Properties

Label 7225.2.a.br.1.4
Level $7225$
Weight $2$
Character 7225.1
Self dual yes
Analytic conductor $57.692$
Analytic rank $0$
Dimension $12$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [7225,2,Mod(1,7225)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(7225, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("7225.1");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 7225 = 5^{2} \cdot 17^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 7225.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(57.6919154604\)
Analytic rank: \(0\)
Dimension: \(12\)
Coefficient field: \(\mathbb{Q}[x]/(x^{12} - \cdots)\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{12} - 20x^{10} + 135x^{8} - 400x^{6} + 515x^{4} - 222x^{2} + 25 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{11}]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 425)
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.4
Root \(1.62170\) of defining polynomial
Character \(\chi\) \(=\) 7225.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-1.44718 q^{2} +1.62170 q^{3} +0.0943296 q^{4} -2.34689 q^{6} -3.81562 q^{7} +2.75785 q^{8} -0.370087 q^{9} +O(q^{10})\) \(q-1.44718 q^{2} +1.62170 q^{3} +0.0943296 q^{4} -2.34689 q^{6} -3.81562 q^{7} +2.75785 q^{8} -0.370087 q^{9} -6.14862 q^{11} +0.152974 q^{12} -2.56919 q^{13} +5.52189 q^{14} -4.17976 q^{16} +0.535583 q^{18} +1.17142 q^{19} -6.18779 q^{21} +8.89815 q^{22} -3.57861 q^{23} +4.47240 q^{24} +3.71808 q^{26} -5.46527 q^{27} -0.359926 q^{28} +5.23551 q^{29} -0.558323 q^{31} +0.533170 q^{32} -9.97121 q^{33} -0.0349102 q^{36} -7.46770 q^{37} -1.69526 q^{38} -4.16645 q^{39} -7.57672 q^{41} +8.95485 q^{42} -0.774454 q^{43} -0.579996 q^{44} +5.17890 q^{46} +4.35087 q^{47} -6.77832 q^{48} +7.55894 q^{49} -0.242351 q^{52} +2.36008 q^{53} +7.90923 q^{54} -10.5229 q^{56} +1.89970 q^{57} -7.57672 q^{58} -12.8886 q^{59} +4.66449 q^{61} +0.807994 q^{62} +1.41211 q^{63} +7.58793 q^{64} +14.4301 q^{66} +2.97145 q^{67} -5.80344 q^{69} -8.44824 q^{71} -1.02064 q^{72} -16.7118 q^{73} +10.8071 q^{74} +0.110500 q^{76} +23.4608 q^{77} +6.02961 q^{78} -11.4516 q^{79} -7.75277 q^{81} +10.9649 q^{82} +5.07499 q^{83} -0.583692 q^{84} +1.12077 q^{86} +8.49043 q^{87} -16.9569 q^{88} -8.16031 q^{89} +9.80304 q^{91} -0.337569 q^{92} -0.905433 q^{93} -6.29650 q^{94} +0.864643 q^{96} -7.29986 q^{97} -10.9392 q^{98} +2.27553 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 12 q + 4 q^{2} + 12 q^{4} + 12 q^{8} + 4 q^{9}+O(q^{10}) \) Copy content Toggle raw display \( 12 q + 4 q^{2} + 12 q^{4} + 12 q^{8} + 4 q^{9} + 12 q^{13} + 4 q^{16} + 4 q^{18} + 12 q^{19} - 8 q^{21} + 12 q^{26} + 48 q^{32} - 4 q^{33} - 20 q^{36} - 12 q^{38} + 56 q^{42} + 16 q^{43} + 36 q^{47} + 16 q^{49} + 64 q^{52} + 48 q^{53} - 32 q^{59} + 44 q^{64} + 40 q^{66} - 20 q^{67} - 72 q^{69} - 92 q^{72} + 36 q^{76} + 24 q^{77} + 8 q^{81} + 52 q^{83} + 36 q^{84} + 84 q^{86} + 48 q^{87} + 24 q^{89} + 60 q^{93} - 8 q^{94} + 76 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −1.44718 −1.02331 −0.511655 0.859191i \(-0.670968\pi\)
−0.511655 + 0.859191i \(0.670968\pi\)
\(3\) 1.62170 0.936289 0.468145 0.883652i \(-0.344923\pi\)
0.468145 + 0.883652i \(0.344923\pi\)
\(4\) 0.0943296 0.0471648
\(5\) 0 0
\(6\) −2.34689 −0.958115
\(7\) −3.81562 −1.44217 −0.721084 0.692848i \(-0.756356\pi\)
−0.721084 + 0.692848i \(0.756356\pi\)
\(8\) 2.75785 0.975046
\(9\) −0.370087 −0.123362
\(10\) 0 0
\(11\) −6.14862 −1.85388 −0.926939 0.375213i \(-0.877570\pi\)
−0.926939 + 0.375213i \(0.877570\pi\)
\(12\) 0.152974 0.0441599
\(13\) −2.56919 −0.712565 −0.356282 0.934378i \(-0.615956\pi\)
−0.356282 + 0.934378i \(0.615956\pi\)
\(14\) 5.52189 1.47579
\(15\) 0 0
\(16\) −4.17976 −1.04494
\(17\) 0 0
\(18\) 0.535583 0.126238
\(19\) 1.17142 0.268743 0.134371 0.990931i \(-0.457099\pi\)
0.134371 + 0.990931i \(0.457099\pi\)
\(20\) 0 0
\(21\) −6.18779 −1.35029
\(22\) 8.89815 1.89709
\(23\) −3.57861 −0.746192 −0.373096 0.927793i \(-0.621704\pi\)
−0.373096 + 0.927793i \(0.621704\pi\)
\(24\) 4.47240 0.912926
\(25\) 0 0
\(26\) 3.71808 0.729175
\(27\) −5.46527 −1.05179
\(28\) −0.359926 −0.0680196
\(29\) 5.23551 0.972210 0.486105 0.873900i \(-0.338417\pi\)
0.486105 + 0.873900i \(0.338417\pi\)
\(30\) 0 0
\(31\) −0.558323 −0.100278 −0.0501389 0.998742i \(-0.515966\pi\)
−0.0501389 + 0.998742i \(0.515966\pi\)
\(32\) 0.533170 0.0942521
\(33\) −9.97121 −1.73577
\(34\) 0 0
\(35\) 0 0
\(36\) −0.0349102 −0.00581837
\(37\) −7.46770 −1.22768 −0.613841 0.789430i \(-0.710376\pi\)
−0.613841 + 0.789430i \(0.710376\pi\)
\(38\) −1.69526 −0.275007
\(39\) −4.16645 −0.667167
\(40\) 0 0
\(41\) −7.57672 −1.18329 −0.591643 0.806200i \(-0.701520\pi\)
−0.591643 + 0.806200i \(0.701520\pi\)
\(42\) 8.95485 1.38176
\(43\) −0.774454 −0.118103 −0.0590516 0.998255i \(-0.518808\pi\)
−0.0590516 + 0.998255i \(0.518808\pi\)
\(44\) −0.579996 −0.0874378
\(45\) 0 0
\(46\) 5.17890 0.763587
\(47\) 4.35087 0.634640 0.317320 0.948318i \(-0.397217\pi\)
0.317320 + 0.948318i \(0.397217\pi\)
\(48\) −6.77832 −0.978366
\(49\) 7.55894 1.07985
\(50\) 0 0
\(51\) 0 0
\(52\) −0.242351 −0.0336080
\(53\) 2.36008 0.324182 0.162091 0.986776i \(-0.448176\pi\)
0.162091 + 0.986776i \(0.448176\pi\)
\(54\) 7.90923 1.07631
\(55\) 0 0
\(56\) −10.5229 −1.40618
\(57\) 1.89970 0.251621
\(58\) −7.57672 −0.994873
\(59\) −12.8886 −1.67796 −0.838978 0.544165i \(-0.816847\pi\)
−0.838978 + 0.544165i \(0.816847\pi\)
\(60\) 0 0
\(61\) 4.66449 0.597226 0.298613 0.954374i \(-0.403476\pi\)
0.298613 + 0.954374i \(0.403476\pi\)
\(62\) 0.807994 0.102615
\(63\) 1.41211 0.177909
\(64\) 7.58793 0.948491
\(65\) 0 0
\(66\) 14.4301 1.77623
\(67\) 2.97145 0.363021 0.181510 0.983389i \(-0.441901\pi\)
0.181510 + 0.983389i \(0.441901\pi\)
\(68\) 0 0
\(69\) −5.80344 −0.698652
\(70\) 0 0
\(71\) −8.44824 −1.00262 −0.501311 0.865267i \(-0.667149\pi\)
−0.501311 + 0.865267i \(0.667149\pi\)
\(72\) −1.02064 −0.120284
\(73\) −16.7118 −1.95597 −0.977984 0.208681i \(-0.933083\pi\)
−0.977984 + 0.208681i \(0.933083\pi\)
\(74\) 10.8071 1.25630
\(75\) 0 0
\(76\) 0.110500 0.0126752
\(77\) 23.4608 2.67360
\(78\) 6.02961 0.682719
\(79\) −11.4516 −1.28840 −0.644201 0.764857i \(-0.722810\pi\)
−0.644201 + 0.764857i \(0.722810\pi\)
\(80\) 0 0
\(81\) −7.75277 −0.861419
\(82\) 10.9649 1.21087
\(83\) 5.07499 0.557052 0.278526 0.960429i \(-0.410154\pi\)
0.278526 + 0.960429i \(0.410154\pi\)
\(84\) −0.583692 −0.0636860
\(85\) 0 0
\(86\) 1.12077 0.120856
\(87\) 8.49043 0.910270
\(88\) −16.9569 −1.80762
\(89\) −8.16031 −0.864991 −0.432496 0.901636i \(-0.642367\pi\)
−0.432496 + 0.901636i \(0.642367\pi\)
\(90\) 0 0
\(91\) 9.80304 1.02764
\(92\) −0.337569 −0.0351940
\(93\) −0.905433 −0.0938890
\(94\) −6.29650 −0.649434
\(95\) 0 0
\(96\) 0.864643 0.0882472
\(97\) −7.29986 −0.741188 −0.370594 0.928795i \(-0.620846\pi\)
−0.370594 + 0.928795i \(0.620846\pi\)
\(98\) −10.9392 −1.10502
\(99\) 2.27553 0.228699
\(100\) 0 0
\(101\) −9.68792 −0.963984 −0.481992 0.876176i \(-0.660087\pi\)
−0.481992 + 0.876176i \(0.660087\pi\)
\(102\) 0 0
\(103\) 11.1163 1.09532 0.547660 0.836701i \(-0.315519\pi\)
0.547660 + 0.836701i \(0.315519\pi\)
\(104\) −7.08543 −0.694784
\(105\) 0 0
\(106\) −3.41546 −0.331739
\(107\) 9.07400 0.877216 0.438608 0.898678i \(-0.355472\pi\)
0.438608 + 0.898678i \(0.355472\pi\)
\(108\) −0.515537 −0.0496076
\(109\) −9.38992 −0.899391 −0.449695 0.893182i \(-0.648467\pi\)
−0.449695 + 0.893182i \(0.648467\pi\)
\(110\) 0 0
\(111\) −12.1104 −1.14947
\(112\) 15.9484 1.50698
\(113\) −5.51881 −0.519166 −0.259583 0.965721i \(-0.583585\pi\)
−0.259583 + 0.965721i \(0.583585\pi\)
\(114\) −2.74920 −0.257486
\(115\) 0 0
\(116\) 0.493864 0.0458541
\(117\) 0.950824 0.0879037
\(118\) 18.6522 1.71707
\(119\) 0 0
\(120\) 0 0
\(121\) 26.8055 2.43686
\(122\) −6.75035 −0.611148
\(123\) −12.2872 −1.10790
\(124\) −0.0526664 −0.00472958
\(125\) 0 0
\(126\) −2.04358 −0.182057
\(127\) −8.49327 −0.753656 −0.376828 0.926283i \(-0.622985\pi\)
−0.376828 + 0.926283i \(0.622985\pi\)
\(128\) −12.0474 −1.06485
\(129\) −1.25593 −0.110579
\(130\) 0 0
\(131\) 4.92623 0.430407 0.215203 0.976569i \(-0.430959\pi\)
0.215203 + 0.976569i \(0.430959\pi\)
\(132\) −0.940581 −0.0818670
\(133\) −4.46970 −0.387572
\(134\) −4.30023 −0.371483
\(135\) 0 0
\(136\) 0 0
\(137\) 15.9794 1.36521 0.682604 0.730788i \(-0.260847\pi\)
0.682604 + 0.730788i \(0.260847\pi\)
\(138\) 8.39862 0.714938
\(139\) 12.0611 1.02301 0.511504 0.859281i \(-0.329089\pi\)
0.511504 + 0.859281i \(0.329089\pi\)
\(140\) 0 0
\(141\) 7.05581 0.594207
\(142\) 12.2261 1.02599
\(143\) 15.7970 1.32101
\(144\) 1.54688 0.128906
\(145\) 0 0
\(146\) 24.1850 2.00156
\(147\) 12.2583 1.01105
\(148\) −0.704425 −0.0579034
\(149\) 0.791691 0.0648579 0.0324289 0.999474i \(-0.489676\pi\)
0.0324289 + 0.999474i \(0.489676\pi\)
\(150\) 0 0
\(151\) −19.1605 −1.55926 −0.779630 0.626240i \(-0.784593\pi\)
−0.779630 + 0.626240i \(0.784593\pi\)
\(152\) 3.23060 0.262037
\(153\) 0 0
\(154\) −33.9520 −2.73593
\(155\) 0 0
\(156\) −0.393020 −0.0314668
\(157\) 18.0597 1.44132 0.720662 0.693287i \(-0.243838\pi\)
0.720662 + 0.693287i \(0.243838\pi\)
\(158\) 16.5725 1.31843
\(159\) 3.82735 0.303528
\(160\) 0 0
\(161\) 13.6546 1.07613
\(162\) 11.2197 0.881500
\(163\) 22.9689 1.79906 0.899532 0.436855i \(-0.143908\pi\)
0.899532 + 0.436855i \(0.143908\pi\)
\(164\) −0.714709 −0.0558094
\(165\) 0 0
\(166\) −7.34442 −0.570038
\(167\) −2.55674 −0.197846 −0.0989231 0.995095i \(-0.531540\pi\)
−0.0989231 + 0.995095i \(0.531540\pi\)
\(168\) −17.0650 −1.31659
\(169\) −6.39927 −0.492252
\(170\) 0 0
\(171\) −0.433529 −0.0331528
\(172\) −0.0730539 −0.00557031
\(173\) −2.58835 −0.196788 −0.0983942 0.995148i \(-0.531371\pi\)
−0.0983942 + 0.995148i \(0.531371\pi\)
\(174\) −12.2872 −0.931489
\(175\) 0 0
\(176\) 25.6997 1.93719
\(177\) −20.9015 −1.57105
\(178\) 11.8094 0.885155
\(179\) 20.7762 1.55289 0.776444 0.630186i \(-0.217021\pi\)
0.776444 + 0.630186i \(0.217021\pi\)
\(180\) 0 0
\(181\) −7.24176 −0.538276 −0.269138 0.963102i \(-0.586739\pi\)
−0.269138 + 0.963102i \(0.586739\pi\)
\(182\) −14.1868 −1.05159
\(183\) 7.56440 0.559177
\(184\) −9.86927 −0.727572
\(185\) 0 0
\(186\) 1.31032 0.0960776
\(187\) 0 0
\(188\) 0.410416 0.0299327
\(189\) 20.8534 1.51686
\(190\) 0 0
\(191\) −24.3229 −1.75994 −0.879971 0.475027i \(-0.842438\pi\)
−0.879971 + 0.475027i \(0.842438\pi\)
\(192\) 12.3053 0.888062
\(193\) 16.8034 1.20954 0.604769 0.796401i \(-0.293265\pi\)
0.604769 + 0.796401i \(0.293265\pi\)
\(194\) 10.5642 0.758466
\(195\) 0 0
\(196\) 0.713032 0.0509309
\(197\) 13.0123 0.927087 0.463544 0.886074i \(-0.346578\pi\)
0.463544 + 0.886074i \(0.346578\pi\)
\(198\) −3.29309 −0.234030
\(199\) 22.3245 1.58254 0.791269 0.611468i \(-0.209421\pi\)
0.791269 + 0.611468i \(0.209421\pi\)
\(200\) 0 0
\(201\) 4.81881 0.339892
\(202\) 14.0202 0.986455
\(203\) −19.9767 −1.40209
\(204\) 0 0
\(205\) 0 0
\(206\) −16.0873 −1.12085
\(207\) 1.32440 0.0920521
\(208\) 10.7386 0.744588
\(209\) −7.20263 −0.498216
\(210\) 0 0
\(211\) 18.9114 1.30192 0.650958 0.759114i \(-0.274367\pi\)
0.650958 + 0.759114i \(0.274367\pi\)
\(212\) 0.222626 0.0152900
\(213\) −13.7005 −0.938744
\(214\) −13.1317 −0.897665
\(215\) 0 0
\(216\) −15.0724 −1.02555
\(217\) 2.13035 0.144617
\(218\) 13.5889 0.920356
\(219\) −27.1015 −1.83135
\(220\) 0 0
\(221\) 0 0
\(222\) 17.5259 1.17626
\(223\) −7.58316 −0.507806 −0.253903 0.967230i \(-0.581714\pi\)
−0.253903 + 0.967230i \(0.581714\pi\)
\(224\) −2.03438 −0.135927
\(225\) 0 0
\(226\) 7.98671 0.531268
\(227\) −9.60428 −0.637458 −0.318729 0.947846i \(-0.603256\pi\)
−0.318729 + 0.947846i \(0.603256\pi\)
\(228\) 0.179198 0.0118676
\(229\) 4.12351 0.272489 0.136245 0.990675i \(-0.456497\pi\)
0.136245 + 0.990675i \(0.456497\pi\)
\(230\) 0 0
\(231\) 38.0464 2.50327
\(232\) 14.4387 0.947950
\(233\) −2.09247 −0.137082 −0.0685412 0.997648i \(-0.521834\pi\)
−0.0685412 + 0.997648i \(0.521834\pi\)
\(234\) −1.37601 −0.0899528
\(235\) 0 0
\(236\) −1.21578 −0.0791405
\(237\) −18.5710 −1.20632
\(238\) 0 0
\(239\) −5.62948 −0.364141 −0.182070 0.983286i \(-0.558280\pi\)
−0.182070 + 0.983286i \(0.558280\pi\)
\(240\) 0 0
\(241\) −12.7279 −0.819878 −0.409939 0.912113i \(-0.634450\pi\)
−0.409939 + 0.912113i \(0.634450\pi\)
\(242\) −38.7924 −2.49367
\(243\) 3.82314 0.245255
\(244\) 0.439999 0.0281681
\(245\) 0 0
\(246\) 17.7818 1.13372
\(247\) −3.00960 −0.191497
\(248\) −1.53977 −0.0977755
\(249\) 8.23011 0.521562
\(250\) 0 0
\(251\) 11.2701 0.711361 0.355681 0.934608i \(-0.384249\pi\)
0.355681 + 0.934608i \(0.384249\pi\)
\(252\) 0.133204 0.00839106
\(253\) 22.0035 1.38335
\(254\) 12.2913 0.771224
\(255\) 0 0
\(256\) 2.25895 0.141185
\(257\) −3.54606 −0.221197 −0.110598 0.993865i \(-0.535277\pi\)
−0.110598 + 0.993865i \(0.535277\pi\)
\(258\) 1.81756 0.113156
\(259\) 28.4939 1.77052
\(260\) 0 0
\(261\) −1.93760 −0.119934
\(262\) −7.12914 −0.440440
\(263\) 23.1294 1.42622 0.713109 0.701053i \(-0.247286\pi\)
0.713109 + 0.701053i \(0.247286\pi\)
\(264\) −27.4991 −1.69245
\(265\) 0 0
\(266\) 6.46846 0.396607
\(267\) −13.2336 −0.809882
\(268\) 0.280296 0.0171218
\(269\) 0.735073 0.0448182 0.0224091 0.999749i \(-0.492866\pi\)
0.0224091 + 0.999749i \(0.492866\pi\)
\(270\) 0 0
\(271\) 9.37788 0.569666 0.284833 0.958577i \(-0.408062\pi\)
0.284833 + 0.958577i \(0.408062\pi\)
\(272\) 0 0
\(273\) 15.8976 0.962167
\(274\) −23.1250 −1.39703
\(275\) 0 0
\(276\) −0.547436 −0.0329518
\(277\) 13.5913 0.816621 0.408311 0.912843i \(-0.366118\pi\)
0.408311 + 0.912843i \(0.366118\pi\)
\(278\) −17.4545 −1.04685
\(279\) 0.206628 0.0123705
\(280\) 0 0
\(281\) −16.6410 −0.992717 −0.496358 0.868118i \(-0.665330\pi\)
−0.496358 + 0.868118i \(0.665330\pi\)
\(282\) −10.2110 −0.608058
\(283\) 10.4897 0.623549 0.311775 0.950156i \(-0.399077\pi\)
0.311775 + 0.950156i \(0.399077\pi\)
\(284\) −0.796919 −0.0472884
\(285\) 0 0
\(286\) −22.8610 −1.35180
\(287\) 28.9099 1.70650
\(288\) −0.197320 −0.0116272
\(289\) 0 0
\(290\) 0 0
\(291\) −11.8382 −0.693967
\(292\) −1.57642 −0.0922528
\(293\) −1.47825 −0.0863603 −0.0431801 0.999067i \(-0.513749\pi\)
−0.0431801 + 0.999067i \(0.513749\pi\)
\(294\) −17.7400 −1.03462
\(295\) 0 0
\(296\) −20.5948 −1.19705
\(297\) 33.6039 1.94989
\(298\) −1.14572 −0.0663697
\(299\) 9.19413 0.531710
\(300\) 0 0
\(301\) 2.95502 0.170325
\(302\) 27.7287 1.59561
\(303\) −15.7109 −0.902568
\(304\) −4.89626 −0.280820
\(305\) 0 0
\(306\) 0 0
\(307\) 19.3620 1.10505 0.552524 0.833497i \(-0.313665\pi\)
0.552524 + 0.833497i \(0.313665\pi\)
\(308\) 2.21305 0.126100
\(309\) 18.0273 1.02554
\(310\) 0 0
\(311\) 0.840522 0.0476616 0.0238308 0.999716i \(-0.492414\pi\)
0.0238308 + 0.999716i \(0.492414\pi\)
\(312\) −11.4904 −0.650519
\(313\) −6.93017 −0.391716 −0.195858 0.980632i \(-0.562749\pi\)
−0.195858 + 0.980632i \(0.562749\pi\)
\(314\) −26.1357 −1.47492
\(315\) 0 0
\(316\) −1.08022 −0.0607672
\(317\) 7.92328 0.445016 0.222508 0.974931i \(-0.428576\pi\)
0.222508 + 0.974931i \(0.428576\pi\)
\(318\) −5.53886 −0.310604
\(319\) −32.1911 −1.80236
\(320\) 0 0
\(321\) 14.7153 0.821328
\(322\) −19.7607 −1.10122
\(323\) 0 0
\(324\) −0.731316 −0.0406287
\(325\) 0 0
\(326\) −33.2401 −1.84100
\(327\) −15.2276 −0.842090
\(328\) −20.8955 −1.15376
\(329\) −16.6013 −0.915258
\(330\) 0 0
\(331\) 14.0945 0.774705 0.387353 0.921932i \(-0.373390\pi\)
0.387353 + 0.921932i \(0.373390\pi\)
\(332\) 0.478722 0.0262733
\(333\) 2.76370 0.151450
\(334\) 3.70006 0.202458
\(335\) 0 0
\(336\) 25.8635 1.41097
\(337\) −9.72039 −0.529503 −0.264752 0.964317i \(-0.585290\pi\)
−0.264752 + 0.964317i \(0.585290\pi\)
\(338\) 9.26089 0.503726
\(339\) −8.94986 −0.486090
\(340\) 0 0
\(341\) 3.43291 0.185903
\(342\) 0.627394 0.0339256
\(343\) −2.13272 −0.115156
\(344\) −2.13583 −0.115156
\(345\) 0 0
\(346\) 3.74580 0.201376
\(347\) −0.113821 −0.00611026 −0.00305513 0.999995i \(-0.500972\pi\)
−0.00305513 + 0.999995i \(0.500972\pi\)
\(348\) 0.800899 0.0429327
\(349\) −21.3996 −1.14550 −0.572748 0.819732i \(-0.694122\pi\)
−0.572748 + 0.819732i \(0.694122\pi\)
\(350\) 0 0
\(351\) 14.0413 0.749470
\(352\) −3.27826 −0.174732
\(353\) −15.9897 −0.851048 −0.425524 0.904947i \(-0.639910\pi\)
−0.425524 + 0.904947i \(0.639910\pi\)
\(354\) 30.2482 1.60768
\(355\) 0 0
\(356\) −0.769759 −0.0407971
\(357\) 0 0
\(358\) −30.0669 −1.58909
\(359\) 7.48730 0.395164 0.197582 0.980286i \(-0.436691\pi\)
0.197582 + 0.980286i \(0.436691\pi\)
\(360\) 0 0
\(361\) −17.6278 −0.927777
\(362\) 10.4801 0.550823
\(363\) 43.4705 2.28161
\(364\) 0.924717 0.0484683
\(365\) 0 0
\(366\) −10.9470 −0.572211
\(367\) 26.2279 1.36908 0.684542 0.728974i \(-0.260002\pi\)
0.684542 + 0.728974i \(0.260002\pi\)
\(368\) 14.9577 0.779726
\(369\) 2.80405 0.145973
\(370\) 0 0
\(371\) −9.00517 −0.467525
\(372\) −0.0854091 −0.00442826
\(373\) 8.87012 0.459277 0.229639 0.973276i \(-0.426246\pi\)
0.229639 + 0.973276i \(0.426246\pi\)
\(374\) 0 0
\(375\) 0 0
\(376\) 11.9990 0.618804
\(377\) −13.4510 −0.692762
\(378\) −30.1786 −1.55222
\(379\) 3.62460 0.186183 0.0930917 0.995658i \(-0.470325\pi\)
0.0930917 + 0.995658i \(0.470325\pi\)
\(380\) 0 0
\(381\) −13.7735 −0.705640
\(382\) 35.1996 1.80097
\(383\) 28.3307 1.44763 0.723815 0.689994i \(-0.242387\pi\)
0.723815 + 0.689994i \(0.242387\pi\)
\(384\) −19.5373 −0.997011
\(385\) 0 0
\(386\) −24.3176 −1.23773
\(387\) 0.286616 0.0145695
\(388\) −0.688593 −0.0349580
\(389\) −6.35885 −0.322407 −0.161203 0.986921i \(-0.551537\pi\)
−0.161203 + 0.986921i \(0.551537\pi\)
\(390\) 0 0
\(391\) 0 0
\(392\) 20.8464 1.05290
\(393\) 7.98887 0.402985
\(394\) −18.8311 −0.948698
\(395\) 0 0
\(396\) 0.214649 0.0107865
\(397\) −8.68310 −0.435792 −0.217896 0.975972i \(-0.569919\pi\)
−0.217896 + 0.975972i \(0.569919\pi\)
\(398\) −32.3075 −1.61943
\(399\) −7.24851 −0.362880
\(400\) 0 0
\(401\) −27.8569 −1.39111 −0.695554 0.718474i \(-0.744841\pi\)
−0.695554 + 0.718474i \(0.744841\pi\)
\(402\) −6.97368 −0.347815
\(403\) 1.43444 0.0714544
\(404\) −0.913857 −0.0454661
\(405\) 0 0
\(406\) 28.9099 1.43477
\(407\) 45.9160 2.27597
\(408\) 0 0
\(409\) 17.9787 0.888989 0.444494 0.895782i \(-0.353383\pi\)
0.444494 + 0.895782i \(0.353383\pi\)
\(410\) 0 0
\(411\) 25.9137 1.27823
\(412\) 1.04859 0.0516605
\(413\) 49.1781 2.41990
\(414\) −1.91664 −0.0941979
\(415\) 0 0
\(416\) −1.36982 −0.0671607
\(417\) 19.5595 0.957831
\(418\) 10.4235 0.509830
\(419\) −34.0826 −1.66504 −0.832522 0.553992i \(-0.813104\pi\)
−0.832522 + 0.553992i \(0.813104\pi\)
\(420\) 0 0
\(421\) −30.0061 −1.46241 −0.731204 0.682159i \(-0.761041\pi\)
−0.731204 + 0.682159i \(0.761041\pi\)
\(422\) −27.3682 −1.33226
\(423\) −1.61020 −0.0782908
\(424\) 6.50875 0.316093
\(425\) 0 0
\(426\) 19.8271 0.960627
\(427\) −17.7979 −0.861301
\(428\) 0.855946 0.0413737
\(429\) 25.6179 1.23685
\(430\) 0 0
\(431\) −29.2342 −1.40816 −0.704082 0.710119i \(-0.748641\pi\)
−0.704082 + 0.710119i \(0.748641\pi\)
\(432\) 22.8435 1.09906
\(433\) −9.55769 −0.459313 −0.229657 0.973272i \(-0.573760\pi\)
−0.229657 + 0.973272i \(0.573760\pi\)
\(434\) −3.08300 −0.147989
\(435\) 0 0
\(436\) −0.885747 −0.0424196
\(437\) −4.19207 −0.200534
\(438\) 39.2208 1.87404
\(439\) −30.5786 −1.45943 −0.729717 0.683749i \(-0.760348\pi\)
−0.729717 + 0.683749i \(0.760348\pi\)
\(440\) 0 0
\(441\) −2.79747 −0.133213
\(442\) 0 0
\(443\) 4.19885 0.199493 0.0997467 0.995013i \(-0.468197\pi\)
0.0997467 + 0.995013i \(0.468197\pi\)
\(444\) −1.14237 −0.0542143
\(445\) 0 0
\(446\) 10.9742 0.519644
\(447\) 1.28389 0.0607257
\(448\) −28.9526 −1.36788
\(449\) 30.5834 1.44332 0.721660 0.692248i \(-0.243379\pi\)
0.721660 + 0.692248i \(0.243379\pi\)
\(450\) 0 0
\(451\) 46.5864 2.19367
\(452\) −0.520587 −0.0244864
\(453\) −31.0726 −1.45992
\(454\) 13.8991 0.652318
\(455\) 0 0
\(456\) 5.23907 0.245342
\(457\) −5.94941 −0.278302 −0.139151 0.990271i \(-0.544437\pi\)
−0.139151 + 0.990271i \(0.544437\pi\)
\(458\) −5.96746 −0.278841
\(459\) 0 0
\(460\) 0 0
\(461\) 38.0247 1.77099 0.885494 0.464650i \(-0.153820\pi\)
0.885494 + 0.464650i \(0.153820\pi\)
\(462\) −55.0599 −2.56162
\(463\) −9.32934 −0.433571 −0.216786 0.976219i \(-0.569557\pi\)
−0.216786 + 0.976219i \(0.569557\pi\)
\(464\) −21.8832 −1.01590
\(465\) 0 0
\(466\) 3.02818 0.140278
\(467\) 16.8764 0.780949 0.390474 0.920614i \(-0.372311\pi\)
0.390474 + 0.920614i \(0.372311\pi\)
\(468\) 0.0896909 0.00414596
\(469\) −11.3379 −0.523537
\(470\) 0 0
\(471\) 29.2875 1.34950
\(472\) −35.5449 −1.63609
\(473\) 4.76182 0.218949
\(474\) 26.8756 1.23444
\(475\) 0 0
\(476\) 0 0
\(477\) −0.873436 −0.0399919
\(478\) 8.14687 0.372629
\(479\) −8.68906 −0.397013 −0.198507 0.980100i \(-0.563609\pi\)
−0.198507 + 0.980100i \(0.563609\pi\)
\(480\) 0 0
\(481\) 19.1859 0.874803
\(482\) 18.4196 0.838989
\(483\) 22.1437 1.00757
\(484\) 2.52855 0.114934
\(485\) 0 0
\(486\) −5.53277 −0.250972
\(487\) −18.2608 −0.827476 −0.413738 0.910396i \(-0.635777\pi\)
−0.413738 + 0.910396i \(0.635777\pi\)
\(488\) 12.8639 0.582323
\(489\) 37.2487 1.68444
\(490\) 0 0
\(491\) 8.09277 0.365222 0.182611 0.983185i \(-0.441545\pi\)
0.182611 + 0.983185i \(0.441545\pi\)
\(492\) −1.15904 −0.0522538
\(493\) 0 0
\(494\) 4.35544 0.195960
\(495\) 0 0
\(496\) 2.33366 0.104784
\(497\) 32.2353 1.44595
\(498\) −11.9105 −0.533720
\(499\) −8.98098 −0.402044 −0.201022 0.979587i \(-0.564426\pi\)
−0.201022 + 0.979587i \(0.564426\pi\)
\(500\) 0 0
\(501\) −4.14626 −0.185241
\(502\) −16.3098 −0.727944
\(503\) −15.5919 −0.695207 −0.347604 0.937642i \(-0.613005\pi\)
−0.347604 + 0.937642i \(0.613005\pi\)
\(504\) 3.89439 0.173470
\(505\) 0 0
\(506\) −31.8430 −1.41560
\(507\) −10.3777 −0.460890
\(508\) −0.801167 −0.0355460
\(509\) 35.3211 1.56558 0.782790 0.622286i \(-0.213796\pi\)
0.782790 + 0.622286i \(0.213796\pi\)
\(510\) 0 0
\(511\) 63.7658 2.82083
\(512\) 20.8258 0.920377
\(513\) −6.40214 −0.282661
\(514\) 5.13178 0.226353
\(515\) 0 0
\(516\) −0.118472 −0.00521542
\(517\) −26.7519 −1.17655
\(518\) −41.2358 −1.81180
\(519\) −4.19752 −0.184251
\(520\) 0 0
\(521\) −24.8263 −1.08766 −0.543830 0.839196i \(-0.683026\pi\)
−0.543830 + 0.839196i \(0.683026\pi\)
\(522\) 2.80405 0.122730
\(523\) −11.7480 −0.513704 −0.256852 0.966451i \(-0.582685\pi\)
−0.256852 + 0.966451i \(0.582685\pi\)
\(524\) 0.464689 0.0203000
\(525\) 0 0
\(526\) −33.4724 −1.45946
\(527\) 0 0
\(528\) 41.6773 1.81377
\(529\) −10.1935 −0.443197
\(530\) 0 0
\(531\) 4.76992 0.206997
\(532\) −0.421625 −0.0182798
\(533\) 19.4660 0.843168
\(534\) 19.1514 0.828761
\(535\) 0 0
\(536\) 8.19481 0.353962
\(537\) 33.6928 1.45395
\(538\) −1.06378 −0.0458630
\(539\) −46.4771 −2.00191
\(540\) 0 0
\(541\) 20.9757 0.901815 0.450908 0.892571i \(-0.351100\pi\)
0.450908 + 0.892571i \(0.351100\pi\)
\(542\) −13.5715 −0.582945
\(543\) −11.7440 −0.503982
\(544\) 0 0
\(545\) 0 0
\(546\) −23.0067 −0.984595
\(547\) −5.51818 −0.235940 −0.117970 0.993017i \(-0.537639\pi\)
−0.117970 + 0.993017i \(0.537639\pi\)
\(548\) 1.50733 0.0643898
\(549\) −1.72627 −0.0736753
\(550\) 0 0
\(551\) 6.13299 0.261274
\(552\) −16.0050 −0.681218
\(553\) 43.6948 1.85809
\(554\) −19.6690 −0.835657
\(555\) 0 0
\(556\) 1.13772 0.0482499
\(557\) −25.1974 −1.06765 −0.533823 0.845596i \(-0.679245\pi\)
−0.533823 + 0.845596i \(0.679245\pi\)
\(558\) −0.299028 −0.0126589
\(559\) 1.98972 0.0841561
\(560\) 0 0
\(561\) 0 0
\(562\) 24.0825 1.01586
\(563\) −11.1335 −0.469219 −0.234610 0.972090i \(-0.575381\pi\)
−0.234610 + 0.972090i \(0.575381\pi\)
\(564\) 0.665572 0.0280256
\(565\) 0 0
\(566\) −15.1805 −0.638085
\(567\) 29.5816 1.24231
\(568\) −23.2990 −0.977603
\(569\) 8.18349 0.343070 0.171535 0.985178i \(-0.445127\pi\)
0.171535 + 0.985178i \(0.445127\pi\)
\(570\) 0 0
\(571\) −11.3240 −0.473895 −0.236948 0.971522i \(-0.576147\pi\)
−0.236948 + 0.971522i \(0.576147\pi\)
\(572\) 1.49012 0.0623051
\(573\) −39.4444 −1.64782
\(574\) −41.8378 −1.74628
\(575\) 0 0
\(576\) −2.80820 −0.117008
\(577\) −12.5131 −0.520925 −0.260463 0.965484i \(-0.583875\pi\)
−0.260463 + 0.965484i \(0.583875\pi\)
\(578\) 0 0
\(579\) 27.2501 1.13248
\(580\) 0 0
\(581\) −19.3642 −0.803363
\(582\) 17.1320 0.710143
\(583\) −14.5112 −0.600994
\(584\) −46.0886 −1.90716
\(585\) 0 0
\(586\) 2.13929 0.0883734
\(587\) −23.6400 −0.975726 −0.487863 0.872920i \(-0.662223\pi\)
−0.487863 + 0.872920i \(0.662223\pi\)
\(588\) 1.15632 0.0476860
\(589\) −0.654032 −0.0269489
\(590\) 0 0
\(591\) 21.1020 0.868022
\(592\) 31.2132 1.28285
\(593\) −21.6317 −0.888306 −0.444153 0.895951i \(-0.646495\pi\)
−0.444153 + 0.895951i \(0.646495\pi\)
\(594\) −48.6308 −1.99535
\(595\) 0 0
\(596\) 0.0746799 0.00305901
\(597\) 36.2036 1.48171
\(598\) −13.3056 −0.544105
\(599\) −8.41511 −0.343832 −0.171916 0.985112i \(-0.554996\pi\)
−0.171916 + 0.985112i \(0.554996\pi\)
\(600\) 0 0
\(601\) −45.0998 −1.83966 −0.919829 0.392319i \(-0.871673\pi\)
−0.919829 + 0.392319i \(0.871673\pi\)
\(602\) −4.27645 −0.174295
\(603\) −1.09970 −0.0447831
\(604\) −1.80740 −0.0735422
\(605\) 0 0
\(606\) 22.7365 0.923607
\(607\) −16.9707 −0.688818 −0.344409 0.938820i \(-0.611921\pi\)
−0.344409 + 0.938820i \(0.611921\pi\)
\(608\) 0.624568 0.0253296
\(609\) −32.3962 −1.31276
\(610\) 0 0
\(611\) −11.1782 −0.452222
\(612\) 0 0
\(613\) −40.8575 −1.65022 −0.825109 0.564974i \(-0.808886\pi\)
−0.825109 + 0.564974i \(0.808886\pi\)
\(614\) −28.0203 −1.13081
\(615\) 0 0
\(616\) 64.7012 2.60689
\(617\) 4.36716 0.175815 0.0879076 0.996129i \(-0.471982\pi\)
0.0879076 + 0.996129i \(0.471982\pi\)
\(618\) −26.0887 −1.04944
\(619\) 2.19834 0.0883586 0.0441793 0.999024i \(-0.485933\pi\)
0.0441793 + 0.999024i \(0.485933\pi\)
\(620\) 0 0
\(621\) 19.5581 0.784839
\(622\) −1.21639 −0.0487727
\(623\) 31.1366 1.24746
\(624\) 17.4148 0.697149
\(625\) 0 0
\(626\) 10.0292 0.400847
\(627\) −11.6805 −0.466474
\(628\) 1.70357 0.0679797
\(629\) 0 0
\(630\) 0 0
\(631\) −30.4636 −1.21274 −0.606368 0.795184i \(-0.707374\pi\)
−0.606368 + 0.795184i \(0.707374\pi\)
\(632\) −31.5817 −1.25625
\(633\) 30.6687 1.21897
\(634\) −11.4664 −0.455390
\(635\) 0 0
\(636\) 0.361032 0.0143158
\(637\) −19.4204 −0.769463
\(638\) 46.5864 1.84437
\(639\) 3.12659 0.123686
\(640\) 0 0
\(641\) −27.0255 −1.06744 −0.533721 0.845661i \(-0.679207\pi\)
−0.533721 + 0.845661i \(0.679207\pi\)
\(642\) −21.2957 −0.840474
\(643\) 32.3036 1.27393 0.636965 0.770892i \(-0.280189\pi\)
0.636965 + 0.770892i \(0.280189\pi\)
\(644\) 1.28803 0.0507557
\(645\) 0 0
\(646\) 0 0
\(647\) −3.21308 −0.126319 −0.0631595 0.998003i \(-0.520118\pi\)
−0.0631595 + 0.998003i \(0.520118\pi\)
\(648\) −21.3810 −0.839924
\(649\) 79.2473 3.11073
\(650\) 0 0
\(651\) 3.45479 0.135404
\(652\) 2.16665 0.0848525
\(653\) −14.0028 −0.547972 −0.273986 0.961734i \(-0.588342\pi\)
−0.273986 + 0.961734i \(0.588342\pi\)
\(654\) 22.0371 0.861720
\(655\) 0 0
\(656\) 31.6689 1.23646
\(657\) 6.18482 0.241293
\(658\) 24.0250 0.936593
\(659\) 48.2924 1.88120 0.940602 0.339512i \(-0.110262\pi\)
0.940602 + 0.339512i \(0.110262\pi\)
\(660\) 0 0
\(661\) −31.8807 −1.24001 −0.620007 0.784596i \(-0.712870\pi\)
−0.620007 + 0.784596i \(0.712870\pi\)
\(662\) −20.3973 −0.792764
\(663\) 0 0
\(664\) 13.9960 0.543152
\(665\) 0 0
\(666\) −3.99957 −0.154980
\(667\) −18.7359 −0.725455
\(668\) −0.241176 −0.00933138
\(669\) −12.2976 −0.475453
\(670\) 0 0
\(671\) −28.6801 −1.10718
\(672\) −3.29915 −0.127267
\(673\) −9.44276 −0.363992 −0.181996 0.983299i \(-0.558256\pi\)
−0.181996 + 0.983299i \(0.558256\pi\)
\(674\) 14.0672 0.541846
\(675\) 0 0
\(676\) −0.603640 −0.0232169
\(677\) 29.9668 1.15172 0.575858 0.817549i \(-0.304668\pi\)
0.575858 + 0.817549i \(0.304668\pi\)
\(678\) 12.9521 0.497421
\(679\) 27.8535 1.06892
\(680\) 0 0
\(681\) −15.5753 −0.596845
\(682\) −4.96804 −0.190236
\(683\) 40.3774 1.54500 0.772499 0.635015i \(-0.219006\pi\)
0.772499 + 0.635015i \(0.219006\pi\)
\(684\) −0.0408946 −0.00156364
\(685\) 0 0
\(686\) 3.08643 0.117840
\(687\) 6.68710 0.255129
\(688\) 3.23703 0.123411
\(689\) −6.06349 −0.231001
\(690\) 0 0
\(691\) 27.9371 1.06278 0.531388 0.847128i \(-0.321671\pi\)
0.531388 + 0.847128i \(0.321671\pi\)
\(692\) −0.244158 −0.00928148
\(693\) −8.68254 −0.329822
\(694\) 0.164720 0.00625269
\(695\) 0 0
\(696\) 23.4153 0.887555
\(697\) 0 0
\(698\) 30.9691 1.17220
\(699\) −3.39336 −0.128349
\(700\) 0 0
\(701\) 14.7138 0.555732 0.277866 0.960620i \(-0.410373\pi\)
0.277866 + 0.960620i \(0.410373\pi\)
\(702\) −20.3203 −0.766941
\(703\) −8.74783 −0.329931
\(704\) −46.6553 −1.75839
\(705\) 0 0
\(706\) 23.1400 0.870886
\(707\) 36.9654 1.39023
\(708\) −1.97163 −0.0740984
\(709\) −13.3825 −0.502588 −0.251294 0.967911i \(-0.580856\pi\)
−0.251294 + 0.967911i \(0.580856\pi\)
\(710\) 0 0
\(711\) 4.23808 0.158940
\(712\) −22.5049 −0.843407
\(713\) 1.99802 0.0748265
\(714\) 0 0
\(715\) 0 0
\(716\) 1.95981 0.0732417
\(717\) −9.12933 −0.340941
\(718\) −10.8355 −0.404376
\(719\) 23.7717 0.886535 0.443268 0.896389i \(-0.353819\pi\)
0.443268 + 0.896389i \(0.353819\pi\)
\(720\) 0 0
\(721\) −42.4155 −1.57964
\(722\) 25.5106 0.949405
\(723\) −20.6409 −0.767643
\(724\) −0.683112 −0.0253877
\(725\) 0 0
\(726\) −62.9096 −2.33479
\(727\) 4.40311 0.163302 0.0816512 0.996661i \(-0.473981\pi\)
0.0816512 + 0.996661i \(0.473981\pi\)
\(728\) 27.0353 1.00200
\(729\) 29.4583 1.09105
\(730\) 0 0
\(731\) 0 0
\(732\) 0.713547 0.0263735
\(733\) 42.2976 1.56230 0.781149 0.624344i \(-0.214634\pi\)
0.781149 + 0.624344i \(0.214634\pi\)
\(734\) −37.9564 −1.40100
\(735\) 0 0
\(736\) −1.90801 −0.0703302
\(737\) −18.2703 −0.672996
\(738\) −4.05796 −0.149376
\(739\) −23.1126 −0.850212 −0.425106 0.905144i \(-0.639763\pi\)
−0.425106 + 0.905144i \(0.639763\pi\)
\(740\) 0 0
\(741\) −4.88068 −0.179296
\(742\) 13.0321 0.478423
\(743\) 0.752277 0.0275984 0.0137992 0.999905i \(-0.495607\pi\)
0.0137992 + 0.999905i \(0.495607\pi\)
\(744\) −2.49705 −0.0915461
\(745\) 0 0
\(746\) −12.8367 −0.469984
\(747\) −1.87819 −0.0687194
\(748\) 0 0
\(749\) −34.6229 −1.26509
\(750\) 0 0
\(751\) −13.3283 −0.486357 −0.243178 0.969982i \(-0.578190\pi\)
−0.243178 + 0.969982i \(0.578190\pi\)
\(752\) −18.1856 −0.663161
\(753\) 18.2767 0.666040
\(754\) 19.4660 0.708911
\(755\) 0 0
\(756\) 1.96709 0.0715425
\(757\) −36.9030 −1.34126 −0.670630 0.741792i \(-0.733976\pi\)
−0.670630 + 0.741792i \(0.733976\pi\)
\(758\) −5.24545 −0.190523
\(759\) 35.6831 1.29521
\(760\) 0 0
\(761\) 35.4100 1.28361 0.641805 0.766868i \(-0.278186\pi\)
0.641805 + 0.766868i \(0.278186\pi\)
\(762\) 19.9328 0.722089
\(763\) 35.8283 1.29707
\(764\) −2.29437 −0.0830073
\(765\) 0 0
\(766\) −40.9996 −1.48138
\(767\) 33.1133 1.19565
\(768\) 3.66335 0.132190
\(769\) −2.67233 −0.0963666 −0.0481833 0.998839i \(-0.515343\pi\)
−0.0481833 + 0.998839i \(0.515343\pi\)
\(770\) 0 0
\(771\) −5.75064 −0.207104
\(772\) 1.58506 0.0570476
\(773\) 47.9406 1.72430 0.862152 0.506649i \(-0.169116\pi\)
0.862152 + 0.506649i \(0.169116\pi\)
\(774\) −0.414784 −0.0149091
\(775\) 0 0
\(776\) −20.1319 −0.722693
\(777\) 46.2086 1.65772
\(778\) 9.20240 0.329922
\(779\) −8.87554 −0.317999
\(780\) 0 0
\(781\) 51.9450 1.85874
\(782\) 0 0
\(783\) −28.6135 −1.02256
\(784\) −31.5946 −1.12838
\(785\) 0 0
\(786\) −11.5613 −0.412379
\(787\) −15.8202 −0.563929 −0.281965 0.959425i \(-0.590986\pi\)
−0.281965 + 0.959425i \(0.590986\pi\)
\(788\) 1.22744 0.0437259
\(789\) 37.5089 1.33535
\(790\) 0 0
\(791\) 21.0577 0.748725
\(792\) 6.27555 0.222992
\(793\) −11.9839 −0.425562
\(794\) 12.5660 0.445951
\(795\) 0 0
\(796\) 2.10586 0.0746401
\(797\) 5.01840 0.177761 0.0888804 0.996042i \(-0.471671\pi\)
0.0888804 + 0.996042i \(0.471671\pi\)
\(798\) 10.4899 0.371339
\(799\) 0 0
\(800\) 0 0
\(801\) 3.02003 0.106707
\(802\) 40.3140 1.42354
\(803\) 102.754 3.62612
\(804\) 0.454556 0.0160310
\(805\) 0 0
\(806\) −2.07589 −0.0731201
\(807\) 1.19207 0.0419628
\(808\) −26.7178 −0.939929
\(809\) −7.06907 −0.248535 −0.124268 0.992249i \(-0.539658\pi\)
−0.124268 + 0.992249i \(0.539658\pi\)
\(810\) 0 0
\(811\) 10.7641 0.377977 0.188989 0.981979i \(-0.439479\pi\)
0.188989 + 0.981979i \(0.439479\pi\)
\(812\) −1.88439 −0.0661293
\(813\) 15.2081 0.533372
\(814\) −66.4487 −2.32903
\(815\) 0 0
\(816\) 0 0
\(817\) −0.907213 −0.0317393
\(818\) −26.0184 −0.909712
\(819\) −3.62798 −0.126772
\(820\) 0 0
\(821\) 29.5285 1.03055 0.515276 0.857024i \(-0.327689\pi\)
0.515276 + 0.857024i \(0.327689\pi\)
\(822\) −37.5018 −1.30803
\(823\) 25.6974 0.895755 0.447877 0.894095i \(-0.352180\pi\)
0.447877 + 0.894095i \(0.352180\pi\)
\(824\) 30.6570 1.06799
\(825\) 0 0
\(826\) −71.1696 −2.47631
\(827\) −12.2393 −0.425604 −0.212802 0.977095i \(-0.568259\pi\)
−0.212802 + 0.977095i \(0.568259\pi\)
\(828\) 0.124930 0.00434162
\(829\) −50.2516 −1.74531 −0.872656 0.488336i \(-0.837604\pi\)
−0.872656 + 0.488336i \(0.837604\pi\)
\(830\) 0 0
\(831\) 22.0410 0.764594
\(832\) −19.4948 −0.675861
\(833\) 0 0
\(834\) −28.3060 −0.980158
\(835\) 0 0
\(836\) −0.679421 −0.0234983
\(837\) 3.05139 0.105471
\(838\) 49.3237 1.70386
\(839\) 4.63496 0.160017 0.0800083 0.996794i \(-0.474505\pi\)
0.0800083 + 0.996794i \(0.474505\pi\)
\(840\) 0 0
\(841\) −1.58944 −0.0548082
\(842\) 43.4242 1.49650
\(843\) −26.9867 −0.929470
\(844\) 1.78391 0.0614046
\(845\) 0 0
\(846\) 2.33025 0.0801158
\(847\) −102.280 −3.51437
\(848\) −9.86458 −0.338751
\(849\) 17.0112 0.583822
\(850\) 0 0
\(851\) 26.7240 0.916087
\(852\) −1.29236 −0.0442757
\(853\) −32.8889 −1.12609 −0.563047 0.826425i \(-0.690371\pi\)
−0.563047 + 0.826425i \(0.690371\pi\)
\(854\) 25.7568 0.881378
\(855\) 0 0
\(856\) 25.0247 0.855327
\(857\) 4.67903 0.159833 0.0799164 0.996802i \(-0.474535\pi\)
0.0799164 + 0.996802i \(0.474535\pi\)
\(858\) −37.0738 −1.26568
\(859\) −0.831102 −0.0283568 −0.0141784 0.999899i \(-0.504513\pi\)
−0.0141784 + 0.999899i \(0.504513\pi\)
\(860\) 0 0
\(861\) 46.8832 1.59777
\(862\) 42.3072 1.44099
\(863\) 23.4587 0.798545 0.399272 0.916832i \(-0.369263\pi\)
0.399272 + 0.916832i \(0.369263\pi\)
\(864\) −2.91392 −0.0991336
\(865\) 0 0
\(866\) 13.8317 0.470020
\(867\) 0 0
\(868\) 0.200955 0.00682085
\(869\) 70.4113 2.38854
\(870\) 0 0
\(871\) −7.63422 −0.258676
\(872\) −25.8960 −0.876948
\(873\) 2.70159 0.0914348
\(874\) 6.06667 0.205208
\(875\) 0 0
\(876\) −2.55648 −0.0863753
\(877\) −30.5812 −1.03265 −0.516327 0.856391i \(-0.672701\pi\)
−0.516327 + 0.856391i \(0.672701\pi\)
\(878\) 44.2527 1.49346
\(879\) −2.39728 −0.0808582
\(880\) 0 0
\(881\) 0.185968 0.00626543 0.00313271 0.999995i \(-0.499003\pi\)
0.00313271 + 0.999995i \(0.499003\pi\)
\(882\) 4.04844 0.136318
\(883\) −19.3509 −0.651211 −0.325605 0.945506i \(-0.605568\pi\)
−0.325605 + 0.945506i \(0.605568\pi\)
\(884\) 0 0
\(885\) 0 0
\(886\) −6.07649 −0.204144
\(887\) 28.5188 0.957566 0.478783 0.877933i \(-0.341078\pi\)
0.478783 + 0.877933i \(0.341078\pi\)
\(888\) −33.3986 −1.12078
\(889\) 32.4071 1.08690
\(890\) 0 0
\(891\) 47.6688 1.59697
\(892\) −0.715317 −0.0239506
\(893\) 5.09671 0.170555
\(894\) −1.85801 −0.0621413
\(895\) 0 0
\(896\) 45.9684 1.53570
\(897\) 14.9101 0.497835
\(898\) −44.2597 −1.47696
\(899\) −2.92311 −0.0974910
\(900\) 0 0
\(901\) 0 0
\(902\) −67.4189 −2.24480
\(903\) 4.79216 0.159473
\(904\) −15.2200 −0.506211
\(905\) 0 0
\(906\) 44.9677 1.49395
\(907\) 17.1889 0.570749 0.285375 0.958416i \(-0.407882\pi\)
0.285375 + 0.958416i \(0.407882\pi\)
\(908\) −0.905967 −0.0300656
\(909\) 3.58538 0.118919
\(910\) 0 0
\(911\) −31.2141 −1.03417 −0.517085 0.855934i \(-0.672983\pi\)
−0.517085 + 0.855934i \(0.672983\pi\)
\(912\) −7.94027 −0.262929
\(913\) −31.2042 −1.03271
\(914\) 8.60986 0.284789
\(915\) 0 0
\(916\) 0.388969 0.0128519
\(917\) −18.7966 −0.620719
\(918\) 0 0
\(919\) 24.5006 0.808202 0.404101 0.914714i \(-0.367585\pi\)
0.404101 + 0.914714i \(0.367585\pi\)
\(920\) 0 0
\(921\) 31.3993 1.03464
\(922\) −55.0286 −1.81227
\(923\) 21.7051 0.714433
\(924\) 3.58890 0.118066
\(925\) 0 0
\(926\) 13.5012 0.443678
\(927\) −4.11400 −0.135121
\(928\) 2.79142 0.0916328
\(929\) 44.3523 1.45515 0.727576 0.686027i \(-0.240647\pi\)
0.727576 + 0.686027i \(0.240647\pi\)
\(930\) 0 0
\(931\) 8.85472 0.290202
\(932\) −0.197382 −0.00646546
\(933\) 1.36308 0.0446251
\(934\) −24.4233 −0.799153
\(935\) 0 0
\(936\) 2.62223 0.0857102
\(937\) −32.0828 −1.04810 −0.524050 0.851688i \(-0.675579\pi\)
−0.524050 + 0.851688i \(0.675579\pi\)
\(938\) 16.4080 0.535741
\(939\) −11.2387 −0.366760
\(940\) 0 0
\(941\) −15.1855 −0.495032 −0.247516 0.968884i \(-0.579614\pi\)
−0.247516 + 0.968884i \(0.579614\pi\)
\(942\) −42.3842 −1.38095
\(943\) 27.1142 0.882959
\(944\) 53.8714 1.75336
\(945\) 0 0
\(946\) −6.89121 −0.224053
\(947\) −36.8958 −1.19895 −0.599477 0.800392i \(-0.704625\pi\)
−0.599477 + 0.800392i \(0.704625\pi\)
\(948\) −1.75179 −0.0568957
\(949\) 42.9357 1.39375
\(950\) 0 0
\(951\) 12.8492 0.416664
\(952\) 0 0
\(953\) 22.8613 0.740551 0.370276 0.928922i \(-0.379263\pi\)
0.370276 + 0.928922i \(0.379263\pi\)
\(954\) 1.26402 0.0409241
\(955\) 0 0
\(956\) −0.531026 −0.0171746
\(957\) −52.2044 −1.68753
\(958\) 12.5746 0.406268
\(959\) −60.9711 −1.96886
\(960\) 0 0
\(961\) −30.6883 −0.989944
\(962\) −27.7655 −0.895195
\(963\) −3.35817 −0.108216
\(964\) −1.20062 −0.0386694
\(965\) 0 0
\(966\) −32.0459 −1.03106
\(967\) 31.3390 1.00779 0.503897 0.863764i \(-0.331899\pi\)
0.503897 + 0.863764i \(0.331899\pi\)
\(968\) 73.9254 2.37605
\(969\) 0 0
\(970\) 0 0
\(971\) 0.826892 0.0265362 0.0132681 0.999912i \(-0.495777\pi\)
0.0132681 + 0.999912i \(0.495777\pi\)
\(972\) 0.360635 0.0115674
\(973\) −46.0205 −1.47535
\(974\) 26.4267 0.846765
\(975\) 0 0
\(976\) −19.4964 −0.624066
\(977\) −21.5432 −0.689227 −0.344614 0.938745i \(-0.611990\pi\)
−0.344614 + 0.938745i \(0.611990\pi\)
\(978\) −53.9056 −1.72371
\(979\) 50.1746 1.60359
\(980\) 0 0
\(981\) 3.47509 0.110951
\(982\) −11.7117 −0.373735
\(983\) −26.0044 −0.829410 −0.414705 0.909956i \(-0.636115\pi\)
−0.414705 + 0.909956i \(0.636115\pi\)
\(984\) −33.8862 −1.08025
\(985\) 0 0
\(986\) 0 0
\(987\) −26.9223 −0.856946
\(988\) −0.283895 −0.00903190
\(989\) 2.77147 0.0881276
\(990\) 0 0
\(991\) 54.8263 1.74162 0.870808 0.491623i \(-0.163596\pi\)
0.870808 + 0.491623i \(0.163596\pi\)
\(992\) −0.297681 −0.00945139
\(993\) 22.8571 0.725348
\(994\) −46.6502 −1.47966
\(995\) 0 0
\(996\) 0.776343 0.0245994
\(997\) −38.6480 −1.22400 −0.611998 0.790859i \(-0.709634\pi\)
−0.611998 + 0.790859i \(0.709634\pi\)
\(998\) 12.9971 0.411416
\(999\) 40.8130 1.29127
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 7225.2.a.br.1.4 12
5.4 even 2 7225.2.a.bm.1.9 12
17.2 even 8 425.2.e.e.276.2 yes 12
17.9 even 8 425.2.e.e.251.5 yes 12
17.16 even 2 inner 7225.2.a.br.1.3 12
85.2 odd 8 425.2.j.a.174.5 12
85.9 even 8 425.2.e.c.251.2 12
85.19 even 8 425.2.e.c.276.5 yes 12
85.43 odd 8 425.2.j.a.149.5 12
85.53 odd 8 425.2.j.d.174.2 12
85.77 odd 8 425.2.j.d.149.2 12
85.84 even 2 7225.2.a.bm.1.10 12
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
425.2.e.c.251.2 12 85.9 even 8
425.2.e.c.276.5 yes 12 85.19 even 8
425.2.e.e.251.5 yes 12 17.9 even 8
425.2.e.e.276.2 yes 12 17.2 even 8
425.2.j.a.149.5 12 85.43 odd 8
425.2.j.a.174.5 12 85.2 odd 8
425.2.j.d.149.2 12 85.77 odd 8
425.2.j.d.174.2 12 85.53 odd 8
7225.2.a.bm.1.9 12 5.4 even 2
7225.2.a.bm.1.10 12 85.84 even 2
7225.2.a.br.1.3 12 17.16 even 2 inner
7225.2.a.br.1.4 12 1.1 even 1 trivial