Properties

Label 7225.2.a.br.1.4
Level 72257225
Weight 22
Character 7225.1
Self dual yes
Analytic conductor 57.69257.692
Analytic rank 00
Dimension 1212
Inner twists 22

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [7225,2,Mod(1,7225)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(7225, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("7225.1");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: N N == 7225=52172 7225 = 5^{2} \cdot 17^{2}
Weight: k k == 2 2
Character orbit: [χ][\chi] == 7225.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: 57.691915460457.6919154604
Analytic rank: 00
Dimension: 1212
Coefficient field: Q[x]/(x12)\mathbb{Q}[x]/(x^{12} - \cdots)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: x1220x10+135x8400x6+515x4222x2+25 x^{12} - 20x^{10} + 135x^{8} - 400x^{6} + 515x^{4} - 222x^{2} + 25 Copy content Toggle raw display
Coefficient ring: Z[a1,,a11]\Z[a_1, \ldots, a_{11}]
Coefficient ring index: 1 1
Twist minimal: no (minimal twist has level 425)
Fricke sign: 1-1
Sato-Tate group: SU(2)\mathrm{SU}(2)

Embedding invariants

Embedding label 1.4
Root 1.621701.62170 of defining polynomial
Character χ\chi == 7225.1

qq-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
f(q)f(q) == q1.44718q2+1.62170q3+0.0943296q42.34689q63.81562q7+2.75785q80.370087q96.14862q11+0.152974q122.56919q13+5.52189q144.17976q16+0.535583q18+1.17142q196.18779q21+8.89815q223.57861q23+4.47240q24+3.71808q265.46527q270.359926q28+5.23551q290.558323q31+0.533170q329.97121q330.0349102q367.46770q371.69526q384.16645q397.57672q41+8.95485q420.774454q430.579996q44+5.17890q46+4.35087q476.77832q48+7.55894q490.242351q52+2.36008q53+7.90923q5410.5229q56+1.89970q577.57672q5812.8886q59+4.66449q61+0.807994q62+1.41211q63+7.58793q64+14.4301q66+2.97145q675.80344q698.44824q711.02064q7216.7118q73+10.8071q74+0.110500q76+23.4608q77+6.02961q7811.4516q797.75277q81+10.9649q82+5.07499q830.583692q84+1.12077q86+8.49043q8716.9569q888.16031q89+9.80304q910.337569q920.905433q936.29650q94+0.864643q967.29986q9710.9392q98+2.27553q99+O(q100)q-1.44718 q^{2} +1.62170 q^{3} +0.0943296 q^{4} -2.34689 q^{6} -3.81562 q^{7} +2.75785 q^{8} -0.370087 q^{9} -6.14862 q^{11} +0.152974 q^{12} -2.56919 q^{13} +5.52189 q^{14} -4.17976 q^{16} +0.535583 q^{18} +1.17142 q^{19} -6.18779 q^{21} +8.89815 q^{22} -3.57861 q^{23} +4.47240 q^{24} +3.71808 q^{26} -5.46527 q^{27} -0.359926 q^{28} +5.23551 q^{29} -0.558323 q^{31} +0.533170 q^{32} -9.97121 q^{33} -0.0349102 q^{36} -7.46770 q^{37} -1.69526 q^{38} -4.16645 q^{39} -7.57672 q^{41} +8.95485 q^{42} -0.774454 q^{43} -0.579996 q^{44} +5.17890 q^{46} +4.35087 q^{47} -6.77832 q^{48} +7.55894 q^{49} -0.242351 q^{52} +2.36008 q^{53} +7.90923 q^{54} -10.5229 q^{56} +1.89970 q^{57} -7.57672 q^{58} -12.8886 q^{59} +4.66449 q^{61} +0.807994 q^{62} +1.41211 q^{63} +7.58793 q^{64} +14.4301 q^{66} +2.97145 q^{67} -5.80344 q^{69} -8.44824 q^{71} -1.02064 q^{72} -16.7118 q^{73} +10.8071 q^{74} +0.110500 q^{76} +23.4608 q^{77} +6.02961 q^{78} -11.4516 q^{79} -7.75277 q^{81} +10.9649 q^{82} +5.07499 q^{83} -0.583692 q^{84} +1.12077 q^{86} +8.49043 q^{87} -16.9569 q^{88} -8.16031 q^{89} +9.80304 q^{91} -0.337569 q^{92} -0.905433 q^{93} -6.29650 q^{94} +0.864643 q^{96} -7.29986 q^{97} -10.9392 q^{98} +2.27553 q^{99} +O(q^{100})
Tr(f)(q)\operatorname{Tr}(f)(q) == 12q+4q2+12q4+12q8+4q9+12q13+4q16+4q18+12q198q21+12q26+48q324q3320q3612q38+56q42+16q43+36q47+16q49++76q98+O(q100) 12 q + 4 q^{2} + 12 q^{4} + 12 q^{8} + 4 q^{9} + 12 q^{13} + 4 q^{16} + 4 q^{18} + 12 q^{19} - 8 q^{21} + 12 q^{26} + 48 q^{32} - 4 q^{33} - 20 q^{36} - 12 q^{38} + 56 q^{42} + 16 q^{43} + 36 q^{47} + 16 q^{49}+ \cdots + 76 q^{98}+O(q^{100}) Copy content Toggle raw display

Coefficient data

For each nn we display the coefficients of the qq-expansion ana_n, the Satake parameters αp\alpha_p, and the Satake angles θp=Arg(αp)\theta_p = \textrm{Arg}(\alpha_p).



Display apa_p with pp up to: 50 250 1000 (See ana_n instead) (See ana_n instead) (See ana_n instead) Display ana_n with nn up to: 50 250 1000 (See only apa_p) (See only apa_p) (See only apa_p)
Significant digits:
nn ana_n an/n(k1)/2a_n / n^{(k-1)/2} αn \alpha_n θn \theta_n
pp apa_p ap/p(k1)/2a_p / p^{(k-1)/2} αp \alpha_p θp \theta_p
22 −1.44718 −1.02331 −0.511655 0.859191i 0.670968π-0.670968\pi
−0.511655 + 0.859191i 0.670968π0.670968\pi
33 1.62170 0.936289 0.468145 0.883652i 0.344923π-0.344923\pi
0.468145 + 0.883652i 0.344923π0.344923\pi
44 0.0943296 0.0471648
55 0 0
66 −2.34689 −0.958115
77 −3.81562 −1.44217 −0.721084 0.692848i 0.756356π-0.756356\pi
−0.721084 + 0.692848i 0.756356π0.756356\pi
88 2.75785 0.975046
99 −0.370087 −0.123362
1010 0 0
1111 −6.14862 −1.85388 −0.926939 0.375213i 0.877570π-0.877570\pi
−0.926939 + 0.375213i 0.877570π0.877570\pi
1212 0.152974 0.0441599
1313 −2.56919 −0.712565 −0.356282 0.934378i 0.615956π-0.615956\pi
−0.356282 + 0.934378i 0.615956π0.615956\pi
1414 5.52189 1.47579
1515 0 0
1616 −4.17976 −1.04494
1717 0 0
1818 0.535583 0.126238
1919 1.17142 0.268743 0.134371 0.990931i 0.457099π-0.457099\pi
0.134371 + 0.990931i 0.457099π0.457099\pi
2020 0 0
2121 −6.18779 −1.35029
2222 8.89815 1.89709
2323 −3.57861 −0.746192 −0.373096 0.927793i 0.621704π-0.621704\pi
−0.373096 + 0.927793i 0.621704π0.621704\pi
2424 4.47240 0.912926
2525 0 0
2626 3.71808 0.729175
2727 −5.46527 −1.05179
2828 −0.359926 −0.0680196
2929 5.23551 0.972210 0.486105 0.873900i 0.338417π-0.338417\pi
0.486105 + 0.873900i 0.338417π0.338417\pi
3030 0 0
3131 −0.558323 −0.100278 −0.0501389 0.998742i 0.515966π-0.515966\pi
−0.0501389 + 0.998742i 0.515966π0.515966\pi
3232 0.533170 0.0942521
3333 −9.97121 −1.73577
3434 0 0
3535 0 0
3636 −0.0349102 −0.00581837
3737 −7.46770 −1.22768 −0.613841 0.789430i 0.710376π-0.710376\pi
−0.613841 + 0.789430i 0.710376π0.710376\pi
3838 −1.69526 −0.275007
3939 −4.16645 −0.667167
4040 0 0
4141 −7.57672 −1.18329 −0.591643 0.806200i 0.701520π-0.701520\pi
−0.591643 + 0.806200i 0.701520π0.701520\pi
4242 8.95485 1.38176
4343 −0.774454 −0.118103 −0.0590516 0.998255i 0.518808π-0.518808\pi
−0.0590516 + 0.998255i 0.518808π0.518808\pi
4444 −0.579996 −0.0874378
4545 0 0
4646 5.17890 0.763587
4747 4.35087 0.634640 0.317320 0.948318i 0.397217π-0.397217\pi
0.317320 + 0.948318i 0.397217π0.397217\pi
4848 −6.77832 −0.978366
4949 7.55894 1.07985
5050 0 0
5151 0 0
5252 −0.242351 −0.0336080
5353 2.36008 0.324182 0.162091 0.986776i 0.448176π-0.448176\pi
0.162091 + 0.986776i 0.448176π0.448176\pi
5454 7.90923 1.07631
5555 0 0
5656 −10.5229 −1.40618
5757 1.89970 0.251621
5858 −7.57672 −0.994873
5959 −12.8886 −1.67796 −0.838978 0.544165i 0.816847π-0.816847\pi
−0.838978 + 0.544165i 0.816847π0.816847\pi
6060 0 0
6161 4.66449 0.597226 0.298613 0.954374i 0.403476π-0.403476\pi
0.298613 + 0.954374i 0.403476π0.403476\pi
6262 0.807994 0.102615
6363 1.41211 0.177909
6464 7.58793 0.948491
6565 0 0
6666 14.4301 1.77623
6767 2.97145 0.363021 0.181510 0.983389i 0.441901π-0.441901\pi
0.181510 + 0.983389i 0.441901π0.441901\pi
6868 0 0
6969 −5.80344 −0.698652
7070 0 0
7171 −8.44824 −1.00262 −0.501311 0.865267i 0.667149π-0.667149\pi
−0.501311 + 0.865267i 0.667149π0.667149\pi
7272 −1.02064 −0.120284
7373 −16.7118 −1.95597 −0.977984 0.208681i 0.933083π-0.933083\pi
−0.977984 + 0.208681i 0.933083π0.933083\pi
7474 10.8071 1.25630
7575 0 0
7676 0.110500 0.0126752
7777 23.4608 2.67360
7878 6.02961 0.682719
7979 −11.4516 −1.28840 −0.644201 0.764857i 0.722810π-0.722810\pi
−0.644201 + 0.764857i 0.722810π0.722810\pi
8080 0 0
8181 −7.75277 −0.861419
8282 10.9649 1.21087
8383 5.07499 0.557052 0.278526 0.960429i 0.410154π-0.410154\pi
0.278526 + 0.960429i 0.410154π0.410154\pi
8484 −0.583692 −0.0636860
8585 0 0
8686 1.12077 0.120856
8787 8.49043 0.910270
8888 −16.9569 −1.80762
8989 −8.16031 −0.864991 −0.432496 0.901636i 0.642367π-0.642367\pi
−0.432496 + 0.901636i 0.642367π0.642367\pi
9090 0 0
9191 9.80304 1.02764
9292 −0.337569 −0.0351940
9393 −0.905433 −0.0938890
9494 −6.29650 −0.649434
9595 0 0
9696 0.864643 0.0882472
9797 −7.29986 −0.741188 −0.370594 0.928795i 0.620846π-0.620846\pi
−0.370594 + 0.928795i 0.620846π0.620846\pi
9898 −10.9392 −1.10502
9999 2.27553 0.228699
100100 0 0
101101 −9.68792 −0.963984 −0.481992 0.876176i 0.660087π-0.660087\pi
−0.481992 + 0.876176i 0.660087π0.660087\pi
102102 0 0
103103 11.1163 1.09532 0.547660 0.836701i 0.315519π-0.315519\pi
0.547660 + 0.836701i 0.315519π0.315519\pi
104104 −7.08543 −0.694784
105105 0 0
106106 −3.41546 −0.331739
107107 9.07400 0.877216 0.438608 0.898678i 0.355472π-0.355472\pi
0.438608 + 0.898678i 0.355472π0.355472\pi
108108 −0.515537 −0.0496076
109109 −9.38992 −0.899391 −0.449695 0.893182i 0.648467π-0.648467\pi
−0.449695 + 0.893182i 0.648467π0.648467\pi
110110 0 0
111111 −12.1104 −1.14947
112112 15.9484 1.50698
113113 −5.51881 −0.519166 −0.259583 0.965721i 0.583585π-0.583585\pi
−0.259583 + 0.965721i 0.583585π0.583585\pi
114114 −2.74920 −0.257486
115115 0 0
116116 0.493864 0.0458541
117117 0.950824 0.0879037
118118 18.6522 1.71707
119119 0 0
120120 0 0
121121 26.8055 2.43686
122122 −6.75035 −0.611148
123123 −12.2872 −1.10790
124124 −0.0526664 −0.00472958
125125 0 0
126126 −2.04358 −0.182057
127127 −8.49327 −0.753656 −0.376828 0.926283i 0.622985π-0.622985\pi
−0.376828 + 0.926283i 0.622985π0.622985\pi
128128 −12.0474 −1.06485
129129 −1.25593 −0.110579
130130 0 0
131131 4.92623 0.430407 0.215203 0.976569i 0.430959π-0.430959\pi
0.215203 + 0.976569i 0.430959π0.430959\pi
132132 −0.940581 −0.0818670
133133 −4.46970 −0.387572
134134 −4.30023 −0.371483
135135 0 0
136136 0 0
137137 15.9794 1.36521 0.682604 0.730788i 0.260847π-0.260847\pi
0.682604 + 0.730788i 0.260847π0.260847\pi
138138 8.39862 0.714938
139139 12.0611 1.02301 0.511504 0.859281i 0.329089π-0.329089\pi
0.511504 + 0.859281i 0.329089π0.329089\pi
140140 0 0
141141 7.05581 0.594207
142142 12.2261 1.02599
143143 15.7970 1.32101
144144 1.54688 0.128906
145145 0 0
146146 24.1850 2.00156
147147 12.2583 1.01105
148148 −0.704425 −0.0579034
149149 0.791691 0.0648579 0.0324289 0.999474i 0.489676π-0.489676\pi
0.0324289 + 0.999474i 0.489676π0.489676\pi
150150 0 0
151151 −19.1605 −1.55926 −0.779630 0.626240i 0.784593π-0.784593\pi
−0.779630 + 0.626240i 0.784593π0.784593\pi
152152 3.23060 0.262037
153153 0 0
154154 −33.9520 −2.73593
155155 0 0
156156 −0.393020 −0.0314668
157157 18.0597 1.44132 0.720662 0.693287i 0.243838π-0.243838\pi
0.720662 + 0.693287i 0.243838π0.243838\pi
158158 16.5725 1.31843
159159 3.82735 0.303528
160160 0 0
161161 13.6546 1.07613
162162 11.2197 0.881500
163163 22.9689 1.79906 0.899532 0.436855i 0.143908π-0.143908\pi
0.899532 + 0.436855i 0.143908π0.143908\pi
164164 −0.714709 −0.0558094
165165 0 0
166166 −7.34442 −0.570038
167167 −2.55674 −0.197846 −0.0989231 0.995095i 0.531540π-0.531540\pi
−0.0989231 + 0.995095i 0.531540π0.531540\pi
168168 −17.0650 −1.31659
169169 −6.39927 −0.492252
170170 0 0
171171 −0.433529 −0.0331528
172172 −0.0730539 −0.00557031
173173 −2.58835 −0.196788 −0.0983942 0.995148i 0.531371π-0.531371\pi
−0.0983942 + 0.995148i 0.531371π0.531371\pi
174174 −12.2872 −0.931489
175175 0 0
176176 25.6997 1.93719
177177 −20.9015 −1.57105
178178 11.8094 0.885155
179179 20.7762 1.55289 0.776444 0.630186i 0.217021π-0.217021\pi
0.776444 + 0.630186i 0.217021π0.217021\pi
180180 0 0
181181 −7.24176 −0.538276 −0.269138 0.963102i 0.586739π-0.586739\pi
−0.269138 + 0.963102i 0.586739π0.586739\pi
182182 −14.1868 −1.05159
183183 7.56440 0.559177
184184 −9.86927 −0.727572
185185 0 0
186186 1.31032 0.0960776
187187 0 0
188188 0.410416 0.0299327
189189 20.8534 1.51686
190190 0 0
191191 −24.3229 −1.75994 −0.879971 0.475027i 0.842438π-0.842438\pi
−0.879971 + 0.475027i 0.842438π0.842438\pi
192192 12.3053 0.888062
193193 16.8034 1.20954 0.604769 0.796401i 0.293265π-0.293265\pi
0.604769 + 0.796401i 0.293265π0.293265\pi
194194 10.5642 0.758466
195195 0 0
196196 0.713032 0.0509309
197197 13.0123 0.927087 0.463544 0.886074i 0.346578π-0.346578\pi
0.463544 + 0.886074i 0.346578π0.346578\pi
198198 −3.29309 −0.234030
199199 22.3245 1.58254 0.791269 0.611468i 0.209421π-0.209421\pi
0.791269 + 0.611468i 0.209421π0.209421\pi
200200 0 0
201201 4.81881 0.339892
202202 14.0202 0.986455
203203 −19.9767 −1.40209
204204 0 0
205205 0 0
206206 −16.0873 −1.12085
207207 1.32440 0.0920521
208208 10.7386 0.744588
209209 −7.20263 −0.498216
210210 0 0
211211 18.9114 1.30192 0.650958 0.759114i 0.274367π-0.274367\pi
0.650958 + 0.759114i 0.274367π0.274367\pi
212212 0.222626 0.0152900
213213 −13.7005 −0.938744
214214 −13.1317 −0.897665
215215 0 0
216216 −15.0724 −1.02555
217217 2.13035 0.144617
218218 13.5889 0.920356
219219 −27.1015 −1.83135
220220 0 0
221221 0 0
222222 17.5259 1.17626
223223 −7.58316 −0.507806 −0.253903 0.967230i 0.581714π-0.581714\pi
−0.253903 + 0.967230i 0.581714π0.581714\pi
224224 −2.03438 −0.135927
225225 0 0
226226 7.98671 0.531268
227227 −9.60428 −0.637458 −0.318729 0.947846i 0.603256π-0.603256\pi
−0.318729 + 0.947846i 0.603256π0.603256\pi
228228 0.179198 0.0118676
229229 4.12351 0.272489 0.136245 0.990675i 0.456497π-0.456497\pi
0.136245 + 0.990675i 0.456497π0.456497\pi
230230 0 0
231231 38.0464 2.50327
232232 14.4387 0.947950
233233 −2.09247 −0.137082 −0.0685412 0.997648i 0.521834π-0.521834\pi
−0.0685412 + 0.997648i 0.521834π0.521834\pi
234234 −1.37601 −0.0899528
235235 0 0
236236 −1.21578 −0.0791405
237237 −18.5710 −1.20632
238238 0 0
239239 −5.62948 −0.364141 −0.182070 0.983286i 0.558280π-0.558280\pi
−0.182070 + 0.983286i 0.558280π0.558280\pi
240240 0 0
241241 −12.7279 −0.819878 −0.409939 0.912113i 0.634450π-0.634450\pi
−0.409939 + 0.912113i 0.634450π0.634450\pi
242242 −38.7924 −2.49367
243243 3.82314 0.245255
244244 0.439999 0.0281681
245245 0 0
246246 17.7818 1.13372
247247 −3.00960 −0.191497
248248 −1.53977 −0.0977755
249249 8.23011 0.521562
250250 0 0
251251 11.2701 0.711361 0.355681 0.934608i 0.384249π-0.384249\pi
0.355681 + 0.934608i 0.384249π0.384249\pi
252252 0.133204 0.00839106
253253 22.0035 1.38335
254254 12.2913 0.771224
255255 0 0
256256 2.25895 0.141185
257257 −3.54606 −0.221197 −0.110598 0.993865i 0.535277π-0.535277\pi
−0.110598 + 0.993865i 0.535277π0.535277\pi
258258 1.81756 0.113156
259259 28.4939 1.77052
260260 0 0
261261 −1.93760 −0.119934
262262 −7.12914 −0.440440
263263 23.1294 1.42622 0.713109 0.701053i 0.247286π-0.247286\pi
0.713109 + 0.701053i 0.247286π0.247286\pi
264264 −27.4991 −1.69245
265265 0 0
266266 6.46846 0.396607
267267 −13.2336 −0.809882
268268 0.280296 0.0171218
269269 0.735073 0.0448182 0.0224091 0.999749i 0.492866π-0.492866\pi
0.0224091 + 0.999749i 0.492866π0.492866\pi
270270 0 0
271271 9.37788 0.569666 0.284833 0.958577i 0.408062π-0.408062\pi
0.284833 + 0.958577i 0.408062π0.408062\pi
272272 0 0
273273 15.8976 0.962167
274274 −23.1250 −1.39703
275275 0 0
276276 −0.547436 −0.0329518
277277 13.5913 0.816621 0.408311 0.912843i 0.366118π-0.366118\pi
0.408311 + 0.912843i 0.366118π0.366118\pi
278278 −17.4545 −1.04685
279279 0.206628 0.0123705
280280 0 0
281281 −16.6410 −0.992717 −0.496358 0.868118i 0.665330π-0.665330\pi
−0.496358 + 0.868118i 0.665330π0.665330\pi
282282 −10.2110 −0.608058
283283 10.4897 0.623549 0.311775 0.950156i 0.399077π-0.399077\pi
0.311775 + 0.950156i 0.399077π0.399077\pi
284284 −0.796919 −0.0472884
285285 0 0
286286 −22.8610 −1.35180
287287 28.9099 1.70650
288288 −0.197320 −0.0116272
289289 0 0
290290 0 0
291291 −11.8382 −0.693967
292292 −1.57642 −0.0922528
293293 −1.47825 −0.0863603 −0.0431801 0.999067i 0.513749π-0.513749\pi
−0.0431801 + 0.999067i 0.513749π0.513749\pi
294294 −17.7400 −1.03462
295295 0 0
296296 −20.5948 −1.19705
297297 33.6039 1.94989
298298 −1.14572 −0.0663697
299299 9.19413 0.531710
300300 0 0
301301 2.95502 0.170325
302302 27.7287 1.59561
303303 −15.7109 −0.902568
304304 −4.89626 −0.280820
305305 0 0
306306 0 0
307307 19.3620 1.10505 0.552524 0.833497i 0.313665π-0.313665\pi
0.552524 + 0.833497i 0.313665π0.313665\pi
308308 2.21305 0.126100
309309 18.0273 1.02554
310310 0 0
311311 0.840522 0.0476616 0.0238308 0.999716i 0.492414π-0.492414\pi
0.0238308 + 0.999716i 0.492414π0.492414\pi
312312 −11.4904 −0.650519
313313 −6.93017 −0.391716 −0.195858 0.980632i 0.562749π-0.562749\pi
−0.195858 + 0.980632i 0.562749π0.562749\pi
314314 −26.1357 −1.47492
315315 0 0
316316 −1.08022 −0.0607672
317317 7.92328 0.445016 0.222508 0.974931i 0.428576π-0.428576\pi
0.222508 + 0.974931i 0.428576π0.428576\pi
318318 −5.53886 −0.310604
319319 −32.1911 −1.80236
320320 0 0
321321 14.7153 0.821328
322322 −19.7607 −1.10122
323323 0 0
324324 −0.731316 −0.0406287
325325 0 0
326326 −33.2401 −1.84100
327327 −15.2276 −0.842090
328328 −20.8955 −1.15376
329329 −16.6013 −0.915258
330330 0 0
331331 14.0945 0.774705 0.387353 0.921932i 0.373390π-0.373390\pi
0.387353 + 0.921932i 0.373390π0.373390\pi
332332 0.478722 0.0262733
333333 2.76370 0.151450
334334 3.70006 0.202458
335335 0 0
336336 25.8635 1.41097
337337 −9.72039 −0.529503 −0.264752 0.964317i 0.585290π-0.585290\pi
−0.264752 + 0.964317i 0.585290π0.585290\pi
338338 9.26089 0.503726
339339 −8.94986 −0.486090
340340 0 0
341341 3.43291 0.185903
342342 0.627394 0.0339256
343343 −2.13272 −0.115156
344344 −2.13583 −0.115156
345345 0 0
346346 3.74580 0.201376
347347 −0.113821 −0.00611026 −0.00305513 0.999995i 0.500972π-0.500972\pi
−0.00305513 + 0.999995i 0.500972π0.500972\pi
348348 0.800899 0.0429327
349349 −21.3996 −1.14550 −0.572748 0.819732i 0.694122π-0.694122\pi
−0.572748 + 0.819732i 0.694122π0.694122\pi
350350 0 0
351351 14.0413 0.749470
352352 −3.27826 −0.174732
353353 −15.9897 −0.851048 −0.425524 0.904947i 0.639910π-0.639910\pi
−0.425524 + 0.904947i 0.639910π0.639910\pi
354354 30.2482 1.60768
355355 0 0
356356 −0.769759 −0.0407971
357357 0 0
358358 −30.0669 −1.58909
359359 7.48730 0.395164 0.197582 0.980286i 0.436691π-0.436691\pi
0.197582 + 0.980286i 0.436691π0.436691\pi
360360 0 0
361361 −17.6278 −0.927777
362362 10.4801 0.550823
363363 43.4705 2.28161
364364 0.924717 0.0484683
365365 0 0
366366 −10.9470 −0.572211
367367 26.2279 1.36908 0.684542 0.728974i 0.260002π-0.260002\pi
0.684542 + 0.728974i 0.260002π0.260002\pi
368368 14.9577 0.779726
369369 2.80405 0.145973
370370 0 0
371371 −9.00517 −0.467525
372372 −0.0854091 −0.00442826
373373 8.87012 0.459277 0.229639 0.973276i 0.426246π-0.426246\pi
0.229639 + 0.973276i 0.426246π0.426246\pi
374374 0 0
375375 0 0
376376 11.9990 0.618804
377377 −13.4510 −0.692762
378378 −30.1786 −1.55222
379379 3.62460 0.186183 0.0930917 0.995658i 0.470325π-0.470325\pi
0.0930917 + 0.995658i 0.470325π0.470325\pi
380380 0 0
381381 −13.7735 −0.705640
382382 35.1996 1.80097
383383 28.3307 1.44763 0.723815 0.689994i 0.242387π-0.242387\pi
0.723815 + 0.689994i 0.242387π0.242387\pi
384384 −19.5373 −0.997011
385385 0 0
386386 −24.3176 −1.23773
387387 0.286616 0.0145695
388388 −0.688593 −0.0349580
389389 −6.35885 −0.322407 −0.161203 0.986921i 0.551537π-0.551537\pi
−0.161203 + 0.986921i 0.551537π0.551537\pi
390390 0 0
391391 0 0
392392 20.8464 1.05290
393393 7.98887 0.402985
394394 −18.8311 −0.948698
395395 0 0
396396 0.214649 0.0107865
397397 −8.68310 −0.435792 −0.217896 0.975972i 0.569919π-0.569919\pi
−0.217896 + 0.975972i 0.569919π0.569919\pi
398398 −32.3075 −1.61943
399399 −7.24851 −0.362880
400400 0 0
401401 −27.8569 −1.39111 −0.695554 0.718474i 0.744841π-0.744841\pi
−0.695554 + 0.718474i 0.744841π0.744841\pi
402402 −6.97368 −0.347815
403403 1.43444 0.0714544
404404 −0.913857 −0.0454661
405405 0 0
406406 28.9099 1.43477
407407 45.9160 2.27597
408408 0 0
409409 17.9787 0.888989 0.444494 0.895782i 0.353383π-0.353383\pi
0.444494 + 0.895782i 0.353383π0.353383\pi
410410 0 0
411411 25.9137 1.27823
412412 1.04859 0.0516605
413413 49.1781 2.41990
414414 −1.91664 −0.0941979
415415 0 0
416416 −1.36982 −0.0671607
417417 19.5595 0.957831
418418 10.4235 0.509830
419419 −34.0826 −1.66504 −0.832522 0.553992i 0.813104π-0.813104\pi
−0.832522 + 0.553992i 0.813104π0.813104\pi
420420 0 0
421421 −30.0061 −1.46241 −0.731204 0.682159i 0.761041π-0.761041\pi
−0.731204 + 0.682159i 0.761041π0.761041\pi
422422 −27.3682 −1.33226
423423 −1.61020 −0.0782908
424424 6.50875 0.316093
425425 0 0
426426 19.8271 0.960627
427427 −17.7979 −0.861301
428428 0.855946 0.0413737
429429 25.6179 1.23685
430430 0 0
431431 −29.2342 −1.40816 −0.704082 0.710119i 0.748641π-0.748641\pi
−0.704082 + 0.710119i 0.748641π0.748641\pi
432432 22.8435 1.09906
433433 −9.55769 −0.459313 −0.229657 0.973272i 0.573760π-0.573760\pi
−0.229657 + 0.973272i 0.573760π0.573760\pi
434434 −3.08300 −0.147989
435435 0 0
436436 −0.885747 −0.0424196
437437 −4.19207 −0.200534
438438 39.2208 1.87404
439439 −30.5786 −1.45943 −0.729717 0.683749i 0.760348π-0.760348\pi
−0.729717 + 0.683749i 0.760348π0.760348\pi
440440 0 0
441441 −2.79747 −0.133213
442442 0 0
443443 4.19885 0.199493 0.0997467 0.995013i 0.468197π-0.468197\pi
0.0997467 + 0.995013i 0.468197π0.468197\pi
444444 −1.14237 −0.0542143
445445 0 0
446446 10.9742 0.519644
447447 1.28389 0.0607257
448448 −28.9526 −1.36788
449449 30.5834 1.44332 0.721660 0.692248i 0.243379π-0.243379\pi
0.721660 + 0.692248i 0.243379π0.243379\pi
450450 0 0
451451 46.5864 2.19367
452452 −0.520587 −0.0244864
453453 −31.0726 −1.45992
454454 13.8991 0.652318
455455 0 0
456456 5.23907 0.245342
457457 −5.94941 −0.278302 −0.139151 0.990271i 0.544437π-0.544437\pi
−0.139151 + 0.990271i 0.544437π0.544437\pi
458458 −5.96746 −0.278841
459459 0 0
460460 0 0
461461 38.0247 1.77099 0.885494 0.464650i 0.153820π-0.153820\pi
0.885494 + 0.464650i 0.153820π0.153820\pi
462462 −55.0599 −2.56162
463463 −9.32934 −0.433571 −0.216786 0.976219i 0.569557π-0.569557\pi
−0.216786 + 0.976219i 0.569557π0.569557\pi
464464 −21.8832 −1.01590
465465 0 0
466466 3.02818 0.140278
467467 16.8764 0.780949 0.390474 0.920614i 0.372311π-0.372311\pi
0.390474 + 0.920614i 0.372311π0.372311\pi
468468 0.0896909 0.00414596
469469 −11.3379 −0.523537
470470 0 0
471471 29.2875 1.34950
472472 −35.5449 −1.63609
473473 4.76182 0.218949
474474 26.8756 1.23444
475475 0 0
476476 0 0
477477 −0.873436 −0.0399919
478478 8.14687 0.372629
479479 −8.68906 −0.397013 −0.198507 0.980100i 0.563609π-0.563609\pi
−0.198507 + 0.980100i 0.563609π0.563609\pi
480480 0 0
481481 19.1859 0.874803
482482 18.4196 0.838989
483483 22.1437 1.00757
484484 2.52855 0.114934
485485 0 0
486486 −5.53277 −0.250972
487487 −18.2608 −0.827476 −0.413738 0.910396i 0.635777π-0.635777\pi
−0.413738 + 0.910396i 0.635777π0.635777\pi
488488 12.8639 0.582323
489489 37.2487 1.68444
490490 0 0
491491 8.09277 0.365222 0.182611 0.983185i 0.441545π-0.441545\pi
0.182611 + 0.983185i 0.441545π0.441545\pi
492492 −1.15904 −0.0522538
493493 0 0
494494 4.35544 0.195960
495495 0 0
496496 2.33366 0.104784
497497 32.2353 1.44595
498498 −11.9105 −0.533720
499499 −8.98098 −0.402044 −0.201022 0.979587i 0.564426π-0.564426\pi
−0.201022 + 0.979587i 0.564426π0.564426\pi
500500 0 0
501501 −4.14626 −0.185241
502502 −16.3098 −0.727944
503503 −15.5919 −0.695207 −0.347604 0.937642i 0.613005π-0.613005\pi
−0.347604 + 0.937642i 0.613005π0.613005\pi
504504 3.89439 0.173470
505505 0 0
506506 −31.8430 −1.41560
507507 −10.3777 −0.460890
508508 −0.801167 −0.0355460
509509 35.3211 1.56558 0.782790 0.622286i 0.213796π-0.213796\pi
0.782790 + 0.622286i 0.213796π0.213796\pi
510510 0 0
511511 63.7658 2.82083
512512 20.8258 0.920377
513513 −6.40214 −0.282661
514514 5.13178 0.226353
515515 0 0
516516 −0.118472 −0.00521542
517517 −26.7519 −1.17655
518518 −41.2358 −1.81180
519519 −4.19752 −0.184251
520520 0 0
521521 −24.8263 −1.08766 −0.543830 0.839196i 0.683026π-0.683026\pi
−0.543830 + 0.839196i 0.683026π0.683026\pi
522522 2.80405 0.122730
523523 −11.7480 −0.513704 −0.256852 0.966451i 0.582685π-0.582685\pi
−0.256852 + 0.966451i 0.582685π0.582685\pi
524524 0.464689 0.0203000
525525 0 0
526526 −33.4724 −1.45946
527527 0 0
528528 41.6773 1.81377
529529 −10.1935 −0.443197
530530 0 0
531531 4.76992 0.206997
532532 −0.421625 −0.0182798
533533 19.4660 0.843168
534534 19.1514 0.828761
535535 0 0
536536 8.19481 0.353962
537537 33.6928 1.45395
538538 −1.06378 −0.0458630
539539 −46.4771 −2.00191
540540 0 0
541541 20.9757 0.901815 0.450908 0.892571i 0.351100π-0.351100\pi
0.450908 + 0.892571i 0.351100π0.351100\pi
542542 −13.5715 −0.582945
543543 −11.7440 −0.503982
544544 0 0
545545 0 0
546546 −23.0067 −0.984595
547547 −5.51818 −0.235940 −0.117970 0.993017i 0.537639π-0.537639\pi
−0.117970 + 0.993017i 0.537639π0.537639\pi
548548 1.50733 0.0643898
549549 −1.72627 −0.0736753
550550 0 0
551551 6.13299 0.261274
552552 −16.0050 −0.681218
553553 43.6948 1.85809
554554 −19.6690 −0.835657
555555 0 0
556556 1.13772 0.0482499
557557 −25.1974 −1.06765 −0.533823 0.845596i 0.679245π-0.679245\pi
−0.533823 + 0.845596i 0.679245π0.679245\pi
558558 −0.299028 −0.0126589
559559 1.98972 0.0841561
560560 0 0
561561 0 0
562562 24.0825 1.01586
563563 −11.1335 −0.469219 −0.234610 0.972090i 0.575381π-0.575381\pi
−0.234610 + 0.972090i 0.575381π0.575381\pi
564564 0.665572 0.0280256
565565 0 0
566566 −15.1805 −0.638085
567567 29.5816 1.24231
568568 −23.2990 −0.977603
569569 8.18349 0.343070 0.171535 0.985178i 0.445127π-0.445127\pi
0.171535 + 0.985178i 0.445127π0.445127\pi
570570 0 0
571571 −11.3240 −0.473895 −0.236948 0.971522i 0.576147π-0.576147\pi
−0.236948 + 0.971522i 0.576147π0.576147\pi
572572 1.49012 0.0623051
573573 −39.4444 −1.64782
574574 −41.8378 −1.74628
575575 0 0
576576 −2.80820 −0.117008
577577 −12.5131 −0.520925 −0.260463 0.965484i 0.583875π-0.583875\pi
−0.260463 + 0.965484i 0.583875π0.583875\pi
578578 0 0
579579 27.2501 1.13248
580580 0 0
581581 −19.3642 −0.803363
582582 17.1320 0.710143
583583 −14.5112 −0.600994
584584 −46.0886 −1.90716
585585 0 0
586586 2.13929 0.0883734
587587 −23.6400 −0.975726 −0.487863 0.872920i 0.662223π-0.662223\pi
−0.487863 + 0.872920i 0.662223π0.662223\pi
588588 1.15632 0.0476860
589589 −0.654032 −0.0269489
590590 0 0
591591 21.1020 0.868022
592592 31.2132 1.28285
593593 −21.6317 −0.888306 −0.444153 0.895951i 0.646495π-0.646495\pi
−0.444153 + 0.895951i 0.646495π0.646495\pi
594594 −48.6308 −1.99535
595595 0 0
596596 0.0746799 0.00305901
597597 36.2036 1.48171
598598 −13.3056 −0.544105
599599 −8.41511 −0.343832 −0.171916 0.985112i 0.554996π-0.554996\pi
−0.171916 + 0.985112i 0.554996π0.554996\pi
600600 0 0
601601 −45.0998 −1.83966 −0.919829 0.392319i 0.871673π-0.871673\pi
−0.919829 + 0.392319i 0.871673π0.871673\pi
602602 −4.27645 −0.174295
603603 −1.09970 −0.0447831
604604 −1.80740 −0.0735422
605605 0 0
606606 22.7365 0.923607
607607 −16.9707 −0.688818 −0.344409 0.938820i 0.611921π-0.611921\pi
−0.344409 + 0.938820i 0.611921π0.611921\pi
608608 0.624568 0.0253296
609609 −32.3962 −1.31276
610610 0 0
611611 −11.1782 −0.452222
612612 0 0
613613 −40.8575 −1.65022 −0.825109 0.564974i 0.808886π-0.808886\pi
−0.825109 + 0.564974i 0.808886π0.808886\pi
614614 −28.0203 −1.13081
615615 0 0
616616 64.7012 2.60689
617617 4.36716 0.175815 0.0879076 0.996129i 0.471982π-0.471982\pi
0.0879076 + 0.996129i 0.471982π0.471982\pi
618618 −26.0887 −1.04944
619619 2.19834 0.0883586 0.0441793 0.999024i 0.485933π-0.485933\pi
0.0441793 + 0.999024i 0.485933π0.485933\pi
620620 0 0
621621 19.5581 0.784839
622622 −1.21639 −0.0487727
623623 31.1366 1.24746
624624 17.4148 0.697149
625625 0 0
626626 10.0292 0.400847
627627 −11.6805 −0.466474
628628 1.70357 0.0679797
629629 0 0
630630 0 0
631631 −30.4636 −1.21274 −0.606368 0.795184i 0.707374π-0.707374\pi
−0.606368 + 0.795184i 0.707374π0.707374\pi
632632 −31.5817 −1.25625
633633 30.6687 1.21897
634634 −11.4664 −0.455390
635635 0 0
636636 0.361032 0.0143158
637637 −19.4204 −0.769463
638638 46.5864 1.84437
639639 3.12659 0.123686
640640 0 0
641641 −27.0255 −1.06744 −0.533721 0.845661i 0.679207π-0.679207\pi
−0.533721 + 0.845661i 0.679207π0.679207\pi
642642 −21.2957 −0.840474
643643 32.3036 1.27393 0.636965 0.770892i 0.280189π-0.280189\pi
0.636965 + 0.770892i 0.280189π0.280189\pi
644644 1.28803 0.0507557
645645 0 0
646646 0 0
647647 −3.21308 −0.126319 −0.0631595 0.998003i 0.520118π-0.520118\pi
−0.0631595 + 0.998003i 0.520118π0.520118\pi
648648 −21.3810 −0.839924
649649 79.2473 3.11073
650650 0 0
651651 3.45479 0.135404
652652 2.16665 0.0848525
653653 −14.0028 −0.547972 −0.273986 0.961734i 0.588342π-0.588342\pi
−0.273986 + 0.961734i 0.588342π0.588342\pi
654654 22.0371 0.861720
655655 0 0
656656 31.6689 1.23646
657657 6.18482 0.241293
658658 24.0250 0.936593
659659 48.2924 1.88120 0.940602 0.339512i 0.110262π-0.110262\pi
0.940602 + 0.339512i 0.110262π0.110262\pi
660660 0 0
661661 −31.8807 −1.24001 −0.620007 0.784596i 0.712870π-0.712870\pi
−0.620007 + 0.784596i 0.712870π0.712870\pi
662662 −20.3973 −0.792764
663663 0 0
664664 13.9960 0.543152
665665 0 0
666666 −3.99957 −0.154980
667667 −18.7359 −0.725455
668668 −0.241176 −0.00933138
669669 −12.2976 −0.475453
670670 0 0
671671 −28.6801 −1.10718
672672 −3.29915 −0.127267
673673 −9.44276 −0.363992 −0.181996 0.983299i 0.558256π-0.558256\pi
−0.181996 + 0.983299i 0.558256π0.558256\pi
674674 14.0672 0.541846
675675 0 0
676676 −0.603640 −0.0232169
677677 29.9668 1.15172 0.575858 0.817549i 0.304668π-0.304668\pi
0.575858 + 0.817549i 0.304668π0.304668\pi
678678 12.9521 0.497421
679679 27.8535 1.06892
680680 0 0
681681 −15.5753 −0.596845
682682 −4.96804 −0.190236
683683 40.3774 1.54500 0.772499 0.635015i 0.219006π-0.219006\pi
0.772499 + 0.635015i 0.219006π0.219006\pi
684684 −0.0408946 −0.00156364
685685 0 0
686686 3.08643 0.117840
687687 6.68710 0.255129
688688 3.23703 0.123411
689689 −6.06349 −0.231001
690690 0 0
691691 27.9371 1.06278 0.531388 0.847128i 0.321671π-0.321671\pi
0.531388 + 0.847128i 0.321671π0.321671\pi
692692 −0.244158 −0.00928148
693693 −8.68254 −0.329822
694694 0.164720 0.00625269
695695 0 0
696696 23.4153 0.887555
697697 0 0
698698 30.9691 1.17220
699699 −3.39336 −0.128349
700700 0 0
701701 14.7138 0.555732 0.277866 0.960620i 0.410373π-0.410373\pi
0.277866 + 0.960620i 0.410373π0.410373\pi
702702 −20.3203 −0.766941
703703 −8.74783 −0.329931
704704 −46.6553 −1.75839
705705 0 0
706706 23.1400 0.870886
707707 36.9654 1.39023
708708 −1.97163 −0.0740984
709709 −13.3825 −0.502588 −0.251294 0.967911i 0.580856π-0.580856\pi
−0.251294 + 0.967911i 0.580856π0.580856\pi
710710 0 0
711711 4.23808 0.158940
712712 −22.5049 −0.843407
713713 1.99802 0.0748265
714714 0 0
715715 0 0
716716 1.95981 0.0732417
717717 −9.12933 −0.340941
718718 −10.8355 −0.404376
719719 23.7717 0.886535 0.443268 0.896389i 0.353819π-0.353819\pi
0.443268 + 0.896389i 0.353819π0.353819\pi
720720 0 0
721721 −42.4155 −1.57964
722722 25.5106 0.949405
723723 −20.6409 −0.767643
724724 −0.683112 −0.0253877
725725 0 0
726726 −62.9096 −2.33479
727727 4.40311 0.163302 0.0816512 0.996661i 0.473981π-0.473981\pi
0.0816512 + 0.996661i 0.473981π0.473981\pi
728728 27.0353 1.00200
729729 29.4583 1.09105
730730 0 0
731731 0 0
732732 0.713547 0.0263735
733733 42.2976 1.56230 0.781149 0.624344i 0.214634π-0.214634\pi
0.781149 + 0.624344i 0.214634π0.214634\pi
734734 −37.9564 −1.40100
735735 0 0
736736 −1.90801 −0.0703302
737737 −18.2703 −0.672996
738738 −4.05796 −0.149376
739739 −23.1126 −0.850212 −0.425106 0.905144i 0.639763π-0.639763\pi
−0.425106 + 0.905144i 0.639763π0.639763\pi
740740 0 0
741741 −4.88068 −0.179296
742742 13.0321 0.478423
743743 0.752277 0.0275984 0.0137992 0.999905i 0.495607π-0.495607\pi
0.0137992 + 0.999905i 0.495607π0.495607\pi
744744 −2.49705 −0.0915461
745745 0 0
746746 −12.8367 −0.469984
747747 −1.87819 −0.0687194
748748 0 0
749749 −34.6229 −1.26509
750750 0 0
751751 −13.3283 −0.486357 −0.243178 0.969982i 0.578190π-0.578190\pi
−0.243178 + 0.969982i 0.578190π0.578190\pi
752752 −18.1856 −0.663161
753753 18.2767 0.666040
754754 19.4660 0.708911
755755 0 0
756756 1.96709 0.0715425
757757 −36.9030 −1.34126 −0.670630 0.741792i 0.733976π-0.733976\pi
−0.670630 + 0.741792i 0.733976π0.733976\pi
758758 −5.24545 −0.190523
759759 35.6831 1.29521
760760 0 0
761761 35.4100 1.28361 0.641805 0.766868i 0.278186π-0.278186\pi
0.641805 + 0.766868i 0.278186π0.278186\pi
762762 19.9328 0.722089
763763 35.8283 1.29707
764764 −2.29437 −0.0830073
765765 0 0
766766 −40.9996 −1.48138
767767 33.1133 1.19565
768768 3.66335 0.132190
769769 −2.67233 −0.0963666 −0.0481833 0.998839i 0.515343π-0.515343\pi
−0.0481833 + 0.998839i 0.515343π0.515343\pi
770770 0 0
771771 −5.75064 −0.207104
772772 1.58506 0.0570476
773773 47.9406 1.72430 0.862152 0.506649i 0.169116π-0.169116\pi
0.862152 + 0.506649i 0.169116π0.169116\pi
774774 −0.414784 −0.0149091
775775 0 0
776776 −20.1319 −0.722693
777777 46.2086 1.65772
778778 9.20240 0.329922
779779 −8.87554 −0.317999
780780 0 0
781781 51.9450 1.85874
782782 0 0
783783 −28.6135 −1.02256
784784 −31.5946 −1.12838
785785 0 0
786786 −11.5613 −0.412379
787787 −15.8202 −0.563929 −0.281965 0.959425i 0.590986π-0.590986\pi
−0.281965 + 0.959425i 0.590986π0.590986\pi
788788 1.22744 0.0437259
789789 37.5089 1.33535
790790 0 0
791791 21.0577 0.748725
792792 6.27555 0.222992
793793 −11.9839 −0.425562
794794 12.5660 0.445951
795795 0 0
796796 2.10586 0.0746401
797797 5.01840 0.177761 0.0888804 0.996042i 0.471671π-0.471671\pi
0.0888804 + 0.996042i 0.471671π0.471671\pi
798798 10.4899 0.371339
799799 0 0
800800 0 0
801801 3.02003 0.106707
802802 40.3140 1.42354
803803 102.754 3.62612
804804 0.454556 0.0160310
805805 0 0
806806 −2.07589 −0.0731201
807807 1.19207 0.0419628
808808 −26.7178 −0.939929
809809 −7.06907 −0.248535 −0.124268 0.992249i 0.539658π-0.539658\pi
−0.124268 + 0.992249i 0.539658π0.539658\pi
810810 0 0
811811 10.7641 0.377977 0.188989 0.981979i 0.439479π-0.439479\pi
0.188989 + 0.981979i 0.439479π0.439479\pi
812812 −1.88439 −0.0661293
813813 15.2081 0.533372
814814 −66.4487 −2.32903
815815 0 0
816816 0 0
817817 −0.907213 −0.0317393
818818 −26.0184 −0.909712
819819 −3.62798 −0.126772
820820 0 0
821821 29.5285 1.03055 0.515276 0.857024i 0.327689π-0.327689\pi
0.515276 + 0.857024i 0.327689π0.327689\pi
822822 −37.5018 −1.30803
823823 25.6974 0.895755 0.447877 0.894095i 0.352180π-0.352180\pi
0.447877 + 0.894095i 0.352180π0.352180\pi
824824 30.6570 1.06799
825825 0 0
826826 −71.1696 −2.47631
827827 −12.2393 −0.425604 −0.212802 0.977095i 0.568259π-0.568259\pi
−0.212802 + 0.977095i 0.568259π0.568259\pi
828828 0.124930 0.00434162
829829 −50.2516 −1.74531 −0.872656 0.488336i 0.837604π-0.837604\pi
−0.872656 + 0.488336i 0.837604π0.837604\pi
830830 0 0
831831 22.0410 0.764594
832832 −19.4948 −0.675861
833833 0 0
834834 −28.3060 −0.980158
835835 0 0
836836 −0.679421 −0.0234983
837837 3.05139 0.105471
838838 49.3237 1.70386
839839 4.63496 0.160017 0.0800083 0.996794i 0.474505π-0.474505\pi
0.0800083 + 0.996794i 0.474505π0.474505\pi
840840 0 0
841841 −1.58944 −0.0548082
842842 43.4242 1.49650
843843 −26.9867 −0.929470
844844 1.78391 0.0614046
845845 0 0
846846 2.33025 0.0801158
847847 −102.280 −3.51437
848848 −9.86458 −0.338751
849849 17.0112 0.583822
850850 0 0
851851 26.7240 0.916087
852852 −1.29236 −0.0442757
853853 −32.8889 −1.12609 −0.563047 0.826425i 0.690371π-0.690371\pi
−0.563047 + 0.826425i 0.690371π0.690371\pi
854854 25.7568 0.881378
855855 0 0
856856 25.0247 0.855327
857857 4.67903 0.159833 0.0799164 0.996802i 0.474535π-0.474535\pi
0.0799164 + 0.996802i 0.474535π0.474535\pi
858858 −37.0738 −1.26568
859859 −0.831102 −0.0283568 −0.0141784 0.999899i 0.504513π-0.504513\pi
−0.0141784 + 0.999899i 0.504513π0.504513\pi
860860 0 0
861861 46.8832 1.59777
862862 42.3072 1.44099
863863 23.4587 0.798545 0.399272 0.916832i 0.369263π-0.369263\pi
0.399272 + 0.916832i 0.369263π0.369263\pi
864864 −2.91392 −0.0991336
865865 0 0
866866 13.8317 0.470020
867867 0 0
868868 0.200955 0.00682085
869869 70.4113 2.38854
870870 0 0
871871 −7.63422 −0.258676
872872 −25.8960 −0.876948
873873 2.70159 0.0914348
874874 6.06667 0.205208
875875 0 0
876876 −2.55648 −0.0863753
877877 −30.5812 −1.03265 −0.516327 0.856391i 0.672701π-0.672701\pi
−0.516327 + 0.856391i 0.672701π0.672701\pi
878878 44.2527 1.49346
879879 −2.39728 −0.0808582
880880 0 0
881881 0.185968 0.00626543 0.00313271 0.999995i 0.499003π-0.499003\pi
0.00313271 + 0.999995i 0.499003π0.499003\pi
882882 4.04844 0.136318
883883 −19.3509 −0.651211 −0.325605 0.945506i 0.605568π-0.605568\pi
−0.325605 + 0.945506i 0.605568π0.605568\pi
884884 0 0
885885 0 0
886886 −6.07649 −0.204144
887887 28.5188 0.957566 0.478783 0.877933i 0.341078π-0.341078\pi
0.478783 + 0.877933i 0.341078π0.341078\pi
888888 −33.3986 −1.12078
889889 32.4071 1.08690
890890 0 0
891891 47.6688 1.59697
892892 −0.715317 −0.0239506
893893 5.09671 0.170555
894894 −1.85801 −0.0621413
895895 0 0
896896 45.9684 1.53570
897897 14.9101 0.497835
898898 −44.2597 −1.47696
899899 −2.92311 −0.0974910
900900 0 0
901901 0 0
902902 −67.4189 −2.24480
903903 4.79216 0.159473
904904 −15.2200 −0.506211
905905 0 0
906906 44.9677 1.49395
907907 17.1889 0.570749 0.285375 0.958416i 0.407882π-0.407882\pi
0.285375 + 0.958416i 0.407882π0.407882\pi
908908 −0.905967 −0.0300656
909909 3.58538 0.118919
910910 0 0
911911 −31.2141 −1.03417 −0.517085 0.855934i 0.672983π-0.672983\pi
−0.517085 + 0.855934i 0.672983π0.672983\pi
912912 −7.94027 −0.262929
913913 −31.2042 −1.03271
914914 8.60986 0.284789
915915 0 0
916916 0.388969 0.0128519
917917 −18.7966 −0.620719
918918 0 0
919919 24.5006 0.808202 0.404101 0.914714i 0.367585π-0.367585\pi
0.404101 + 0.914714i 0.367585π0.367585\pi
920920 0 0
921921 31.3993 1.03464
922922 −55.0286 −1.81227
923923 21.7051 0.714433
924924 3.58890 0.118066
925925 0 0
926926 13.5012 0.443678
927927 −4.11400 −0.135121
928928 2.79142 0.0916328
929929 44.3523 1.45515 0.727576 0.686027i 0.240647π-0.240647\pi
0.727576 + 0.686027i 0.240647π0.240647\pi
930930 0 0
931931 8.85472 0.290202
932932 −0.197382 −0.00646546
933933 1.36308 0.0446251
934934 −24.4233 −0.799153
935935 0 0
936936 2.62223 0.0857102
937937 −32.0828 −1.04810 −0.524050 0.851688i 0.675579π-0.675579\pi
−0.524050 + 0.851688i 0.675579π0.675579\pi
938938 16.4080 0.535741
939939 −11.2387 −0.366760
940940 0 0
941941 −15.1855 −0.495032 −0.247516 0.968884i 0.579614π-0.579614\pi
−0.247516 + 0.968884i 0.579614π0.579614\pi
942942 −42.3842 −1.38095
943943 27.1142 0.882959
944944 53.8714 1.75336
945945 0 0
946946 −6.89121 −0.224053
947947 −36.8958 −1.19895 −0.599477 0.800392i 0.704625π-0.704625\pi
−0.599477 + 0.800392i 0.704625π0.704625\pi
948948 −1.75179 −0.0568957
949949 42.9357 1.39375
950950 0 0
951951 12.8492 0.416664
952952 0 0
953953 22.8613 0.740551 0.370276 0.928922i 0.379263π-0.379263\pi
0.370276 + 0.928922i 0.379263π0.379263\pi
954954 1.26402 0.0409241
955955 0 0
956956 −0.531026 −0.0171746
957957 −52.2044 −1.68753
958958 12.5746 0.406268
959959 −60.9711 −1.96886
960960 0 0
961961 −30.6883 −0.989944
962962 −27.7655 −0.895195
963963 −3.35817 −0.108216
964964 −1.20062 −0.0386694
965965 0 0
966966 −32.0459 −1.03106
967967 31.3390 1.00779 0.503897 0.863764i 0.331899π-0.331899\pi
0.503897 + 0.863764i 0.331899π0.331899\pi
968968 73.9254 2.37605
969969 0 0
970970 0 0
971971 0.826892 0.0265362 0.0132681 0.999912i 0.495777π-0.495777\pi
0.0132681 + 0.999912i 0.495777π0.495777\pi
972972 0.360635 0.0115674
973973 −46.0205 −1.47535
974974 26.4267 0.846765
975975 0 0
976976 −19.4964 −0.624066
977977 −21.5432 −0.689227 −0.344614 0.938745i 0.611990π-0.611990\pi
−0.344614 + 0.938745i 0.611990π0.611990\pi
978978 −53.9056 −1.72371
979979 50.1746 1.60359
980980 0 0
981981 3.47509 0.110951
982982 −11.7117 −0.373735
983983 −26.0044 −0.829410 −0.414705 0.909956i 0.636115π-0.636115\pi
−0.414705 + 0.909956i 0.636115π0.636115\pi
984984 −33.8862 −1.08025
985985 0 0
986986 0 0
987987 −26.9223 −0.856946
988988 −0.283895 −0.00903190
989989 2.77147 0.0881276
990990 0 0
991991 54.8263 1.74162 0.870808 0.491623i 0.163596π-0.163596\pi
0.870808 + 0.491623i 0.163596π0.163596\pi
992992 −0.297681 −0.00945139
993993 22.8571 0.725348
994994 −46.6502 −1.47966
995995 0 0
996996 0.776343 0.0245994
997997 −38.6480 −1.22400 −0.611998 0.790859i 0.709634π-0.709634\pi
−0.611998 + 0.790859i 0.709634π0.709634\pi
998998 12.9971 0.411416
999999 40.8130 1.29127
Display apa_p with pp up to: 50 250 1000 (See ana_n instead) (See ana_n instead) (See ana_n instead) Display ana_n with nn up to: 50 250 1000 (See only apa_p) (See only apa_p) (See only apa_p)

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 7225.2.a.br.1.4 12
5.4 even 2 7225.2.a.bm.1.9 12
17.2 even 8 425.2.e.e.276.2 yes 12
17.9 even 8 425.2.e.e.251.5 yes 12
17.16 even 2 inner 7225.2.a.br.1.3 12
85.2 odd 8 425.2.j.a.174.5 12
85.9 even 8 425.2.e.c.251.2 12
85.19 even 8 425.2.e.c.276.5 yes 12
85.43 odd 8 425.2.j.a.149.5 12
85.53 odd 8 425.2.j.d.174.2 12
85.77 odd 8 425.2.j.d.149.2 12
85.84 even 2 7225.2.a.bm.1.10 12
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
425.2.e.c.251.2 12 85.9 even 8
425.2.e.c.276.5 yes 12 85.19 even 8
425.2.e.e.251.5 yes 12 17.9 even 8
425.2.e.e.276.2 yes 12 17.2 even 8
425.2.j.a.149.5 12 85.43 odd 8
425.2.j.a.174.5 12 85.2 odd 8
425.2.j.d.149.2 12 85.77 odd 8
425.2.j.d.174.2 12 85.53 odd 8
7225.2.a.bm.1.9 12 5.4 even 2
7225.2.a.bm.1.10 12 85.84 even 2
7225.2.a.br.1.3 12 17.16 even 2 inner
7225.2.a.br.1.4 12 1.1 even 1 trivial