Properties

Label 7225.2.a.bq.1.2
Level $7225$
Weight $2$
Character 7225.1
Self dual yes
Analytic conductor $57.692$
Analytic rank $0$
Dimension $12$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [7225,2,Mod(1,7225)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(7225, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("7225.1");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 7225 = 5^{2} \cdot 17^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 7225.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(57.6919154604\)
Analytic rank: \(0\)
Dimension: \(12\)
Coefficient field: \(\mathbb{Q}[x]/(x^{12} - \cdots)\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{12} - 4 x^{11} - 10 x^{10} + 52 x^{9} + 21 x^{8} - 232 x^{7} + 44 x^{6} + 424 x^{5} - 137 x^{4} + \cdots + 17 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2, a_3]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 85)
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.2
Root \(-2.04505\) of defining polynomial
Character \(\chi\) \(=\) 7225.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-2.04505 q^{2} -3.19566 q^{3} +2.18224 q^{4} +6.53528 q^{6} +1.17743 q^{7} -0.372688 q^{8} +7.21221 q^{9} +4.92251 q^{11} -6.97368 q^{12} +2.46296 q^{13} -2.40791 q^{14} -3.60231 q^{16} -14.7494 q^{18} +2.04173 q^{19} -3.76267 q^{21} -10.0668 q^{22} -0.119023 q^{23} +1.19098 q^{24} -5.03689 q^{26} -13.4608 q^{27} +2.56944 q^{28} +1.06541 q^{29} +2.79577 q^{31} +8.11229 q^{32} -15.7307 q^{33} +15.7388 q^{36} +2.31477 q^{37} -4.17544 q^{38} -7.87078 q^{39} +0.717574 q^{41} +7.69485 q^{42} +10.0958 q^{43} +10.7421 q^{44} +0.243408 q^{46} +3.39482 q^{47} +11.5117 q^{48} -5.61365 q^{49} +5.37477 q^{52} +13.9241 q^{53} +27.5280 q^{54} -0.438815 q^{56} -6.52466 q^{57} -2.17882 q^{58} +1.51711 q^{59} +8.08120 q^{61} -5.71749 q^{62} +8.49190 q^{63} -9.38544 q^{64} +32.1700 q^{66} +4.92534 q^{67} +0.380355 q^{69} -6.63635 q^{71} -2.68790 q^{72} +3.66716 q^{73} -4.73382 q^{74} +4.45554 q^{76} +5.79593 q^{77} +16.0962 q^{78} +8.18051 q^{79} +21.3794 q^{81} -1.46748 q^{82} +6.08874 q^{83} -8.21104 q^{84} -20.6464 q^{86} -3.40468 q^{87} -1.83456 q^{88} +8.46170 q^{89} +2.89997 q^{91} -0.259736 q^{92} -8.93431 q^{93} -6.94259 q^{94} -25.9241 q^{96} +4.48946 q^{97} +11.4802 q^{98} +35.5022 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 12 q + 4 q^{2} - 8 q^{3} + 12 q^{4} + 8 q^{6} - 16 q^{7} + 12 q^{8} + 12 q^{9} + 16 q^{11} - 16 q^{12} + 8 q^{13} - 16 q^{14} + 12 q^{16} - 4 q^{18} + 16 q^{21} - 16 q^{22} - 16 q^{23} + 16 q^{26} - 32 q^{27}+ \cdots + 56 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −2.04505 −1.44607 −0.723035 0.690811i \(-0.757254\pi\)
−0.723035 + 0.690811i \(0.757254\pi\)
\(3\) −3.19566 −1.84501 −0.922506 0.385982i \(-0.873863\pi\)
−0.922506 + 0.385982i \(0.873863\pi\)
\(4\) 2.18224 1.09112
\(5\) 0 0
\(6\) 6.53528 2.66802
\(7\) 1.17743 0.445028 0.222514 0.974930i \(-0.428574\pi\)
0.222514 + 0.974930i \(0.428574\pi\)
\(8\) −0.372688 −0.131765
\(9\) 7.21221 2.40407
\(10\) 0 0
\(11\) 4.92251 1.48419 0.742097 0.670293i \(-0.233831\pi\)
0.742097 + 0.670293i \(0.233831\pi\)
\(12\) −6.97368 −2.01313
\(13\) 2.46296 0.683103 0.341551 0.939863i \(-0.389048\pi\)
0.341551 + 0.939863i \(0.389048\pi\)
\(14\) −2.40791 −0.643541
\(15\) 0 0
\(16\) −3.60231 −0.900578
\(17\) 0 0
\(18\) −14.7494 −3.47646
\(19\) 2.04173 0.468405 0.234202 0.972188i \(-0.424752\pi\)
0.234202 + 0.972188i \(0.424752\pi\)
\(20\) 0 0
\(21\) −3.76267 −0.821082
\(22\) −10.0668 −2.14625
\(23\) −0.119023 −0.0248179 −0.0124090 0.999923i \(-0.503950\pi\)
−0.0124090 + 0.999923i \(0.503950\pi\)
\(24\) 1.19098 0.243108
\(25\) 0 0
\(26\) −5.03689 −0.987815
\(27\) −13.4608 −2.59053
\(28\) 2.56944 0.485578
\(29\) 1.06541 0.197841 0.0989207 0.995095i \(-0.468461\pi\)
0.0989207 + 0.995095i \(0.468461\pi\)
\(30\) 0 0
\(31\) 2.79577 0.502135 0.251067 0.967970i \(-0.419218\pi\)
0.251067 + 0.967970i \(0.419218\pi\)
\(32\) 8.11229 1.43406
\(33\) −15.7307 −2.73836
\(34\) 0 0
\(35\) 0 0
\(36\) 15.7388 2.62313
\(37\) 2.31477 0.380545 0.190273 0.981731i \(-0.439063\pi\)
0.190273 + 0.981731i \(0.439063\pi\)
\(38\) −4.17544 −0.677346
\(39\) −7.87078 −1.26033
\(40\) 0 0
\(41\) 0.717574 0.112066 0.0560331 0.998429i \(-0.482155\pi\)
0.0560331 + 0.998429i \(0.482155\pi\)
\(42\) 7.69485 1.18734
\(43\) 10.0958 1.53960 0.769798 0.638288i \(-0.220357\pi\)
0.769798 + 0.638288i \(0.220357\pi\)
\(44\) 10.7421 1.61943
\(45\) 0 0
\(46\) 0.243408 0.0358885
\(47\) 3.39482 0.495186 0.247593 0.968864i \(-0.420360\pi\)
0.247593 + 0.968864i \(0.420360\pi\)
\(48\) 11.5117 1.66158
\(49\) −5.61365 −0.801950
\(50\) 0 0
\(51\) 0 0
\(52\) 5.37477 0.745347
\(53\) 13.9241 1.91262 0.956310 0.292355i \(-0.0944390\pi\)
0.956310 + 0.292355i \(0.0944390\pi\)
\(54\) 27.5280 3.74609
\(55\) 0 0
\(56\) −0.438815 −0.0586391
\(57\) −6.52466 −0.864213
\(58\) −2.17882 −0.286093
\(59\) 1.51711 0.197511 0.0987555 0.995112i \(-0.468514\pi\)
0.0987555 + 0.995112i \(0.468514\pi\)
\(60\) 0 0
\(61\) 8.08120 1.03469 0.517346 0.855776i \(-0.326920\pi\)
0.517346 + 0.855776i \(0.326920\pi\)
\(62\) −5.71749 −0.726122
\(63\) 8.49190 1.06988
\(64\) −9.38544 −1.17318
\(65\) 0 0
\(66\) 32.1700 3.95986
\(67\) 4.92534 0.601726 0.300863 0.953667i \(-0.402725\pi\)
0.300863 + 0.953667i \(0.402725\pi\)
\(68\) 0 0
\(69\) 0.380355 0.0457894
\(70\) 0 0
\(71\) −6.63635 −0.787590 −0.393795 0.919198i \(-0.628838\pi\)
−0.393795 + 0.919198i \(0.628838\pi\)
\(72\) −2.68790 −0.316773
\(73\) 3.66716 0.429209 0.214605 0.976701i \(-0.431154\pi\)
0.214605 + 0.976701i \(0.431154\pi\)
\(74\) −4.73382 −0.550295
\(75\) 0 0
\(76\) 4.45554 0.511086
\(77\) 5.79593 0.660507
\(78\) 16.0962 1.82253
\(79\) 8.18051 0.920380 0.460190 0.887821i \(-0.347781\pi\)
0.460190 + 0.887821i \(0.347781\pi\)
\(80\) 0 0
\(81\) 21.3794 2.37549
\(82\) −1.46748 −0.162056
\(83\) 6.08874 0.668326 0.334163 0.942515i \(-0.391546\pi\)
0.334163 + 0.942515i \(0.391546\pi\)
\(84\) −8.21104 −0.895898
\(85\) 0 0
\(86\) −20.6464 −2.22636
\(87\) −3.40468 −0.365020
\(88\) −1.83456 −0.195565
\(89\) 8.46170 0.896938 0.448469 0.893798i \(-0.351969\pi\)
0.448469 + 0.893798i \(0.351969\pi\)
\(90\) 0 0
\(91\) 2.89997 0.304000
\(92\) −0.259736 −0.0270793
\(93\) −8.93431 −0.926445
\(94\) −6.94259 −0.716074
\(95\) 0 0
\(96\) −25.9241 −2.64587
\(97\) 4.48946 0.455836 0.227918 0.973680i \(-0.426808\pi\)
0.227918 + 0.973680i \(0.426808\pi\)
\(98\) 11.4802 1.15968
\(99\) 35.5022 3.56811
\(100\) 0 0
\(101\) 17.7855 1.76972 0.884861 0.465854i \(-0.154253\pi\)
0.884861 + 0.465854i \(0.154253\pi\)
\(102\) 0 0
\(103\) 11.3352 1.11689 0.558445 0.829542i \(-0.311398\pi\)
0.558445 + 0.829542i \(0.311398\pi\)
\(104\) −0.917916 −0.0900091
\(105\) 0 0
\(106\) −28.4755 −2.76578
\(107\) −12.8865 −1.24579 −0.622893 0.782307i \(-0.714043\pi\)
−0.622893 + 0.782307i \(0.714043\pi\)
\(108\) −29.3747 −2.82658
\(109\) −11.3210 −1.08436 −0.542179 0.840263i \(-0.682401\pi\)
−0.542179 + 0.840263i \(0.682401\pi\)
\(110\) 0 0
\(111\) −7.39720 −0.702111
\(112\) −4.24148 −0.400782
\(113\) 5.85089 0.550405 0.275203 0.961386i \(-0.411255\pi\)
0.275203 + 0.961386i \(0.411255\pi\)
\(114\) 13.3433 1.24971
\(115\) 0 0
\(116\) 2.32498 0.215869
\(117\) 17.7634 1.64223
\(118\) −3.10257 −0.285615
\(119\) 0 0
\(120\) 0 0
\(121\) 13.2311 1.20283
\(122\) −16.5265 −1.49624
\(123\) −2.29312 −0.206764
\(124\) 6.10103 0.547889
\(125\) 0 0
\(126\) −17.3664 −1.54712
\(127\) 6.80398 0.603755 0.301878 0.953347i \(-0.402387\pi\)
0.301878 + 0.953347i \(0.402387\pi\)
\(128\) 2.96912 0.262436
\(129\) −32.2627 −2.84057
\(130\) 0 0
\(131\) 1.90025 0.166026 0.0830128 0.996548i \(-0.473546\pi\)
0.0830128 + 0.996548i \(0.473546\pi\)
\(132\) −34.3281 −2.98787
\(133\) 2.40400 0.208453
\(134\) −10.0726 −0.870138
\(135\) 0 0
\(136\) 0 0
\(137\) −19.3637 −1.65435 −0.827174 0.561946i \(-0.810053\pi\)
−0.827174 + 0.561946i \(0.810053\pi\)
\(138\) −0.777847 −0.0662147
\(139\) −8.27692 −0.702039 −0.351020 0.936368i \(-0.614165\pi\)
−0.351020 + 0.936368i \(0.614165\pi\)
\(140\) 0 0
\(141\) −10.8487 −0.913624
\(142\) 13.5717 1.13891
\(143\) 12.1240 1.01386
\(144\) −25.9806 −2.16505
\(145\) 0 0
\(146\) −7.49954 −0.620666
\(147\) 17.9393 1.47961
\(148\) 5.05137 0.415220
\(149\) 4.93485 0.404279 0.202139 0.979357i \(-0.435211\pi\)
0.202139 + 0.979357i \(0.435211\pi\)
\(150\) 0 0
\(151\) −0.712752 −0.0580029 −0.0290015 0.999579i \(-0.509233\pi\)
−0.0290015 + 0.999579i \(0.509233\pi\)
\(152\) −0.760928 −0.0617194
\(153\) 0 0
\(154\) −11.8530 −0.955140
\(155\) 0 0
\(156\) −17.1759 −1.37517
\(157\) −5.88566 −0.469727 −0.234863 0.972028i \(-0.575464\pi\)
−0.234863 + 0.972028i \(0.575464\pi\)
\(158\) −16.7296 −1.33093
\(159\) −44.4966 −3.52881
\(160\) 0 0
\(161\) −0.140141 −0.0110447
\(162\) −43.7220 −3.43512
\(163\) −5.89619 −0.461826 −0.230913 0.972974i \(-0.574171\pi\)
−0.230913 + 0.972974i \(0.574171\pi\)
\(164\) 1.56592 0.122278
\(165\) 0 0
\(166\) −12.4518 −0.966446
\(167\) 10.7684 0.833284 0.416642 0.909071i \(-0.363207\pi\)
0.416642 + 0.909071i \(0.363207\pi\)
\(168\) 1.40230 0.108190
\(169\) −6.93382 −0.533371
\(170\) 0 0
\(171\) 14.7254 1.12608
\(172\) 22.0315 1.67988
\(173\) 9.69698 0.737248 0.368624 0.929579i \(-0.379829\pi\)
0.368624 + 0.929579i \(0.379829\pi\)
\(174\) 6.96274 0.527844
\(175\) 0 0
\(176\) −17.7324 −1.33663
\(177\) −4.84816 −0.364410
\(178\) −17.3046 −1.29704
\(179\) 15.7156 1.17464 0.587319 0.809356i \(-0.300183\pi\)
0.587319 + 0.809356i \(0.300183\pi\)
\(180\) 0 0
\(181\) −3.98916 −0.296512 −0.148256 0.988949i \(-0.547366\pi\)
−0.148256 + 0.988949i \(0.547366\pi\)
\(182\) −5.93059 −0.439605
\(183\) −25.8247 −1.90902
\(184\) 0.0443583 0.00327014
\(185\) 0 0
\(186\) 18.2711 1.33970
\(187\) 0 0
\(188\) 7.40832 0.540307
\(189\) −15.8492 −1.15286
\(190\) 0 0
\(191\) 19.2007 1.38931 0.694655 0.719343i \(-0.255557\pi\)
0.694655 + 0.719343i \(0.255557\pi\)
\(192\) 29.9926 2.16453
\(193\) −11.7595 −0.846466 −0.423233 0.906021i \(-0.639105\pi\)
−0.423233 + 0.906021i \(0.639105\pi\)
\(194\) −9.18118 −0.659170
\(195\) 0 0
\(196\) −12.2503 −0.875024
\(197\) −19.1390 −1.36360 −0.681799 0.731540i \(-0.738802\pi\)
−0.681799 + 0.731540i \(0.738802\pi\)
\(198\) −72.6039 −5.15974
\(199\) 10.4492 0.740723 0.370362 0.928888i \(-0.379234\pi\)
0.370362 + 0.928888i \(0.379234\pi\)
\(200\) 0 0
\(201\) −15.7397 −1.11019
\(202\) −36.3723 −2.55914
\(203\) 1.25445 0.0880449
\(204\) 0 0
\(205\) 0 0
\(206\) −23.1811 −1.61510
\(207\) −0.858417 −0.0596641
\(208\) −8.87236 −0.615187
\(209\) 10.0504 0.695204
\(210\) 0 0
\(211\) 21.7830 1.49960 0.749801 0.661663i \(-0.230149\pi\)
0.749801 + 0.661663i \(0.230149\pi\)
\(212\) 30.3857 2.08690
\(213\) 21.2075 1.45311
\(214\) 26.3536 1.80149
\(215\) 0 0
\(216\) 5.01667 0.341341
\(217\) 3.29183 0.223464
\(218\) 23.1521 1.56806
\(219\) −11.7190 −0.791896
\(220\) 0 0
\(221\) 0 0
\(222\) 15.1277 1.01530
\(223\) −20.0185 −1.34054 −0.670270 0.742117i \(-0.733822\pi\)
−0.670270 + 0.742117i \(0.733822\pi\)
\(224\) 9.55167 0.638198
\(225\) 0 0
\(226\) −11.9654 −0.795924
\(227\) 13.7803 0.914630 0.457315 0.889305i \(-0.348811\pi\)
0.457315 + 0.889305i \(0.348811\pi\)
\(228\) −14.2384 −0.942960
\(229\) 3.64022 0.240553 0.120276 0.992740i \(-0.461622\pi\)
0.120276 + 0.992740i \(0.461622\pi\)
\(230\) 0 0
\(231\) −18.5218 −1.21864
\(232\) −0.397065 −0.0260686
\(233\) −14.1608 −0.927703 −0.463851 0.885913i \(-0.653533\pi\)
−0.463851 + 0.885913i \(0.653533\pi\)
\(234\) −36.3271 −2.37478
\(235\) 0 0
\(236\) 3.31070 0.215508
\(237\) −26.1421 −1.69811
\(238\) 0 0
\(239\) −22.6621 −1.46589 −0.732944 0.680289i \(-0.761854\pi\)
−0.732944 + 0.680289i \(0.761854\pi\)
\(240\) 0 0
\(241\) −6.04498 −0.389391 −0.194696 0.980864i \(-0.562372\pi\)
−0.194696 + 0.980864i \(0.562372\pi\)
\(242\) −27.0584 −1.73938
\(243\) −27.9388 −1.79228
\(244\) 17.6351 1.12897
\(245\) 0 0
\(246\) 4.68955 0.298995
\(247\) 5.02870 0.319969
\(248\) −1.04195 −0.0661638
\(249\) −19.4575 −1.23307
\(250\) 0 0
\(251\) −0.706952 −0.0446224 −0.0223112 0.999751i \(-0.507102\pi\)
−0.0223112 + 0.999751i \(0.507102\pi\)
\(252\) 18.5313 1.16736
\(253\) −0.585891 −0.0368346
\(254\) −13.9145 −0.873073
\(255\) 0 0
\(256\) 12.6989 0.793679
\(257\) 15.0724 0.940193 0.470096 0.882615i \(-0.344219\pi\)
0.470096 + 0.882615i \(0.344219\pi\)
\(258\) 65.9789 4.10767
\(259\) 2.72548 0.169353
\(260\) 0 0
\(261\) 7.68395 0.475625
\(262\) −3.88611 −0.240085
\(263\) 14.5292 0.895911 0.447955 0.894056i \(-0.352152\pi\)
0.447955 + 0.894056i \(0.352152\pi\)
\(264\) 5.86262 0.360820
\(265\) 0 0
\(266\) −4.91630 −0.301438
\(267\) −27.0407 −1.65486
\(268\) 10.7483 0.656555
\(269\) −28.3603 −1.72916 −0.864579 0.502497i \(-0.832415\pi\)
−0.864579 + 0.502497i \(0.832415\pi\)
\(270\) 0 0
\(271\) 9.29673 0.564736 0.282368 0.959306i \(-0.408880\pi\)
0.282368 + 0.959306i \(0.408880\pi\)
\(272\) 0 0
\(273\) −9.26731 −0.560883
\(274\) 39.5997 2.39230
\(275\) 0 0
\(276\) 0.830026 0.0499617
\(277\) −22.4063 −1.34627 −0.673133 0.739522i \(-0.735052\pi\)
−0.673133 + 0.739522i \(0.735052\pi\)
\(278\) 16.9267 1.01520
\(279\) 20.1637 1.20717
\(280\) 0 0
\(281\) 31.2511 1.86428 0.932142 0.362093i \(-0.117938\pi\)
0.932142 + 0.362093i \(0.117938\pi\)
\(282\) 22.1861 1.32117
\(283\) −11.7455 −0.698197 −0.349098 0.937086i \(-0.613512\pi\)
−0.349098 + 0.937086i \(0.613512\pi\)
\(284\) −14.4821 −0.859355
\(285\) 0 0
\(286\) −24.7941 −1.46611
\(287\) 0.844895 0.0498726
\(288\) 58.5076 3.44759
\(289\) 0 0
\(290\) 0 0
\(291\) −14.3468 −0.841023
\(292\) 8.00263 0.468318
\(293\) 26.5905 1.55344 0.776718 0.629848i \(-0.216883\pi\)
0.776718 + 0.629848i \(0.216883\pi\)
\(294\) −36.6868 −2.13962
\(295\) 0 0
\(296\) −0.862685 −0.0501426
\(297\) −66.2609 −3.84485
\(298\) −10.0920 −0.584616
\(299\) −0.293148 −0.0169532
\(300\) 0 0
\(301\) 11.8871 0.685163
\(302\) 1.45761 0.0838763
\(303\) −56.8363 −3.26516
\(304\) −7.35495 −0.421835
\(305\) 0 0
\(306\) 0 0
\(307\) −18.6981 −1.06715 −0.533577 0.845751i \(-0.679153\pi\)
−0.533577 + 0.845751i \(0.679153\pi\)
\(308\) 12.6481 0.720692
\(309\) −36.2234 −2.06068
\(310\) 0 0
\(311\) −7.96633 −0.451729 −0.225865 0.974159i \(-0.572521\pi\)
−0.225865 + 0.974159i \(0.572521\pi\)
\(312\) 2.93334 0.166068
\(313\) −7.98760 −0.451486 −0.225743 0.974187i \(-0.572481\pi\)
−0.225743 + 0.974187i \(0.572481\pi\)
\(314\) 12.0365 0.679258
\(315\) 0 0
\(316\) 17.8518 1.00424
\(317\) −15.6320 −0.877981 −0.438991 0.898492i \(-0.644664\pi\)
−0.438991 + 0.898492i \(0.644664\pi\)
\(318\) 90.9978 5.10290
\(319\) 5.24449 0.293635
\(320\) 0 0
\(321\) 41.1809 2.29849
\(322\) 0.286596 0.0159714
\(323\) 0 0
\(324\) 46.6550 2.59194
\(325\) 0 0
\(326\) 12.0580 0.667832
\(327\) 36.1781 2.00065
\(328\) −0.267431 −0.0147664
\(329\) 3.99718 0.220371
\(330\) 0 0
\(331\) −4.43051 −0.243523 −0.121761 0.992559i \(-0.538854\pi\)
−0.121761 + 0.992559i \(0.538854\pi\)
\(332\) 13.2871 0.729223
\(333\) 16.6946 0.914858
\(334\) −22.0219 −1.20499
\(335\) 0 0
\(336\) 13.5543 0.739448
\(337\) −6.03607 −0.328806 −0.164403 0.986393i \(-0.552570\pi\)
−0.164403 + 0.986393i \(0.552570\pi\)
\(338\) 14.1800 0.771291
\(339\) −18.6974 −1.01550
\(340\) 0 0
\(341\) 13.7622 0.745266
\(342\) −30.1142 −1.62839
\(343\) −14.8517 −0.801918
\(344\) −3.76258 −0.202865
\(345\) 0 0
\(346\) −19.8308 −1.06611
\(347\) 0.0930963 0.00499767 0.00249883 0.999997i \(-0.499205\pi\)
0.00249883 + 0.999997i \(0.499205\pi\)
\(348\) −7.42982 −0.398280
\(349\) 9.54221 0.510783 0.255391 0.966838i \(-0.417796\pi\)
0.255391 + 0.966838i \(0.417796\pi\)
\(350\) 0 0
\(351\) −33.1534 −1.76960
\(352\) 39.9329 2.12843
\(353\) −17.2138 −0.916197 −0.458099 0.888901i \(-0.651469\pi\)
−0.458099 + 0.888901i \(0.651469\pi\)
\(354\) 9.91475 0.526963
\(355\) 0 0
\(356\) 18.4655 0.978667
\(357\) 0 0
\(358\) −32.1392 −1.69861
\(359\) −17.7449 −0.936538 −0.468269 0.883586i \(-0.655122\pi\)
−0.468269 + 0.883586i \(0.655122\pi\)
\(360\) 0 0
\(361\) −14.8313 −0.780597
\(362\) 8.15803 0.428777
\(363\) −42.2822 −2.21924
\(364\) 6.32843 0.331700
\(365\) 0 0
\(366\) 52.8129 2.76058
\(367\) 36.3041 1.89506 0.947529 0.319669i \(-0.103572\pi\)
0.947529 + 0.319669i \(0.103572\pi\)
\(368\) 0.428757 0.0223505
\(369\) 5.17530 0.269415
\(370\) 0 0
\(371\) 16.3947 0.851169
\(372\) −19.4968 −1.01086
\(373\) −5.89146 −0.305048 −0.152524 0.988300i \(-0.548740\pi\)
−0.152524 + 0.988300i \(0.548740\pi\)
\(374\) 0 0
\(375\) 0 0
\(376\) −1.26521 −0.0652482
\(377\) 2.62406 0.135146
\(378\) 32.4124 1.66711
\(379\) −29.2735 −1.50368 −0.751838 0.659347i \(-0.770833\pi\)
−0.751838 + 0.659347i \(0.770833\pi\)
\(380\) 0 0
\(381\) −21.7432 −1.11394
\(382\) −39.2663 −2.00904
\(383\) −12.3062 −0.628816 −0.314408 0.949288i \(-0.601806\pi\)
−0.314408 + 0.949288i \(0.601806\pi\)
\(384\) −9.48830 −0.484198
\(385\) 0 0
\(386\) 24.0488 1.22405
\(387\) 72.8131 3.70130
\(388\) 9.79708 0.497371
\(389\) −2.12579 −0.107782 −0.0538910 0.998547i \(-0.517162\pi\)
−0.0538910 + 0.998547i \(0.517162\pi\)
\(390\) 0 0
\(391\) 0 0
\(392\) 2.09214 0.105669
\(393\) −6.07254 −0.306319
\(394\) 39.1403 1.97186
\(395\) 0 0
\(396\) 77.4743 3.89323
\(397\) −25.1983 −1.26467 −0.632334 0.774696i \(-0.717903\pi\)
−0.632334 + 0.774696i \(0.717903\pi\)
\(398\) −21.3691 −1.07114
\(399\) −7.68235 −0.384599
\(400\) 0 0
\(401\) 32.8681 1.64135 0.820677 0.571392i \(-0.193596\pi\)
0.820677 + 0.571392i \(0.193596\pi\)
\(402\) 32.1885 1.60542
\(403\) 6.88587 0.343010
\(404\) 38.8122 1.93098
\(405\) 0 0
\(406\) −2.56541 −0.127319
\(407\) 11.3945 0.564803
\(408\) 0 0
\(409\) −16.5721 −0.819437 −0.409719 0.912212i \(-0.634373\pi\)
−0.409719 + 0.912212i \(0.634373\pi\)
\(410\) 0 0
\(411\) 61.8796 3.05229
\(412\) 24.7361 1.21866
\(413\) 1.78630 0.0878979
\(414\) 1.75551 0.0862785
\(415\) 0 0
\(416\) 19.9803 0.979613
\(417\) 26.4502 1.29527
\(418\) −20.5537 −1.00531
\(419\) 5.31866 0.259833 0.129917 0.991525i \(-0.458529\pi\)
0.129917 + 0.991525i \(0.458529\pi\)
\(420\) 0 0
\(421\) 3.72116 0.181358 0.0906791 0.995880i \(-0.471096\pi\)
0.0906791 + 0.995880i \(0.471096\pi\)
\(422\) −44.5473 −2.16853
\(423\) 24.4842 1.19046
\(424\) −5.18933 −0.252016
\(425\) 0 0
\(426\) −43.3705 −2.10131
\(427\) 9.51507 0.460466
\(428\) −28.1215 −1.35930
\(429\) −38.7440 −1.87058
\(430\) 0 0
\(431\) −0.652621 −0.0314357 −0.0157178 0.999876i \(-0.505003\pi\)
−0.0157178 + 0.999876i \(0.505003\pi\)
\(432\) 48.4900 2.33297
\(433\) −5.31477 −0.255411 −0.127706 0.991812i \(-0.540761\pi\)
−0.127706 + 0.991812i \(0.540761\pi\)
\(434\) −6.73196 −0.323145
\(435\) 0 0
\(436\) −24.7052 −1.18316
\(437\) −0.243012 −0.0116248
\(438\) 23.9660 1.14514
\(439\) −5.53592 −0.264215 −0.132107 0.991235i \(-0.542174\pi\)
−0.132107 + 0.991235i \(0.542174\pi\)
\(440\) 0 0
\(441\) −40.4869 −1.92795
\(442\) 0 0
\(443\) −14.9894 −0.712169 −0.356084 0.934454i \(-0.615888\pi\)
−0.356084 + 0.934454i \(0.615888\pi\)
\(444\) −16.1425 −0.766087
\(445\) 0 0
\(446\) 40.9390 1.93852
\(447\) −15.7701 −0.745900
\(448\) −11.0507 −0.522097
\(449\) 20.7816 0.980743 0.490371 0.871514i \(-0.336861\pi\)
0.490371 + 0.871514i \(0.336861\pi\)
\(450\) 0 0
\(451\) 3.53227 0.166328
\(452\) 12.7680 0.600558
\(453\) 2.27771 0.107016
\(454\) −28.1814 −1.32262
\(455\) 0 0
\(456\) 2.43166 0.113873
\(457\) −15.6444 −0.731816 −0.365908 0.930651i \(-0.619242\pi\)
−0.365908 + 0.930651i \(0.619242\pi\)
\(458\) −7.44445 −0.347856
\(459\) 0 0
\(460\) 0 0
\(461\) −7.39362 −0.344355 −0.172178 0.985066i \(-0.555080\pi\)
−0.172178 + 0.985066i \(0.555080\pi\)
\(462\) 37.8780 1.76225
\(463\) −17.2150 −0.800049 −0.400025 0.916504i \(-0.630998\pi\)
−0.400025 + 0.916504i \(0.630998\pi\)
\(464\) −3.83793 −0.178172
\(465\) 0 0
\(466\) 28.9595 1.34152
\(467\) 36.3391 1.68157 0.840787 0.541367i \(-0.182093\pi\)
0.840787 + 0.541367i \(0.182093\pi\)
\(468\) 38.7640 1.79187
\(469\) 5.79925 0.267785
\(470\) 0 0
\(471\) 18.8085 0.866651
\(472\) −0.565409 −0.0260250
\(473\) 49.6967 2.28506
\(474\) 53.4620 2.45559
\(475\) 0 0
\(476\) 0 0
\(477\) 100.423 4.59807
\(478\) 46.3451 2.11978
\(479\) −30.3678 −1.38754 −0.693770 0.720196i \(-0.744052\pi\)
−0.693770 + 0.720196i \(0.744052\pi\)
\(480\) 0 0
\(481\) 5.70118 0.259952
\(482\) 12.3623 0.563087
\(483\) 0.447843 0.0203776
\(484\) 28.8735 1.31243
\(485\) 0 0
\(486\) 57.1364 2.59176
\(487\) −25.2832 −1.14569 −0.572846 0.819663i \(-0.694161\pi\)
−0.572846 + 0.819663i \(0.694161\pi\)
\(488\) −3.01176 −0.136336
\(489\) 18.8422 0.852074
\(490\) 0 0
\(491\) −28.7941 −1.29946 −0.649730 0.760165i \(-0.725118\pi\)
−0.649730 + 0.760165i \(0.725118\pi\)
\(492\) −5.00413 −0.225604
\(493\) 0 0
\(494\) −10.2840 −0.462697
\(495\) 0 0
\(496\) −10.0712 −0.452212
\(497\) −7.81386 −0.350500
\(498\) 39.7916 1.78311
\(499\) 14.9561 0.669527 0.334764 0.942302i \(-0.391344\pi\)
0.334764 + 0.942302i \(0.391344\pi\)
\(500\) 0 0
\(501\) −34.4121 −1.53742
\(502\) 1.44575 0.0645272
\(503\) 32.5784 1.45260 0.726300 0.687378i \(-0.241239\pi\)
0.726300 + 0.687378i \(0.241239\pi\)
\(504\) −3.16483 −0.140973
\(505\) 0 0
\(506\) 1.19818 0.0532655
\(507\) 22.1581 0.984075
\(508\) 14.8479 0.658769
\(509\) −33.1868 −1.47098 −0.735490 0.677535i \(-0.763048\pi\)
−0.735490 + 0.677535i \(0.763048\pi\)
\(510\) 0 0
\(511\) 4.31784 0.191010
\(512\) −31.9081 −1.41015
\(513\) −27.4833 −1.21342
\(514\) −30.8239 −1.35958
\(515\) 0 0
\(516\) −70.4049 −3.09940
\(517\) 16.7111 0.734952
\(518\) −5.57375 −0.244897
\(519\) −30.9882 −1.36023
\(520\) 0 0
\(521\) 28.6670 1.25593 0.627963 0.778244i \(-0.283889\pi\)
0.627963 + 0.778244i \(0.283889\pi\)
\(522\) −15.7141 −0.687787
\(523\) 42.6141 1.86338 0.931692 0.363248i \(-0.118332\pi\)
0.931692 + 0.363248i \(0.118332\pi\)
\(524\) 4.14680 0.181154
\(525\) 0 0
\(526\) −29.7130 −1.29555
\(527\) 0 0
\(528\) 56.6667 2.46610
\(529\) −22.9858 −0.999384
\(530\) 0 0
\(531\) 10.9417 0.474831
\(532\) 5.24610 0.227447
\(533\) 1.76736 0.0765528
\(534\) 55.2996 2.39305
\(535\) 0 0
\(536\) −1.83561 −0.0792864
\(537\) −50.2216 −2.16722
\(538\) 57.9983 2.50048
\(539\) −27.6333 −1.19025
\(540\) 0 0
\(541\) −22.0963 −0.949993 −0.474997 0.879988i \(-0.657551\pi\)
−0.474997 + 0.879988i \(0.657551\pi\)
\(542\) −19.0123 −0.816648
\(543\) 12.7480 0.547068
\(544\) 0 0
\(545\) 0 0
\(546\) 18.9521 0.811077
\(547\) −38.6850 −1.65405 −0.827026 0.562163i \(-0.809969\pi\)
−0.827026 + 0.562163i \(0.809969\pi\)
\(548\) −42.2561 −1.80509
\(549\) 58.2834 2.48747
\(550\) 0 0
\(551\) 2.17528 0.0926699
\(552\) −0.141754 −0.00603344
\(553\) 9.63200 0.409594
\(554\) 45.8221 1.94679
\(555\) 0 0
\(556\) −18.0622 −0.766009
\(557\) −33.9638 −1.43909 −0.719546 0.694445i \(-0.755650\pi\)
−0.719546 + 0.694445i \(0.755650\pi\)
\(558\) −41.2358 −1.74565
\(559\) 24.8656 1.05170
\(560\) 0 0
\(561\) 0 0
\(562\) −63.9101 −2.69589
\(563\) 2.27374 0.0958267 0.0479133 0.998851i \(-0.484743\pi\)
0.0479133 + 0.998851i \(0.484743\pi\)
\(564\) −23.6744 −0.996873
\(565\) 0 0
\(566\) 24.0201 1.00964
\(567\) 25.1728 1.05716
\(568\) 2.47329 0.103777
\(569\) −5.68027 −0.238129 −0.119065 0.992887i \(-0.537990\pi\)
−0.119065 + 0.992887i \(0.537990\pi\)
\(570\) 0 0
\(571\) 12.9627 0.542471 0.271236 0.962513i \(-0.412568\pi\)
0.271236 + 0.962513i \(0.412568\pi\)
\(572\) 26.4574 1.10624
\(573\) −61.3587 −2.56330
\(574\) −1.72785 −0.0721193
\(575\) 0 0
\(576\) −67.6898 −2.82041
\(577\) −27.7816 −1.15656 −0.578281 0.815838i \(-0.696276\pi\)
−0.578281 + 0.815838i \(0.696276\pi\)
\(578\) 0 0
\(579\) 37.5793 1.56174
\(580\) 0 0
\(581\) 7.16908 0.297424
\(582\) 29.3399 1.21618
\(583\) 68.5415 2.83870
\(584\) −1.36671 −0.0565547
\(585\) 0 0
\(586\) −54.3791 −2.24638
\(587\) 6.89170 0.284451 0.142226 0.989834i \(-0.454574\pi\)
0.142226 + 0.989834i \(0.454574\pi\)
\(588\) 39.1478 1.61443
\(589\) 5.70820 0.235202
\(590\) 0 0
\(591\) 61.1617 2.51585
\(592\) −8.33851 −0.342711
\(593\) 13.9274 0.571930 0.285965 0.958240i \(-0.407686\pi\)
0.285965 + 0.958240i \(0.407686\pi\)
\(594\) 135.507 5.55992
\(595\) 0 0
\(596\) 10.7690 0.441117
\(597\) −33.3920 −1.36664
\(598\) 0.599504 0.0245155
\(599\) 19.3270 0.789681 0.394841 0.918750i \(-0.370800\pi\)
0.394841 + 0.918750i \(0.370800\pi\)
\(600\) 0 0
\(601\) 42.1759 1.72039 0.860195 0.509965i \(-0.170342\pi\)
0.860195 + 0.509965i \(0.170342\pi\)
\(602\) −24.3098 −0.990793
\(603\) 35.5226 1.44659
\(604\) −1.55539 −0.0632881
\(605\) 0 0
\(606\) 116.233 4.72165
\(607\) −18.8481 −0.765021 −0.382511 0.923951i \(-0.624940\pi\)
−0.382511 + 0.923951i \(0.624940\pi\)
\(608\) 16.5631 0.671723
\(609\) −4.00878 −0.162444
\(610\) 0 0
\(611\) 8.36132 0.338263
\(612\) 0 0
\(613\) −16.1284 −0.651420 −0.325710 0.945470i \(-0.605603\pi\)
−0.325710 + 0.945470i \(0.605603\pi\)
\(614\) 38.2385 1.54318
\(615\) 0 0
\(616\) −2.16007 −0.0870318
\(617\) 37.7508 1.51979 0.759894 0.650046i \(-0.225251\pi\)
0.759894 + 0.650046i \(0.225251\pi\)
\(618\) 74.0787 2.97988
\(619\) −48.7190 −1.95818 −0.979091 0.203425i \(-0.934793\pi\)
−0.979091 + 0.203425i \(0.934793\pi\)
\(620\) 0 0
\(621\) 1.60214 0.0642916
\(622\) 16.2916 0.653232
\(623\) 9.96308 0.399162
\(624\) 28.3530 1.13503
\(625\) 0 0
\(626\) 16.3351 0.652880
\(627\) −32.1178 −1.28266
\(628\) −12.8439 −0.512528
\(629\) 0 0
\(630\) 0 0
\(631\) −39.1517 −1.55861 −0.779303 0.626647i \(-0.784427\pi\)
−0.779303 + 0.626647i \(0.784427\pi\)
\(632\) −3.04878 −0.121274
\(633\) −69.6109 −2.76678
\(634\) 31.9683 1.26962
\(635\) 0 0
\(636\) −97.1021 −3.85035
\(637\) −13.8262 −0.547815
\(638\) −10.7253 −0.424617
\(639\) −47.8628 −1.89342
\(640\) 0 0
\(641\) −49.9352 −1.97232 −0.986161 0.165793i \(-0.946982\pi\)
−0.986161 + 0.165793i \(0.946982\pi\)
\(642\) −84.2170 −3.32378
\(643\) 15.6383 0.616714 0.308357 0.951271i \(-0.400221\pi\)
0.308357 + 0.951271i \(0.400221\pi\)
\(644\) −0.305821 −0.0120511
\(645\) 0 0
\(646\) 0 0
\(647\) 24.8287 0.976118 0.488059 0.872811i \(-0.337705\pi\)
0.488059 + 0.872811i \(0.337705\pi\)
\(648\) −7.96784 −0.313006
\(649\) 7.46800 0.293145
\(650\) 0 0
\(651\) −10.5196 −0.412294
\(652\) −12.8669 −0.503907
\(653\) 16.8005 0.657453 0.328727 0.944425i \(-0.393381\pi\)
0.328727 + 0.944425i \(0.393381\pi\)
\(654\) −73.9862 −2.89309
\(655\) 0 0
\(656\) −2.58493 −0.100924
\(657\) 26.4484 1.03185
\(658\) −8.17443 −0.318673
\(659\) 13.1974 0.514097 0.257048 0.966399i \(-0.417250\pi\)
0.257048 + 0.966399i \(0.417250\pi\)
\(660\) 0 0
\(661\) −38.1892 −1.48539 −0.742694 0.669631i \(-0.766452\pi\)
−0.742694 + 0.669631i \(0.766452\pi\)
\(662\) 9.06062 0.352151
\(663\) 0 0
\(664\) −2.26920 −0.0880620
\(665\) 0 0
\(666\) −34.1413 −1.32295
\(667\) −0.126808 −0.00491001
\(668\) 23.4992 0.909212
\(669\) 63.9724 2.47331
\(670\) 0 0
\(671\) 39.7798 1.53568
\(672\) −30.5239 −1.17748
\(673\) 24.3655 0.939219 0.469610 0.882874i \(-0.344395\pi\)
0.469610 + 0.882874i \(0.344395\pi\)
\(674\) 12.3441 0.475476
\(675\) 0 0
\(676\) −15.1312 −0.581971
\(677\) −46.2667 −1.77817 −0.889087 0.457737i \(-0.848660\pi\)
−0.889087 + 0.457737i \(0.848660\pi\)
\(678\) 38.2372 1.46849
\(679\) 5.28604 0.202859
\(680\) 0 0
\(681\) −44.0371 −1.68750
\(682\) −28.1444 −1.07771
\(683\) 16.4922 0.631056 0.315528 0.948916i \(-0.397818\pi\)
0.315528 + 0.948916i \(0.397818\pi\)
\(684\) 32.1343 1.22869
\(685\) 0 0
\(686\) 30.3726 1.15963
\(687\) −11.6329 −0.443823
\(688\) −36.3682 −1.38653
\(689\) 34.2945 1.30652
\(690\) 0 0
\(691\) −25.8554 −0.983584 −0.491792 0.870713i \(-0.663658\pi\)
−0.491792 + 0.870713i \(0.663658\pi\)
\(692\) 21.1611 0.804425
\(693\) 41.8015 1.58791
\(694\) −0.190387 −0.00722698
\(695\) 0 0
\(696\) 1.26888 0.0480968
\(697\) 0 0
\(698\) −19.5143 −0.738628
\(699\) 45.2529 1.71162
\(700\) 0 0
\(701\) 8.67606 0.327690 0.163845 0.986486i \(-0.447610\pi\)
0.163845 + 0.986486i \(0.447610\pi\)
\(702\) 67.8005 2.55896
\(703\) 4.72613 0.178249
\(704\) −46.1999 −1.74123
\(705\) 0 0
\(706\) 35.2031 1.32489
\(707\) 20.9412 0.787576
\(708\) −10.5799 −0.397615
\(709\) 35.9232 1.34912 0.674562 0.738218i \(-0.264333\pi\)
0.674562 + 0.738218i \(0.264333\pi\)
\(710\) 0 0
\(711\) 58.9996 2.21266
\(712\) −3.15357 −0.118185
\(713\) −0.332760 −0.0124620
\(714\) 0 0
\(715\) 0 0
\(716\) 34.2952 1.28167
\(717\) 72.4202 2.70458
\(718\) 36.2892 1.35430
\(719\) 9.75299 0.363725 0.181863 0.983324i \(-0.441787\pi\)
0.181863 + 0.983324i \(0.441787\pi\)
\(720\) 0 0
\(721\) 13.3464 0.497047
\(722\) 30.3309 1.12880
\(723\) 19.3177 0.718432
\(724\) −8.70529 −0.323530
\(725\) 0 0
\(726\) 86.4693 3.20918
\(727\) 11.0694 0.410542 0.205271 0.978705i \(-0.434192\pi\)
0.205271 + 0.978705i \(0.434192\pi\)
\(728\) −1.08078 −0.0400565
\(729\) 25.1447 0.931285
\(730\) 0 0
\(731\) 0 0
\(732\) −56.3557 −2.08297
\(733\) −42.1634 −1.55734 −0.778670 0.627434i \(-0.784105\pi\)
−0.778670 + 0.627434i \(0.784105\pi\)
\(734\) −74.2438 −2.74039
\(735\) 0 0
\(736\) −0.965546 −0.0355905
\(737\) 24.2451 0.893078
\(738\) −10.5838 −0.389593
\(739\) 47.1617 1.73487 0.867435 0.497550i \(-0.165767\pi\)
0.867435 + 0.497550i \(0.165767\pi\)
\(740\) 0 0
\(741\) −16.0700 −0.590346
\(742\) −33.5279 −1.23085
\(743\) −31.7495 −1.16478 −0.582388 0.812911i \(-0.697882\pi\)
−0.582388 + 0.812911i \(0.697882\pi\)
\(744\) 3.32971 0.122073
\(745\) 0 0
\(746\) 12.0483 0.441121
\(747\) 43.9133 1.60670
\(748\) 0 0
\(749\) −15.1730 −0.554409
\(750\) 0 0
\(751\) 22.1885 0.809668 0.404834 0.914390i \(-0.367329\pi\)
0.404834 + 0.914390i \(0.367329\pi\)
\(752\) −12.2292 −0.445954
\(753\) 2.25918 0.0823289
\(754\) −5.36634 −0.195431
\(755\) 0 0
\(756\) −34.5867 −1.25791
\(757\) 13.0640 0.474821 0.237410 0.971409i \(-0.423701\pi\)
0.237410 + 0.971409i \(0.423701\pi\)
\(758\) 59.8658 2.17442
\(759\) 1.87230 0.0679604
\(760\) 0 0
\(761\) 18.9811 0.688065 0.344033 0.938958i \(-0.388207\pi\)
0.344033 + 0.938958i \(0.388207\pi\)
\(762\) 44.4659 1.61083
\(763\) −13.3298 −0.482569
\(764\) 41.9004 1.51590
\(765\) 0 0
\(766\) 25.1668 0.909313
\(767\) 3.73659 0.134920
\(768\) −40.5812 −1.46435
\(769\) −22.0057 −0.793544 −0.396772 0.917917i \(-0.629870\pi\)
−0.396772 + 0.917917i \(0.629870\pi\)
\(770\) 0 0
\(771\) −48.1663 −1.73467
\(772\) −25.6620 −0.923596
\(773\) 13.2410 0.476247 0.238123 0.971235i \(-0.423468\pi\)
0.238123 + 0.971235i \(0.423468\pi\)
\(774\) −148.907 −5.35234
\(775\) 0 0
\(776\) −1.67317 −0.0600632
\(777\) −8.70970 −0.312459
\(778\) 4.34736 0.155860
\(779\) 1.46509 0.0524924
\(780\) 0 0
\(781\) −32.6676 −1.16894
\(782\) 0 0
\(783\) −14.3412 −0.512514
\(784\) 20.2221 0.722219
\(785\) 0 0
\(786\) 12.4187 0.442959
\(787\) −11.9863 −0.427266 −0.213633 0.976914i \(-0.568530\pi\)
−0.213633 + 0.976914i \(0.568530\pi\)
\(788\) −41.7659 −1.48785
\(789\) −46.4304 −1.65297
\(790\) 0 0
\(791\) 6.88902 0.244945
\(792\) −13.2312 −0.470152
\(793\) 19.9037 0.706801
\(794\) 51.5319 1.82880
\(795\) 0 0
\(796\) 22.8026 0.808218
\(797\) 23.3187 0.825989 0.412995 0.910734i \(-0.364483\pi\)
0.412995 + 0.910734i \(0.364483\pi\)
\(798\) 15.7108 0.556157
\(799\) 0 0
\(800\) 0 0
\(801\) 61.0276 2.15630
\(802\) −67.2170 −2.37351
\(803\) 18.0517 0.637030
\(804\) −34.3478 −1.21135
\(805\) 0 0
\(806\) −14.0820 −0.496016
\(807\) 90.6298 3.19032
\(808\) −6.62844 −0.233188
\(809\) −30.8141 −1.08337 −0.541683 0.840583i \(-0.682213\pi\)
−0.541683 + 0.840583i \(0.682213\pi\)
\(810\) 0 0
\(811\) 38.6069 1.35567 0.677836 0.735213i \(-0.262918\pi\)
0.677836 + 0.735213i \(0.262918\pi\)
\(812\) 2.73750 0.0960675
\(813\) −29.7091 −1.04194
\(814\) −23.3023 −0.816745
\(815\) 0 0
\(816\) 0 0
\(817\) 20.6129 0.721154
\(818\) 33.8908 1.18496
\(819\) 20.9152 0.730837
\(820\) 0 0
\(821\) −21.5899 −0.753493 −0.376747 0.926316i \(-0.622957\pi\)
−0.376747 + 0.926316i \(0.622957\pi\)
\(822\) −126.547 −4.41383
\(823\) −25.4053 −0.885573 −0.442787 0.896627i \(-0.646010\pi\)
−0.442787 + 0.896627i \(0.646010\pi\)
\(824\) −4.22449 −0.147167
\(825\) 0 0
\(826\) −3.65307 −0.127107
\(827\) −14.8822 −0.517506 −0.258753 0.965943i \(-0.583312\pi\)
−0.258753 + 0.965943i \(0.583312\pi\)
\(828\) −1.87327 −0.0651007
\(829\) −29.8580 −1.03701 −0.518505 0.855075i \(-0.673511\pi\)
−0.518505 + 0.855075i \(0.673511\pi\)
\(830\) 0 0
\(831\) 71.6029 2.48388
\(832\) −23.1160 −0.801402
\(833\) 0 0
\(834\) −54.0920 −1.87305
\(835\) 0 0
\(836\) 21.9325 0.758550
\(837\) −37.6333 −1.30080
\(838\) −10.8769 −0.375737
\(839\) 32.2189 1.11232 0.556161 0.831075i \(-0.312274\pi\)
0.556161 + 0.831075i \(0.312274\pi\)
\(840\) 0 0
\(841\) −27.8649 −0.960859
\(842\) −7.60996 −0.262257
\(843\) −99.8677 −3.43963
\(844\) 47.5357 1.63624
\(845\) 0 0
\(846\) −50.0715 −1.72149
\(847\) 15.5788 0.535293
\(848\) −50.1589 −1.72246
\(849\) 37.5345 1.28818
\(850\) 0 0
\(851\) −0.275510 −0.00944435
\(852\) 46.2798 1.58552
\(853\) −6.64528 −0.227530 −0.113765 0.993508i \(-0.536291\pi\)
−0.113765 + 0.993508i \(0.536291\pi\)
\(854\) −19.4588 −0.665867
\(855\) 0 0
\(856\) 4.80265 0.164151
\(857\) −34.5296 −1.17951 −0.589754 0.807583i \(-0.700775\pi\)
−0.589754 + 0.807583i \(0.700775\pi\)
\(858\) 79.2336 2.70499
\(859\) 46.7639 1.59556 0.797782 0.602946i \(-0.206007\pi\)
0.797782 + 0.602946i \(0.206007\pi\)
\(860\) 0 0
\(861\) −2.69999 −0.0920155
\(862\) 1.33464 0.0454582
\(863\) 40.3468 1.37342 0.686711 0.726930i \(-0.259054\pi\)
0.686711 + 0.726930i \(0.259054\pi\)
\(864\) −109.198 −3.71499
\(865\) 0 0
\(866\) 10.8690 0.369343
\(867\) 0 0
\(868\) 7.18356 0.243826
\(869\) 40.2687 1.36602
\(870\) 0 0
\(871\) 12.1309 0.411041
\(872\) 4.21921 0.142880
\(873\) 32.3790 1.09586
\(874\) 0.496972 0.0168103
\(875\) 0 0
\(876\) −25.5736 −0.864053
\(877\) −15.5336 −0.524531 −0.262266 0.964996i \(-0.584470\pi\)
−0.262266 + 0.964996i \(0.584470\pi\)
\(878\) 11.3212 0.382073
\(879\) −84.9742 −2.86611
\(880\) 0 0
\(881\) −33.1990 −1.11850 −0.559251 0.828998i \(-0.688911\pi\)
−0.559251 + 0.828998i \(0.688911\pi\)
\(882\) 82.7978 2.78795
\(883\) −34.1078 −1.14782 −0.573909 0.818919i \(-0.694574\pi\)
−0.573909 + 0.818919i \(0.694574\pi\)
\(884\) 0 0
\(885\) 0 0
\(886\) 30.6541 1.02985
\(887\) 32.3508 1.08623 0.543116 0.839658i \(-0.317244\pi\)
0.543116 + 0.839658i \(0.317244\pi\)
\(888\) 2.75685 0.0925137
\(889\) 8.01122 0.268688
\(890\) 0 0
\(891\) 105.240 3.52569
\(892\) −43.6852 −1.46269
\(893\) 6.93131 0.231948
\(894\) 32.2507 1.07862
\(895\) 0 0
\(896\) 3.49594 0.116791
\(897\) 0.936801 0.0312789
\(898\) −42.4994 −1.41822
\(899\) 2.97864 0.0993431
\(900\) 0 0
\(901\) 0 0
\(902\) −7.22367 −0.240522
\(903\) −37.9872 −1.26413
\(904\) −2.18055 −0.0725241
\(905\) 0 0
\(906\) −4.65803 −0.154753
\(907\) 27.9582 0.928336 0.464168 0.885747i \(-0.346353\pi\)
0.464168 + 0.885747i \(0.346353\pi\)
\(908\) 30.0719 0.997970
\(909\) 128.273 4.25454
\(910\) 0 0
\(911\) 12.3093 0.407826 0.203913 0.978989i \(-0.434634\pi\)
0.203913 + 0.978989i \(0.434634\pi\)
\(912\) 23.5039 0.778291
\(913\) 29.9719 0.991925
\(914\) 31.9937 1.05826
\(915\) 0 0
\(916\) 7.94384 0.262472
\(917\) 2.23742 0.0738860
\(918\) 0 0
\(919\) 20.0893 0.662683 0.331342 0.943511i \(-0.392499\pi\)
0.331342 + 0.943511i \(0.392499\pi\)
\(920\) 0 0
\(921\) 59.7526 1.96891
\(922\) 15.1203 0.497962
\(923\) −16.3451 −0.538005
\(924\) −40.4190 −1.32969
\(925\) 0 0
\(926\) 35.2056 1.15693
\(927\) 81.7518 2.68508
\(928\) 8.64290 0.283717
\(929\) 6.06146 0.198870 0.0994350 0.995044i \(-0.468296\pi\)
0.0994350 + 0.995044i \(0.468296\pi\)
\(930\) 0 0
\(931\) −11.4616 −0.375638
\(932\) −30.9022 −1.01223
\(933\) 25.4577 0.833446
\(934\) −74.3154 −2.43167
\(935\) 0 0
\(936\) −6.62021 −0.216388
\(937\) 34.1763 1.11649 0.558246 0.829675i \(-0.311474\pi\)
0.558246 + 0.829675i \(0.311474\pi\)
\(938\) −11.8598 −0.387236
\(939\) 25.5256 0.832997
\(940\) 0 0
\(941\) −36.0225 −1.17430 −0.587149 0.809479i \(-0.699750\pi\)
−0.587149 + 0.809479i \(0.699750\pi\)
\(942\) −38.4644 −1.25324
\(943\) −0.0854076 −0.00278125
\(944\) −5.46511 −0.177874
\(945\) 0 0
\(946\) −101.632 −3.30435
\(947\) 39.4153 1.28083 0.640413 0.768030i \(-0.278763\pi\)
0.640413 + 0.768030i \(0.278763\pi\)
\(948\) −57.0483 −1.85284
\(949\) 9.03209 0.293194
\(950\) 0 0
\(951\) 49.9545 1.61989
\(952\) 0 0
\(953\) 6.36027 0.206029 0.103015 0.994680i \(-0.467151\pi\)
0.103015 + 0.994680i \(0.467151\pi\)
\(954\) −205.371 −6.64914
\(955\) 0 0
\(956\) −49.4540 −1.59946
\(957\) −16.7596 −0.541760
\(958\) 62.1038 2.00648
\(959\) −22.7994 −0.736231
\(960\) 0 0
\(961\) −23.1837 −0.747861
\(962\) −11.6592 −0.375908
\(963\) −92.9403 −2.99496
\(964\) −13.1916 −0.424872
\(965\) 0 0
\(966\) −0.915862 −0.0294674
\(967\) −34.3424 −1.10438 −0.552189 0.833719i \(-0.686207\pi\)
−0.552189 + 0.833719i \(0.686207\pi\)
\(968\) −4.93109 −0.158491
\(969\) 0 0
\(970\) 0 0
\(971\) −7.98605 −0.256285 −0.128142 0.991756i \(-0.540901\pi\)
−0.128142 + 0.991756i \(0.540901\pi\)
\(972\) −60.9692 −1.95559
\(973\) −9.74552 −0.312427
\(974\) 51.7055 1.65675
\(975\) 0 0
\(976\) −29.1110 −0.931821
\(977\) 15.0989 0.483056 0.241528 0.970394i \(-0.422351\pi\)
0.241528 + 0.970394i \(0.422351\pi\)
\(978\) −38.5333 −1.23216
\(979\) 41.6528 1.33123
\(980\) 0 0
\(981\) −81.6497 −2.60688
\(982\) 58.8855 1.87911
\(983\) −50.2932 −1.60410 −0.802052 0.597254i \(-0.796258\pi\)
−0.802052 + 0.597254i \(0.796258\pi\)
\(984\) 0.854618 0.0272442
\(985\) 0 0
\(986\) 0 0
\(987\) −12.7736 −0.406588
\(988\) 10.9738 0.349124
\(989\) −1.20163 −0.0382096
\(990\) 0 0
\(991\) 13.0116 0.413326 0.206663 0.978412i \(-0.433740\pi\)
0.206663 + 0.978412i \(0.433740\pi\)
\(992\) 22.6801 0.720094
\(993\) 14.1584 0.449302
\(994\) 15.9798 0.506847
\(995\) 0 0
\(996\) −42.4609 −1.34543
\(997\) −9.34885 −0.296081 −0.148040 0.988981i \(-0.547297\pi\)
−0.148040 + 0.988981i \(0.547297\pi\)
\(998\) −30.5860 −0.968183
\(999\) −31.1586 −0.985814
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 7225.2.a.bq.1.2 12
5.4 even 2 1445.2.a.q.1.11 12
17.5 odd 16 425.2.m.b.76.6 24
17.7 odd 16 425.2.m.b.151.6 24
17.16 even 2 7225.2.a.bs.1.2 12
85.4 even 4 1445.2.d.j.866.4 24
85.7 even 16 425.2.n.f.49.1 24
85.22 even 16 425.2.n.c.399.6 24
85.24 odd 16 85.2.l.a.66.1 24
85.39 odd 16 85.2.l.a.76.1 yes 24
85.58 even 16 425.2.n.c.49.6 24
85.64 even 4 1445.2.d.j.866.3 24
85.73 even 16 425.2.n.f.399.1 24
85.84 even 2 1445.2.a.p.1.11 12
255.194 even 16 765.2.be.b.406.6 24
255.209 even 16 765.2.be.b.586.6 24
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
85.2.l.a.66.1 24 85.24 odd 16
85.2.l.a.76.1 yes 24 85.39 odd 16
425.2.m.b.76.6 24 17.5 odd 16
425.2.m.b.151.6 24 17.7 odd 16
425.2.n.c.49.6 24 85.58 even 16
425.2.n.c.399.6 24 85.22 even 16
425.2.n.f.49.1 24 85.7 even 16
425.2.n.f.399.1 24 85.73 even 16
765.2.be.b.406.6 24 255.194 even 16
765.2.be.b.586.6 24 255.209 even 16
1445.2.a.p.1.11 12 85.84 even 2
1445.2.a.q.1.11 12 5.4 even 2
1445.2.d.j.866.3 24 85.64 even 4
1445.2.d.j.866.4 24 85.4 even 4
7225.2.a.bq.1.2 12 1.1 even 1 trivial
7225.2.a.bs.1.2 12 17.16 even 2