Properties

Label 7225.2.a.z.1.5
Level $7225$
Weight $2$
Character 7225.1
Self dual yes
Analytic conductor $57.692$
Analytic rank $1$
Dimension $6$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [7225,2,Mod(1,7225)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(7225, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("7225.1");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 7225 = 5^{2} \cdot 17^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 7225.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(57.6919154604\)
Analytic rank: \(1\)
Dimension: \(6\)
Coefficient field: 6.6.7718912.1
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{6} - 2x^{5} - 7x^{4} + 4x^{3} + 9x^{2} - 2x - 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 85)
Fricke sign: \(+1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.5
Root \(0.455023\) of defining polynomial
Character \(\chi\) \(=\) 7225.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+0.783476 q^{2} -0.544977 q^{3} -1.38617 q^{4} -0.426976 q^{6} -1.18848 q^{7} -2.65298 q^{8} -2.70300 q^{9} -2.55419 q^{11} +0.755428 q^{12} -0.368117 q^{13} -0.931143 q^{14} +0.693788 q^{16} -2.11773 q^{18} +6.61138 q^{19} +0.647692 q^{21} -2.00114 q^{22} +3.86343 q^{23} +1.44581 q^{24} -0.288411 q^{26} +3.10800 q^{27} +1.64743 q^{28} +2.31176 q^{29} +6.62531 q^{31} +5.84952 q^{32} +1.39197 q^{33} +3.74681 q^{36} -3.17659 q^{37} +5.17986 q^{38} +0.200615 q^{39} +7.30543 q^{41} +0.507451 q^{42} -6.82350 q^{43} +3.54053 q^{44} +3.02690 q^{46} +7.80793 q^{47} -0.378098 q^{48} -5.58752 q^{49} +0.510272 q^{52} -8.01219 q^{53} +2.43504 q^{54} +3.15300 q^{56} -3.60305 q^{57} +1.81121 q^{58} +5.22381 q^{59} -8.12136 q^{61} +5.19077 q^{62} +3.21245 q^{63} +3.19538 q^{64} +1.09058 q^{66} +7.94564 q^{67} -2.10548 q^{69} +11.8880 q^{71} +7.17100 q^{72} -14.7327 q^{73} -2.48878 q^{74} -9.16447 q^{76} +3.03559 q^{77} +0.157177 q^{78} +0.813189 q^{79} +6.41521 q^{81} +5.72362 q^{82} -3.99116 q^{83} -0.897809 q^{84} -5.34604 q^{86} -1.25986 q^{87} +6.77621 q^{88} -9.14311 q^{89} +0.437499 q^{91} -5.35536 q^{92} -3.61064 q^{93} +6.11732 q^{94} -3.18785 q^{96} -7.06440 q^{97} -4.37769 q^{98} +6.90397 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 6 q - 2 q^{2} - 4 q^{3} + 6 q^{4} + 4 q^{6} - 8 q^{7} - 6 q^{8} + 2 q^{9} - 8 q^{12} + 8 q^{14} + 2 q^{16} - 14 q^{18} - 12 q^{19} + 8 q^{21} - 16 q^{22} + 24 q^{24} - 12 q^{26} + 8 q^{27} + 8 q^{28} + 8 q^{29}+ \cdots + 20 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0.783476 0.554001 0.277000 0.960870i \(-0.410660\pi\)
0.277000 + 0.960870i \(0.410660\pi\)
\(3\) −0.544977 −0.314642 −0.157321 0.987547i \(-0.550286\pi\)
−0.157321 + 0.987547i \(0.550286\pi\)
\(4\) −1.38617 −0.693083
\(5\) 0 0
\(6\) −0.426976 −0.174312
\(7\) −1.18848 −0.449202 −0.224601 0.974451i \(-0.572108\pi\)
−0.224601 + 0.974451i \(0.572108\pi\)
\(8\) −2.65298 −0.937970
\(9\) −2.70300 −0.901000
\(10\) 0 0
\(11\) −2.55419 −0.770117 −0.385058 0.922892i \(-0.625819\pi\)
−0.385058 + 0.922892i \(0.625819\pi\)
\(12\) 0.755428 0.218073
\(13\) −0.368117 −0.102097 −0.0510487 0.998696i \(-0.516256\pi\)
−0.0510487 + 0.998696i \(0.516256\pi\)
\(14\) −0.931143 −0.248858
\(15\) 0 0
\(16\) 0.693788 0.173447
\(17\) 0 0
\(18\) −2.11773 −0.499155
\(19\) 6.61138 1.51676 0.758378 0.651816i \(-0.225992\pi\)
0.758378 + 0.651816i \(0.225992\pi\)
\(20\) 0 0
\(21\) 0.647692 0.141338
\(22\) −2.00114 −0.426645
\(23\) 3.86343 0.805581 0.402790 0.915292i \(-0.368040\pi\)
0.402790 + 0.915292i \(0.368040\pi\)
\(24\) 1.44581 0.295125
\(25\) 0 0
\(26\) −0.288411 −0.0565621
\(27\) 3.10800 0.598135
\(28\) 1.64743 0.311334
\(29\) 2.31176 0.429284 0.214642 0.976693i \(-0.431142\pi\)
0.214642 + 0.976693i \(0.431142\pi\)
\(30\) 0 0
\(31\) 6.62531 1.18994 0.594970 0.803748i \(-0.297164\pi\)
0.594970 + 0.803748i \(0.297164\pi\)
\(32\) 5.84952 1.03406
\(33\) 1.39197 0.242311
\(34\) 0 0
\(35\) 0 0
\(36\) 3.74681 0.624468
\(37\) −3.17659 −0.522229 −0.261114 0.965308i \(-0.584090\pi\)
−0.261114 + 0.965308i \(0.584090\pi\)
\(38\) 5.17986 0.840284
\(39\) 0.200615 0.0321242
\(40\) 0 0
\(41\) 7.30543 1.14092 0.570458 0.821327i \(-0.306766\pi\)
0.570458 + 0.821327i \(0.306766\pi\)
\(42\) 0.507451 0.0783014
\(43\) −6.82350 −1.04057 −0.520287 0.853992i \(-0.674175\pi\)
−0.520287 + 0.853992i \(0.674175\pi\)
\(44\) 3.54053 0.533755
\(45\) 0 0
\(46\) 3.02690 0.446292
\(47\) 7.80793 1.13890 0.569452 0.822025i \(-0.307156\pi\)
0.569452 + 0.822025i \(0.307156\pi\)
\(48\) −0.378098 −0.0545738
\(49\) −5.58752 −0.798218
\(50\) 0 0
\(51\) 0 0
\(52\) 0.510272 0.0707620
\(53\) −8.01219 −1.10056 −0.550280 0.834980i \(-0.685479\pi\)
−0.550280 + 0.834980i \(0.685479\pi\)
\(54\) 2.43504 0.331367
\(55\) 0 0
\(56\) 3.15300 0.421338
\(57\) −3.60305 −0.477235
\(58\) 1.81121 0.237824
\(59\) 5.22381 0.680082 0.340041 0.940411i \(-0.389559\pi\)
0.340041 + 0.940411i \(0.389559\pi\)
\(60\) 0 0
\(61\) −8.12136 −1.03983 −0.519917 0.854217i \(-0.674037\pi\)
−0.519917 + 0.854217i \(0.674037\pi\)
\(62\) 5.19077 0.659228
\(63\) 3.21245 0.404731
\(64\) 3.19538 0.399423
\(65\) 0 0
\(66\) 1.09058 0.134241
\(67\) 7.94564 0.970715 0.485357 0.874316i \(-0.338690\pi\)
0.485357 + 0.874316i \(0.338690\pi\)
\(68\) 0 0
\(69\) −2.10548 −0.253470
\(70\) 0 0
\(71\) 11.8880 1.41085 0.705425 0.708785i \(-0.250756\pi\)
0.705425 + 0.708785i \(0.250756\pi\)
\(72\) 7.17100 0.845111
\(73\) −14.7327 −1.72434 −0.862168 0.506622i \(-0.830894\pi\)
−0.862168 + 0.506622i \(0.830894\pi\)
\(74\) −2.48878 −0.289315
\(75\) 0 0
\(76\) −9.16447 −1.05124
\(77\) 3.03559 0.345938
\(78\) 0.157177 0.0177968
\(79\) 0.813189 0.0914909 0.0457454 0.998953i \(-0.485434\pi\)
0.0457454 + 0.998953i \(0.485434\pi\)
\(80\) 0 0
\(81\) 6.41521 0.712801
\(82\) 5.72362 0.632068
\(83\) −3.99116 −0.438087 −0.219044 0.975715i \(-0.570294\pi\)
−0.219044 + 0.975715i \(0.570294\pi\)
\(84\) −0.897809 −0.0979590
\(85\) 0 0
\(86\) −5.34604 −0.576479
\(87\) −1.25986 −0.135071
\(88\) 6.77621 0.722346
\(89\) −9.14311 −0.969168 −0.484584 0.874745i \(-0.661029\pi\)
−0.484584 + 0.874745i \(0.661029\pi\)
\(90\) 0 0
\(91\) 0.437499 0.0458624
\(92\) −5.35536 −0.558334
\(93\) −3.61064 −0.374406
\(94\) 6.11732 0.630953
\(95\) 0 0
\(96\) −3.18785 −0.325359
\(97\) −7.06440 −0.717281 −0.358641 0.933476i \(-0.616760\pi\)
−0.358641 + 0.933476i \(0.616760\pi\)
\(98\) −4.37769 −0.442213
\(99\) 6.90397 0.693875
\(100\) 0 0
\(101\) 0.296263 0.0294793 0.0147396 0.999891i \(-0.495308\pi\)
0.0147396 + 0.999891i \(0.495308\pi\)
\(102\) 0 0
\(103\) −17.0372 −1.67873 −0.839363 0.543571i \(-0.817072\pi\)
−0.839363 + 0.543571i \(0.817072\pi\)
\(104\) 0.976608 0.0957642
\(105\) 0 0
\(106\) −6.27736 −0.609711
\(107\) −3.80874 −0.368205 −0.184102 0.982907i \(-0.558938\pi\)
−0.184102 + 0.982907i \(0.558938\pi\)
\(108\) −4.30821 −0.414557
\(109\) 12.0374 1.15297 0.576486 0.817107i \(-0.304424\pi\)
0.576486 + 0.817107i \(0.304424\pi\)
\(110\) 0 0
\(111\) 1.73117 0.164315
\(112\) −0.824551 −0.0779128
\(113\) −16.4819 −1.55049 −0.775243 0.631664i \(-0.782372\pi\)
−0.775243 + 0.631664i \(0.782372\pi\)
\(114\) −2.82290 −0.264389
\(115\) 0 0
\(116\) −3.20449 −0.297529
\(117\) 0.995022 0.0919898
\(118\) 4.09272 0.376766
\(119\) 0 0
\(120\) 0 0
\(121\) −4.47612 −0.406920
\(122\) −6.36288 −0.576068
\(123\) −3.98129 −0.358980
\(124\) −9.18378 −0.824727
\(125\) 0 0
\(126\) 2.51688 0.224221
\(127\) 4.48798 0.398244 0.199122 0.979975i \(-0.436191\pi\)
0.199122 + 0.979975i \(0.436191\pi\)
\(128\) −9.19554 −0.812779
\(129\) 3.71865 0.327409
\(130\) 0 0
\(131\) 9.34295 0.816297 0.408149 0.912915i \(-0.366174\pi\)
0.408149 + 0.912915i \(0.366174\pi\)
\(132\) −1.92951 −0.167942
\(133\) −7.85747 −0.681329
\(134\) 6.22522 0.537777
\(135\) 0 0
\(136\) 0 0
\(137\) −8.47822 −0.724344 −0.362172 0.932111i \(-0.617965\pi\)
−0.362172 + 0.932111i \(0.617965\pi\)
\(138\) −1.64959 −0.140423
\(139\) −6.00703 −0.509509 −0.254755 0.967006i \(-0.581995\pi\)
−0.254755 + 0.967006i \(0.581995\pi\)
\(140\) 0 0
\(141\) −4.25514 −0.358347
\(142\) 9.31398 0.781612
\(143\) 0.940241 0.0786269
\(144\) −1.87531 −0.156276
\(145\) 0 0
\(146\) −11.5427 −0.955284
\(147\) 3.04507 0.251153
\(148\) 4.40329 0.361948
\(149\) −9.11821 −0.746993 −0.373497 0.927632i \(-0.621841\pi\)
−0.373497 + 0.927632i \(0.621841\pi\)
\(150\) 0 0
\(151\) −13.1144 −1.06724 −0.533619 0.845725i \(-0.679168\pi\)
−0.533619 + 0.845725i \(0.679168\pi\)
\(152\) −17.5399 −1.42267
\(153\) 0 0
\(154\) 2.37831 0.191650
\(155\) 0 0
\(156\) −0.278086 −0.0222647
\(157\) −20.0496 −1.60013 −0.800065 0.599913i \(-0.795202\pi\)
−0.800065 + 0.599913i \(0.795202\pi\)
\(158\) 0.637113 0.0506860
\(159\) 4.36646 0.346283
\(160\) 0 0
\(161\) −4.59160 −0.361869
\(162\) 5.02616 0.394893
\(163\) −14.2708 −1.11778 −0.558888 0.829243i \(-0.688772\pi\)
−0.558888 + 0.829243i \(0.688772\pi\)
\(164\) −10.1265 −0.790749
\(165\) 0 0
\(166\) −3.12698 −0.242701
\(167\) 0.222335 0.0172048 0.00860240 0.999963i \(-0.497262\pi\)
0.00860240 + 0.999963i \(0.497262\pi\)
\(168\) −1.71831 −0.132571
\(169\) −12.8645 −0.989576
\(170\) 0 0
\(171\) −17.8706 −1.36660
\(172\) 9.45850 0.721204
\(173\) 19.9946 1.52016 0.760080 0.649829i \(-0.225160\pi\)
0.760080 + 0.649829i \(0.225160\pi\)
\(174\) −0.987067 −0.0748294
\(175\) 0 0
\(176\) −1.77207 −0.133575
\(177\) −2.84685 −0.213982
\(178\) −7.16341 −0.536920
\(179\) −24.3120 −1.81716 −0.908581 0.417708i \(-0.862834\pi\)
−0.908581 + 0.417708i \(0.862834\pi\)
\(180\) 0 0
\(181\) 11.8866 0.883522 0.441761 0.897133i \(-0.354354\pi\)
0.441761 + 0.897133i \(0.354354\pi\)
\(182\) 0.342770 0.0254078
\(183\) 4.42595 0.327176
\(184\) −10.2496 −0.755610
\(185\) 0 0
\(186\) −2.82885 −0.207421
\(187\) 0 0
\(188\) −10.8231 −0.789354
\(189\) −3.69379 −0.268684
\(190\) 0 0
\(191\) 17.2930 1.25128 0.625638 0.780114i \(-0.284839\pi\)
0.625638 + 0.780114i \(0.284839\pi\)
\(192\) −1.74141 −0.125675
\(193\) −1.80952 −0.130252 −0.0651261 0.997877i \(-0.520745\pi\)
−0.0651261 + 0.997877i \(0.520745\pi\)
\(194\) −5.53479 −0.397375
\(195\) 0 0
\(196\) 7.74523 0.553231
\(197\) 16.5784 1.18116 0.590580 0.806979i \(-0.298899\pi\)
0.590580 + 0.806979i \(0.298899\pi\)
\(198\) 5.40909 0.384408
\(199\) 25.1610 1.78362 0.891808 0.452414i \(-0.149437\pi\)
0.891808 + 0.452414i \(0.149437\pi\)
\(200\) 0 0
\(201\) −4.33019 −0.305428
\(202\) 0.232115 0.0163315
\(203\) −2.74748 −0.192835
\(204\) 0 0
\(205\) 0 0
\(206\) −13.3482 −0.930016
\(207\) −10.4429 −0.725828
\(208\) −0.255396 −0.0177085
\(209\) −16.8867 −1.16808
\(210\) 0 0
\(211\) −8.40826 −0.578849 −0.289424 0.957201i \(-0.593464\pi\)
−0.289424 + 0.957201i \(0.593464\pi\)
\(212\) 11.1062 0.762779
\(213\) −6.47870 −0.443913
\(214\) −2.98406 −0.203986
\(215\) 0 0
\(216\) −8.24546 −0.561033
\(217\) −7.87402 −0.534524
\(218\) 9.43099 0.638748
\(219\) 8.02900 0.542549
\(220\) 0 0
\(221\) 0 0
\(222\) 1.35633 0.0910308
\(223\) 16.5499 1.10826 0.554132 0.832429i \(-0.313050\pi\)
0.554132 + 0.832429i \(0.313050\pi\)
\(224\) −6.95202 −0.464502
\(225\) 0 0
\(226\) −12.9132 −0.858970
\(227\) 7.11700 0.472372 0.236186 0.971708i \(-0.424103\pi\)
0.236186 + 0.971708i \(0.424103\pi\)
\(228\) 4.99442 0.330764
\(229\) −1.46774 −0.0969907 −0.0484953 0.998823i \(-0.515443\pi\)
−0.0484953 + 0.998823i \(0.515443\pi\)
\(230\) 0 0
\(231\) −1.65433 −0.108847
\(232\) −6.13306 −0.402655
\(233\) 23.1663 1.51767 0.758837 0.651280i \(-0.225768\pi\)
0.758837 + 0.651280i \(0.225768\pi\)
\(234\) 0.779575 0.0509624
\(235\) 0 0
\(236\) −7.24106 −0.471353
\(237\) −0.443169 −0.0287869
\(238\) 0 0
\(239\) −6.43252 −0.416085 −0.208042 0.978120i \(-0.566709\pi\)
−0.208042 + 0.978120i \(0.566709\pi\)
\(240\) 0 0
\(241\) 27.3959 1.76473 0.882364 0.470568i \(-0.155951\pi\)
0.882364 + 0.470568i \(0.155951\pi\)
\(242\) −3.50693 −0.225434
\(243\) −12.8201 −0.822413
\(244\) 11.2575 0.720691
\(245\) 0 0
\(246\) −3.11924 −0.198875
\(247\) −2.43376 −0.154857
\(248\) −17.5768 −1.11613
\(249\) 2.17509 0.137841
\(250\) 0 0
\(251\) −0.234413 −0.0147960 −0.00739800 0.999973i \(-0.502355\pi\)
−0.00739800 + 0.999973i \(0.502355\pi\)
\(252\) −4.45299 −0.280512
\(253\) −9.86793 −0.620391
\(254\) 3.51623 0.220628
\(255\) 0 0
\(256\) −13.5952 −0.849703
\(257\) 3.56040 0.222092 0.111046 0.993815i \(-0.464580\pi\)
0.111046 + 0.993815i \(0.464580\pi\)
\(258\) 2.91347 0.181385
\(259\) 3.77531 0.234586
\(260\) 0 0
\(261\) −6.24870 −0.386785
\(262\) 7.31997 0.452229
\(263\) −30.0000 −1.84988 −0.924940 0.380112i \(-0.875885\pi\)
−0.924940 + 0.380112i \(0.875885\pi\)
\(264\) −3.69287 −0.227281
\(265\) 0 0
\(266\) −6.15614 −0.377457
\(267\) 4.98278 0.304941
\(268\) −11.0140 −0.672786
\(269\) −0.379243 −0.0231229 −0.0115614 0.999933i \(-0.503680\pi\)
−0.0115614 + 0.999933i \(0.503680\pi\)
\(270\) 0 0
\(271\) 10.6144 0.644780 0.322390 0.946607i \(-0.395514\pi\)
0.322390 + 0.946607i \(0.395514\pi\)
\(272\) 0 0
\(273\) −0.238427 −0.0144302
\(274\) −6.64248 −0.401287
\(275\) 0 0
\(276\) 2.91854 0.175676
\(277\) 30.4925 1.83211 0.916057 0.401048i \(-0.131354\pi\)
0.916057 + 0.401048i \(0.131354\pi\)
\(278\) −4.70636 −0.282269
\(279\) −17.9082 −1.07214
\(280\) 0 0
\(281\) −26.4402 −1.57729 −0.788645 0.614849i \(-0.789217\pi\)
−0.788645 + 0.614849i \(0.789217\pi\)
\(282\) −3.33380 −0.198525
\(283\) −18.5761 −1.10424 −0.552118 0.833766i \(-0.686180\pi\)
−0.552118 + 0.833766i \(0.686180\pi\)
\(284\) −16.4788 −0.977836
\(285\) 0 0
\(286\) 0.736656 0.0435594
\(287\) −8.68233 −0.512502
\(288\) −15.8113 −0.931688
\(289\) 0 0
\(290\) 0 0
\(291\) 3.84993 0.225687
\(292\) 20.4220 1.19511
\(293\) 3.59958 0.210289 0.105145 0.994457i \(-0.466469\pi\)
0.105145 + 0.994457i \(0.466469\pi\)
\(294\) 2.38574 0.139139
\(295\) 0 0
\(296\) 8.42743 0.489835
\(297\) −7.93842 −0.460634
\(298\) −7.14390 −0.413835
\(299\) −1.42220 −0.0822477
\(300\) 0 0
\(301\) 8.10957 0.467428
\(302\) −10.2748 −0.591251
\(303\) −0.161456 −0.00927543
\(304\) 4.58690 0.263077
\(305\) 0 0
\(306\) 0 0
\(307\) 33.4128 1.90697 0.953486 0.301438i \(-0.0974668\pi\)
0.953486 + 0.301438i \(0.0974668\pi\)
\(308\) −4.20784 −0.239764
\(309\) 9.28488 0.528199
\(310\) 0 0
\(311\) −13.7961 −0.782303 −0.391152 0.920326i \(-0.627923\pi\)
−0.391152 + 0.920326i \(0.627923\pi\)
\(312\) −0.532228 −0.0301315
\(313\) 30.5703 1.72793 0.863966 0.503550i \(-0.167973\pi\)
0.863966 + 0.503550i \(0.167973\pi\)
\(314\) −15.7084 −0.886473
\(315\) 0 0
\(316\) −1.12721 −0.0634108
\(317\) 3.21700 0.180685 0.0903424 0.995911i \(-0.471204\pi\)
0.0903424 + 0.995911i \(0.471204\pi\)
\(318\) 3.42101 0.191841
\(319\) −5.90468 −0.330599
\(320\) 0 0
\(321\) 2.07568 0.115853
\(322\) −3.59740 −0.200475
\(323\) 0 0
\(324\) −8.89255 −0.494031
\(325\) 0 0
\(326\) −11.1808 −0.619248
\(327\) −6.56009 −0.362774
\(328\) −19.3811 −1.07014
\(329\) −9.27954 −0.511598
\(330\) 0 0
\(331\) −29.7637 −1.63596 −0.817981 0.575246i \(-0.804906\pi\)
−0.817981 + 0.575246i \(0.804906\pi\)
\(332\) 5.53242 0.303631
\(333\) 8.58633 0.470528
\(334\) 0.174194 0.00953147
\(335\) 0 0
\(336\) 0.449361 0.0245147
\(337\) −10.7314 −0.584578 −0.292289 0.956330i \(-0.594417\pi\)
−0.292289 + 0.956330i \(0.594417\pi\)
\(338\) −10.0790 −0.548226
\(339\) 8.98224 0.487848
\(340\) 0 0
\(341\) −16.9223 −0.916393
\(342\) −14.0012 −0.757096
\(343\) 14.9600 0.807763
\(344\) 18.1026 0.976026
\(345\) 0 0
\(346\) 15.6653 0.842170
\(347\) 1.14416 0.0614219 0.0307109 0.999528i \(-0.490223\pi\)
0.0307109 + 0.999528i \(0.490223\pi\)
\(348\) 1.74637 0.0936153
\(349\) 18.6531 0.998476 0.499238 0.866465i \(-0.333613\pi\)
0.499238 + 0.866465i \(0.333613\pi\)
\(350\) 0 0
\(351\) −1.14411 −0.0610681
\(352\) −14.9408 −0.796347
\(353\) 4.34305 0.231157 0.115579 0.993298i \(-0.463128\pi\)
0.115579 + 0.993298i \(0.463128\pi\)
\(354\) −2.23044 −0.118546
\(355\) 0 0
\(356\) 12.6739 0.671714
\(357\) 0 0
\(358\) −19.0478 −1.00671
\(359\) −6.35821 −0.335573 −0.167787 0.985823i \(-0.553662\pi\)
−0.167787 + 0.985823i \(0.553662\pi\)
\(360\) 0 0
\(361\) 24.7104 1.30055
\(362\) 9.31284 0.489472
\(363\) 2.43938 0.128034
\(364\) −0.606446 −0.0317864
\(365\) 0 0
\(366\) 3.46762 0.181256
\(367\) −16.2147 −0.846401 −0.423200 0.906036i \(-0.639093\pi\)
−0.423200 + 0.906036i \(0.639093\pi\)
\(368\) 2.68040 0.139726
\(369\) −19.7466 −1.02797
\(370\) 0 0
\(371\) 9.52230 0.494373
\(372\) 5.00494 0.259494
\(373\) 18.5947 0.962797 0.481398 0.876502i \(-0.340129\pi\)
0.481398 + 0.876502i \(0.340129\pi\)
\(374\) 0 0
\(375\) 0 0
\(376\) −20.7143 −1.06826
\(377\) −0.851001 −0.0438288
\(378\) −2.89399 −0.148851
\(379\) 9.06118 0.465441 0.232721 0.972544i \(-0.425237\pi\)
0.232721 + 0.972544i \(0.425237\pi\)
\(380\) 0 0
\(381\) −2.44585 −0.125305
\(382\) 13.5486 0.693208
\(383\) 2.75136 0.140588 0.0702941 0.997526i \(-0.477606\pi\)
0.0702941 + 0.997526i \(0.477606\pi\)
\(384\) 5.01136 0.255735
\(385\) 0 0
\(386\) −1.41772 −0.0721598
\(387\) 18.4439 0.937557
\(388\) 9.79244 0.497136
\(389\) −27.3962 −1.38904 −0.694521 0.719472i \(-0.744384\pi\)
−0.694521 + 0.719472i \(0.744384\pi\)
\(390\) 0 0
\(391\) 0 0
\(392\) 14.8236 0.748704
\(393\) −5.09169 −0.256842
\(394\) 12.9888 0.654364
\(395\) 0 0
\(396\) −9.57005 −0.480913
\(397\) −24.9827 −1.25385 −0.626923 0.779081i \(-0.715686\pi\)
−0.626923 + 0.779081i \(0.715686\pi\)
\(398\) 19.7130 0.988125
\(399\) 4.28214 0.214375
\(400\) 0 0
\(401\) −31.7357 −1.58480 −0.792402 0.610000i \(-0.791170\pi\)
−0.792402 + 0.610000i \(0.791170\pi\)
\(402\) −3.39260 −0.169207
\(403\) −2.43889 −0.121490
\(404\) −0.410670 −0.0204316
\(405\) 0 0
\(406\) −2.15258 −0.106831
\(407\) 8.11362 0.402177
\(408\) 0 0
\(409\) 0.721793 0.0356904 0.0178452 0.999841i \(-0.494319\pi\)
0.0178452 + 0.999841i \(0.494319\pi\)
\(410\) 0 0
\(411\) 4.62043 0.227909
\(412\) 23.6164 1.16350
\(413\) −6.20837 −0.305494
\(414\) −8.18172 −0.402110
\(415\) 0 0
\(416\) −2.15331 −0.105575
\(417\) 3.27369 0.160313
\(418\) −13.2303 −0.647117
\(419\) −14.3360 −0.700361 −0.350180 0.936682i \(-0.613880\pi\)
−0.350180 + 0.936682i \(0.613880\pi\)
\(420\) 0 0
\(421\) −2.94304 −0.143435 −0.0717175 0.997425i \(-0.522848\pi\)
−0.0717175 + 0.997425i \(0.522848\pi\)
\(422\) −6.58767 −0.320683
\(423\) −21.1048 −1.02615
\(424\) 21.2562 1.03229
\(425\) 0 0
\(426\) −5.07590 −0.245928
\(427\) 9.65204 0.467095
\(428\) 5.27955 0.255197
\(429\) −0.512410 −0.0247394
\(430\) 0 0
\(431\) −32.1754 −1.54983 −0.774917 0.632063i \(-0.782208\pi\)
−0.774917 + 0.632063i \(0.782208\pi\)
\(432\) 2.15630 0.103745
\(433\) 1.76074 0.0846158 0.0423079 0.999105i \(-0.486529\pi\)
0.0423079 + 0.999105i \(0.486529\pi\)
\(434\) −6.16911 −0.296127
\(435\) 0 0
\(436\) −16.6858 −0.799105
\(437\) 25.5426 1.22187
\(438\) 6.29052 0.300573
\(439\) 0.551679 0.0263302 0.0131651 0.999913i \(-0.495809\pi\)
0.0131651 + 0.999913i \(0.495809\pi\)
\(440\) 0 0
\(441\) 15.1031 0.719194
\(442\) 0 0
\(443\) −2.19117 −0.104106 −0.0520528 0.998644i \(-0.516576\pi\)
−0.0520528 + 0.998644i \(0.516576\pi\)
\(444\) −2.39969 −0.113884
\(445\) 0 0
\(446\) 12.9665 0.613980
\(447\) 4.96921 0.235036
\(448\) −3.79764 −0.179422
\(449\) −2.15978 −0.101926 −0.0509631 0.998701i \(-0.516229\pi\)
−0.0509631 + 0.998701i \(0.516229\pi\)
\(450\) 0 0
\(451\) −18.6594 −0.878639
\(452\) 22.8466 1.07461
\(453\) 7.14706 0.335798
\(454\) 5.57599 0.261694
\(455\) 0 0
\(456\) 9.55881 0.447632
\(457\) −9.46893 −0.442938 −0.221469 0.975167i \(-0.571085\pi\)
−0.221469 + 0.975167i \(0.571085\pi\)
\(458\) −1.14993 −0.0537329
\(459\) 0 0
\(460\) 0 0
\(461\) 16.6646 0.776149 0.388075 0.921628i \(-0.373140\pi\)
0.388075 + 0.921628i \(0.373140\pi\)
\(462\) −1.29613 −0.0603012
\(463\) 14.3738 0.668009 0.334005 0.942571i \(-0.391600\pi\)
0.334005 + 0.942571i \(0.391600\pi\)
\(464\) 1.60387 0.0744580
\(465\) 0 0
\(466\) 18.1502 0.840793
\(467\) −12.9129 −0.597537 −0.298769 0.954326i \(-0.596576\pi\)
−0.298769 + 0.954326i \(0.596576\pi\)
\(468\) −1.37927 −0.0637565
\(469\) −9.44321 −0.436047
\(470\) 0 0
\(471\) 10.9265 0.503469
\(472\) −13.8586 −0.637896
\(473\) 17.4285 0.801363
\(474\) −0.347212 −0.0159480
\(475\) 0 0
\(476\) 0 0
\(477\) 21.6570 0.991604
\(478\) −5.03972 −0.230511
\(479\) 6.01194 0.274692 0.137346 0.990523i \(-0.456143\pi\)
0.137346 + 0.990523i \(0.456143\pi\)
\(480\) 0 0
\(481\) 1.16936 0.0533182
\(482\) 21.4640 0.977661
\(483\) 2.50231 0.113859
\(484\) 6.20464 0.282029
\(485\) 0 0
\(486\) −10.0443 −0.455617
\(487\) −33.1010 −1.49995 −0.749975 0.661466i \(-0.769935\pi\)
−0.749975 + 0.661466i \(0.769935\pi\)
\(488\) 21.5458 0.975332
\(489\) 7.77725 0.351699
\(490\) 0 0
\(491\) 18.7705 0.847099 0.423549 0.905873i \(-0.360784\pi\)
0.423549 + 0.905873i \(0.360784\pi\)
\(492\) 5.51872 0.248803
\(493\) 0 0
\(494\) −1.90680 −0.0857908
\(495\) 0 0
\(496\) 4.59656 0.206392
\(497\) −14.1286 −0.633756
\(498\) 1.70413 0.0763639
\(499\) −7.14440 −0.319827 −0.159914 0.987131i \(-0.551122\pi\)
−0.159914 + 0.987131i \(0.551122\pi\)
\(500\) 0 0
\(501\) −0.121167 −0.00541336
\(502\) −0.183657 −0.00819700
\(503\) −29.3535 −1.30881 −0.654404 0.756145i \(-0.727080\pi\)
−0.654404 + 0.756145i \(0.727080\pi\)
\(504\) −8.52257 −0.379625
\(505\) 0 0
\(506\) −7.73128 −0.343697
\(507\) 7.01085 0.311363
\(508\) −6.22109 −0.276016
\(509\) −9.83824 −0.436072 −0.218036 0.975941i \(-0.569965\pi\)
−0.218036 + 0.975941i \(0.569965\pi\)
\(510\) 0 0
\(511\) 17.5095 0.774575
\(512\) 7.73954 0.342043
\(513\) 20.5482 0.907225
\(514\) 2.78949 0.123039
\(515\) 0 0
\(516\) −5.15466 −0.226921
\(517\) −19.9429 −0.877089
\(518\) 2.95786 0.129961
\(519\) −10.8966 −0.478307
\(520\) 0 0
\(521\) −6.82338 −0.298938 −0.149469 0.988766i \(-0.547756\pi\)
−0.149469 + 0.988766i \(0.547756\pi\)
\(522\) −4.89570 −0.214279
\(523\) −7.90422 −0.345628 −0.172814 0.984955i \(-0.555286\pi\)
−0.172814 + 0.984955i \(0.555286\pi\)
\(524\) −12.9509 −0.565762
\(525\) 0 0
\(526\) −23.5043 −1.02484
\(527\) 0 0
\(528\) 0.965735 0.0420282
\(529\) −8.07391 −0.351040
\(530\) 0 0
\(531\) −14.1199 −0.612754
\(532\) 10.8918 0.472218
\(533\) −2.68925 −0.116485
\(534\) 3.90389 0.168938
\(535\) 0 0
\(536\) −21.0796 −0.910501
\(537\) 13.2495 0.571756
\(538\) −0.297128 −0.0128101
\(539\) 14.2716 0.614721
\(540\) 0 0
\(541\) −36.2840 −1.55997 −0.779985 0.625798i \(-0.784774\pi\)
−0.779985 + 0.625798i \(0.784774\pi\)
\(542\) 8.31614 0.357209
\(543\) −6.47790 −0.277993
\(544\) 0 0
\(545\) 0 0
\(546\) −0.186802 −0.00799437
\(547\) −28.2798 −1.20915 −0.604577 0.796546i \(-0.706658\pi\)
−0.604577 + 0.796546i \(0.706658\pi\)
\(548\) 11.7522 0.502030
\(549\) 21.9520 0.936890
\(550\) 0 0
\(551\) 15.2840 0.651118
\(552\) 5.58579 0.237747
\(553\) −0.966456 −0.0410979
\(554\) 23.8901 1.01499
\(555\) 0 0
\(556\) 8.32674 0.353132
\(557\) −15.4059 −0.652768 −0.326384 0.945237i \(-0.605830\pi\)
−0.326384 + 0.945237i \(0.605830\pi\)
\(558\) −14.0306 −0.593964
\(559\) 2.51185 0.106240
\(560\) 0 0
\(561\) 0 0
\(562\) −20.7153 −0.873820
\(563\) −8.51617 −0.358914 −0.179457 0.983766i \(-0.557434\pi\)
−0.179457 + 0.983766i \(0.557434\pi\)
\(564\) 5.89833 0.248364
\(565\) 0 0
\(566\) −14.5539 −0.611748
\(567\) −7.62433 −0.320192
\(568\) −31.5387 −1.32333
\(569\) −10.0268 −0.420346 −0.210173 0.977664i \(-0.567403\pi\)
−0.210173 + 0.977664i \(0.567403\pi\)
\(570\) 0 0
\(571\) 13.8174 0.578242 0.289121 0.957293i \(-0.406637\pi\)
0.289121 + 0.957293i \(0.406637\pi\)
\(572\) −1.30333 −0.0544950
\(573\) −9.42427 −0.393704
\(574\) −6.80239 −0.283926
\(575\) 0 0
\(576\) −8.63712 −0.359880
\(577\) 13.6068 0.566457 0.283229 0.959052i \(-0.408594\pi\)
0.283229 + 0.959052i \(0.408594\pi\)
\(578\) 0 0
\(579\) 0.986147 0.0409829
\(580\) 0 0
\(581\) 4.74341 0.196790
\(582\) 3.01633 0.125031
\(583\) 20.4647 0.847559
\(584\) 39.0856 1.61738
\(585\) 0 0
\(586\) 2.82018 0.116501
\(587\) −27.9191 −1.15234 −0.576172 0.817329i \(-0.695454\pi\)
−0.576172 + 0.817329i \(0.695454\pi\)
\(588\) −4.22097 −0.174070
\(589\) 43.8024 1.80485
\(590\) 0 0
\(591\) −9.03483 −0.371643
\(592\) −2.20388 −0.0905790
\(593\) 40.0318 1.64391 0.821954 0.569554i \(-0.192884\pi\)
0.821954 + 0.569554i \(0.192884\pi\)
\(594\) −6.21956 −0.255192
\(595\) 0 0
\(596\) 12.6394 0.517728
\(597\) −13.7122 −0.561201
\(598\) −1.11426 −0.0455653
\(599\) −25.5481 −1.04387 −0.521934 0.852986i \(-0.674789\pi\)
−0.521934 + 0.852986i \(0.674789\pi\)
\(600\) 0 0
\(601\) 3.89097 0.158716 0.0793581 0.996846i \(-0.474713\pi\)
0.0793581 + 0.996846i \(0.474713\pi\)
\(602\) 6.35365 0.258955
\(603\) −21.4771 −0.874614
\(604\) 18.1788 0.739684
\(605\) 0 0
\(606\) −0.126497 −0.00513859
\(607\) −9.82009 −0.398585 −0.199293 0.979940i \(-0.563864\pi\)
−0.199293 + 0.979940i \(0.563864\pi\)
\(608\) 38.6734 1.56841
\(609\) 1.49731 0.0606741
\(610\) 0 0
\(611\) −2.87423 −0.116279
\(612\) 0 0
\(613\) −44.6175 −1.80208 −0.901042 0.433733i \(-0.857196\pi\)
−0.901042 + 0.433733i \(0.857196\pi\)
\(614\) 26.1781 1.05646
\(615\) 0 0
\(616\) −8.05337 −0.324479
\(617\) −35.6864 −1.43668 −0.718341 0.695691i \(-0.755098\pi\)
−0.718341 + 0.695691i \(0.755098\pi\)
\(618\) 7.27448 0.292622
\(619\) 16.5853 0.666620 0.333310 0.942817i \(-0.391834\pi\)
0.333310 + 0.942817i \(0.391834\pi\)
\(620\) 0 0
\(621\) 12.0075 0.481846
\(622\) −10.8089 −0.433397
\(623\) 10.8664 0.435352
\(624\) 0.139185 0.00557184
\(625\) 0 0
\(626\) 23.9510 0.957276
\(627\) 9.20287 0.367527
\(628\) 27.7920 1.10902
\(629\) 0 0
\(630\) 0 0
\(631\) −38.0364 −1.51421 −0.757103 0.653295i \(-0.773386\pi\)
−0.757103 + 0.653295i \(0.773386\pi\)
\(632\) −2.15737 −0.0858156
\(633\) 4.58231 0.182130
\(634\) 2.52044 0.100100
\(635\) 0 0
\(636\) −6.05263 −0.240003
\(637\) 2.05686 0.0814959
\(638\) −4.62617 −0.183152
\(639\) −32.1333 −1.27118
\(640\) 0 0
\(641\) −3.64035 −0.143785 −0.0718927 0.997412i \(-0.522904\pi\)
−0.0718927 + 0.997412i \(0.522904\pi\)
\(642\) 1.62624 0.0641826
\(643\) −18.4030 −0.725743 −0.362871 0.931839i \(-0.618204\pi\)
−0.362871 + 0.931839i \(0.618204\pi\)
\(644\) 6.36472 0.250805
\(645\) 0 0
\(646\) 0 0
\(647\) −3.12579 −0.122888 −0.0614438 0.998111i \(-0.519571\pi\)
−0.0614438 + 0.998111i \(0.519571\pi\)
\(648\) −17.0194 −0.668586
\(649\) −13.3426 −0.523742
\(650\) 0 0
\(651\) 4.29116 0.168184
\(652\) 19.7817 0.774711
\(653\) 14.0378 0.549341 0.274671 0.961538i \(-0.411431\pi\)
0.274671 + 0.961538i \(0.411431\pi\)
\(654\) −5.13967 −0.200977
\(655\) 0 0
\(656\) 5.06842 0.197888
\(657\) 39.8226 1.55363
\(658\) −7.27029 −0.283426
\(659\) −4.52370 −0.176218 −0.0881092 0.996111i \(-0.528082\pi\)
−0.0881092 + 0.996111i \(0.528082\pi\)
\(660\) 0 0
\(661\) −31.6484 −1.23098 −0.615490 0.788145i \(-0.711042\pi\)
−0.615490 + 0.788145i \(0.711042\pi\)
\(662\) −23.3191 −0.906324
\(663\) 0 0
\(664\) 10.5885 0.410912
\(665\) 0 0
\(666\) 6.72718 0.260673
\(667\) 8.93134 0.345823
\(668\) −0.308193 −0.0119244
\(669\) −9.01932 −0.348707
\(670\) 0 0
\(671\) 20.7435 0.800793
\(672\) 3.78869 0.146152
\(673\) −11.1926 −0.431443 −0.215721 0.976455i \(-0.569210\pi\)
−0.215721 + 0.976455i \(0.569210\pi\)
\(674\) −8.40781 −0.323857
\(675\) 0 0
\(676\) 17.8323 0.685858
\(677\) 6.53326 0.251094 0.125547 0.992088i \(-0.459931\pi\)
0.125547 + 0.992088i \(0.459931\pi\)
\(678\) 7.03737 0.270268
\(679\) 8.39588 0.322204
\(680\) 0 0
\(681\) −3.87860 −0.148628
\(682\) −13.2582 −0.507683
\(683\) −23.6629 −0.905434 −0.452717 0.891654i \(-0.649545\pi\)
−0.452717 + 0.891654i \(0.649545\pi\)
\(684\) 24.7716 0.947165
\(685\) 0 0
\(686\) 11.7208 0.447501
\(687\) 0.799882 0.0305174
\(688\) −4.73406 −0.180484
\(689\) 2.94943 0.112364
\(690\) 0 0
\(691\) −8.11102 −0.308558 −0.154279 0.988027i \(-0.549305\pi\)
−0.154279 + 0.988027i \(0.549305\pi\)
\(692\) −27.7158 −1.05360
\(693\) −8.20521 −0.311690
\(694\) 0.896423 0.0340278
\(695\) 0 0
\(696\) 3.34237 0.126692
\(697\) 0 0
\(698\) 14.6142 0.553157
\(699\) −12.6251 −0.477525
\(700\) 0 0
\(701\) −35.4115 −1.33748 −0.668738 0.743498i \(-0.733165\pi\)
−0.668738 + 0.743498i \(0.733165\pi\)
\(702\) −0.896382 −0.0338318
\(703\) −21.0017 −0.792093
\(704\) −8.16161 −0.307602
\(705\) 0 0
\(706\) 3.40268 0.128061
\(707\) −0.352102 −0.0132421
\(708\) 3.94621 0.148308
\(709\) 14.9400 0.561082 0.280541 0.959842i \(-0.409486\pi\)
0.280541 + 0.959842i \(0.409486\pi\)
\(710\) 0 0
\(711\) −2.19805 −0.0824333
\(712\) 24.2565 0.909050
\(713\) 25.5964 0.958593
\(714\) 0 0
\(715\) 0 0
\(716\) 33.7004 1.25944
\(717\) 3.50557 0.130918
\(718\) −4.98150 −0.185908
\(719\) 23.1554 0.863552 0.431776 0.901981i \(-0.357887\pi\)
0.431776 + 0.901981i \(0.357887\pi\)
\(720\) 0 0
\(721\) 20.2483 0.754087
\(722\) 19.3600 0.720504
\(723\) −14.9301 −0.555258
\(724\) −16.4768 −0.612354
\(725\) 0 0
\(726\) 1.91119 0.0709311
\(727\) 11.3367 0.420456 0.210228 0.977652i \(-0.432579\pi\)
0.210228 + 0.977652i \(0.432579\pi\)
\(728\) −1.16068 −0.0430175
\(729\) −12.2590 −0.454036
\(730\) 0 0
\(731\) 0 0
\(732\) −6.13510 −0.226760
\(733\) −3.32332 −0.122750 −0.0613748 0.998115i \(-0.519548\pi\)
−0.0613748 + 0.998115i \(0.519548\pi\)
\(734\) −12.7038 −0.468907
\(735\) 0 0
\(736\) 22.5992 0.833018
\(737\) −20.2947 −0.747564
\(738\) −15.4710 −0.569494
\(739\) −12.5661 −0.462253 −0.231127 0.972924i \(-0.574241\pi\)
−0.231127 + 0.972924i \(0.574241\pi\)
\(740\) 0 0
\(741\) 1.32634 0.0487245
\(742\) 7.46049 0.273883
\(743\) −52.5812 −1.92902 −0.964508 0.264053i \(-0.914941\pi\)
−0.964508 + 0.264053i \(0.914941\pi\)
\(744\) 9.57894 0.351181
\(745\) 0 0
\(746\) 14.5685 0.533390
\(747\) 10.7881 0.394717
\(748\) 0 0
\(749\) 4.52660 0.165398
\(750\) 0 0
\(751\) 3.93922 0.143744 0.0718720 0.997414i \(-0.477103\pi\)
0.0718720 + 0.997414i \(0.477103\pi\)
\(752\) 5.41705 0.197539
\(753\) 0.127749 0.00465545
\(754\) −0.666738 −0.0242812
\(755\) 0 0
\(756\) 5.12020 0.186220
\(757\) 6.38475 0.232058 0.116029 0.993246i \(-0.462984\pi\)
0.116029 + 0.993246i \(0.462984\pi\)
\(758\) 7.09921 0.257855
\(759\) 5.37779 0.195201
\(760\) 0 0
\(761\) 19.3638 0.701938 0.350969 0.936387i \(-0.385852\pi\)
0.350969 + 0.936387i \(0.385852\pi\)
\(762\) −1.91626 −0.0694188
\(763\) −14.3061 −0.517917
\(764\) −23.9709 −0.867238
\(765\) 0 0
\(766\) 2.15563 0.0778860
\(767\) −1.92297 −0.0694346
\(768\) 7.40909 0.267353
\(769\) −5.10469 −0.184080 −0.0920398 0.995755i \(-0.529339\pi\)
−0.0920398 + 0.995755i \(0.529339\pi\)
\(770\) 0 0
\(771\) −1.94034 −0.0698795
\(772\) 2.50830 0.0902756
\(773\) 3.00249 0.107992 0.0539961 0.998541i \(-0.482804\pi\)
0.0539961 + 0.998541i \(0.482804\pi\)
\(774\) 14.4504 0.519408
\(775\) 0 0
\(776\) 18.7417 0.672788
\(777\) −2.05745 −0.0738108
\(778\) −21.4642 −0.769531
\(779\) 48.2990 1.73049
\(780\) 0 0
\(781\) −30.3643 −1.08652
\(782\) 0 0
\(783\) 7.18497 0.256770
\(784\) −3.87656 −0.138448
\(785\) 0 0
\(786\) −3.98921 −0.142291
\(787\) −2.63458 −0.0939127 −0.0469564 0.998897i \(-0.514952\pi\)
−0.0469564 + 0.998897i \(0.514952\pi\)
\(788\) −22.9804 −0.818642
\(789\) 16.3493 0.582051
\(790\) 0 0
\(791\) 19.5883 0.696481
\(792\) −18.3161 −0.650834
\(793\) 2.98961 0.106164
\(794\) −19.5733 −0.694632
\(795\) 0 0
\(796\) −34.8773 −1.23619
\(797\) −27.2441 −0.965036 −0.482518 0.875886i \(-0.660278\pi\)
−0.482518 + 0.875886i \(0.660278\pi\)
\(798\) 3.35495 0.118764
\(799\) 0 0
\(800\) 0 0
\(801\) 24.7138 0.873221
\(802\) −24.8641 −0.877982
\(803\) 37.6302 1.32794
\(804\) 6.00236 0.211687
\(805\) 0 0
\(806\) −1.91081 −0.0673055
\(807\) 0.206679 0.00727543
\(808\) −0.785979 −0.0276506
\(809\) −36.9078 −1.29761 −0.648805 0.760954i \(-0.724731\pi\)
−0.648805 + 0.760954i \(0.724731\pi\)
\(810\) 0 0
\(811\) 16.8302 0.590987 0.295494 0.955345i \(-0.404516\pi\)
0.295494 + 0.955345i \(0.404516\pi\)
\(812\) 3.80846 0.133651
\(813\) −5.78461 −0.202875
\(814\) 6.35682 0.222807
\(815\) 0 0
\(816\) 0 0
\(817\) −45.1128 −1.57830
\(818\) 0.565507 0.0197725
\(819\) −1.18256 −0.0413220
\(820\) 0 0
\(821\) −17.6162 −0.614810 −0.307405 0.951579i \(-0.599461\pi\)
−0.307405 + 0.951579i \(0.599461\pi\)
\(822\) 3.62000 0.126262
\(823\) −29.5332 −1.02946 −0.514732 0.857351i \(-0.672108\pi\)
−0.514732 + 0.857351i \(0.672108\pi\)
\(824\) 45.1994 1.57459
\(825\) 0 0
\(826\) −4.86411 −0.169244
\(827\) 29.8319 1.03736 0.518678 0.854970i \(-0.326424\pi\)
0.518678 + 0.854970i \(0.326424\pi\)
\(828\) 14.4755 0.503059
\(829\) 53.2461 1.84931 0.924657 0.380802i \(-0.124352\pi\)
0.924657 + 0.380802i \(0.124352\pi\)
\(830\) 0 0
\(831\) −16.6177 −0.576461
\(832\) −1.17628 −0.0407800
\(833\) 0 0
\(834\) 2.56486 0.0888137
\(835\) 0 0
\(836\) 23.4078 0.809576
\(837\) 20.5915 0.711745
\(838\) −11.2319 −0.388001
\(839\) −38.2607 −1.32091 −0.660453 0.750867i \(-0.729636\pi\)
−0.660453 + 0.750867i \(0.729636\pi\)
\(840\) 0 0
\(841\) −23.6557 −0.815715
\(842\) −2.30580 −0.0794632
\(843\) 14.4093 0.496282
\(844\) 11.6552 0.401190
\(845\) 0 0
\(846\) −16.5351 −0.568489
\(847\) 5.31976 0.182789
\(848\) −5.55876 −0.190889
\(849\) 10.1236 0.347439
\(850\) 0 0
\(851\) −12.2725 −0.420697
\(852\) 8.98055 0.307668
\(853\) 6.72263 0.230179 0.115089 0.993355i \(-0.463285\pi\)
0.115089 + 0.993355i \(0.463285\pi\)
\(854\) 7.56214 0.258771
\(855\) 0 0
\(856\) 10.1045 0.345365
\(857\) −32.1865 −1.09947 −0.549735 0.835339i \(-0.685271\pi\)
−0.549735 + 0.835339i \(0.685271\pi\)
\(858\) −0.401460 −0.0137056
\(859\) 46.6741 1.59250 0.796250 0.604968i \(-0.206814\pi\)
0.796250 + 0.604968i \(0.206814\pi\)
\(860\) 0 0
\(861\) 4.73167 0.161255
\(862\) −25.2086 −0.858609
\(863\) 9.97544 0.339568 0.169784 0.985481i \(-0.445693\pi\)
0.169784 + 0.985481i \(0.445693\pi\)
\(864\) 18.1803 0.618507
\(865\) 0 0
\(866\) 1.37950 0.0468772
\(867\) 0 0
\(868\) 10.9147 0.370469
\(869\) −2.07704 −0.0704587
\(870\) 0 0
\(871\) −2.92493 −0.0991074
\(872\) −31.9349 −1.08145
\(873\) 19.0951 0.646271
\(874\) 20.0120 0.676916
\(875\) 0 0
\(876\) −11.1295 −0.376032
\(877\) 1.55373 0.0524659 0.0262329 0.999656i \(-0.491649\pi\)
0.0262329 + 0.999656i \(0.491649\pi\)
\(878\) 0.432227 0.0145870
\(879\) −1.96168 −0.0661660
\(880\) 0 0
\(881\) 27.2232 0.917174 0.458587 0.888649i \(-0.348356\pi\)
0.458587 + 0.888649i \(0.348356\pi\)
\(882\) 11.8329 0.398434
\(883\) −41.7225 −1.40407 −0.702037 0.712140i \(-0.747726\pi\)
−0.702037 + 0.712140i \(0.747726\pi\)
\(884\) 0 0
\(885\) 0 0
\(886\) −1.71673 −0.0576746
\(887\) 7.64625 0.256736 0.128368 0.991727i \(-0.459026\pi\)
0.128368 + 0.991727i \(0.459026\pi\)
\(888\) −4.59275 −0.154123
\(889\) −5.33387 −0.178892
\(890\) 0 0
\(891\) −16.3857 −0.548940
\(892\) −22.9409 −0.768120
\(893\) 51.6212 1.72744
\(894\) 3.89326 0.130210
\(895\) 0 0
\(896\) 10.9287 0.365102
\(897\) 0.775063 0.0258786
\(898\) −1.69213 −0.0564672
\(899\) 15.3161 0.510822
\(900\) 0 0
\(901\) 0 0
\(902\) −14.6192 −0.486767
\(903\) −4.41953 −0.147073
\(904\) 43.7261 1.45431
\(905\) 0 0
\(906\) 5.59955 0.186033
\(907\) −43.5561 −1.44626 −0.723129 0.690713i \(-0.757297\pi\)
−0.723129 + 0.690713i \(0.757297\pi\)
\(908\) −9.86534 −0.327393
\(909\) −0.800799 −0.0265608
\(910\) 0 0
\(911\) 33.1208 1.09734 0.548671 0.836039i \(-0.315134\pi\)
0.548671 + 0.836039i \(0.315134\pi\)
\(912\) −2.49975 −0.0827751
\(913\) 10.1942 0.337378
\(914\) −7.41867 −0.245388
\(915\) 0 0
\(916\) 2.03453 0.0672226
\(917\) −11.1039 −0.366682
\(918\) 0 0
\(919\) 22.9512 0.757089 0.378545 0.925583i \(-0.376425\pi\)
0.378545 + 0.925583i \(0.376425\pi\)
\(920\) 0 0
\(921\) −18.2092 −0.600014
\(922\) 13.0563 0.429987
\(923\) −4.37619 −0.144044
\(924\) 2.29317 0.0754399
\(925\) 0 0
\(926\) 11.2616 0.370078
\(927\) 46.0516 1.51253
\(928\) 13.5227 0.443905
\(929\) −19.2701 −0.632231 −0.316115 0.948721i \(-0.602379\pi\)
−0.316115 + 0.948721i \(0.602379\pi\)
\(930\) 0 0
\(931\) −36.9412 −1.21070
\(932\) −32.1123 −1.05187
\(933\) 7.51853 0.246146
\(934\) −10.1169 −0.331036
\(935\) 0 0
\(936\) −2.63977 −0.0862836
\(937\) −23.6659 −0.773132 −0.386566 0.922262i \(-0.626339\pi\)
−0.386566 + 0.922262i \(0.626339\pi\)
\(938\) −7.39853 −0.241570
\(939\) −16.6601 −0.543681
\(940\) 0 0
\(941\) 3.14215 0.102431 0.0512156 0.998688i \(-0.483690\pi\)
0.0512156 + 0.998688i \(0.483690\pi\)
\(942\) 8.56068 0.278922
\(943\) 28.2240 0.919100
\(944\) 3.62421 0.117958
\(945\) 0 0
\(946\) 13.6548 0.443956
\(947\) 38.2986 1.24454 0.622268 0.782804i \(-0.286211\pi\)
0.622268 + 0.782804i \(0.286211\pi\)
\(948\) 0.614305 0.0199517
\(949\) 5.42338 0.176050
\(950\) 0 0
\(951\) −1.75319 −0.0568511
\(952\) 0 0
\(953\) 34.0185 1.10197 0.550984 0.834516i \(-0.314253\pi\)
0.550984 + 0.834516i \(0.314253\pi\)
\(954\) 16.9677 0.549349
\(955\) 0 0
\(956\) 8.91654 0.288381
\(957\) 3.21791 0.104020
\(958\) 4.71020 0.152180
\(959\) 10.0762 0.325377
\(960\) 0 0
\(961\) 12.8947 0.415958
\(962\) 0.916164 0.0295383
\(963\) 10.2950 0.331753
\(964\) −37.9753 −1.22310
\(965\) 0 0
\(966\) 1.96050 0.0630781
\(967\) −33.0762 −1.06366 −0.531829 0.846852i \(-0.678495\pi\)
−0.531829 + 0.846852i \(0.678495\pi\)
\(968\) 11.8750 0.381678
\(969\) 0 0
\(970\) 0 0
\(971\) 22.1601 0.711152 0.355576 0.934647i \(-0.384285\pi\)
0.355576 + 0.934647i \(0.384285\pi\)
\(972\) 17.7709 0.570000
\(973\) 7.13921 0.228873
\(974\) −25.9338 −0.830974
\(975\) 0 0
\(976\) −5.63450 −0.180356
\(977\) 15.7856 0.505025 0.252513 0.967594i \(-0.418743\pi\)
0.252513 + 0.967594i \(0.418743\pi\)
\(978\) 6.09329 0.194842
\(979\) 23.3532 0.746373
\(980\) 0 0
\(981\) −32.5370 −1.03883
\(982\) 14.7062 0.469293
\(983\) 38.7627 1.23634 0.618169 0.786045i \(-0.287875\pi\)
0.618169 + 0.786045i \(0.287875\pi\)
\(984\) 10.5623 0.336713
\(985\) 0 0
\(986\) 0 0
\(987\) 5.05713 0.160970
\(988\) 3.37360 0.107329
\(989\) −26.3621 −0.838266
\(990\) 0 0
\(991\) 31.9997 1.01650 0.508252 0.861209i \(-0.330292\pi\)
0.508252 + 0.861209i \(0.330292\pi\)
\(992\) 38.7549 1.23047
\(993\) 16.2205 0.514743
\(994\) −11.0694 −0.351102
\(995\) 0 0
\(996\) −3.01504 −0.0955351
\(997\) 13.9386 0.441440 0.220720 0.975337i \(-0.429159\pi\)
0.220720 + 0.975337i \(0.429159\pi\)
\(998\) −5.59746 −0.177184
\(999\) −9.87286 −0.312363
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 7225.2.a.z.1.5 6
5.4 even 2 1445.2.a.o.1.2 6
17.2 even 8 425.2.e.f.276.5 12
17.9 even 8 425.2.e.f.251.2 12
17.16 even 2 7225.2.a.bb.1.5 6
85.2 odd 8 425.2.j.c.174.2 12
85.4 even 4 1445.2.d.g.866.9 12
85.9 even 8 85.2.e.a.81.5 yes 12
85.19 even 8 85.2.e.a.21.2 12
85.43 odd 8 425.2.j.c.149.2 12
85.53 odd 8 425.2.j.b.174.5 12
85.64 even 4 1445.2.d.g.866.10 12
85.77 odd 8 425.2.j.b.149.5 12
85.84 even 2 1445.2.a.n.1.2 6
255.104 odd 8 765.2.k.b.361.5 12
255.179 odd 8 765.2.k.b.676.2 12
340.19 odd 8 1360.2.bt.d.1041.2 12
340.179 odd 8 1360.2.bt.d.81.2 12
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
85.2.e.a.21.2 12 85.19 even 8
85.2.e.a.81.5 yes 12 85.9 even 8
425.2.e.f.251.2 12 17.9 even 8
425.2.e.f.276.5 12 17.2 even 8
425.2.j.b.149.5 12 85.77 odd 8
425.2.j.b.174.5 12 85.53 odd 8
425.2.j.c.149.2 12 85.43 odd 8
425.2.j.c.174.2 12 85.2 odd 8
765.2.k.b.361.5 12 255.104 odd 8
765.2.k.b.676.2 12 255.179 odd 8
1360.2.bt.d.81.2 12 340.179 odd 8
1360.2.bt.d.1041.2 12 340.19 odd 8
1445.2.a.n.1.2 6 85.84 even 2
1445.2.a.o.1.2 6 5.4 even 2
1445.2.d.g.866.9 12 85.4 even 4
1445.2.d.g.866.10 12 85.64 even 4
7225.2.a.z.1.5 6 1.1 even 1 trivial
7225.2.a.bb.1.5 6 17.16 even 2