Newspace parameters
comment: Compute space of new eigenforms
[N,k,chi] = [7225,2,Mod(1,7225)]
mf = mfinit([N,k,chi],0)
lf = mfeigenbasis(mf)
from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(7225, base_ring=CyclotomicField(2))
chi = DirichletCharacter(H, H._module([0, 0]))
N = Newforms(chi, 2, names="a")
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
chi := DirichletCharacter("7225.1");
S:= CuspForms(chi, 2);
N := Newforms(S);
Level: | |||
Weight: | |||
Character orbit: | 7225.a (trivial) |
Newform invariants
comment: select newform
sage: f = N[0] # Warning: the index may be different
gp: f = lf[1] \\ Warning: the index may be different
Self dual: | yes |
Analytic conductor: | |
Analytic rank: | |
Dimension: | |
Coefficient field: | 6.6.199789929.1 |
comment: defining polynomial
gp: f.mod \\ as an extension of the character field
|
|
Defining polynomial: |
|
Coefficient ring: | |
Coefficient ring index: | |
Twist minimal: | yes |
Fricke sign: | |
Sato-Tate group: |
-expansion
comment: q-expansion
sage: f.q_expansion() # note that sage often uses an isomorphic number field
gp: mfcoefs(f, 20)
Coefficients of the -expansion are expressed in terms of a basis for the coefficient ring described below. We also show the integral -expansion of the trace form.
Basis of coefficient ring in terms of a root of
:
Embeddings
For each embedding of the coefficient field, the values are shown below.
For more information on an embedded modular form you can click on its label.
comment: embeddings in the coefficient field
gp: mfembed(f)
Label | ||||||||||||||||||||||||||||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
1.1 |
|
−2.63233 | 2.78135 | 4.92916 | 0 | −7.32143 | 3.24325 | −7.71051 | 4.73590 | 0 | ||||||||||||||||||||||||||||||||||||
1.2 | −2.08568 | −1.61993 | 2.35007 | 0 | 3.37867 | −1.02312 | −0.730139 | −0.375818 | 0 | |||||||||||||||||||||||||||||||||||||
1.3 | −0.451353 | 0.0828196 | −1.79628 | 0 | −0.0373808 | 3.20219 | 1.71346 | −2.99314 | 0 | |||||||||||||||||||||||||||||||||||||
1.4 | 0.330308 | 3.17609 | −1.89090 | 0 | 1.04909 | −1.66459 | −1.28519 | 7.08755 | 0 | |||||||||||||||||||||||||||||||||||||
1.5 | 1.78030 | 0.309133 | 1.16947 | 0 | 0.550349 | −2.80925 | −1.47860 | −2.90444 | 0 | |||||||||||||||||||||||||||||||||||||
1.6 | 2.05876 | −2.72946 | 2.23848 | 0 | −5.61929 | 5.05151 | 0.490977 | 4.44994 | 0 | |||||||||||||||||||||||||||||||||||||
Atkin-Lehner signs
Sign | |
---|---|
Inner twists
This newform does not admit any (nontrivial) inner twists.
Twists
By twisting character orbit | |||||||
---|---|---|---|---|---|---|---|
Char | Parity | Ord | Mult | Type | Twist | Min | Dim |
1.a | even | 1 | 1 | trivial | 7225.2.a.bd | yes | 6 |
5.b | even | 2 | 1 | 7225.2.a.be | yes | 6 | |
17.b | even | 2 | 1 | 7225.2.a.bc | ✓ | 6 | |
85.c | even | 2 | 1 | 7225.2.a.bf | yes | 6 |
By twisted newform orbit | |||||||
---|---|---|---|---|---|---|---|
Twist | Min | Dim | Char | Parity | Ord | Mult | Type |
7225.2.a.bc | ✓ | 6 | 17.b | even | 2 | 1 | |
7225.2.a.bd | yes | 6 | 1.a | even | 1 | 1 | trivial |
7225.2.a.be | yes | 6 | 5.b | even | 2 | 1 | |
7225.2.a.bf | yes | 6 | 85.c | even | 2 | 1 |
Hecke kernels
This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on :
|
|
|
|