Properties

Label 7225.2.a.bp.1.11
Level $7225$
Weight $2$
Character 7225.1
Self dual yes
Analytic conductor $57.692$
Analytic rank $0$
Dimension $12$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [7225,2,Mod(1,7225)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(7225, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("7225.1");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 7225 = 5^{2} \cdot 17^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 7225.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(57.6919154604\)
Analytic rank: \(0\)
Dimension: \(12\)
Coefficient field: \(\mathbb{Q}[x]/(x^{12} - \cdots)\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{12} - 30x^{10} + 343x^{8} - 1860x^{6} + 4823x^{4} - 5230x^{2} + 1681 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{7}]\)
Coefficient ring index: \( 2^{3} \)
Twist minimal: no (minimal twist has level 85)
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.11
Root \(3.07592\) of defining polynomial
Character \(\chi\) \(=\) 7225.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+2.38621 q^{2} -3.15462 q^{3} +3.69399 q^{4} -7.52757 q^{6} +0.219993 q^{7} +4.04223 q^{8} +6.95160 q^{9} +O(q^{10})\) \(q+2.38621 q^{2} -3.15462 q^{3} +3.69399 q^{4} -7.52757 q^{6} +0.219993 q^{7} +4.04223 q^{8} +6.95160 q^{9} +0.524950 q^{11} -11.6531 q^{12} +1.96713 q^{13} +0.524950 q^{14} +2.25761 q^{16} +16.5880 q^{18} +4.00000 q^{19} -0.693995 q^{21} +1.25264 q^{22} -0.372668 q^{23} -12.7517 q^{24} +4.69399 q^{26} -12.4658 q^{27} +0.812655 q^{28} +7.00262 q^{29} +2.92062 q^{31} -2.69733 q^{32} -1.65602 q^{33} +25.6792 q^{36} -5.71657 q^{37} +9.54484 q^{38} -6.20555 q^{39} -0.797070 q^{41} -1.65602 q^{42} -2.49417 q^{43} +1.93916 q^{44} -0.889263 q^{46} +6.73955 q^{47} -7.12189 q^{48} -6.95160 q^{49} +7.26658 q^{52} -5.92169 q^{53} -29.7460 q^{54} +0.889263 q^{56} -12.6185 q^{57} +16.7097 q^{58} +6.00000 q^{59} +5.65685 q^{61} +6.96921 q^{62} +1.52931 q^{63} -10.9516 q^{64} -3.95160 q^{66} +11.5120 q^{67} +1.17562 q^{69} -7.16326 q^{71} +28.1000 q^{72} -1.18532 q^{73} -13.6409 q^{74} +14.7760 q^{76} +0.115486 q^{77} -14.8078 q^{78} +6.73050 q^{79} +18.4700 q^{81} -1.90197 q^{82} -6.11732 q^{83} -2.56361 q^{84} -5.95160 q^{86} -22.0906 q^{87} +2.12197 q^{88} +15.9852 q^{89} +0.432757 q^{91} -1.37663 q^{92} -9.21344 q^{93} +16.0820 q^{94} +8.50903 q^{96} +9.21517 q^{97} -16.5880 q^{98} +3.64925 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 12 q + 12 q^{4} + 28 q^{9}+O(q^{10}) \) Copy content Toggle raw display \( 12 q + 12 q^{4} + 28 q^{9} + 4 q^{16} + 48 q^{19} + 24 q^{21} + 24 q^{26} + 68 q^{36} - 28 q^{49} + 72 q^{59} - 76 q^{64} + 8 q^{66} + 88 q^{69} + 48 q^{76} + 60 q^{81} - 40 q^{84} - 16 q^{86} - 16 q^{89} + 96 q^{94}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 2.38621 1.68730 0.843652 0.536890i \(-0.180401\pi\)
0.843652 + 0.536890i \(0.180401\pi\)
\(3\) −3.15462 −1.82132 −0.910659 0.413158i \(-0.864426\pi\)
−0.910659 + 0.413158i \(0.864426\pi\)
\(4\) 3.69399 1.84700
\(5\) 0 0
\(6\) −7.52757 −3.07312
\(7\) 0.219993 0.0831497 0.0415749 0.999135i \(-0.486762\pi\)
0.0415749 + 0.999135i \(0.486762\pi\)
\(8\) 4.04223 1.42914
\(9\) 6.95160 2.31720
\(10\) 0 0
\(11\) 0.524950 0.158278 0.0791392 0.996864i \(-0.474783\pi\)
0.0791392 + 0.996864i \(0.474783\pi\)
\(12\) −11.6531 −3.36397
\(13\) 1.96713 0.545585 0.272792 0.962073i \(-0.412053\pi\)
0.272792 + 0.962073i \(0.412053\pi\)
\(14\) 0.524950 0.140299
\(15\) 0 0
\(16\) 2.25761 0.564402
\(17\) 0 0
\(18\) 16.5880 3.90982
\(19\) 4.00000 0.917663 0.458831 0.888523i \(-0.348268\pi\)
0.458831 + 0.888523i \(0.348268\pi\)
\(20\) 0 0
\(21\) −0.693995 −0.151442
\(22\) 1.25264 0.267064
\(23\) −0.372668 −0.0777066 −0.0388533 0.999245i \(-0.512371\pi\)
−0.0388533 + 0.999245i \(0.512371\pi\)
\(24\) −12.7517 −2.60292
\(25\) 0 0
\(26\) 4.69399 0.920568
\(27\) −12.4658 −2.39904
\(28\) 0.812655 0.153577
\(29\) 7.00262 1.30035 0.650177 0.759783i \(-0.274695\pi\)
0.650177 + 0.759783i \(0.274695\pi\)
\(30\) 0 0
\(31\) 2.92062 0.524559 0.262279 0.964992i \(-0.415526\pi\)
0.262279 + 0.964992i \(0.415526\pi\)
\(32\) −2.69733 −0.476825
\(33\) −1.65602 −0.288276
\(34\) 0 0
\(35\) 0 0
\(36\) 25.6792 4.27986
\(37\) −5.71657 −0.939798 −0.469899 0.882720i \(-0.655710\pi\)
−0.469899 + 0.882720i \(0.655710\pi\)
\(38\) 9.54484 1.54838
\(39\) −6.20555 −0.993684
\(40\) 0 0
\(41\) −0.797070 −0.124481 −0.0622407 0.998061i \(-0.519825\pi\)
−0.0622407 + 0.998061i \(0.519825\pi\)
\(42\) −1.65602 −0.255529
\(43\) −2.49417 −0.380357 −0.190178 0.981750i \(-0.560907\pi\)
−0.190178 + 0.981750i \(0.560907\pi\)
\(44\) 1.93916 0.292340
\(45\) 0 0
\(46\) −0.889263 −0.131115
\(47\) 6.73955 0.983065 0.491532 0.870859i \(-0.336437\pi\)
0.491532 + 0.870859i \(0.336437\pi\)
\(48\) −7.12189 −1.02796
\(49\) −6.95160 −0.993086
\(50\) 0 0
\(51\) 0 0
\(52\) 7.26658 1.00769
\(53\) −5.92169 −0.813406 −0.406703 0.913560i \(-0.633322\pi\)
−0.406703 + 0.913560i \(0.633322\pi\)
\(54\) −29.7460 −4.04792
\(55\) 0 0
\(56\) 0.889263 0.118833
\(57\) −12.6185 −1.67136
\(58\) 16.7097 2.19409
\(59\) 6.00000 0.781133 0.390567 0.920575i \(-0.372279\pi\)
0.390567 + 0.920575i \(0.372279\pi\)
\(60\) 0 0
\(61\) 5.65685 0.724286 0.362143 0.932123i \(-0.382045\pi\)
0.362143 + 0.932123i \(0.382045\pi\)
\(62\) 6.96921 0.885091
\(63\) 1.52931 0.192675
\(64\) −10.9516 −1.36895
\(65\) 0 0
\(66\) −3.95160 −0.486409
\(67\) 11.5120 1.40641 0.703206 0.710987i \(-0.251751\pi\)
0.703206 + 0.710987i \(0.251751\pi\)
\(68\) 0 0
\(69\) 1.17562 0.141528
\(70\) 0 0
\(71\) −7.16326 −0.850123 −0.425061 0.905165i \(-0.639747\pi\)
−0.425061 + 0.905165i \(0.639747\pi\)
\(72\) 28.1000 3.31161
\(73\) −1.18532 −0.138731 −0.0693657 0.997591i \(-0.522098\pi\)
−0.0693657 + 0.997591i \(0.522098\pi\)
\(74\) −13.6409 −1.58573
\(75\) 0 0
\(76\) 14.7760 1.69492
\(77\) 0.115486 0.0131608
\(78\) −14.8078 −1.67665
\(79\) 6.73050 0.757241 0.378620 0.925552i \(-0.376399\pi\)
0.378620 + 0.925552i \(0.376399\pi\)
\(80\) 0 0
\(81\) 18.4700 2.05222
\(82\) −1.90197 −0.210038
\(83\) −6.11732 −0.671463 −0.335731 0.941958i \(-0.608983\pi\)
−0.335731 + 0.941958i \(0.608983\pi\)
\(84\) −2.56361 −0.279713
\(85\) 0 0
\(86\) −5.95160 −0.641778
\(87\) −22.0906 −2.36836
\(88\) 2.12197 0.226203
\(89\) 15.9852 1.69443 0.847213 0.531253i \(-0.178279\pi\)
0.847213 + 0.531253i \(0.178279\pi\)
\(90\) 0 0
\(91\) 0.432757 0.0453652
\(92\) −1.37663 −0.143524
\(93\) −9.21344 −0.955389
\(94\) 16.0820 1.65873
\(95\) 0 0
\(96\) 8.50903 0.868449
\(97\) 9.21517 0.935659 0.467829 0.883819i \(-0.345036\pi\)
0.467829 + 0.883819i \(0.345036\pi\)
\(98\) −16.5880 −1.67564
\(99\) 3.64925 0.366763
\(100\) 0 0
\(101\) −7.20921 −0.717343 −0.358672 0.933464i \(-0.616770\pi\)
−0.358672 + 0.933464i \(0.616770\pi\)
\(102\) 0 0
\(103\) −9.52456 −0.938482 −0.469241 0.883070i \(-0.655472\pi\)
−0.469241 + 0.883070i \(0.655472\pi\)
\(104\) 7.95160 0.779719
\(105\) 0 0
\(106\) −14.1304 −1.37246
\(107\) 10.7838 1.04251 0.521255 0.853401i \(-0.325464\pi\)
0.521255 + 0.853401i \(0.325464\pi\)
\(108\) −46.0486 −4.43103
\(109\) −14.0737 −1.34802 −0.674008 0.738724i \(-0.735429\pi\)
−0.674008 + 0.738724i \(0.735429\pi\)
\(110\) 0 0
\(111\) 18.0336 1.71167
\(112\) 0.496659 0.0469299
\(113\) 7.18921 0.676304 0.338152 0.941092i \(-0.390198\pi\)
0.338152 + 0.941092i \(0.390198\pi\)
\(114\) −30.1103 −2.82009
\(115\) 0 0
\(116\) 25.8677 2.40175
\(117\) 13.6747 1.26423
\(118\) 14.3173 1.31801
\(119\) 0 0
\(120\) 0 0
\(121\) −10.7244 −0.974948
\(122\) 13.4984 1.22209
\(123\) 2.51445 0.226720
\(124\) 10.7888 0.968859
\(125\) 0 0
\(126\) 3.64925 0.325101
\(127\) 9.74047 0.864327 0.432163 0.901795i \(-0.357750\pi\)
0.432163 + 0.901795i \(0.357750\pi\)
\(128\) −20.7382 −1.83301
\(129\) 7.86814 0.692751
\(130\) 0 0
\(131\) 19.6859 1.71996 0.859980 0.510327i \(-0.170476\pi\)
0.859980 + 0.510327i \(0.170476\pi\)
\(132\) −6.11732 −0.532444
\(133\) 0.879974 0.0763034
\(134\) 27.4700 2.37304
\(135\) 0 0
\(136\) 0 0
\(137\) −4.65693 −0.397869 −0.198934 0.980013i \(-0.563748\pi\)
−0.198934 + 0.980013i \(0.563748\pi\)
\(138\) 2.80528 0.238802
\(139\) 5.24785 0.445117 0.222558 0.974919i \(-0.428559\pi\)
0.222558 + 0.974919i \(0.428559\pi\)
\(140\) 0 0
\(141\) −21.2607 −1.79047
\(142\) −17.0930 −1.43442
\(143\) 1.03265 0.0863544
\(144\) 15.6940 1.30783
\(145\) 0 0
\(146\) −2.82843 −0.234082
\(147\) 21.9296 1.80873
\(148\) −21.1170 −1.73581
\(149\) 8.74239 0.716205 0.358102 0.933682i \(-0.383424\pi\)
0.358102 + 0.933682i \(0.383424\pi\)
\(150\) 0 0
\(151\) 15.9032 1.29418 0.647092 0.762412i \(-0.275985\pi\)
0.647092 + 0.762412i \(0.275985\pi\)
\(152\) 16.1689 1.31147
\(153\) 0 0
\(154\) 0.275573 0.0222063
\(155\) 0 0
\(156\) −22.9233 −1.83533
\(157\) 10.0719 0.803823 0.401911 0.915679i \(-0.368346\pi\)
0.401911 + 0.915679i \(0.368346\pi\)
\(158\) 16.0604 1.27770
\(159\) 18.6806 1.48147
\(160\) 0 0
\(161\) −0.0819845 −0.00646128
\(162\) 44.0732 3.46272
\(163\) 9.58784 0.750978 0.375489 0.926827i \(-0.377475\pi\)
0.375489 + 0.926827i \(0.377475\pi\)
\(164\) −2.94437 −0.229917
\(165\) 0 0
\(166\) −14.5972 −1.13296
\(167\) 5.34390 0.413524 0.206762 0.978391i \(-0.433707\pi\)
0.206762 + 0.978391i \(0.433707\pi\)
\(168\) −2.80528 −0.216432
\(169\) −9.13038 −0.702337
\(170\) 0 0
\(171\) 27.8064 2.12641
\(172\) −9.21344 −0.702518
\(173\) −17.4551 −1.32708 −0.663542 0.748139i \(-0.730948\pi\)
−0.663542 + 0.748139i \(0.730948\pi\)
\(174\) −52.7128 −3.99614
\(175\) 0 0
\(176\) 1.18513 0.0893327
\(177\) −18.9277 −1.42269
\(178\) 38.1440 2.85901
\(179\) −21.3248 −1.59389 −0.796945 0.604052i \(-0.793552\pi\)
−0.796945 + 0.604052i \(0.793552\pi\)
\(180\) 0 0
\(181\) 14.4380 1.07317 0.536584 0.843847i \(-0.319714\pi\)
0.536584 + 0.843847i \(0.319714\pi\)
\(182\) 1.03265 0.0765450
\(183\) −17.8452 −1.31916
\(184\) −1.50641 −0.111054
\(185\) 0 0
\(186\) −21.9852 −1.61203
\(187\) 0 0
\(188\) 24.8959 1.81572
\(189\) −2.74239 −0.199480
\(190\) 0 0
\(191\) 6.74239 0.487862 0.243931 0.969793i \(-0.421563\pi\)
0.243931 + 0.969793i \(0.421563\pi\)
\(192\) 34.5481 2.49329
\(193\) 14.6551 1.05490 0.527448 0.849587i \(-0.323149\pi\)
0.527448 + 0.849587i \(0.323149\pi\)
\(194\) 21.9893 1.57874
\(195\) 0 0
\(196\) −25.6792 −1.83423
\(197\) 0.869327 0.0619370 0.0309685 0.999520i \(-0.490141\pi\)
0.0309685 + 0.999520i \(0.490141\pi\)
\(198\) 8.70787 0.618841
\(199\) 13.3004 0.942838 0.471419 0.881909i \(-0.343742\pi\)
0.471419 + 0.881909i \(0.343742\pi\)
\(200\) 0 0
\(201\) −36.3159 −2.56152
\(202\) −17.2027 −1.21038
\(203\) 1.54053 0.108124
\(204\) 0 0
\(205\) 0 0
\(206\) −22.7276 −1.58351
\(207\) −2.59064 −0.180062
\(208\) 4.44102 0.307929
\(209\) 2.09980 0.145246
\(210\) 0 0
\(211\) 17.7914 1.22481 0.612405 0.790544i \(-0.290202\pi\)
0.612405 + 0.790544i \(0.290202\pi\)
\(212\) −21.8747 −1.50236
\(213\) 22.5973 1.54834
\(214\) 25.7324 1.75903
\(215\) 0 0
\(216\) −50.3895 −3.42857
\(217\) 0.642517 0.0436169
\(218\) −33.5828 −2.27451
\(219\) 3.73924 0.252674
\(220\) 0 0
\(221\) 0 0
\(222\) 43.0319 2.88811
\(223\) 1.96713 0.131729 0.0658645 0.997829i \(-0.479019\pi\)
0.0658645 + 0.997829i \(0.479019\pi\)
\(224\) −0.593394 −0.0396478
\(225\) 0 0
\(226\) 17.1550 1.14113
\(227\) 11.9585 0.793712 0.396856 0.917881i \(-0.370101\pi\)
0.396856 + 0.917881i \(0.370101\pi\)
\(228\) −46.6125 −3.08699
\(229\) 9.30601 0.614958 0.307479 0.951555i \(-0.400515\pi\)
0.307479 + 0.951555i \(0.400515\pi\)
\(230\) 0 0
\(231\) −0.364313 −0.0239700
\(232\) 28.3062 1.85839
\(233\) −25.8009 −1.69027 −0.845137 0.534550i \(-0.820481\pi\)
−0.845137 + 0.534550i \(0.820481\pi\)
\(234\) 32.6308 2.13314
\(235\) 0 0
\(236\) 22.1640 1.44275
\(237\) −21.2322 −1.37918
\(238\) 0 0
\(239\) 29.2912 1.89469 0.947345 0.320215i \(-0.103755\pi\)
0.947345 + 0.320215i \(0.103755\pi\)
\(240\) 0 0
\(241\) 8.48528 0.546585 0.273293 0.961931i \(-0.411887\pi\)
0.273293 + 0.961931i \(0.411887\pi\)
\(242\) −25.5907 −1.64503
\(243\) −20.8683 −1.33870
\(244\) 20.8964 1.33775
\(245\) 0 0
\(246\) 6.00000 0.382546
\(247\) 7.86854 0.500663
\(248\) 11.8058 0.749670
\(249\) 19.2978 1.22295
\(250\) 0 0
\(251\) 1.77282 0.111900 0.0559498 0.998434i \(-0.482181\pi\)
0.0559498 + 0.998434i \(0.482181\pi\)
\(252\) 5.64925 0.355869
\(253\) −0.195632 −0.0122993
\(254\) 23.2428 1.45838
\(255\) 0 0
\(256\) −27.5824 −1.72390
\(257\) −7.40235 −0.461746 −0.230873 0.972984i \(-0.574158\pi\)
−0.230873 + 0.972984i \(0.574158\pi\)
\(258\) 18.7750 1.16888
\(259\) −1.25761 −0.0781440
\(260\) 0 0
\(261\) 48.6795 3.01318
\(262\) 46.9746 2.90210
\(263\) 7.67291 0.473132 0.236566 0.971615i \(-0.423978\pi\)
0.236566 + 0.971615i \(0.423978\pi\)
\(264\) −6.69399 −0.411987
\(265\) 0 0
\(266\) 2.09980 0.128747
\(267\) −50.4271 −3.08609
\(268\) 42.5252 2.59764
\(269\) 7.87260 0.480001 0.240000 0.970773i \(-0.422852\pi\)
0.240000 + 0.970773i \(0.422852\pi\)
\(270\) 0 0
\(271\) 18.0672 1.09750 0.548751 0.835986i \(-0.315103\pi\)
0.548751 + 0.835986i \(0.315103\pi\)
\(272\) 0 0
\(273\) −1.36518 −0.0826245
\(274\) −11.1124 −0.671326
\(275\) 0 0
\(276\) 4.34275 0.261403
\(277\) −26.5569 −1.59565 −0.797824 0.602890i \(-0.794016\pi\)
−0.797824 + 0.602890i \(0.794016\pi\)
\(278\) 12.5225 0.751047
\(279\) 20.3030 1.21551
\(280\) 0 0
\(281\) 13.7728 0.821618 0.410809 0.911721i \(-0.365246\pi\)
0.410809 + 0.911721i \(0.365246\pi\)
\(282\) −50.7325 −3.02108
\(283\) 13.7471 0.817181 0.408591 0.912718i \(-0.366020\pi\)
0.408591 + 0.912718i \(0.366020\pi\)
\(284\) −26.4611 −1.57017
\(285\) 0 0
\(286\) 2.46411 0.145706
\(287\) −0.175350 −0.0103506
\(288\) −18.7507 −1.10490
\(289\) 0 0
\(290\) 0 0
\(291\) −29.0703 −1.70413
\(292\) −4.37857 −0.256237
\(293\) 19.8873 1.16183 0.580913 0.813966i \(-0.302696\pi\)
0.580913 + 0.813966i \(0.302696\pi\)
\(294\) 52.3287 3.05187
\(295\) 0 0
\(296\) −23.1077 −1.34311
\(297\) −6.54392 −0.379717
\(298\) 20.8612 1.20846
\(299\) −0.733088 −0.0423955
\(300\) 0 0
\(301\) −0.548700 −0.0316266
\(302\) 37.9484 2.18368
\(303\) 22.7423 1.30651
\(304\) 9.03043 0.517931
\(305\) 0 0
\(306\) 0 0
\(307\) −14.9598 −0.853799 −0.426900 0.904299i \(-0.640394\pi\)
−0.426900 + 0.904299i \(0.640394\pi\)
\(308\) 0.426603 0.0243080
\(309\) 30.0463 1.70928
\(310\) 0 0
\(311\) 29.6538 1.68151 0.840756 0.541414i \(-0.182111\pi\)
0.840756 + 0.541414i \(0.182111\pi\)
\(312\) −25.0843 −1.42012
\(313\) 14.3784 0.812716 0.406358 0.913714i \(-0.366799\pi\)
0.406358 + 0.913714i \(0.366799\pi\)
\(314\) 24.0336 1.35629
\(315\) 0 0
\(316\) 24.8624 1.39862
\(317\) −13.7751 −0.773687 −0.386843 0.922145i \(-0.626435\pi\)
−0.386843 + 0.922145i \(0.626435\pi\)
\(318\) 44.5759 2.49969
\(319\) 3.67603 0.205818
\(320\) 0 0
\(321\) −34.0188 −1.89874
\(322\) −0.195632 −0.0109021
\(323\) 0 0
\(324\) 68.2280 3.79044
\(325\) 0 0
\(326\) 22.8786 1.26713
\(327\) 44.3971 2.45516
\(328\) −3.22194 −0.177902
\(329\) 1.48266 0.0817415
\(330\) 0 0
\(331\) −20.1640 −1.10831 −0.554156 0.832413i \(-0.686959\pi\)
−0.554156 + 0.832413i \(0.686959\pi\)
\(332\) −22.5973 −1.24019
\(333\) −39.7393 −2.17770
\(334\) 12.7517 0.697740
\(335\) 0 0
\(336\) −1.56677 −0.0854742
\(337\) −28.5829 −1.55701 −0.778504 0.627640i \(-0.784021\pi\)
−0.778504 + 0.627640i \(0.784021\pi\)
\(338\) −21.7870 −1.18506
\(339\) −22.6792 −1.23176
\(340\) 0 0
\(341\) 1.53318 0.0830264
\(342\) 66.3519 3.58790
\(343\) −3.06926 −0.165725
\(344\) −10.0820 −0.543584
\(345\) 0 0
\(346\) −41.6514 −2.23919
\(347\) −10.9365 −0.587101 −0.293551 0.955944i \(-0.594837\pi\)
−0.293551 + 0.955944i \(0.594837\pi\)
\(348\) −81.6025 −4.37435
\(349\) 0.645598 0.0345581 0.0172790 0.999851i \(-0.494500\pi\)
0.0172790 + 0.999851i \(0.494500\pi\)
\(350\) 0 0
\(351\) −24.5219 −1.30888
\(352\) −1.41596 −0.0754711
\(353\) 14.3022 0.761229 0.380615 0.924734i \(-0.375712\pi\)
0.380615 + 0.924734i \(0.375712\pi\)
\(354\) −45.1654 −2.40052
\(355\) 0 0
\(356\) 59.0492 3.12960
\(357\) 0 0
\(358\) −50.8854 −2.68938
\(359\) −15.6760 −0.827349 −0.413675 0.910425i \(-0.635755\pi\)
−0.413675 + 0.910425i \(0.635755\pi\)
\(360\) 0 0
\(361\) −3.00000 −0.157895
\(362\) 34.4521 1.81076
\(363\) 33.8315 1.77569
\(364\) 1.59860 0.0837895
\(365\) 0 0
\(366\) −42.5824 −2.22582
\(367\) −21.9010 −1.14322 −0.571610 0.820525i \(-0.693681\pi\)
−0.571610 + 0.820525i \(0.693681\pi\)
\(368\) −0.841338 −0.0438578
\(369\) −5.54091 −0.288448
\(370\) 0 0
\(371\) −1.30273 −0.0676345
\(372\) −34.0344 −1.76460
\(373\) 6.50858 0.337002 0.168501 0.985702i \(-0.446107\pi\)
0.168501 + 0.985702i \(0.446107\pi\)
\(374\) 0 0
\(375\) 0 0
\(376\) 27.2428 1.40494
\(377\) 13.7751 0.709454
\(378\) −6.54392 −0.336583
\(379\) −7.52757 −0.386666 −0.193333 0.981133i \(-0.561930\pi\)
−0.193333 + 0.981133i \(0.561930\pi\)
\(380\) 0 0
\(381\) −30.7274 −1.57421
\(382\) 16.0888 0.823172
\(383\) −24.7752 −1.26595 −0.632976 0.774172i \(-0.718167\pi\)
−0.632976 + 0.774172i \(0.718167\pi\)
\(384\) 65.4209 3.33850
\(385\) 0 0
\(386\) 34.9701 1.77993
\(387\) −17.3385 −0.881363
\(388\) 34.0408 1.72816
\(389\) 23.6971 1.20149 0.600747 0.799440i \(-0.294870\pi\)
0.600747 + 0.799440i \(0.294870\pi\)
\(390\) 0 0
\(391\) 0 0
\(392\) −28.1000 −1.41926
\(393\) −62.1013 −3.13260
\(394\) 2.07440 0.104507
\(395\) 0 0
\(396\) 13.4803 0.677410
\(397\) 27.7135 1.39090 0.695451 0.718573i \(-0.255205\pi\)
0.695451 + 0.718573i \(0.255205\pi\)
\(398\) 31.7375 1.59086
\(399\) −2.77598 −0.138973
\(400\) 0 0
\(401\) 30.5431 1.52525 0.762624 0.646842i \(-0.223911\pi\)
0.762624 + 0.646842i \(0.223911\pi\)
\(402\) −86.6572 −4.32207
\(403\) 5.74525 0.286191
\(404\) −26.6308 −1.32493
\(405\) 0 0
\(406\) 3.67603 0.182438
\(407\) −3.00092 −0.148750
\(408\) 0 0
\(409\) −5.90321 −0.291895 −0.145947 0.989292i \(-0.546623\pi\)
−0.145947 + 0.989292i \(0.546623\pi\)
\(410\) 0 0
\(411\) 14.6908 0.724645
\(412\) −35.1837 −1.73337
\(413\) 1.31996 0.0649510
\(414\) −6.18180 −0.303819
\(415\) 0 0
\(416\) −5.30601 −0.260148
\(417\) −16.5549 −0.810699
\(418\) 5.01057 0.245075
\(419\) −32.4867 −1.58708 −0.793539 0.608519i \(-0.791764\pi\)
−0.793539 + 0.608519i \(0.791764\pi\)
\(420\) 0 0
\(421\) −30.1156 −1.46774 −0.733872 0.679288i \(-0.762289\pi\)
−0.733872 + 0.679288i \(0.762289\pi\)
\(422\) 42.4540 2.06663
\(423\) 46.8507 2.27796
\(424\) −23.9368 −1.16247
\(425\) 0 0
\(426\) 53.9220 2.61253
\(427\) 1.24447 0.0602242
\(428\) 39.8353 1.92551
\(429\) −3.25761 −0.157279
\(430\) 0 0
\(431\) −8.32464 −0.400984 −0.200492 0.979695i \(-0.564254\pi\)
−0.200492 + 0.979695i \(0.564254\pi\)
\(432\) −28.1429 −1.35402
\(433\) −13.5795 −0.652591 −0.326295 0.945268i \(-0.605800\pi\)
−0.326295 + 0.945268i \(0.605800\pi\)
\(434\) 1.53318 0.0735950
\(435\) 0 0
\(436\) −51.9881 −2.48978
\(437\) −1.49067 −0.0713085
\(438\) 8.92260 0.426338
\(439\) −20.3714 −0.972276 −0.486138 0.873882i \(-0.661595\pi\)
−0.486138 + 0.873882i \(0.661595\pi\)
\(440\) 0 0
\(441\) −48.3248 −2.30118
\(442\) 0 0
\(443\) 2.45360 0.116574 0.0582871 0.998300i \(-0.481436\pi\)
0.0582871 + 0.998300i \(0.481436\pi\)
\(444\) 66.6160 3.16145
\(445\) 0 0
\(446\) 4.69399 0.222267
\(447\) −27.5789 −1.30444
\(448\) −2.40928 −0.113828
\(449\) 3.19720 0.150885 0.0754426 0.997150i \(-0.475963\pi\)
0.0754426 + 0.997150i \(0.475963\pi\)
\(450\) 0 0
\(451\) −0.418422 −0.0197027
\(452\) 26.5569 1.24913
\(453\) −50.1685 −2.35712
\(454\) 28.5354 1.33923
\(455\) 0 0
\(456\) −51.0067 −2.38861
\(457\) 30.1803 1.41177 0.705887 0.708325i \(-0.250549\pi\)
0.705887 + 0.708325i \(0.250549\pi\)
\(458\) 22.2061 1.03762
\(459\) 0 0
\(460\) 0 0
\(461\) 5.41527 0.252214 0.126107 0.992017i \(-0.459752\pi\)
0.126107 + 0.992017i \(0.459752\pi\)
\(462\) −0.869327 −0.0404447
\(463\) −15.7574 −0.732307 −0.366153 0.930555i \(-0.619325\pi\)
−0.366153 + 0.930555i \(0.619325\pi\)
\(464\) 15.8092 0.733923
\(465\) 0 0
\(466\) −61.5664 −2.85201
\(467\) 10.7690 0.498331 0.249166 0.968461i \(-0.419844\pi\)
0.249166 + 0.968461i \(0.419844\pi\)
\(468\) 50.5144 2.33503
\(469\) 2.53256 0.116943
\(470\) 0 0
\(471\) −31.7729 −1.46402
\(472\) 24.2534 1.11635
\(473\) −1.30931 −0.0602023
\(474\) −50.6644 −2.32709
\(475\) 0 0
\(476\) 0 0
\(477\) −41.1652 −1.88483
\(478\) 69.8949 3.19692
\(479\) −36.9092 −1.68643 −0.843213 0.537579i \(-0.819339\pi\)
−0.843213 + 0.537579i \(0.819339\pi\)
\(480\) 0 0
\(481\) −11.2453 −0.512740
\(482\) 20.2477 0.922256
\(483\) 0.258629 0.0117680
\(484\) −39.6160 −1.80073
\(485\) 0 0
\(486\) −49.7961 −2.25880
\(487\) 38.3234 1.73660 0.868299 0.496041i \(-0.165214\pi\)
0.868299 + 0.496041i \(0.165214\pi\)
\(488\) 22.8663 1.03511
\(489\) −30.2460 −1.36777
\(490\) 0 0
\(491\) 38.0336 1.71643 0.858216 0.513289i \(-0.171573\pi\)
0.858216 + 0.513289i \(0.171573\pi\)
\(492\) 9.28836 0.418752
\(493\) 0 0
\(494\) 18.7760 0.844771
\(495\) 0 0
\(496\) 6.59362 0.296062
\(497\) −1.57587 −0.0706875
\(498\) 46.0486 2.06349
\(499\) −9.30610 −0.416598 −0.208299 0.978065i \(-0.566793\pi\)
−0.208299 + 0.978065i \(0.566793\pi\)
\(500\) 0 0
\(501\) −16.8580 −0.753158
\(502\) 4.23033 0.188809
\(503\) −1.56864 −0.0699421 −0.0349710 0.999388i \(-0.511134\pi\)
−0.0349710 + 0.999388i \(0.511134\pi\)
\(504\) 6.18180 0.275359
\(505\) 0 0
\(506\) −0.466819 −0.0207526
\(507\) 28.8028 1.27918
\(508\) 35.9812 1.59641
\(509\) 24.4247 1.08261 0.541304 0.840827i \(-0.317931\pi\)
0.541304 + 0.840827i \(0.317931\pi\)
\(510\) 0 0
\(511\) −0.260763 −0.0115355
\(512\) −24.3410 −1.07573
\(513\) −49.8632 −2.20151
\(514\) −17.6636 −0.779106
\(515\) 0 0
\(516\) 29.0649 1.27951
\(517\) 3.53793 0.155598
\(518\) −3.00092 −0.131853
\(519\) 55.0640 2.41704
\(520\) 0 0
\(521\) −7.50829 −0.328944 −0.164472 0.986382i \(-0.552592\pi\)
−0.164472 + 0.986382i \(0.552592\pi\)
\(522\) 116.159 5.08416
\(523\) −8.98247 −0.392776 −0.196388 0.980526i \(-0.562921\pi\)
−0.196388 + 0.980526i \(0.562921\pi\)
\(524\) 72.7194 3.17676
\(525\) 0 0
\(526\) 18.3092 0.798317
\(527\) 0 0
\(528\) −3.73864 −0.162703
\(529\) −22.8611 −0.993962
\(530\) 0 0
\(531\) 41.7096 1.81004
\(532\) 3.25062 0.140932
\(533\) −1.56794 −0.0679152
\(534\) −120.330 −5.20718
\(535\) 0 0
\(536\) 46.5340 2.00996
\(537\) 67.2715 2.90298
\(538\) 18.7857 0.809908
\(539\) −3.64925 −0.157184
\(540\) 0 0
\(541\) −12.7279 −0.547216 −0.273608 0.961841i \(-0.588217\pi\)
−0.273608 + 0.961841i \(0.588217\pi\)
\(542\) 43.1121 1.85182
\(543\) −45.5464 −1.95458
\(544\) 0 0
\(545\) 0 0
\(546\) −3.25761 −0.139413
\(547\) −2.57260 −0.109997 −0.0549983 0.998486i \(-0.517515\pi\)
−0.0549983 + 0.998486i \(0.517515\pi\)
\(548\) −17.2027 −0.734862
\(549\) 39.3242 1.67832
\(550\) 0 0
\(551\) 28.0105 1.19329
\(552\) 4.75214 0.202264
\(553\) 1.48067 0.0629644
\(554\) −63.3703 −2.69235
\(555\) 0 0
\(556\) 19.3855 0.822129
\(557\) −21.0162 −0.890487 −0.445243 0.895410i \(-0.646883\pi\)
−0.445243 + 0.895410i \(0.646883\pi\)
\(558\) 48.4472 2.05093
\(559\) −4.90636 −0.207517
\(560\) 0 0
\(561\) 0 0
\(562\) 32.8648 1.38632
\(563\) −40.5377 −1.70846 −0.854231 0.519893i \(-0.825972\pi\)
−0.854231 + 0.519893i \(0.825972\pi\)
\(564\) −78.5369 −3.30700
\(565\) 0 0
\(566\) 32.8035 1.37883
\(567\) 4.06327 0.170641
\(568\) −28.9555 −1.21495
\(569\) −0.612010 −0.0256568 −0.0128284 0.999918i \(-0.504084\pi\)
−0.0128284 + 0.999918i \(0.504084\pi\)
\(570\) 0 0
\(571\) 14.8945 0.623316 0.311658 0.950194i \(-0.399116\pi\)
0.311658 + 0.950194i \(0.399116\pi\)
\(572\) 3.81460 0.159496
\(573\) −21.2697 −0.888553
\(574\) −0.418422 −0.0174646
\(575\) 0 0
\(576\) −76.1312 −3.17213
\(577\) 37.2107 1.54910 0.774550 0.632513i \(-0.217976\pi\)
0.774550 + 0.632513i \(0.217976\pi\)
\(578\) 0 0
\(579\) −46.2311 −1.92130
\(580\) 0 0
\(581\) −1.34577 −0.0558319
\(582\) −69.3679 −2.87539
\(583\) −3.10859 −0.128745
\(584\) −4.79134 −0.198267
\(585\) 0 0
\(586\) 47.4552 1.96035
\(587\) 9.60470 0.396428 0.198214 0.980159i \(-0.436486\pi\)
0.198214 + 0.980159i \(0.436486\pi\)
\(588\) 81.0080 3.34071
\(589\) 11.6825 0.481368
\(590\) 0 0
\(591\) −2.74239 −0.112807
\(592\) −12.9058 −0.530424
\(593\) 16.5206 0.678419 0.339210 0.940711i \(-0.389840\pi\)
0.339210 + 0.940711i \(0.389840\pi\)
\(594\) −15.6152 −0.640698
\(595\) 0 0
\(596\) 32.2944 1.32283
\(597\) −41.9576 −1.71721
\(598\) −1.74930 −0.0715342
\(599\) 34.8096 1.42228 0.711140 0.703050i \(-0.248179\pi\)
0.711140 + 0.703050i \(0.248179\pi\)
\(600\) 0 0
\(601\) −11.6825 −0.476538 −0.238269 0.971199i \(-0.576580\pi\)
−0.238269 + 0.971199i \(0.576580\pi\)
\(602\) −1.30931 −0.0533636
\(603\) 80.0267 3.25894
\(604\) 58.7464 2.39036
\(605\) 0 0
\(606\) 54.2679 2.20448
\(607\) 26.9296 1.09304 0.546519 0.837447i \(-0.315953\pi\)
0.546519 + 0.837447i \(0.315953\pi\)
\(608\) −10.7893 −0.437564
\(609\) −4.85978 −0.196928
\(610\) 0 0
\(611\) 13.2576 0.536345
\(612\) 0 0
\(613\) −5.43522 −0.219526 −0.109763 0.993958i \(-0.535009\pi\)
−0.109763 + 0.993958i \(0.535009\pi\)
\(614\) −35.6971 −1.44062
\(615\) 0 0
\(616\) 0.466819 0.0188087
\(617\) 3.49860 0.140848 0.0704242 0.997517i \(-0.477565\pi\)
0.0704242 + 0.997517i \(0.477565\pi\)
\(618\) 71.6968 2.88407
\(619\) 12.1301 0.487549 0.243774 0.969832i \(-0.421614\pi\)
0.243774 + 0.969832i \(0.421614\pi\)
\(620\) 0 0
\(621\) 4.64560 0.186421
\(622\) 70.7602 2.83722
\(623\) 3.51664 0.140891
\(624\) −14.0097 −0.560837
\(625\) 0 0
\(626\) 34.3099 1.37130
\(627\) −6.62407 −0.264540
\(628\) 37.2054 1.48466
\(629\) 0 0
\(630\) 0 0
\(631\) 12.6183 0.502327 0.251164 0.967945i \(-0.419187\pi\)
0.251164 + 0.967945i \(0.419187\pi\)
\(632\) 27.2062 1.08221
\(633\) −56.1250 −2.23077
\(634\) −32.8703 −1.30545
\(635\) 0 0
\(636\) 69.0062 2.73627
\(637\) −13.6747 −0.541813
\(638\) 8.77178 0.347278
\(639\) −49.7961 −1.96991
\(640\) 0 0
\(641\) −30.1997 −1.19282 −0.596408 0.802681i \(-0.703406\pi\)
−0.596408 + 0.802681i \(0.703406\pi\)
\(642\) −81.1759 −3.20376
\(643\) 19.7117 0.777352 0.388676 0.921374i \(-0.372932\pi\)
0.388676 + 0.921374i \(0.372932\pi\)
\(644\) −0.302850 −0.0119340
\(645\) 0 0
\(646\) 0 0
\(647\) 21.0418 0.827237 0.413618 0.910450i \(-0.364265\pi\)
0.413618 + 0.910450i \(0.364265\pi\)
\(648\) 74.6598 2.93291
\(649\) 3.14970 0.123637
\(650\) 0 0
\(651\) −2.02690 −0.0794403
\(652\) 35.4174 1.38705
\(653\) −38.7173 −1.51513 −0.757563 0.652762i \(-0.773610\pi\)
−0.757563 + 0.652762i \(0.773610\pi\)
\(654\) 105.941 4.14261
\(655\) 0 0
\(656\) −1.79947 −0.0702575
\(657\) −8.23989 −0.321469
\(658\) 3.53793 0.137923
\(659\) −24.1577 −0.941049 −0.470524 0.882387i \(-0.655935\pi\)
−0.470524 + 0.882387i \(0.655935\pi\)
\(660\) 0 0
\(661\) −25.7432 −1.00129 −0.500647 0.865651i \(-0.666905\pi\)
−0.500647 + 0.865651i \(0.666905\pi\)
\(662\) −48.1155 −1.87006
\(663\) 0 0
\(664\) −24.7276 −0.959616
\(665\) 0 0
\(666\) −94.8264 −3.67445
\(667\) −2.60965 −0.101046
\(668\) 19.7404 0.763777
\(669\) −6.20555 −0.239921
\(670\) 0 0
\(671\) 2.96957 0.114639
\(672\) 1.87193 0.0722113
\(673\) −10.4958 −0.404583 −0.202292 0.979325i \(-0.564839\pi\)
−0.202292 + 0.979325i \(0.564839\pi\)
\(674\) −68.2047 −2.62715
\(675\) 0 0
\(676\) −33.7276 −1.29721
\(677\) 8.48787 0.326215 0.163108 0.986608i \(-0.447848\pi\)
0.163108 + 0.986608i \(0.447848\pi\)
\(678\) −54.1173 −2.07836
\(679\) 2.02728 0.0777998
\(680\) 0 0
\(681\) −37.7244 −1.44560
\(682\) 3.65849 0.140091
\(683\) 14.2898 0.546784 0.273392 0.961903i \(-0.411854\pi\)
0.273392 + 0.961903i \(0.411854\pi\)
\(684\) 102.717 3.92747
\(685\) 0 0
\(686\) −7.32390 −0.279628
\(687\) −29.3569 −1.12003
\(688\) −5.63085 −0.214674
\(689\) −11.6488 −0.443782
\(690\) 0 0
\(691\) −8.82584 −0.335751 −0.167875 0.985808i \(-0.553691\pi\)
−0.167875 + 0.985808i \(0.553691\pi\)
\(692\) −64.4789 −2.45112
\(693\) 0.802810 0.0304962
\(694\) −26.0967 −0.990619
\(695\) 0 0
\(696\) −89.2952 −3.38472
\(697\) 0 0
\(698\) 1.54053 0.0583100
\(699\) 81.3920 3.07853
\(700\) 0 0
\(701\) −18.5340 −0.700019 −0.350010 0.936746i \(-0.613822\pi\)
−0.350010 + 0.936746i \(0.613822\pi\)
\(702\) −58.5144 −2.20848
\(703\) −22.8663 −0.862418
\(704\) −5.74905 −0.216675
\(705\) 0 0
\(706\) 34.1280 1.28443
\(707\) −1.58598 −0.0596469
\(708\) −69.9188 −2.62771
\(709\) −25.4989 −0.957631 −0.478815 0.877916i \(-0.658934\pi\)
−0.478815 + 0.877916i \(0.658934\pi\)
\(710\) 0 0
\(711\) 46.7878 1.75468
\(712\) 64.6158 2.42158
\(713\) −1.08842 −0.0407617
\(714\) 0 0
\(715\) 0 0
\(716\) −78.7736 −2.94391
\(717\) −92.4025 −3.45083
\(718\) −37.4063 −1.39599
\(719\) 4.76313 0.177635 0.0888174 0.996048i \(-0.471691\pi\)
0.0888174 + 0.996048i \(0.471691\pi\)
\(720\) 0 0
\(721\) −2.09534 −0.0780345
\(722\) −7.15863 −0.266417
\(723\) −26.7678 −0.995505
\(724\) 53.3339 1.98214
\(725\) 0 0
\(726\) 80.7289 2.99613
\(727\) 11.1858 0.414858 0.207429 0.978250i \(-0.433490\pi\)
0.207429 + 0.978250i \(0.433490\pi\)
\(728\) 1.74930 0.0648334
\(729\) 10.4216 0.385984
\(730\) 0 0
\(731\) 0 0
\(732\) −65.9201 −2.43648
\(733\) 26.2804 0.970687 0.485344 0.874324i \(-0.338695\pi\)
0.485344 + 0.874324i \(0.338695\pi\)
\(734\) −52.2603 −1.92896
\(735\) 0 0
\(736\) 1.00521 0.0370524
\(737\) 6.04321 0.222605
\(738\) −13.2218 −0.486700
\(739\) 6.00000 0.220714 0.110357 0.993892i \(-0.464801\pi\)
0.110357 + 0.993892i \(0.464801\pi\)
\(740\) 0 0
\(741\) −24.8222 −0.911867
\(742\) −3.10859 −0.114120
\(743\) 34.0401 1.24881 0.624405 0.781101i \(-0.285341\pi\)
0.624405 + 0.781101i \(0.285341\pi\)
\(744\) −37.2428 −1.36539
\(745\) 0 0
\(746\) 15.5308 0.568624
\(747\) −42.5252 −1.55591
\(748\) 0 0
\(749\) 2.37237 0.0866844
\(750\) 0 0
\(751\) −13.0431 −0.475949 −0.237974 0.971271i \(-0.576483\pi\)
−0.237974 + 0.971271i \(0.576483\pi\)
\(752\) 15.2153 0.554844
\(753\) −5.59258 −0.203805
\(754\) 32.8703 1.19707
\(755\) 0 0
\(756\) −10.1304 −0.368438
\(757\) −31.8716 −1.15839 −0.579197 0.815188i \(-0.696634\pi\)
−0.579197 + 0.815188i \(0.696634\pi\)
\(758\) −17.9624 −0.652423
\(759\) 0.617144 0.0224009
\(760\) 0 0
\(761\) −18.7549 −0.679863 −0.339932 0.940450i \(-0.610404\pi\)
−0.339932 + 0.940450i \(0.610404\pi\)
\(762\) −73.3221 −2.65618
\(763\) −3.09612 −0.112087
\(764\) 24.9064 0.901081
\(765\) 0 0
\(766\) −59.1187 −2.13605
\(767\) 11.8028 0.426175
\(768\) 87.0119 3.13977
\(769\) −47.7916 −1.72341 −0.861705 0.507410i \(-0.830603\pi\)
−0.861705 + 0.507410i \(0.830603\pi\)
\(770\) 0 0
\(771\) 23.3516 0.840987
\(772\) 54.1358 1.94839
\(773\) −28.3286 −1.01891 −0.509455 0.860497i \(-0.670153\pi\)
−0.509455 + 0.860497i \(0.670153\pi\)
\(774\) −41.3732 −1.48713
\(775\) 0 0
\(776\) 37.2498 1.33719
\(777\) 3.96727 0.142325
\(778\) 56.5464 2.02729
\(779\) −3.18828 −0.114232
\(780\) 0 0
\(781\) −3.76036 −0.134556
\(782\) 0 0
\(783\) −87.2932 −3.11961
\(784\) −15.6940 −0.560500
\(785\) 0 0
\(786\) −148.187 −5.28565
\(787\) −42.3119 −1.50826 −0.754129 0.656727i \(-0.771941\pi\)
−0.754129 + 0.656727i \(0.771941\pi\)
\(788\) 3.21129 0.114397
\(789\) −24.2051 −0.861723
\(790\) 0 0
\(791\) 1.58158 0.0562344
\(792\) 14.7511 0.524157
\(793\) 11.1278 0.395160
\(794\) 66.1303 2.34688
\(795\) 0 0
\(796\) 49.1315 1.74142
\(797\) −54.1578 −1.91837 −0.959185 0.282780i \(-0.908743\pi\)
−0.959185 + 0.282780i \(0.908743\pi\)
\(798\) −6.62407 −0.234489
\(799\) 0 0
\(800\) 0 0
\(801\) 111.123 3.92633
\(802\) 72.8821 2.57356
\(803\) −0.622235 −0.0219582
\(804\) −134.151 −4.73113
\(805\) 0 0
\(806\) 13.7094 0.482892
\(807\) −24.8350 −0.874234
\(808\) −29.1413 −1.02519
\(809\) 30.9803 1.08921 0.544604 0.838693i \(-0.316680\pi\)
0.544604 + 0.838693i \(0.316680\pi\)
\(810\) 0 0
\(811\) 4.15045 0.145742 0.0728710 0.997341i \(-0.476784\pi\)
0.0728710 + 0.997341i \(0.476784\pi\)
\(812\) 5.69071 0.199705
\(813\) −56.9950 −1.99890
\(814\) −7.16081 −0.250986
\(815\) 0 0
\(816\) 0 0
\(817\) −9.97667 −0.349039
\(818\) −14.0863 −0.492515
\(819\) 3.00835 0.105120
\(820\) 0 0
\(821\) 1.40975 0.0492007 0.0246003 0.999697i \(-0.492169\pi\)
0.0246003 + 0.999697i \(0.492169\pi\)
\(822\) 35.0554 1.22270
\(823\) 20.2090 0.704442 0.352221 0.935917i \(-0.385427\pi\)
0.352221 + 0.935917i \(0.385427\pi\)
\(824\) −38.5004 −1.34123
\(825\) 0 0
\(826\) 3.14970 0.109592
\(827\) −11.3584 −0.394971 −0.197486 0.980306i \(-0.563278\pi\)
−0.197486 + 0.980306i \(0.563278\pi\)
\(828\) −9.56980 −0.332574
\(829\) −10.9336 −0.379741 −0.189870 0.981809i \(-0.560807\pi\)
−0.189870 + 0.981809i \(0.560807\pi\)
\(830\) 0 0
\(831\) 83.7768 2.90618
\(832\) −21.5433 −0.746879
\(833\) 0 0
\(834\) −39.5036 −1.36790
\(835\) 0 0
\(836\) 7.75666 0.268270
\(837\) −36.4078 −1.25844
\(838\) −77.5200 −2.67788
\(839\) −38.8677 −1.34186 −0.670931 0.741520i \(-0.734105\pi\)
−0.670931 + 0.741520i \(0.734105\pi\)
\(840\) 0 0
\(841\) 20.0367 0.690922
\(842\) −71.8621 −2.47653
\(843\) −43.4480 −1.49643
\(844\) 65.7213 2.26222
\(845\) 0 0
\(846\) 111.796 3.84361
\(847\) −2.35930 −0.0810666
\(848\) −13.3688 −0.459088
\(849\) −43.3669 −1.48835
\(850\) 0 0
\(851\) 2.13038 0.0730285
\(852\) 83.4745 2.85979
\(853\) −32.0255 −1.09653 −0.548266 0.836304i \(-0.684712\pi\)
−0.548266 + 0.836304i \(0.684712\pi\)
\(854\) 2.96957 0.101617
\(855\) 0 0
\(856\) 43.5906 1.48990
\(857\) 25.6769 0.877107 0.438553 0.898705i \(-0.355491\pi\)
0.438553 + 0.898705i \(0.355491\pi\)
\(858\) −7.77333 −0.265377
\(859\) −38.7065 −1.32065 −0.660324 0.750981i \(-0.729581\pi\)
−0.660324 + 0.750981i \(0.729581\pi\)
\(860\) 0 0
\(861\) 0.553162 0.0188517
\(862\) −19.8643 −0.676582
\(863\) −29.5881 −1.00719 −0.503596 0.863939i \(-0.667990\pi\)
−0.503596 + 0.863939i \(0.667990\pi\)
\(864\) 33.6243 1.14392
\(865\) 0 0
\(866\) −32.4036 −1.10112
\(867\) 0 0
\(868\) 2.37346 0.0805603
\(869\) 3.53318 0.119855
\(870\) 0 0
\(871\) 22.6456 0.767317
\(872\) −56.8890 −1.92651
\(873\) 64.0602 2.16811
\(874\) −3.55705 −0.120319
\(875\) 0 0
\(876\) 13.8127 0.466689
\(877\) −26.4995 −0.894825 −0.447413 0.894328i \(-0.647654\pi\)
−0.447413 + 0.894328i \(0.647654\pi\)
\(878\) −48.6105 −1.64053
\(879\) −62.7367 −2.11606
\(880\) 0 0
\(881\) −10.9924 −0.370344 −0.185172 0.982706i \(-0.559284\pi\)
−0.185172 + 0.982706i \(0.559284\pi\)
\(882\) −115.313 −3.88279
\(883\) −56.2202 −1.89196 −0.945980 0.324225i \(-0.894896\pi\)
−0.945980 + 0.324225i \(0.894896\pi\)
\(884\) 0 0
\(885\) 0 0
\(886\) 5.85481 0.196696
\(887\) −6.90120 −0.231720 −0.115860 0.993266i \(-0.536962\pi\)
−0.115860 + 0.993266i \(0.536962\pi\)
\(888\) 72.8958 2.44622
\(889\) 2.14284 0.0718685
\(890\) 0 0
\(891\) 9.69582 0.324822
\(892\) 7.26658 0.243303
\(893\) 26.9582 0.902122
\(894\) −65.8090 −2.20098
\(895\) 0 0
\(896\) −4.56226 −0.152414
\(897\) 2.31261 0.0772158
\(898\) 7.62919 0.254589
\(899\) 20.4520 0.682113
\(900\) 0 0
\(901\) 0 0
\(902\) −0.998442 −0.0332445
\(903\) 1.73094 0.0576020
\(904\) 29.0604 0.966534
\(905\) 0 0
\(906\) −119.713 −3.97718
\(907\) −31.2128 −1.03640 −0.518202 0.855258i \(-0.673399\pi\)
−0.518202 + 0.855258i \(0.673399\pi\)
\(908\) 44.1746 1.46598
\(909\) −50.1156 −1.66223
\(910\) 0 0
\(911\) −42.4932 −1.40786 −0.703931 0.710268i \(-0.748574\pi\)
−0.703931 + 0.710268i \(0.748574\pi\)
\(912\) −28.4875 −0.943317
\(913\) −3.21129 −0.106278
\(914\) 72.0164 2.38209
\(915\) 0 0
\(916\) 34.3763 1.13583
\(917\) 4.33076 0.143014
\(918\) 0 0
\(919\) 29.1312 0.960949 0.480475 0.877009i \(-0.340464\pi\)
0.480475 + 0.877009i \(0.340464\pi\)
\(920\) 0 0
\(921\) 47.1923 1.55504
\(922\) 12.9220 0.425562
\(923\) −14.0911 −0.463814
\(924\) −1.34577 −0.0442726
\(925\) 0 0
\(926\) −37.6004 −1.23562
\(927\) −66.2109 −2.17465
\(928\) −18.8884 −0.620041
\(929\) −1.30273 −0.0427412 −0.0213706 0.999772i \(-0.506803\pi\)
−0.0213706 + 0.999772i \(0.506803\pi\)
\(930\) 0 0
\(931\) −27.8064 −0.911318
\(932\) −95.3084 −3.12193
\(933\) −93.5463 −3.06257
\(934\) 25.6971 0.840836
\(935\) 0 0
\(936\) 55.2764 1.80677
\(937\) −9.43458 −0.308214 −0.154107 0.988054i \(-0.549250\pi\)
−0.154107 + 0.988054i \(0.549250\pi\)
\(938\) 6.04321 0.197318
\(939\) −45.3584 −1.48021
\(940\) 0 0
\(941\) −25.1776 −0.820767 −0.410383 0.911913i \(-0.634605\pi\)
−0.410383 + 0.911913i \(0.634605\pi\)
\(942\) −75.8167 −2.47024
\(943\) 0.297042 0.00967302
\(944\) 13.5456 0.440873
\(945\) 0 0
\(946\) −3.12430 −0.101580
\(947\) 27.6569 0.898727 0.449364 0.893349i \(-0.351651\pi\)
0.449364 + 0.893349i \(0.351651\pi\)
\(948\) −78.4315 −2.54734
\(949\) −2.33169 −0.0756898
\(950\) 0 0
\(951\) 43.4552 1.40913
\(952\) 0 0
\(953\) −16.0279 −0.519195 −0.259598 0.965717i \(-0.583590\pi\)
−0.259598 + 0.965717i \(0.583590\pi\)
\(954\) −98.2288 −3.18027
\(955\) 0 0
\(956\) 108.202 3.49949
\(957\) −11.5965 −0.374860
\(958\) −88.0732 −2.84552
\(959\) −1.02449 −0.0330827
\(960\) 0 0
\(961\) −22.4700 −0.724838
\(962\) −26.8336 −0.865149
\(963\) 74.9648 2.41571
\(964\) 31.3446 1.00954
\(965\) 0 0
\(966\) 0.617144 0.0198563
\(967\) 10.9849 0.353252 0.176626 0.984278i \(-0.443482\pi\)
0.176626 + 0.984278i \(0.443482\pi\)
\(968\) −43.3506 −1.39334
\(969\) 0 0
\(970\) 0 0
\(971\) 32.2944 1.03638 0.518188 0.855267i \(-0.326607\pi\)
0.518188 + 0.855267i \(0.326607\pi\)
\(972\) −77.0874 −2.47258
\(973\) 1.15449 0.0370113
\(974\) 91.4476 2.93017
\(975\) 0 0
\(976\) 12.7710 0.408788
\(977\) −2.59459 −0.0830084 −0.0415042 0.999138i \(-0.513215\pi\)
−0.0415042 + 0.999138i \(0.513215\pi\)
\(978\) −72.1732 −2.30784
\(979\) 8.39143 0.268191
\(980\) 0 0
\(981\) −97.8347 −3.12362
\(982\) 90.7561 2.89614
\(983\) −9.61652 −0.306719 −0.153360 0.988170i \(-0.549009\pi\)
−0.153360 + 0.988170i \(0.549009\pi\)
\(984\) 10.1640 0.324015
\(985\) 0 0
\(986\) 0 0
\(987\) −4.67721 −0.148877
\(988\) 29.0663 0.924723
\(989\) 0.929495 0.0295562
\(990\) 0 0
\(991\) −28.2650 −0.897867 −0.448933 0.893565i \(-0.648196\pi\)
−0.448933 + 0.893565i \(0.648196\pi\)
\(992\) −7.87787 −0.250123
\(993\) 63.6096 2.01859
\(994\) −3.76036 −0.119271
\(995\) 0 0
\(996\) 71.2859 2.25878
\(997\) −3.34593 −0.105967 −0.0529833 0.998595i \(-0.516873\pi\)
−0.0529833 + 0.998595i \(0.516873\pi\)
\(998\) −22.2063 −0.702928
\(999\) 71.2616 2.25462
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 7225.2.a.bp.1.11 12
5.2 odd 4 1445.2.b.f.579.12 12
5.3 odd 4 1445.2.b.f.579.1 12
5.4 even 2 inner 7225.2.a.bp.1.2 12
17.2 even 8 425.2.e.d.276.6 12
17.9 even 8 425.2.e.d.251.1 12
17.16 even 2 inner 7225.2.a.bp.1.12 12
85.2 odd 8 85.2.j.c.4.1 12
85.9 even 8 425.2.e.d.251.6 12
85.19 even 8 425.2.e.d.276.1 12
85.33 odd 4 1445.2.b.f.579.2 12
85.43 odd 8 85.2.j.c.64.1 yes 12
85.53 odd 8 85.2.j.c.4.6 yes 12
85.67 odd 4 1445.2.b.f.579.11 12
85.77 odd 8 85.2.j.c.64.6 yes 12
85.84 even 2 inner 7225.2.a.bp.1.1 12
255.2 even 8 765.2.t.e.514.6 12
255.53 even 8 765.2.t.e.514.1 12
255.77 even 8 765.2.t.e.64.1 12
255.128 even 8 765.2.t.e.64.6 12
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
85.2.j.c.4.1 12 85.2 odd 8
85.2.j.c.4.6 yes 12 85.53 odd 8
85.2.j.c.64.1 yes 12 85.43 odd 8
85.2.j.c.64.6 yes 12 85.77 odd 8
425.2.e.d.251.1 12 17.9 even 8
425.2.e.d.251.6 12 85.9 even 8
425.2.e.d.276.1 12 85.19 even 8
425.2.e.d.276.6 12 17.2 even 8
765.2.t.e.64.1 12 255.77 even 8
765.2.t.e.64.6 12 255.128 even 8
765.2.t.e.514.1 12 255.53 even 8
765.2.t.e.514.6 12 255.2 even 8
1445.2.b.f.579.1 12 5.3 odd 4
1445.2.b.f.579.2 12 85.33 odd 4
1445.2.b.f.579.11 12 85.67 odd 4
1445.2.b.f.579.12 12 5.2 odd 4
7225.2.a.bp.1.1 12 85.84 even 2 inner
7225.2.a.bp.1.2 12 5.4 even 2 inner
7225.2.a.bp.1.11 12 1.1 even 1 trivial
7225.2.a.bp.1.12 12 17.16 even 2 inner