Properties

Label 725.2.a.k
Level 725725
Weight 22
Character orbit 725.a
Self dual yes
Analytic conductor 5.7895.789
Analytic rank 00
Dimension 55
CM no
Inner twists 11

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [725,2,Mod(1,725)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(725, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("725.1");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: N N == 725=5229 725 = 5^{2} \cdot 29
Weight: k k == 2 2
Character orbit: [χ][\chi] == 725.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: 5.789154146545.78915414654
Analytic rank: 00
Dimension: 55
Coefficient field: 5.5.240881.1
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: x52x45x3+9x2+5x7 x^{5} - 2x^{4} - 5x^{3} + 9x^{2} + 5x - 7 Copy content Toggle raw display
Coefficient ring: Z[a1,a2]\Z[a_1, a_2]
Coefficient ring index: 1 1
Twist minimal: yes
Fricke sign: 1-1
Sato-Tate group: SU(2)\mathrm{SU}(2)

qq-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 

Coefficients of the qq-expansion are expressed in terms of a basis 1,β1,β2,β3,β41,\beta_1,\beta_2,\beta_3,\beta_4 for the coefficient ring described below. We also show the integral qq-expansion of the trace form.

f(q)f(q) == q+β1q2+(β4+1)q3+(β2+1)q4+(β4β3+2β11)q6+(β3+β1+1)q7+(β3+β2β1+1)q8++(4β4+6β3β2+1)q99+O(q100) q + \beta_1 q^{2} + ( - \beta_{4} + 1) q^{3} + (\beta_{2} + 1) q^{4} + ( - \beta_{4} - \beta_{3} + 2 \beta_1 - 1) q^{6} + ( - \beta_{3} + \beta_1 + 1) q^{7} + (\beta_{3} + \beta_{2} - \beta_1 + 1) q^{8}+ \cdots + (4 \beta_{4} + 6 \beta_{3} - \beta_{2} + \cdots - 1) q^{99}+O(q^{100}) Copy content Toggle raw display
Tr(f)(q)\operatorname{Tr}(f)(q) == 5q+2q2+6q3+4q4q6+6q7+3q8+11q92q11+6q12+4q13+11q1410q16+9q17+2q19q21+4q22+q23+13q2416q26+26q99+O(q100) 5 q + 2 q^{2} + 6 q^{3} + 4 q^{4} - q^{6} + 6 q^{7} + 3 q^{8} + 11 q^{9} - 2 q^{11} + 6 q^{12} + 4 q^{13} + 11 q^{14} - 10 q^{16} + 9 q^{17} + 2 q^{19} - q^{21} + 4 q^{22} + q^{23} + 13 q^{24} - 16 q^{26}+ \cdots - 26 q^{99}+O(q^{100}) Copy content Toggle raw display

Basis of coefficient ring in terms of a root ν\nu of x52x45x3+9x2+5x7 x^{5} - 2x^{4} - 5x^{3} + 9x^{2} + 5x - 7 : Copy content Toggle raw display

β1\beta_{1}== ν \nu Copy content Toggle raw display
β2\beta_{2}== ν23 \nu^{2} - 3 Copy content Toggle raw display
β3\beta_{3}== ν3ν23ν+2 \nu^{3} - \nu^{2} - 3\nu + 2 Copy content Toggle raw display
β4\beta_{4}== ν4ν35ν2+3ν+4 \nu^{4} - \nu^{3} - 5\nu^{2} + 3\nu + 4 Copy content Toggle raw display
ν\nu== β1 \beta_1 Copy content Toggle raw display
ν2\nu^{2}== β2+3 \beta_{2} + 3 Copy content Toggle raw display
ν3\nu^{3}== β3+β2+3β1+1 \beta_{3} + \beta_{2} + 3\beta _1 + 1 Copy content Toggle raw display
ν4\nu^{4}== β4+β3+6β2+12 \beta_{4} + \beta_{3} + 6\beta_{2} + 12 Copy content Toggle raw display

Embeddings

For each embedding ιm\iota_m of the coefficient field, the values ιm(an)\iota_m(a_n) are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field
 
gp: mfembed(f)
 
Label   ιm(ν)\iota_m(\nu) a2 a_{2} a3 a_{3} a4 a_{4} a5 a_{5} a6 a_{6} a7 a_{7} a8 a_{8} a9 a_{9} a10 a_{10}
1.1
−1.88481
−1.06634
0.838718
1.78154
2.33090
−1.88481 1.10085 1.55251 0 −2.07489 1.70908 0.843434 −1.78814 0
1.2 −1.06634 3.37897 −0.862915 0 −3.60314 −2.91576 3.05285 8.41742 0
1.3 0.838718 −1.90376 −1.29655 0 −1.59672 2.46832 −2.76488 0.624302 0
1.4 1.78154 3.10566 1.17387 0 5.53284 3.64565 −1.47177 6.64510 0
1.5 2.33090 0.318289 3.43308 0 0.741899 1.09271 3.34037 −2.89869 0
nn: e.g. 2-40 or 990-1000
Embeddings: e.g. 1-3 or 1.5
Significant digits:
Format:

Atkin-Lehner signs

p p Sign
55 +1 +1
2929 1 -1

Inner twists

This newform does not admit any (nontrivial) inner twists.

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 725.2.a.k yes 5
3.b odd 2 1 6525.2.a.bm 5
5.b even 2 1 725.2.a.h 5
5.c odd 4 2 725.2.b.f 10
15.d odd 2 1 6525.2.a.bq 5
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
725.2.a.h 5 5.b even 2 1
725.2.a.k yes 5 1.a even 1 1 trivial
725.2.b.f 10 5.c odd 4 2
6525.2.a.bm 5 3.b odd 2 1
6525.2.a.bq 5 15.d odd 2 1

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on S2new(Γ0(725))S_{2}^{\mathrm{new}}(\Gamma_0(725)):

T252T245T23+9T22+5T27 T_{2}^{5} - 2T_{2}^{4} - 5T_{2}^{3} + 9T_{2}^{2} + 5T_{2} - 7 Copy content Toggle raw display
T356T34+5T33+21T3229T3+7 T_{3}^{5} - 6T_{3}^{4} + 5T_{3}^{3} + 21T_{3}^{2} - 29T_{3} + 7 Copy content Toggle raw display

Hecke characteristic polynomials

pp Fp(T)F_p(T)
22 T52T4+7 T^{5} - 2 T^{4} + \cdots - 7 Copy content Toggle raw display
33 T56T4++7 T^{5} - 6 T^{4} + \cdots + 7 Copy content Toggle raw display
55 T5 T^{5} Copy content Toggle raw display
77 T56T4++49 T^{5} - 6 T^{4} + \cdots + 49 Copy content Toggle raw display
1111 T5+2T4++307 T^{5} + 2 T^{4} + \cdots + 307 Copy content Toggle raw display
1313 T54T4+1 T^{5} - 4 T^{4} + \cdots - 1 Copy content Toggle raw display
1717 T59T4+439 T^{5} - 9 T^{4} + \cdots - 439 Copy content Toggle raw display
1919 T52T4++5 T^{5} - 2 T^{4} + \cdots + 5 Copy content Toggle raw display
2323 T5T4+581 T^{5} - T^{4} + \cdots - 581 Copy content Toggle raw display
2929 (T1)5 (T - 1)^{5} Copy content Toggle raw display
3131 T5+T4+73 T^{5} + T^{4} + \cdots - 73 Copy content Toggle raw display
3737 T514T4+63 T^{5} - 14 T^{4} + \cdots - 63 Copy content Toggle raw display
4141 T55T4++9 T^{5} - 5 T^{4} + \cdots + 9 Copy content Toggle raw display
4343 T528T4++22833 T^{5} - 28 T^{4} + \cdots + 22833 Copy content Toggle raw display
4747 T515T4++2263 T^{5} - 15 T^{4} + \cdots + 2263 Copy content Toggle raw display
5353 T5+8T4++863 T^{5} + 8 T^{4} + \cdots + 863 Copy content Toggle raw display
5959 T5+11T4++2205 T^{5} + 11 T^{4} + \cdots + 2205 Copy content Toggle raw display
6161 T5+5T4+16381 T^{5} + 5 T^{4} + \cdots - 16381 Copy content Toggle raw display
6767 T523T4+353 T^{5} - 23 T^{4} + \cdots - 353 Copy content Toggle raw display
7171 T5+5T4++2837 T^{5} + 5 T^{4} + \cdots + 2837 Copy content Toggle raw display
7373 T516T4++9 T^{5} - 16 T^{4} + \cdots + 9 Copy content Toggle raw display
7979 T5+10T4++10035 T^{5} + 10 T^{4} + \cdots + 10035 Copy content Toggle raw display
8383 T59T4+18113 T^{5} - 9 T^{4} + \cdots - 18113 Copy content Toggle raw display
8989 T5+18T4+25 T^{5} + 18 T^{4} + \cdots - 25 Copy content Toggle raw display
9797 T523T4+196403 T^{5} - 23 T^{4} + \cdots - 196403 Copy content Toggle raw display
show more
show less