Properties

Label 7225.2.a.j
Level $7225$
Weight $2$
Character orbit 7225.a
Self dual yes
Analytic conductor $57.692$
Analytic rank $1$
Dimension $2$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [7225,2,Mod(1,7225)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(7225, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("7225.1");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 7225 = 5^{2} \cdot 17^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 7225.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(57.6919154604\)
Analytic rank: \(1\)
Dimension: \(2\)
Coefficient field: \(\Q(\sqrt{17}) \)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{2} - x - 4 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 1445)
Fricke sign: \(+1\)
Sato-Tate group: $\mathrm{SU}(2)$

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 

Coefficients of the \(q\)-expansion are expressed in terms of \(\beta = \frac{1}{2}(1 + \sqrt{17})\). We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q - \beta q^{2} - \beta q^{3} + (\beta + 2) q^{4} + (\beta + 4) q^{6} + (\beta + 2) q^{7} + ( - \beta - 4) q^{8} + (\beta + 1) q^{9} + ( - \beta + 3) q^{11} + ( - 3 \beta - 4) q^{12} + (2 \beta - 4) q^{13} + \cdots + (\beta - 1) q^{99} +O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 2 q - q^{2} - q^{3} + 5 q^{4} + 9 q^{6} + 5 q^{7} - 9 q^{8} + 3 q^{9} + 5 q^{11} - 11 q^{12} - 6 q^{13} - 11 q^{14} + 3 q^{16} - 10 q^{18} + 3 q^{19} - 11 q^{21} + 6 q^{22} - q^{23} + 13 q^{24} - 14 q^{26}+ \cdots - q^{99}+O(q^{100}) \) Copy content Toggle raw display

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field
 
gp: mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
1.1
2.56155
−1.56155
−2.56155 −2.56155 4.56155 0 6.56155 4.56155 −6.56155 3.56155 0
1.2 1.56155 1.56155 0.438447 0 2.43845 0.438447 −2.43845 −0.561553 0
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Atkin-Lehner signs

\( p \) Sign
\(5\) \( +1 \)
\(17\) \( +1 \)

Inner twists

This newform does not admit any (nontrivial) inner twists.

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 7225.2.a.j 2
5.b even 2 1 1445.2.a.i yes 2
17.b even 2 1 7225.2.a.k 2
85.c even 2 1 1445.2.a.h 2
85.j even 4 2 1445.2.d.d 4
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
1445.2.a.h 2 85.c even 2 1
1445.2.a.i yes 2 5.b even 2 1
1445.2.d.d 4 85.j even 4 2
7225.2.a.j 2 1.a even 1 1 trivial
7225.2.a.k 2 17.b even 2 1

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on \(S_{2}^{\mathrm{new}}(\Gamma_0(7225))\):

\( T_{2}^{2} + T_{2} - 4 \) Copy content Toggle raw display
\( T_{3}^{2} + T_{3} - 4 \) Copy content Toggle raw display
\( T_{7}^{2} - 5T_{7} + 2 \) Copy content Toggle raw display
\( T_{11}^{2} - 5T_{11} + 2 \) Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( T^{2} + T - 4 \) Copy content Toggle raw display
$3$ \( T^{2} + T - 4 \) Copy content Toggle raw display
$5$ \( T^{2} \) Copy content Toggle raw display
$7$ \( T^{2} - 5T + 2 \) Copy content Toggle raw display
$11$ \( T^{2} - 5T + 2 \) Copy content Toggle raw display
$13$ \( T^{2} + 6T - 8 \) Copy content Toggle raw display
$17$ \( T^{2} \) Copy content Toggle raw display
$19$ \( T^{2} - 3T - 2 \) Copy content Toggle raw display
$23$ \( T^{2} + T - 4 \) Copy content Toggle raw display
$29$ \( T^{2} + 11T + 26 \) Copy content Toggle raw display
$31$ \( T^{2} \) Copy content Toggle raw display
$37$ \( (T - 10)^{2} \) Copy content Toggle raw display
$41$ \( (T - 7)^{2} \) Copy content Toggle raw display
$43$ \( T^{2} + 10T + 8 \) Copy content Toggle raw display
$47$ \( T^{2} + 2T - 16 \) Copy content Toggle raw display
$53$ \( T^{2} + 6T - 8 \) Copy content Toggle raw display
$59$ \( T^{2} + 3T - 2 \) Copy content Toggle raw display
$61$ \( T^{2} + 19T + 86 \) Copy content Toggle raw display
$67$ \( T^{2} + 3T - 2 \) Copy content Toggle raw display
$71$ \( T^{2} + 15T + 18 \) Copy content Toggle raw display
$73$ \( T^{2} + 22T + 104 \) Copy content Toggle raw display
$79$ \( T^{2} + 23T + 128 \) Copy content Toggle raw display
$83$ \( T^{2} + 11T + 26 \) Copy content Toggle raw display
$89$ \( T^{2} - 2T - 271 \) Copy content Toggle raw display
$97$ \( T^{2} + 16T - 4 \) Copy content Toggle raw display
show more
show less