Properties

Label 725.2.a.k
Level $725$
Weight $2$
Character orbit 725.a
Self dual yes
Analytic conductor $5.789$
Analytic rank $0$
Dimension $5$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [725,2,Mod(1,725)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(725, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("725.1");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 725 = 5^{2} \cdot 29 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 725.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(5.78915414654\)
Analytic rank: \(0\)
Dimension: \(5\)
Coefficient field: 5.5.240881.1
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{5} - 2x^{4} - 5x^{3} + 9x^{2} + 5x - 7 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2]\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 

Coefficients of the \(q\)-expansion are expressed in terms of a basis \(1,\beta_1,\beta_2,\beta_3,\beta_4\) for the coefficient ring described below. We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q + \beta_1 q^{2} + ( - \beta_{4} + 1) q^{3} + (\beta_{2} + 1) q^{4} + ( - \beta_{4} - \beta_{3} + 2 \beta_1 - 1) q^{6} + ( - \beta_{3} + \beta_1 + 1) q^{7} + (\beta_{3} + \beta_{2} - \beta_1 + 1) q^{8}+ \cdots + (4 \beta_{4} + 6 \beta_{3} - \beta_{2} + \cdots - 1) q^{99}+O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 5 q + 2 q^{2} + 6 q^{3} + 4 q^{4} - q^{6} + 6 q^{7} + 3 q^{8} + 11 q^{9} - 2 q^{11} + 6 q^{12} + 4 q^{13} + 11 q^{14} - 10 q^{16} + 9 q^{17} + 2 q^{19} - q^{21} + 4 q^{22} + q^{23} + 13 q^{24} - 16 q^{26}+ \cdots - 26 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Basis of coefficient ring in terms of a root \(\nu\) of \( x^{5} - 2x^{4} - 5x^{3} + 9x^{2} + 5x - 7 \) : Copy content Toggle raw display

\(\beta_{1}\)\(=\) \( \nu \) Copy content Toggle raw display
\(\beta_{2}\)\(=\) \( \nu^{2} - 3 \) Copy content Toggle raw display
\(\beta_{3}\)\(=\) \( \nu^{3} - \nu^{2} - 3\nu + 2 \) Copy content Toggle raw display
\(\beta_{4}\)\(=\) \( \nu^{4} - \nu^{3} - 5\nu^{2} + 3\nu + 4 \) Copy content Toggle raw display
\(\nu\)\(=\) \( \beta_1 \) Copy content Toggle raw display
\(\nu^{2}\)\(=\) \( \beta_{2} + 3 \) Copy content Toggle raw display
\(\nu^{3}\)\(=\) \( \beta_{3} + \beta_{2} + 3\beta _1 + 1 \) Copy content Toggle raw display
\(\nu^{4}\)\(=\) \( \beta_{4} + \beta_{3} + 6\beta_{2} + 12 \) Copy content Toggle raw display

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field
 
gp: mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
1.1
−1.88481
−1.06634
0.838718
1.78154
2.33090
−1.88481 1.10085 1.55251 0 −2.07489 1.70908 0.843434 −1.78814 0
1.2 −1.06634 3.37897 −0.862915 0 −3.60314 −2.91576 3.05285 8.41742 0
1.3 0.838718 −1.90376 −1.29655 0 −1.59672 2.46832 −2.76488 0.624302 0
1.4 1.78154 3.10566 1.17387 0 5.53284 3.64565 −1.47177 6.64510 0
1.5 2.33090 0.318289 3.43308 0 0.741899 1.09271 3.34037 −2.89869 0
\(n\): e.g. 2-40 or 990-1000
Embeddings: e.g. 1-3 or 1.5
Significant digits:
Format:

Atkin-Lehner signs

\( p \) Sign
\(5\) \( +1 \)
\(29\) \( -1 \)

Inner twists

This newform does not admit any (nontrivial) inner twists.

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 725.2.a.k yes 5
3.b odd 2 1 6525.2.a.bm 5
5.b even 2 1 725.2.a.h 5
5.c odd 4 2 725.2.b.f 10
15.d odd 2 1 6525.2.a.bq 5
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
725.2.a.h 5 5.b even 2 1
725.2.a.k yes 5 1.a even 1 1 trivial
725.2.b.f 10 5.c odd 4 2
6525.2.a.bm 5 3.b odd 2 1
6525.2.a.bq 5 15.d odd 2 1

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on \(S_{2}^{\mathrm{new}}(\Gamma_0(725))\):

\( T_{2}^{5} - 2T_{2}^{4} - 5T_{2}^{3} + 9T_{2}^{2} + 5T_{2} - 7 \) Copy content Toggle raw display
\( T_{3}^{5} - 6T_{3}^{4} + 5T_{3}^{3} + 21T_{3}^{2} - 29T_{3} + 7 \) Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( T^{5} - 2 T^{4} + \cdots - 7 \) Copy content Toggle raw display
$3$ \( T^{5} - 6 T^{4} + \cdots + 7 \) Copy content Toggle raw display
$5$ \( T^{5} \) Copy content Toggle raw display
$7$ \( T^{5} - 6 T^{4} + \cdots + 49 \) Copy content Toggle raw display
$11$ \( T^{5} + 2 T^{4} + \cdots + 307 \) Copy content Toggle raw display
$13$ \( T^{5} - 4 T^{4} + \cdots - 1 \) Copy content Toggle raw display
$17$ \( T^{5} - 9 T^{4} + \cdots - 439 \) Copy content Toggle raw display
$19$ \( T^{5} - 2 T^{4} + \cdots + 5 \) Copy content Toggle raw display
$23$ \( T^{5} - T^{4} + \cdots - 581 \) Copy content Toggle raw display
$29$ \( (T - 1)^{5} \) Copy content Toggle raw display
$31$ \( T^{5} + T^{4} + \cdots - 73 \) Copy content Toggle raw display
$37$ \( T^{5} - 14 T^{4} + \cdots - 63 \) Copy content Toggle raw display
$41$ \( T^{5} - 5 T^{4} + \cdots + 9 \) Copy content Toggle raw display
$43$ \( T^{5} - 28 T^{4} + \cdots + 22833 \) Copy content Toggle raw display
$47$ \( T^{5} - 15 T^{4} + \cdots + 2263 \) Copy content Toggle raw display
$53$ \( T^{5} + 8 T^{4} + \cdots + 863 \) Copy content Toggle raw display
$59$ \( T^{5} + 11 T^{4} + \cdots + 2205 \) Copy content Toggle raw display
$61$ \( T^{5} + 5 T^{4} + \cdots - 16381 \) Copy content Toggle raw display
$67$ \( T^{5} - 23 T^{4} + \cdots - 353 \) Copy content Toggle raw display
$71$ \( T^{5} + 5 T^{4} + \cdots + 2837 \) Copy content Toggle raw display
$73$ \( T^{5} - 16 T^{4} + \cdots + 9 \) Copy content Toggle raw display
$79$ \( T^{5} + 10 T^{4} + \cdots + 10035 \) Copy content Toggle raw display
$83$ \( T^{5} - 9 T^{4} + \cdots - 18113 \) Copy content Toggle raw display
$89$ \( T^{5} + 18 T^{4} + \cdots - 25 \) Copy content Toggle raw display
$97$ \( T^{5} - 23 T^{4} + \cdots - 196403 \) Copy content Toggle raw display
show more
show less