Properties

Label 7225.2.a.bs
Level 72257225
Weight 22
Character orbit 7225.a
Self dual yes
Analytic conductor 57.69257.692
Analytic rank 00
Dimension 1212
CM no
Inner twists 11

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [7225,2,Mod(1,7225)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(7225, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("7225.1");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: N N == 7225=52172 7225 = 5^{2} \cdot 17^{2}
Weight: k k == 2 2
Character orbit: [χ][\chi] == 7225.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: 57.691915460457.6919154604
Analytic rank: 00
Dimension: 1212
Coefficient field: Q[x]/(x12)\mathbb{Q}[x]/(x^{12} - \cdots)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: x124x1110x10+52x9+21x8232x7+44x6+424x5137x4++17 x^{12} - 4 x^{11} - 10 x^{10} + 52 x^{9} + 21 x^{8} - 232 x^{7} + 44 x^{6} + 424 x^{5} - 137 x^{4} + \cdots + 17 Copy content Toggle raw display
Coefficient ring: Z[a1,a2,a3]\Z[a_1, a_2, a_3]
Coefficient ring index: 1 1
Twist minimal: no (minimal twist has level 85)
Fricke sign: 1-1
Sato-Tate group: SU(2)\mathrm{SU}(2)

qq-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 

Coefficients of the qq-expansion are expressed in terms of a basis 1,β1,,β111,\beta_1,\ldots,\beta_{11} for the coefficient ring described below. We also show the integral qq-expansion of the trace form.

f(q)f(q) == q+β1q2+(β5+1)q3+(β7+β6+1)q4+(β11+β9β7+1)q6+(β11+β10+β1+1)q7+(β10β9+β7++1)q8++(β115β10+3)q99+O(q100) q + \beta_1 q^{2} + (\beta_{5} + 1) q^{3} + (\beta_{7} + \beta_{6} + 1) q^{4} + (\beta_{11} + \beta_{9} - \beta_{7} + \cdots - 1) q^{6} + (\beta_{11} + \beta_{10} + \beta_1 + 1) q^{7} + ( - \beta_{10} - \beta_{9} + \beta_{7} + \cdots + 1) q^{8}+ \cdots + ( - \beta_{11} - 5 \beta_{10} + \cdots - 3) q^{99}+O(q^{100}) Copy content Toggle raw display
Tr(f)(q)\operatorname{Tr}(f)(q) == 12q+4q2+8q3+12q48q6+16q7+12q8+12q916q11+16q12+8q13+16q14+12q164q18+16q21+16q22+16q23+16q26+32q27+56q99+O(q100) 12 q + 4 q^{2} + 8 q^{3} + 12 q^{4} - 8 q^{6} + 16 q^{7} + 12 q^{8} + 12 q^{9} - 16 q^{11} + 16 q^{12} + 8 q^{13} + 16 q^{14} + 12 q^{16} - 4 q^{18} + 16 q^{21} + 16 q^{22} + 16 q^{23} + 16 q^{26} + 32 q^{27}+ \cdots - 56 q^{99}+O(q^{100}) Copy content Toggle raw display

Basis of coefficient ring in terms of a root ν\nu of x124x1110x10+52x9+21x8232x7+44x6+424x5137x4++17 x^{12} - 4 x^{11} - 10 x^{10} + 52 x^{9} + 21 x^{8} - 232 x^{7} + 44 x^{6} + 424 x^{5} - 137 x^{4} + \cdots + 17 : Copy content Toggle raw display

β1\beta_{1}== ν \nu Copy content Toggle raw display
β2\beta_{2}== (54ν11195ν10568ν9+2455ν8+1476ν710314ν6+1071ν5++1470)/41 ( 54 \nu^{11} - 195 \nu^{10} - 568 \nu^{9} + 2455 \nu^{8} + 1476 \nu^{7} - 10314 \nu^{6} + 1071 \nu^{5} + \cdots + 1470 ) / 41 Copy content Toggle raw display
β3\beta_{3}== (141ν11+352ν10+1925ν94399ν89389ν7+18116ν6++1191)/41 ( - 141 \nu^{11} + 352 \nu^{10} + 1925 \nu^{9} - 4399 \nu^{8} - 9389 \nu^{7} + 18116 \nu^{6} + \cdots + 1191 ) / 41 Copy content Toggle raw display
β4\beta_{4}== (212ν11+515ν10+2933ν96428ν814596ν7+26388ν6++2356)/41 ( - 212 \nu^{11} + 515 \nu^{10} + 2933 \nu^{9} - 6428 \nu^{8} - 14596 \nu^{7} + 26388 \nu^{6} + \cdots + 2356 ) / 41 Copy content Toggle raw display
β5\beta_{5}== (232ν11+569ν10+3195ν97111ν815785ν7+29265ν6++2217)/41 ( - 232 \nu^{11} + 569 \nu^{10} + 3195 \nu^{9} - 7111 \nu^{8} - 15785 \nu^{7} + 29265 \nu^{6} + \cdots + 2217 ) / 41 Copy content Toggle raw display
β6\beta_{6}== (332ν11+839ν10+4505ν910485ν821771ν7+43158ν6++2793)/41 ( - 332 \nu^{11} + 839 \nu^{10} + 4505 \nu^{9} - 10485 \nu^{8} - 21771 \nu^{7} + 43158 \nu^{6} + \cdots + 2793 ) / 41 Copy content Toggle raw display
β7\beta_{7}== (332ν11839ν104505ν9+10485ν8+21771ν743158ν6+2916)/41 ( 332 \nu^{11} - 839 \nu^{10} - 4505 \nu^{9} + 10485 \nu^{8} + 21771 \nu^{7} - 43158 \nu^{6} + \cdots - 2916 ) / 41 Copy content Toggle raw display
β8\beta_{8}== 8ν11+19ν10+112ν9237ν8568ν7+971ν6+1294ν5++108 - 8 \nu^{11} + 19 \nu^{10} + 112 \nu^{9} - 237 \nu^{8} - 568 \nu^{7} + 971 \nu^{6} + 1294 \nu^{5} + \cdots + 108 Copy content Toggle raw display
β9\beta_{9}== (362ν11879ν105021ν9+10997ν8+25092ν745321ν6+3999)/41 ( 362 \nu^{11} - 879 \nu^{10} - 5021 \nu^{9} + 10997 \nu^{8} + 25092 \nu^{7} - 45321 \nu^{6} + \cdots - 3999 ) / 41 Copy content Toggle raw display
β10\beta_{10}== (391ν11+986ν10+5323ν912342ν825871ν7+50942ν6++3328)/41 ( - 391 \nu^{11} + 986 \nu^{10} + 5323 \nu^{9} - 12342 \nu^{8} - 25871 \nu^{7} + 50942 \nu^{6} + \cdots + 3328 ) / 41 Copy content Toggle raw display
β11\beta_{11}== (489ν11+1185ν10+6779ν914799ν833866ν7+60804ν6++5644)/41 ( - 489 \nu^{11} + 1185 \nu^{10} + 6779 \nu^{9} - 14799 \nu^{8} - 33866 \nu^{7} + 60804 \nu^{6} + \cdots + 5644 ) / 41 Copy content Toggle raw display
ν\nu== β1 \beta_1 Copy content Toggle raw display
ν2\nu^{2}== β7+β6+3 \beta_{7} + \beta_{6} + 3 Copy content Toggle raw display
ν3\nu^{3}== β10β9+β7+2β6β5β4+β3+4β1+1 -\beta_{10} - \beta_{9} + \beta_{7} + 2\beta_{6} - \beta_{5} - \beta_{4} + \beta_{3} + 4\beta _1 + 1 Copy content Toggle raw display
ν4\nu^{4}== β11β10β9β8+7β7+8β62β5+β1+15 \beta_{11} - \beta_{10} - \beta_{9} - \beta_{8} + 7\beta_{7} + 8\beta_{6} - 2\beta_{5} + \beta _1 + 15 Copy content Toggle raw display
ν5\nu^{5}== β118β108β92β8+10β7+19β610β5++10 \beta_{11} - 8 \beta_{10} - 8 \beta_{9} - 2 \beta_{8} + 10 \beta_{7} + 19 \beta_{6} - 10 \beta_{5} + \cdots + 10 Copy content Toggle raw display
ν6\nu^{6}== 10β1111β1011β910β8+48β7+58β622β5++88 10 \beta_{11} - 11 \beta_{10} - 11 \beta_{9} - 10 \beta_{8} + 48 \beta_{7} + 58 \beta_{6} - 22 \beta_{5} + \cdots + 88 Copy content Toggle raw display
ν7\nu^{7}== 9β1158β1059β921β8+83β7+151β680β5++91 9 \beta_{11} - 58 \beta_{10} - 59 \beta_{9} - 21 \beta_{8} + 83 \beta_{7} + 151 \beta_{6} - 80 \beta_{5} + \cdots + 91 Copy content Toggle raw display
ν8\nu^{8}== 71β1198β1099β972β8+335β7+421β6189β5++560 71 \beta_{11} - 98 \beta_{10} - 99 \beta_{9} - 72 \beta_{8} + 335 \beta_{7} + 421 \beta_{6} - 189 \beta_{5} + \cdots + 560 Copy content Toggle raw display
ν9\nu^{9}== 55β11417β10436β9158β8+657β7+1146β6++772 55 \beta_{11} - 417 \beta_{10} - 436 \beta_{9} - 158 \beta_{8} + 657 \beta_{7} + 1146 \beta_{6} + \cdots + 772 Copy content Toggle raw display
ν10\nu^{10}== 432β11810β10841β9458β8+2378β7+3087β6++3733 432 \beta_{11} - 810 \beta_{10} - 841 \beta_{9} - 458 \beta_{8} + 2378 \beta_{7} + 3087 \beta_{6} + \cdots + 3733 Copy content Toggle raw display
ν11\nu^{11}== 248β113015β103254β91032β8+5096β7+8565β6++6241 248 \beta_{11} - 3015 \beta_{10} - 3254 \beta_{9} - 1032 \beta_{8} + 5096 \beta_{7} + 8565 \beta_{6} + \cdots + 6241 Copy content Toggle raw display

Embeddings

For each embedding ιm\iota_m of the coefficient field, the values ιm(an)\iota_m(a_n) are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field
 
gp: mfembed(f)
 
Label   ιm(ν)\iota_m(\nu) a2 a_{2} a3 a_{3} a4 a_{4} a5 a_{5} a6 a_{6} a7 a_{7} a8 a_{8} a9 a_{9} a10 a_{10}
1.1
−2.35190
−2.04505
−1.43840
−0.747914
−0.360254
−0.301687
0.962871
1.55041
1.55555
1.80583
2.63994
2.73061
−2.35190 1.56935 3.53144 0 −3.69096 3.58212 −3.60181 −0.537139 0
1.2 −2.04505 3.19566 2.18224 0 −6.53528 −1.17743 −0.372688 7.21221 0
1.3 −1.43840 −0.109907 0.0689897 0 0.158090 0.695085 2.77756 −2.98792 0
1.4 −0.747914 3.07503 −1.44062 0 −2.29986 3.23262 2.57329 6.45581 0
1.5 −0.360254 −0.0542373 −1.87022 0 0.0195392 −0.298718 1.39426 −2.99706 0
1.6 −0.301687 −1.06101 −1.90899 0 0.320094 −2.50984 1.17929 −1.87425 0
1.7 0.962871 −2.64897 −1.07288 0 −2.55062 3.09463 −2.95879 4.01706 0
1.8 1.55041 1.14040 0.403772 0 1.76809 −3.74146 −2.47481 −1.69949 0
1.9 1.55555 3.00797 0.419729 0 4.67904 3.45467 −2.45819 6.04787 0
1.10 1.80583 −0.687917 1.26102 0 −1.24226 4.34193 −1.33447 −2.52677 0
1.11 2.63994 2.12055 4.96928 0 5.59814 4.06194 7.83873 1.49675 0
1.12 2.73061 −1.54691 5.45623 0 −4.22400 1.26445 9.43761 −0.607075 0
nn: e.g. 2-40 or 990-1000
Embeddings: e.g. 1-3 or 1.12
Significant digits:
Format:

Atkin-Lehner signs

p p Sign
55 +1 +1
1717 1 -1

Inner twists

This newform does not admit any (nontrivial) inner twists.

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 7225.2.a.bs 12
5.b even 2 1 1445.2.a.p 12
17.b even 2 1 7225.2.a.bq 12
17.e odd 16 2 425.2.m.b 24
85.c even 2 1 1445.2.a.q 12
85.j even 4 2 1445.2.d.j 24
85.o even 16 2 425.2.n.f 24
85.p odd 16 2 85.2.l.a 24
85.r even 16 2 425.2.n.c 24
255.be even 16 2 765.2.be.b 24
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
85.2.l.a 24 85.p odd 16 2
425.2.m.b 24 17.e odd 16 2
425.2.n.c 24 85.r even 16 2
425.2.n.f 24 85.o even 16 2
765.2.be.b 24 255.be even 16 2
1445.2.a.p 12 5.b even 2 1
1445.2.a.q 12 85.c even 2 1
1445.2.d.j 24 85.j even 4 2
7225.2.a.bq 12 17.b even 2 1
7225.2.a.bs 12 1.a even 1 1 trivial

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on S2new(Γ0(7225))S_{2}^{\mathrm{new}}(\Gamma_0(7225)):

T2124T21110T210+52T29+21T28232T27+44T26++17 T_{2}^{12} - 4 T_{2}^{11} - 10 T_{2}^{10} + 52 T_{2}^{9} + 21 T_{2}^{8} - 232 T_{2}^{7} + 44 T_{2}^{6} + \cdots + 17 Copy content Toggle raw display
T3128T311+8T310+80T39186T38176T37+680T36++2 T_{3}^{12} - 8 T_{3}^{11} + 8 T_{3}^{10} + 80 T_{3}^{9} - 186 T_{3}^{8} - 176 T_{3}^{7} + 680 T_{3}^{6} + \cdots + 2 Copy content Toggle raw display
T71216T711+76T710+72T791680T78+4048T77++6338 T_{7}^{12} - 16 T_{7}^{11} + 76 T_{7}^{10} + 72 T_{7}^{9} - 1680 T_{7}^{8} + 4048 T_{7}^{7} + \cdots + 6338 Copy content Toggle raw display
T1112+16T1111+60T1110232T1191658T118+480T117+1598 T_{11}^{12} + 16 T_{11}^{11} + 60 T_{11}^{10} - 232 T_{11}^{9} - 1658 T_{11}^{8} + 480 T_{11}^{7} + \cdots - 1598 Copy content Toggle raw display

Hecke characteristic polynomials

pp Fp(T)F_p(T)
22 T124T11++17 T^{12} - 4 T^{11} + \cdots + 17 Copy content Toggle raw display
33 T128T11++2 T^{12} - 8 T^{11} + \cdots + 2 Copy content Toggle raw display
55 T12 T^{12} Copy content Toggle raw display
77 T1216T11++6338 T^{12} - 16 T^{11} + \cdots + 6338 Copy content Toggle raw display
1111 T12+16T11+1598 T^{12} + 16 T^{11} + \cdots - 1598 Copy content Toggle raw display
1313 T128T11+23932 T^{12} - 8 T^{11} + \cdots - 23932 Copy content Toggle raw display
1717 T12 T^{12} Copy content Toggle raw display
1919 T1292T10+3008 T^{12} - 92 T^{10} + \cdots - 3008 Copy content Toggle raw display
2323 T1216T11+2206 T^{12} - 16 T^{11} + \cdots - 2206 Copy content Toggle raw display
2929 T12+16T11+6008 T^{12} + 16 T^{11} + \cdots - 6008 Copy content Toggle raw display
3131 T12+24T11++352546 T^{12} + 24 T^{11} + \cdots + 352546 Copy content Toggle raw display
3737 T1224T11++26248 T^{12} - 24 T^{11} + \cdots + 26248 Copy content Toggle raw display
4141 T12+8T11+427904 T^{12} + 8 T^{11} + \cdots - 427904 Copy content Toggle raw display
4343 T1216T11++63172 T^{12} - 16 T^{11} + \cdots + 63172 Copy content Toggle raw display
4747 T1232T11++45712388 T^{12} - 32 T^{11} + \cdots + 45712388 Copy content Toggle raw display
5353 T12340T10+8342512 T^{12} - 340 T^{10} + \cdots - 8342512 Copy content Toggle raw display
5959 T12++296882176 T^{12} + \cdots + 296882176 Copy content Toggle raw display
6161 T12+24T11+12501472 T^{12} + 24 T^{11} + \cdots - 12501472 Copy content Toggle raw display
6767 T12+961394684 T^{12} + \cdots - 961394684 Copy content Toggle raw display
7171 T1216T11++1907842 T^{12} - 16 T^{11} + \cdots + 1907842 Copy content Toggle raw display
7373 T1216T11++15430176 T^{12} - 16 T^{11} + \cdots + 15430176 Copy content Toggle raw display
7979 T12++23846133218 T^{12} + \cdots + 23846133218 Copy content Toggle raw display
8383 T12+3068795644 T^{12} + \cdots - 3068795644 Copy content Toggle raw display
8989 T128T11++186436 T^{12} - 8 T^{11} + \cdots + 186436 Copy content Toggle raw display
9797 T12+3976256888 T^{12} + \cdots - 3976256888 Copy content Toggle raw display
show more
show less