Newspace parameters
comment: Compute space of new eigenforms
[N,k,chi] = [7225,2,Mod(1,7225)]
mf = mfinit([N,k,chi],0)
lf = mfeigenbasis(mf)
from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(7225, base_ring=CyclotomicField(2))
chi = DirichletCharacter(H, H._module([0, 0]))
N = Newforms(chi, 2, names="a")
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
chi := DirichletCharacter("7225.1");
S:= CuspForms(chi, 2);
N := Newforms(S);
Level: | |||
Weight: | |||
Character orbit: | 7225.a (trivial) |
Newform invariants
comment: select newform
sage: f = N[0] # Warning: the index may be different
gp: f = lf[1] \\ Warning: the index may be different
Self dual: | yes |
Analytic conductor: | |
Analytic rank: | |
Dimension: | |
Coefficient field: | |
comment: defining polynomial
gp: f.mod \\ as an extension of the character field
|
|
Defining polynomial: |
|
Coefficient ring: | |
Coefficient ring index: | |
Twist minimal: | no (minimal twist has level 85) |
Fricke sign: | |
Sato-Tate group: |
-expansion
comment: q-expansion
sage: f.q_expansion() # note that sage often uses an isomorphic number field
gp: mfcoefs(f, 20)
Coefficients of the -expansion are expressed in terms of a basis for the coefficient ring described below. We also show the integral -expansion of the trace form.
Basis of coefficient ring in terms of a root of
:
Embeddings
For each embedding of the coefficient field, the values are shown below.
For more information on an embedded modular form you can click on its label.
comment: embeddings in the coefficient field
gp: mfembed(f)
Label | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
1.1 |
|
−2.35190 | 1.56935 | 3.53144 | 0 | −3.69096 | 3.58212 | −3.60181 | −0.537139 | 0 | ||||||||||||||||||||||||||||||||||||||||||||||||||||||
1.2 | −2.04505 | 3.19566 | 2.18224 | 0 | −6.53528 | −1.17743 | −0.372688 | 7.21221 | 0 | |||||||||||||||||||||||||||||||||||||||||||||||||||||||
1.3 | −1.43840 | −0.109907 | 0.0689897 | 0 | 0.158090 | 0.695085 | 2.77756 | −2.98792 | 0 | |||||||||||||||||||||||||||||||||||||||||||||||||||||||
1.4 | −0.747914 | 3.07503 | −1.44062 | 0 | −2.29986 | 3.23262 | 2.57329 | 6.45581 | 0 | |||||||||||||||||||||||||||||||||||||||||||||||||||||||
1.5 | −0.360254 | −0.0542373 | −1.87022 | 0 | 0.0195392 | −0.298718 | 1.39426 | −2.99706 | 0 | |||||||||||||||||||||||||||||||||||||||||||||||||||||||
1.6 | −0.301687 | −1.06101 | −1.90899 | 0 | 0.320094 | −2.50984 | 1.17929 | −1.87425 | 0 | |||||||||||||||||||||||||||||||||||||||||||||||||||||||
1.7 | 0.962871 | −2.64897 | −1.07288 | 0 | −2.55062 | 3.09463 | −2.95879 | 4.01706 | 0 | |||||||||||||||||||||||||||||||||||||||||||||||||||||||
1.8 | 1.55041 | 1.14040 | 0.403772 | 0 | 1.76809 | −3.74146 | −2.47481 | −1.69949 | 0 | |||||||||||||||||||||||||||||||||||||||||||||||||||||||
1.9 | 1.55555 | 3.00797 | 0.419729 | 0 | 4.67904 | 3.45467 | −2.45819 | 6.04787 | 0 | |||||||||||||||||||||||||||||||||||||||||||||||||||||||
1.10 | 1.80583 | −0.687917 | 1.26102 | 0 | −1.24226 | 4.34193 | −1.33447 | −2.52677 | 0 | |||||||||||||||||||||||||||||||||||||||||||||||||||||||
1.11 | 2.63994 | 2.12055 | 4.96928 | 0 | 5.59814 | 4.06194 | 7.83873 | 1.49675 | 0 | |||||||||||||||||||||||||||||||||||||||||||||||||||||||
1.12 | 2.73061 | −1.54691 | 5.45623 | 0 | −4.22400 | 1.26445 | 9.43761 | −0.607075 | 0 | |||||||||||||||||||||||||||||||||||||||||||||||||||||||
Atkin-Lehner signs
Sign | |
---|---|
Inner twists
This newform does not admit any (nontrivial) inner twists.
Twists
By twisting character orbit | |||||||
---|---|---|---|---|---|---|---|
Char | Parity | Ord | Mult | Type | Twist | Min | Dim |
1.a | even | 1 | 1 | trivial | 7225.2.a.bs | 12 | |
5.b | even | 2 | 1 | 1445.2.a.p | 12 | ||
17.b | even | 2 | 1 | 7225.2.a.bq | 12 | ||
17.e | odd | 16 | 2 | 425.2.m.b | 24 | ||
85.c | even | 2 | 1 | 1445.2.a.q | 12 | ||
85.j | even | 4 | 2 | 1445.2.d.j | 24 | ||
85.o | even | 16 | 2 | 425.2.n.f | 24 | ||
85.p | odd | 16 | 2 | 85.2.l.a | ✓ | 24 | |
85.r | even | 16 | 2 | 425.2.n.c | 24 | ||
255.be | even | 16 | 2 | 765.2.be.b | 24 |
By twisted newform orbit | |||||||
---|---|---|---|---|---|---|---|
Twist | Min | Dim | Char | Parity | Ord | Mult | Type |
85.2.l.a | ✓ | 24 | 85.p | odd | 16 | 2 | |
425.2.m.b | 24 | 17.e | odd | 16 | 2 | ||
425.2.n.c | 24 | 85.r | even | 16 | 2 | ||
425.2.n.f | 24 | 85.o | even | 16 | 2 | ||
765.2.be.b | 24 | 255.be | even | 16 | 2 | ||
1445.2.a.p | 12 | 5.b | even | 2 | 1 | ||
1445.2.a.q | 12 | 85.c | even | 2 | 1 | ||
1445.2.d.j | 24 | 85.j | even | 4 | 2 | ||
7225.2.a.bq | 12 | 17.b | even | 2 | 1 | ||
7225.2.a.bs | 12 | 1.a | even | 1 | 1 | trivial |
Hecke kernels
This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on :
|
|
|
|