3 \) Copy content Toggle raw display
\(\beta_{3}\)\(=\) \( \nu^{3} - \nu^{2} - 4\nu + 2 \) Copy content Toggle raw display
\(\beta_{4}\)\(=\) \( \nu^{4} - 2\nu^{3} - 4\nu^{2} + 7\nu \) Copy content Toggle raw display
\(\beta_{5}\)\(=\) \( \nu^{5} - 2\nu^{4} - 6\nu^{3} + 9\nu^{2} + 8\nu - 4 \) Copy content Toggle raw display
\(\nu\)\(=\) \( \beta_1 \) Copy content Toggle raw display
\(\nu^{2}\)\(=\) \( \beta_{2} + \beta _1 + 3 \) Copy content Toggle raw display
\(\nu^{3}\)\(=\) \( \beta_{3} + \beta_{2} + 5\beta _1 + 1 \) Copy content Toggle raw display
\(\nu^{4}\)\(=\) \( \beta_{4} + 2\beta_{3} + 6\beta_{2} + 7\beta _1 + 14 \) Copy content Toggle raw display
\(\nu^{5}\)\(=\) \( \beta_{5} + 2\beta_{4} + 10\beta_{3} + 9\beta_{2} + 27\beta _1 + 11 \) Copy content Toggle raw display

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field
 
gp: mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
1.1
2.63233
2.08568
0.451353
−0.330308
−1.78030
−2.05876
−2.63233 2.78135 4.92916 0 −7.32143 3.24325 −7.71051 4.73590 0
1.2 −2.08568 −1.61993 2.35007 0 3.37867 −1.02312 −0.730139 −0.375818 0
1.3 −0.451353 0.0828196 −1.79628 0 −0.0373808 3.20219 1.71346 −2.99314 0
1.4 0.330308 3.17609 −1.89090 0 1.04909 −1.66459 −1.28519 7.08755 0
1.5 1.78030 0.309133 1.16947 0 0.550349 −2.80925 −1.47860 −2.90444 0
1.6 2.05876 −2.72946 2.23848 0 −5.61929 5.05151 0.490977 4.44994 0
\(n\): e.g. 2-40 or 990-1000
Embeddings: e.g. 1-3 or 1.6
Significant digits:
Format:

Atkin-Lehner signs

\( p \) Sign
\(5\) \( -1 \)
\(17\) \( +1 \)

Inner twists

This newform does not admit any (nontrivial) inner twists.

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 7225.2.a.bd yes 6
5.b even 2 1 7225.2.a.be yes 6
17.b even 2 1 7225.2.a.bc 6
85.c even 2 1 7225.2.a.bf yes 6
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
7225.2.a.bc 6 17.b even 2 1
7225.2.a.bd yes 6 1.a even 1 1 trivial
7225.2.a.be yes 6 5.b even 2 1
7225.2.a.bf yes 6 85.c even 2 1

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on \(S_{2}^{\mathrm{new}}(\Gamma_0(7225))\):

\( T_{2}^{6} + T_{2}^{5} - 9T_{2}^{4} - 5T_{2}^{3} + 21T_{2}^{2} + 3T_{2} - 3 \) Copy content Toggle raw display
\( T_{3}^{6} - 2T_{3}^{5} - 12T_{3}^{4} + 17T_{3}^{3} + 34T_{3}^{2} - 15T_{3} + 1 \) Copy content Toggle raw display
\( T_{7}^{6} - 6T_{7}^{5} - 11T_{7}^{4} + 82T_{7}^{3} + 54T_{7}^{2} - 280T_{7} - 251 \) Copy content Toggle raw display
\( T_{11}^{6} + 6T_{11}^{5} - 32T_{11}^{4} - 161T_{11}^{3} + 348T_{11}^{2} + 747T_{11} - 1317 \) Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( T^{6} + T^{5} - 9 T^{4} + \cdots - 3 \) Copy content Toggle raw display
$3$ \( T^{6} - 2 T^{5} + \cdots + 1 \) Copy content Toggle raw display
$5$ \( T^{6} \) Copy content Toggle raw display
$7$ \( T^{6} - 6 T^{5} + \cdots - 251 \) Copy content Toggle raw display
$11$ \( T^{6} + 6 T^{5} + \cdots - 1317 \) Copy content Toggle raw display
$13$ \( T^{6} + T^{5} + \cdots + 529 \) Copy content Toggle raw display
$17$ \( T^{6} \) Copy content Toggle raw display
$19$ \( T^{6} + 6 T^{5} + \cdots + 27 \) Copy content Toggle raw display
$23$ \( T^{6} - 16 T^{5} + \cdots + 81 \) Copy content Toggle raw display
$29$ \( T^{6} - 19 T^{5} + \cdots - 216 \) Copy content Toggle raw display
$31$ \( T^{6} - 7 T^{5} + \cdots - 8523 \) Copy content Toggle raw display
$37$ \( T^{6} - 5 T^{5} + \cdots - 293 \) Copy content Toggle raw display
$41$ \( T^{6} - 13 T^{5} + \cdots + 53691 \) Copy content Toggle raw display
$43$ \( T^{6} + T^{5} + \cdots + 1657 \) Copy content Toggle raw display
$47$ \( T^{6} - 14 T^{5} + \cdots + 35829 \) Copy content Toggle raw display
$53$ \( T^{6} - 5 T^{5} + \cdots + 170109 \) Copy content Toggle raw display
$59$ \( T^{6} - 11 T^{5} + \cdots - 115377 \) Copy content Toggle raw display
$61$ \( T^{6} - 19 T^{5} + \cdots - 2699 \) Copy content Toggle raw display
$67$ \( T^{6} - 23 T^{5} + \cdots + 338167 \) Copy content Toggle raw display
$71$ \( T^{6} - 8 T^{5} + \cdots + 11691 \) Copy content Toggle raw display
$73$ \( T^{6} - 33 T^{5} + \cdots - 34184 \) Copy content Toggle raw display
$79$ \( T^{6} - 12 T^{5} + \cdots - 2393 \) Copy content Toggle raw display
$83$ \( T^{6} - 3 T^{5} + \cdots + 14961 \) Copy content Toggle raw display
$89$ \( T^{6} - 23 T^{5} + \cdots + 843021 \) Copy content Toggle raw display
$97$ \( T^{6} + 10 T^{5} + \cdots + 137939 \) Copy content Toggle raw display
show more
show less