Properties

Label 725.2.bd.a.543.2
Level $725$
Weight $2$
Character 725.543
Analytic conductor $5.789$
Analytic rank $0$
Dimension $120$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [725,2,Mod(43,725)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(725, base_ring=CyclotomicField(28))
 
chi = DirichletCharacter(H, H._module([21, 13]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("725.43");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 725 = 5^{2} \cdot 29 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 725.bd (of order \(28\), degree \(12\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(5.78915414654\)
Analytic rank: \(0\)
Dimension: \(120\)
Relative dimension: \(10\) over \(\Q(\zeta_{28})\)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{28}]$

Embedding invariants

Embedding label 543.2
Character \(\chi\) \(=\) 725.543
Dual form 725.2.bd.a.482.2

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-0.778326 - 1.61621i) q^{2} +(-0.539890 - 0.677001i) q^{3} +(-0.759368 + 0.952217i) q^{4} +(-0.673965 + 1.39950i) q^{6} +(-0.0496935 - 0.00559911i) q^{7} +(-1.36775 - 0.312179i) q^{8} +(0.500714 - 2.19377i) q^{9} +(1.35429 + 0.850959i) q^{11} +1.05463 q^{12} +(-3.21958 - 2.02300i) q^{13} +(0.0296284 + 0.0846731i) q^{14} +(1.10204 + 4.82834i) q^{16} -3.45060i q^{17} +(-3.93532 + 0.898211i) q^{18} +(-2.86087 + 0.322342i) q^{19} +(0.0230384 + 0.0366654i) q^{21} +(0.321247 - 2.85115i) q^{22} +(-0.177124 - 0.506191i) q^{23} +(0.527087 + 1.09451i) q^{24} +(-0.763706 + 6.77808i) q^{26} +(-4.09601 + 1.97253i) q^{27} +(0.0430672 - 0.0430672i) q^{28} +(-5.37491 - 0.332224i) q^{29} +(-0.572869 + 1.63716i) q^{31} +(4.75217 - 3.78973i) q^{32} +(-0.155070 - 1.37628i) q^{33} +(-5.57689 + 2.68569i) q^{34} +(1.70872 + 2.14267i) q^{36} +(-1.35942 + 5.95603i) q^{37} +(2.74766 + 4.37288i) q^{38} +(0.368650 + 3.27185i) q^{39} +(-1.91127 - 1.91127i) q^{41} +(0.0413277 - 0.0657726i) q^{42} +(-2.29605 - 1.10572i) q^{43} +(-1.83870 + 0.643391i) q^{44} +(-0.680251 + 0.680251i) q^{46} +(0.820205 + 3.59355i) q^{47} +(2.67381 - 3.35285i) q^{48} +(-6.82206 - 1.55709i) q^{49} +(-2.33605 + 1.86294i) q^{51} +(4.37118 - 1.52954i) q^{52} +(3.19279 + 1.11721i) q^{53} +(6.37606 + 5.08474i) q^{54} +(0.0662202 + 0.0231715i) q^{56} +(1.76278 + 1.76278i) q^{57} +(3.64649 + 8.94556i) q^{58} -4.31330i q^{59} +(7.71955 + 0.869785i) q^{61} +(3.09188 - 0.348372i) q^{62} +(-0.0371654 + 0.106213i) q^{63} +(-0.899637 - 0.433242i) q^{64} +(-2.10367 + 1.32182i) q^{66} +(-7.23181 + 4.54405i) q^{67} +(3.28571 + 2.62027i) q^{68} +(-0.247064 + 0.393200i) q^{69} +(8.28838 - 1.89177i) q^{71} +(-1.36970 + 2.84421i) q^{72} +(0.955706 - 1.98454i) q^{73} +(10.6843 - 2.43862i) q^{74} +(1.86551 - 2.96894i) q^{76} +(-0.0625350 - 0.0498700i) q^{77} +(5.00108 - 3.14239i) q^{78} +(-1.97211 + 1.23916i) q^{79} +(-2.53525 - 1.22091i) q^{81} +(-1.60143 + 4.57661i) q^{82} +(11.3425 - 1.27799i) q^{83} +(-0.0524080 - 0.00590497i) q^{84} +4.57151i q^{86} +(2.67694 + 3.81818i) q^{87} +(-1.58668 - 1.58668i) q^{88} +(2.11636 + 0.740547i) q^{89} +(0.148665 + 0.118557i) q^{91} +(0.616506 + 0.215725i) q^{92} +(1.41765 - 0.496056i) q^{93} +(5.16955 - 4.12258i) q^{94} +(-5.13130 - 1.17119i) q^{96} +(-6.48824 + 8.13599i) q^{97} +(2.79320 + 12.2378i) q^{98} +(2.54493 - 2.54493i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 120 q + 20 q^{4} - 28 q^{9} - 12 q^{11} + 20 q^{16} - 4 q^{19} + 4 q^{21} - 12 q^{29} - 32 q^{31} + 40 q^{34} - 16 q^{36} + 184 q^{39} - 4 q^{41} - 36 q^{44} + 76 q^{46} + 84 q^{49} + 112 q^{51} - 168 q^{54}+ \cdots + 208 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/725\mathbb{Z}\right)^\times\).

\(n\) \(176\) \(552\)
\(\chi(n)\) \(e\left(\frac{17}{28}\right)\) \(e\left(\frac{3}{4}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −0.778326 1.61621i −0.550360 1.14283i −0.971763 0.235960i \(-0.924176\pi\)
0.421403 0.906874i \(-0.361538\pi\)
\(3\) −0.539890 0.677001i −0.311706 0.390866i 0.601159 0.799130i \(-0.294706\pi\)
−0.912864 + 0.408263i \(0.866135\pi\)
\(4\) −0.759368 + 0.952217i −0.379684 + 0.476108i
\(5\) 0 0
\(6\) −0.673965 + 1.39950i −0.275145 + 0.571345i
\(7\) −0.0496935 0.00559911i −0.0187824 0.00211626i 0.102568 0.994726i \(-0.467294\pi\)
−0.121351 + 0.992610i \(0.538723\pi\)
\(8\) −1.36775 0.312179i −0.483572 0.110372i
\(9\) 0.500714 2.19377i 0.166905 0.731257i
\(10\) 0 0
\(11\) 1.35429 + 0.850959i 0.408335 + 0.256574i 0.720501 0.693454i \(-0.243912\pi\)
−0.312166 + 0.950027i \(0.601055\pi\)
\(12\) 1.05463 0.304444
\(13\) −3.21958 2.02300i −0.892951 0.561079i 0.00558163 0.999984i \(-0.498223\pi\)
−0.898533 + 0.438906i \(0.855366\pi\)
\(14\) 0.0296284 + 0.0846731i 0.00791852 + 0.0226298i
\(15\) 0 0
\(16\) 1.10204 + 4.82834i 0.275509 + 1.20708i
\(17\) 3.45060i 0.836892i −0.908242 0.418446i \(-0.862575\pi\)
0.908242 0.418446i \(-0.137425\pi\)
\(18\) −3.93532 + 0.898211i −0.927563 + 0.211710i
\(19\) −2.86087 + 0.322342i −0.656328 + 0.0739504i −0.433847 0.900987i \(-0.642844\pi\)
−0.222481 + 0.974937i \(0.571416\pi\)
\(20\) 0 0
\(21\) 0.0230384 + 0.0366654i 0.00502739 + 0.00800105i
\(22\) 0.321247 2.85115i 0.0684902 0.607867i
\(23\) −0.177124 0.506191i −0.0369329 0.105548i 0.923940 0.382536i \(-0.124949\pi\)
−0.960873 + 0.276988i \(0.910664\pi\)
\(24\) 0.527087 + 1.09451i 0.107591 + 0.223416i
\(25\) 0 0
\(26\) −0.763706 + 6.77808i −0.149775 + 1.32929i
\(27\) −4.09601 + 1.97253i −0.788277 + 0.379614i
\(28\) 0.0430672 0.0430672i 0.00813893 0.00813893i
\(29\) −5.37491 0.332224i −0.998095 0.0616925i
\(30\) 0 0
\(31\) −0.572869 + 1.63716i −0.102890 + 0.294043i −0.983808 0.179226i \(-0.942641\pi\)
0.880918 + 0.473270i \(0.156926\pi\)
\(32\) 4.75217 3.78973i 0.840073 0.669936i
\(33\) −0.155070 1.37628i −0.0269942 0.239580i
\(34\) −5.57689 + 2.68569i −0.956429 + 0.460592i
\(35\) 0 0
\(36\) 1.70872 + 2.14267i 0.284787 + 0.357111i
\(37\) −1.35942 + 5.95603i −0.223488 + 0.979165i 0.731342 + 0.682011i \(0.238894\pi\)
−0.954830 + 0.297154i \(0.903963\pi\)
\(38\) 2.74766 + 4.37288i 0.445729 + 0.709374i
\(39\) 0.368650 + 3.27185i 0.0590312 + 0.523916i
\(40\) 0 0
\(41\) −1.91127 1.91127i −0.298490 0.298490i 0.541932 0.840422i \(-0.317693\pi\)
−0.840422 + 0.541932i \(0.817693\pi\)
\(42\) 0.0413277 0.0657726i 0.00637700 0.0101489i
\(43\) −2.29605 1.10572i −0.350144 0.168621i 0.250541 0.968106i \(-0.419391\pi\)
−0.600686 + 0.799485i \(0.705106\pi\)
\(44\) −1.83870 + 0.643391i −0.277195 + 0.0969948i
\(45\) 0 0
\(46\) −0.680251 + 0.680251i −0.100298 + 0.100298i
\(47\) 0.820205 + 3.59355i 0.119639 + 0.524173i 0.998859 + 0.0477571i \(0.0152073\pi\)
−0.879220 + 0.476416i \(0.841936\pi\)
\(48\) 2.67381 3.35285i 0.385931 0.483942i
\(49\) −6.82206 1.55709i −0.974580 0.222441i
\(50\) 0 0
\(51\) −2.33605 + 1.86294i −0.327113 + 0.260864i
\(52\) 4.37118 1.52954i 0.606173 0.212109i
\(53\) 3.19279 + 1.11721i 0.438563 + 0.153460i 0.540524 0.841328i \(-0.318226\pi\)
−0.101961 + 0.994788i \(0.532512\pi\)
\(54\) 6.37606 + 5.08474i 0.867672 + 0.691945i
\(55\) 0 0
\(56\) 0.0662202 + 0.0231715i 0.00884905 + 0.00309642i
\(57\) 1.76278 + 1.76278i 0.233486 + 0.233486i
\(58\) 3.64649 + 8.94556i 0.478807 + 1.17461i
\(59\) 4.31330i 0.561544i −0.959774 0.280772i \(-0.909410\pi\)
0.959774 0.280772i \(-0.0905905\pi\)
\(60\) 0 0
\(61\) 7.71955 + 0.869785i 0.988387 + 0.111365i 0.591330 0.806429i \(-0.298603\pi\)
0.397057 + 0.917794i \(0.370031\pi\)
\(62\) 3.09188 0.348372i 0.392670 0.0442432i
\(63\) −0.0371654 + 0.106213i −0.00468240 + 0.0133815i
\(64\) −0.899637 0.433242i −0.112455 0.0541553i
\(65\) 0 0
\(66\) −2.10367 + 1.32182i −0.258944 + 0.162705i
\(67\) −7.23181 + 4.54405i −0.883506 + 0.555144i −0.895639 0.444783i \(-0.853281\pi\)
0.0121324 + 0.999926i \(0.496138\pi\)
\(68\) 3.28571 + 2.62027i 0.398451 + 0.317754i
\(69\) −0.247064 + 0.393200i −0.0297430 + 0.0473358i
\(70\) 0 0
\(71\) 8.28838 1.89177i 0.983650 0.224512i 0.299694 0.954035i \(-0.403115\pi\)
0.683956 + 0.729524i \(0.260258\pi\)
\(72\) −1.36970 + 2.84421i −0.161421 + 0.335194i
\(73\) 0.955706 1.98454i 0.111857 0.232273i −0.837524 0.546401i \(-0.815998\pi\)
0.949381 + 0.314127i \(0.101712\pi\)
\(74\) 10.6843 2.43862i 1.24202 0.283483i
\(75\) 0 0
\(76\) 1.86551 2.96894i 0.213989 0.340561i
\(77\) −0.0625350 0.0498700i −0.00712652 0.00568321i
\(78\) 5.00108 3.14239i 0.566261 0.355805i
\(79\) −1.97211 + 1.23916i −0.221880 + 0.139416i −0.638386 0.769717i \(-0.720397\pi\)
0.416506 + 0.909133i \(0.363255\pi\)
\(80\) 0 0
\(81\) −2.53525 1.22091i −0.281695 0.135657i
\(82\) −1.60143 + 4.57661i −0.176848 + 0.505402i
\(83\) 11.3425 1.27799i 1.24500 0.140278i 0.535226 0.844709i \(-0.320227\pi\)
0.709772 + 0.704432i \(0.248798\pi\)
\(84\) −0.0524080 0.00590497i −0.00571819 0.000644285i
\(85\) 0 0
\(86\) 4.57151i 0.492959i
\(87\) 2.67694 + 3.81818i 0.286998 + 0.409352i
\(88\) −1.58668 1.58668i −0.169141 0.169141i
\(89\) 2.11636 + 0.740547i 0.224334 + 0.0784978i 0.440106 0.897946i \(-0.354941\pi\)
−0.215772 + 0.976444i \(0.569227\pi\)
\(90\) 0 0
\(91\) 0.148665 + 0.118557i 0.0155844 + 0.0124281i
\(92\) 0.616506 + 0.215725i 0.0642752 + 0.0224909i
\(93\) 1.41765 0.496056i 0.147003 0.0514386i
\(94\) 5.16955 4.12258i 0.533199 0.425212i
\(95\) 0 0
\(96\) −5.13130 1.17119i −0.523711 0.119534i
\(97\) −6.48824 + 8.13599i −0.658781 + 0.826085i −0.993210 0.116336i \(-0.962885\pi\)
0.334429 + 0.942421i \(0.391456\pi\)
\(98\) 2.79320 + 12.2378i 0.282156 + 1.23621i
\(99\) 2.54493 2.54493i 0.255775 0.255775i
\(100\) 0 0
\(101\) −10.7478 + 3.76081i −1.06944 + 0.374215i −0.806890 0.590702i \(-0.798851\pi\)
−0.262555 + 0.964917i \(0.584565\pi\)
\(102\) 4.82912 + 2.32558i 0.478154 + 0.230267i
\(103\) 0.363416 0.578374i 0.0358085 0.0569889i −0.828340 0.560225i \(-0.810715\pi\)
0.864149 + 0.503236i \(0.167857\pi\)
\(104\) 3.77204 + 3.77204i 0.369879 + 0.369879i
\(105\) 0 0
\(106\) −0.679392 6.02977i −0.0659884 0.585663i
\(107\) −7.04093 11.2056i −0.680673 1.08328i −0.991156 0.132706i \(-0.957634\pi\)
0.310483 0.950579i \(-0.399509\pi\)
\(108\) 1.23210 5.39816i 0.118558 0.519438i
\(109\) −10.9158 13.6879i −1.04554 1.31107i −0.948842 0.315752i \(-0.897743\pi\)
−0.0966979 0.995314i \(-0.530828\pi\)
\(110\) 0 0
\(111\) 4.76617 2.29527i 0.452385 0.217857i
\(112\) −0.0277296 0.246107i −0.00262020 0.0232549i
\(113\) 2.07410 1.65404i 0.195114 0.155599i −0.521060 0.853520i \(-0.674463\pi\)
0.716174 + 0.697922i \(0.245892\pi\)
\(114\) 1.47701 4.22104i 0.138334 0.395337i
\(115\) 0 0
\(116\) 4.39788 4.86580i 0.408333 0.451778i
\(117\) −6.05009 + 6.05009i −0.559331 + 0.559331i
\(118\) −6.97121 + 3.35716i −0.641752 + 0.309051i
\(119\) −0.0193203 + 0.171472i −0.00177109 + 0.0157188i
\(120\) 0 0
\(121\) −3.66274 7.60576i −0.332976 0.691433i
\(122\) −4.60258 13.1534i −0.416698 1.19085i
\(123\) −0.262056 + 2.32581i −0.0236288 + 0.209711i
\(124\) −1.12392 1.78870i −0.100931 0.160630i
\(125\) 0 0
\(126\) 0.200589 0.0226009i 0.0178699 0.00201345i
\(127\) 11.6454 2.65798i 1.03336 0.235857i 0.327977 0.944686i \(-0.393633\pi\)
0.705381 + 0.708828i \(0.250776\pi\)
\(128\) 10.3653i 0.916172i
\(129\) 0.491041 + 2.15139i 0.0432338 + 0.189420i
\(130\) 0 0
\(131\) −5.93311 16.9558i −0.518378 1.48144i −0.844211 0.536011i \(-0.819930\pi\)
0.325833 0.945427i \(-0.394355\pi\)
\(132\) 1.42827 + 0.897444i 0.124315 + 0.0781125i
\(133\) 0.143971 0.0124839
\(134\) 12.9728 + 8.15138i 1.12068 + 0.704172i
\(135\) 0 0
\(136\) −1.07721 + 4.71954i −0.0923696 + 0.404698i
\(137\) 8.91949 + 2.03582i 0.762044 + 0.173932i 0.585845 0.810423i \(-0.300763\pi\)
0.176199 + 0.984355i \(0.443620\pi\)
\(138\) 0.827791 + 0.0932697i 0.0704663 + 0.00793964i
\(139\) −8.09430 + 16.8080i −0.686550 + 1.42564i 0.207756 + 0.978181i \(0.433384\pi\)
−0.894306 + 0.447455i \(0.852330\pi\)
\(140\) 0 0
\(141\) 1.99002 2.49540i 0.167590 0.210151i
\(142\) −9.50856 11.9234i −0.797941 1.00059i
\(143\) −2.63877 5.47947i −0.220665 0.458216i
\(144\) 11.1441 0.928673
\(145\) 0 0
\(146\) −3.95129 −0.327011
\(147\) 2.62901 + 5.45919i 0.216837 + 0.450267i
\(148\) −4.63913 5.81728i −0.381334 0.478177i
\(149\) 7.09534 8.89728i 0.581273 0.728893i −0.401056 0.916053i \(-0.631357\pi\)
0.982329 + 0.187160i \(0.0599283\pi\)
\(150\) 0 0
\(151\) 7.35606 15.2750i 0.598627 1.24306i −0.352947 0.935643i \(-0.614820\pi\)
0.951574 0.307419i \(-0.0994654\pi\)
\(152\) 4.01357 + 0.452221i 0.325544 + 0.0366800i
\(153\) −7.56982 1.72776i −0.611984 0.139681i
\(154\) −0.0319278 + 0.139885i −0.00257282 + 0.0112722i
\(155\) 0 0
\(156\) −3.39546 2.13351i −0.271854 0.170817i
\(157\) −21.8717 −1.74555 −0.872776 0.488120i \(-0.837683\pi\)
−0.872776 + 0.488120i \(0.837683\pi\)
\(158\) 3.53769 + 2.22288i 0.281444 + 0.176843i
\(159\) −0.967406 2.76469i −0.0767203 0.219254i
\(160\) 0 0
\(161\) 0.00596768 + 0.0261461i 0.000470319 + 0.00206060i
\(162\) 5.04777i 0.396591i
\(163\) −11.5587 + 2.63820i −0.905347 + 0.206640i −0.649754 0.760145i \(-0.725128\pi\)
−0.255593 + 0.966784i \(0.582271\pi\)
\(164\) 3.27130 0.368587i 0.255446 0.0287818i
\(165\) 0 0
\(166\) −10.8936 17.3371i −0.845510 1.34562i
\(167\) 2.75695 24.4686i 0.213339 1.89344i −0.195302 0.980743i \(-0.562569\pi\)
0.408641 0.912695i \(-0.366003\pi\)
\(168\) −0.0200645 0.0573412i −0.00154801 0.00442397i
\(169\) 0.632702 + 1.31382i 0.0486694 + 0.101063i
\(170\) 0 0
\(171\) −0.725331 + 6.43749i −0.0554674 + 0.492287i
\(172\) 2.79643 1.34669i 0.213226 0.102684i
\(173\) −8.89672 + 8.89672i −0.676405 + 0.676405i −0.959185 0.282780i \(-0.908744\pi\)
0.282780 + 0.959185i \(0.408744\pi\)
\(174\) 4.08745 7.29829i 0.309869 0.553282i
\(175\) 0 0
\(176\) −2.61624 + 7.47678i −0.197206 + 0.563583i
\(177\) −2.92011 + 2.32871i −0.219489 + 0.175036i
\(178\) −0.450339 3.99687i −0.0337544 0.299578i
\(179\) −1.78074 + 0.857561i −0.133099 + 0.0640971i −0.499248 0.866459i \(-0.666390\pi\)
0.366149 + 0.930556i \(0.380676\pi\)
\(180\) 0 0
\(181\) −8.08934 10.1437i −0.601276 0.753976i 0.384300 0.923208i \(-0.374443\pi\)
−0.985576 + 0.169232i \(0.945871\pi\)
\(182\) 0.0759024 0.332550i 0.00562626 0.0246503i
\(183\) −3.57886 5.69573i −0.264557 0.421040i
\(184\) 0.0842383 + 0.747636i 0.00621013 + 0.0551165i
\(185\) 0 0
\(186\) −1.90512 1.90512i −0.139690 0.139690i
\(187\) 2.93632 4.67312i 0.214725 0.341732i
\(188\) −4.04468 1.94781i −0.294988 0.142059i
\(189\) 0.214589 0.0750880i 0.0156091 0.00546185i
\(190\) 0 0
\(191\) 9.41763 9.41763i 0.681436 0.681436i −0.278888 0.960324i \(-0.589966\pi\)
0.960324 + 0.278888i \(0.0899658\pi\)
\(192\) 0.192400 + 0.842958i 0.0138853 + 0.0608353i
\(193\) −7.09495 + 8.89678i −0.510705 + 0.640404i −0.968607 0.248599i \(-0.920030\pi\)
0.457901 + 0.889003i \(0.348601\pi\)
\(194\) 18.1994 + 4.15391i 1.30664 + 0.298233i
\(195\) 0 0
\(196\) 6.66314 5.31367i 0.475938 0.379548i
\(197\) 21.6856 7.58813i 1.54504 0.540632i 0.582746 0.812654i \(-0.301978\pi\)
0.962291 + 0.272022i \(0.0876925\pi\)
\(198\) −6.09392 2.13235i −0.433076 0.151540i
\(199\) −1.71680 1.36910i −0.121701 0.0970531i 0.560748 0.827986i \(-0.310514\pi\)
−0.682449 + 0.730933i \(0.739085\pi\)
\(200\) 0 0
\(201\) 6.98070 + 2.44265i 0.492381 + 0.172292i
\(202\) 14.4435 + 14.4435i 1.01624 + 1.01624i
\(203\) 0.265238 + 0.0466041i 0.0186160 + 0.00327097i
\(204\) 3.63909i 0.254787i
\(205\) 0 0
\(206\) −1.21763 0.137194i −0.0848363 0.00955876i
\(207\) −1.19916 + 0.135112i −0.0833471 + 0.00939096i
\(208\) 6.21962 17.7746i 0.431253 1.23245i
\(209\) −4.14875 1.99793i −0.286975 0.138200i
\(210\) 0 0
\(211\) 8.46368 5.31808i 0.582664 0.366112i −0.208216 0.978083i \(-0.566766\pi\)
0.790880 + 0.611971i \(0.209623\pi\)
\(212\) −3.48832 + 2.19186i −0.239579 + 0.150537i
\(213\) −5.75554 4.58989i −0.394363 0.314494i
\(214\) −12.6304 + 20.1012i −0.863399 + 1.37409i
\(215\) 0 0
\(216\) 6.21809 1.41924i 0.423087 0.0965669i
\(217\) 0.0376345 0.0781489i 0.00255480 0.00530509i
\(218\) −13.6266 + 28.2958i −0.922907 + 1.91644i
\(219\) −1.85951 + 0.424422i −0.125654 + 0.0286798i
\(220\) 0 0
\(221\) −6.98055 + 11.1095i −0.469562 + 0.747304i
\(222\) −7.41927 5.91667i −0.497949 0.397101i
\(223\) −5.25804 + 3.30385i −0.352105 + 0.221242i −0.696457 0.717598i \(-0.745241\pi\)
0.344352 + 0.938840i \(0.388098\pi\)
\(224\) −0.257371 + 0.161717i −0.0171963 + 0.0108052i
\(225\) 0 0
\(226\) −4.28759 2.06480i −0.285207 0.137348i
\(227\) 3.40005 9.71679i 0.225669 0.644926i −0.774258 0.632870i \(-0.781877\pi\)
0.999927 0.0120560i \(-0.00383765\pi\)
\(228\) −3.01714 + 0.339950i −0.199815 + 0.0225138i
\(229\) −2.88517 0.325080i −0.190657 0.0214819i 0.0161195 0.999870i \(-0.494869\pi\)
−0.206777 + 0.978388i \(0.566297\pi\)
\(230\) 0 0
\(231\) 0.0692605i 0.00455701i
\(232\) 7.24780 + 2.13233i 0.475842 + 0.139995i
\(233\) −9.72899 9.72899i −0.637367 0.637367i 0.312538 0.949905i \(-0.398821\pi\)
−0.949905 + 0.312538i \(0.898821\pi\)
\(234\) 14.4872 + 5.06928i 0.947055 + 0.331389i
\(235\) 0 0
\(236\) 4.10720 + 3.27538i 0.267356 + 0.213209i
\(237\) 1.90364 + 0.666111i 0.123654 + 0.0432686i
\(238\) 0.292173 0.102236i 0.0189387 0.00662695i
\(239\) 13.8791 11.0682i 0.897762 0.715941i −0.0616058 0.998101i \(-0.519622\pi\)
0.959368 + 0.282160i \(0.0910507\pi\)
\(240\) 0 0
\(241\) −18.2239 4.15948i −1.17390 0.267935i −0.409276 0.912411i \(-0.634219\pi\)
−0.764625 + 0.644475i \(0.777076\pi\)
\(242\) −9.44171 + 11.8395i −0.606936 + 0.761074i
\(243\) 3.57709 + 15.6722i 0.229470 + 1.00538i
\(244\) −6.69020 + 6.69020i −0.428296 + 0.428296i
\(245\) 0 0
\(246\) 3.96296 1.38670i 0.252669 0.0884128i
\(247\) 9.86289 + 4.74972i 0.627561 + 0.302217i
\(248\) 1.29463 2.06039i 0.0822090 0.130835i
\(249\) −6.98888 6.98888i −0.442902 0.442902i
\(250\) 0 0
\(251\) −0.444851 3.94816i −0.0280788 0.249206i −0.999909 0.0135222i \(-0.995696\pi\)
0.971830 0.235684i \(-0.0757329\pi\)
\(252\) −0.0729152 0.116044i −0.00459323 0.00731008i
\(253\) 0.190870 0.836257i 0.0119999 0.0525750i
\(254\) −13.3597 16.7526i −0.838265 1.05115i
\(255\) 0 0
\(256\) −18.5518 + 8.93407i −1.15949 + 0.558380i
\(257\) −2.75726 24.4713i −0.171993 1.52648i −0.722336 0.691542i \(-0.756932\pi\)
0.550343 0.834939i \(-0.314497\pi\)
\(258\) 3.09491 2.46811i 0.192681 0.153658i
\(259\) 0.100903 0.288364i 0.00626980 0.0179181i
\(260\) 0 0
\(261\) −3.42012 + 11.6250i −0.211700 + 0.719568i
\(262\) −22.7863 + 22.7863i −1.40774 + 1.40774i
\(263\) 7.31769 3.52401i 0.451228 0.217300i −0.194446 0.980913i \(-0.562291\pi\)
0.645674 + 0.763613i \(0.276577\pi\)
\(264\) −0.217551 + 1.93082i −0.0133893 + 0.118834i
\(265\) 0 0
\(266\) −0.112057 0.232688i −0.00687063 0.0142670i
\(267\) −0.641251 1.83259i −0.0392439 0.112153i
\(268\) 1.16468 10.3369i 0.0711444 0.631424i
\(269\) −4.23287 6.73657i −0.258083 0.410736i 0.692400 0.721514i \(-0.256553\pi\)
−0.950483 + 0.310778i \(0.899411\pi\)
\(270\) 0 0
\(271\) 25.3607 2.85746i 1.54055 0.173579i 0.699539 0.714594i \(-0.253389\pi\)
0.841013 + 0.541015i \(0.181960\pi\)
\(272\) 16.6606 3.80268i 1.01020 0.230571i
\(273\) 0.164654i 0.00996531i
\(274\) −3.65197 16.0003i −0.220623 0.966614i
\(275\) 0 0
\(276\) −0.186799 0.533842i −0.0112440 0.0321335i
\(277\) 15.4938 + 9.73540i 0.930932 + 0.584943i 0.909896 0.414835i \(-0.136161\pi\)
0.0210355 + 0.999779i \(0.493304\pi\)
\(278\) 33.4653 2.00711
\(279\) 3.30472 + 2.07650i 0.197849 + 0.124317i
\(280\) 0 0
\(281\) −5.32480 + 23.3295i −0.317651 + 1.39172i 0.524009 + 0.851712i \(0.324436\pi\)
−0.841660 + 0.540007i \(0.818422\pi\)
\(282\) −5.58198 1.27405i −0.332402 0.0758686i
\(283\) 31.2062 + 3.51609i 1.85501 + 0.209010i 0.967691 0.252138i \(-0.0811335\pi\)
0.887323 + 0.461148i \(0.152562\pi\)
\(284\) −4.49255 + 9.32888i −0.266584 + 0.553567i
\(285\) 0 0
\(286\) −6.80215 + 8.52963i −0.402220 + 0.504367i
\(287\) 0.0842763 + 0.105679i 0.00497467 + 0.00623804i
\(288\) −5.93433 12.3228i −0.349683 0.726125i
\(289\) 5.09339 0.299611
\(290\) 0 0
\(291\) 9.01101 0.528234
\(292\) 1.16398 + 2.41704i 0.0681170 + 0.141446i
\(293\) 3.80145 + 4.76687i 0.222083 + 0.278483i 0.880374 0.474280i \(-0.157292\pi\)
−0.658291 + 0.752764i \(0.728720\pi\)
\(294\) 6.77698 8.49807i 0.395242 0.495617i
\(295\) 0 0
\(296\) 3.71870 7.72196i 0.216145 0.448830i
\(297\) −7.22574 0.814146i −0.419280 0.0472415i
\(298\) −19.9024 4.54259i −1.15291 0.263145i
\(299\) −0.453758 + 1.98804i −0.0262415 + 0.114972i
\(300\) 0 0
\(301\) 0.107908 + 0.0678028i 0.00621969 + 0.00390809i
\(302\) −30.4131 −1.75007
\(303\) 8.34869 + 5.24583i 0.479620 + 0.301365i
\(304\) −4.70915 13.4580i −0.270089 0.771869i
\(305\) 0 0
\(306\) 3.09936 + 13.5792i 0.177179 + 0.776271i
\(307\) 16.3838i 0.935075i −0.883973 0.467538i \(-0.845141\pi\)
0.883973 0.467538i \(-0.154859\pi\)
\(308\) 0.0949741 0.0216772i 0.00541165 0.00123517i
\(309\) −0.587764 + 0.0662251i −0.0334367 + 0.00376741i
\(310\) 0 0
\(311\) 10.3934 + 16.5410i 0.589354 + 0.937951i 0.999662 + 0.0260043i \(0.00827836\pi\)
−0.410308 + 0.911947i \(0.634579\pi\)
\(312\) 0.517186 4.59016i 0.0292799 0.259866i
\(313\) 6.20293 + 17.7270i 0.350610 + 1.00199i 0.975256 + 0.221079i \(0.0709577\pi\)
−0.624646 + 0.780908i \(0.714757\pi\)
\(314\) 17.0233 + 35.3493i 0.960682 + 1.99488i
\(315\) 0 0
\(316\) 0.317609 2.81886i 0.0178669 0.158573i
\(317\) −3.87760 + 1.86736i −0.217788 + 0.104881i −0.539597 0.841923i \(-0.681423\pi\)
0.321809 + 0.946805i \(0.395709\pi\)
\(318\) −3.71536 + 3.71536i −0.208347 + 0.208347i
\(319\) −6.99650 5.02376i −0.391729 0.281276i
\(320\) 0 0
\(321\) −3.78486 + 10.8165i −0.211250 + 0.603718i
\(322\) 0.0376129 0.0299953i 0.00209608 0.00167157i
\(323\) 1.11227 + 9.87169i 0.0618885 + 0.549276i
\(324\) 3.08776 1.48699i 0.171542 0.0826105i
\(325\) 0 0
\(326\) 13.2603 + 16.6279i 0.734421 + 0.920935i
\(327\) −3.37343 + 14.7799i −0.186551 + 0.817333i
\(328\) 2.01748 + 3.21080i 0.111397 + 0.177287i
\(329\) −0.0206381 0.183168i −0.00113782 0.0100984i
\(330\) 0 0
\(331\) −7.44773 7.44773i −0.409364 0.409364i 0.472153 0.881517i \(-0.343477\pi\)
−0.881517 + 0.472153i \(0.843477\pi\)
\(332\) −7.39618 + 11.7709i −0.405918 + 0.646015i
\(333\) 12.3855 + 5.96453i 0.678720 + 0.326854i
\(334\) −41.6923 + 14.5888i −2.28130 + 0.798261i
\(335\) 0 0
\(336\) −0.151644 + 0.151644i −0.00827285 + 0.00827285i
\(337\) 5.30703 + 23.2516i 0.289092 + 1.26660i 0.885773 + 0.464118i \(0.153629\pi\)
−0.596681 + 0.802479i \(0.703514\pi\)
\(338\) 1.63096 2.04516i 0.0887125 0.111242i
\(339\) −2.23957 0.511166i −0.121637 0.0277627i
\(340\) 0 0
\(341\) −2.16899 + 1.72971i −0.117458 + 0.0936693i
\(342\) 10.9689 3.83818i 0.593130 0.207545i
\(343\) 0.660705 + 0.231191i 0.0356747 + 0.0124831i
\(344\) 2.79523 + 2.22912i 0.150709 + 0.120186i
\(345\) 0 0
\(346\) 21.3035 + 7.45443i 1.14529 + 0.400753i
\(347\) 22.4557 + 22.4557i 1.20549 + 1.20549i 0.972474 + 0.233012i \(0.0748581\pi\)
0.233012 + 0.972474i \(0.425142\pi\)
\(348\) −5.66852 0.350372i −0.303864 0.0187819i
\(349\) 9.37948i 0.502072i −0.967978 0.251036i \(-0.919229\pi\)
0.967978 0.251036i \(-0.0807713\pi\)
\(350\) 0 0
\(351\) 17.1779 + 1.93548i 0.916886 + 0.103308i
\(352\) 9.66074 1.08850i 0.514919 0.0580175i
\(353\) 10.4307 29.8092i 0.555169 1.58658i −0.233889 0.972263i \(-0.575145\pi\)
0.789058 0.614319i \(-0.210569\pi\)
\(354\) 6.03648 + 2.90702i 0.320835 + 0.154506i
\(355\) 0 0
\(356\) −2.31226 + 1.45289i −0.122549 + 0.0770029i
\(357\) 0.126518 0.0794962i 0.00669602 0.00420739i
\(358\) 2.77200 + 2.21060i 0.146505 + 0.116834i
\(359\) −10.9969 + 17.5015i −0.580397 + 0.923696i 0.419476 + 0.907766i \(0.362214\pi\)
−0.999873 + 0.0159298i \(0.994929\pi\)
\(360\) 0 0
\(361\) −10.4430 + 2.38354i −0.549631 + 0.125450i
\(362\) −10.0982 + 20.9692i −0.530752 + 1.10212i
\(363\) −3.17163 + 6.58595i −0.166467 + 0.345673i
\(364\) −0.225783 + 0.0515335i −0.0118343 + 0.00270109i
\(365\) 0 0
\(366\) −6.41998 + 10.2173i −0.335578 + 0.534069i
\(367\) −23.5550 18.7845i −1.22956 0.980542i −0.999974 0.00725434i \(-0.997691\pi\)
−0.229588 0.973288i \(-0.573738\pi\)
\(368\) 2.24886 1.41305i 0.117230 0.0736606i
\(369\) −5.14989 + 3.23589i −0.268093 + 0.168454i
\(370\) 0 0
\(371\) −0.152405 0.0733946i −0.00791250 0.00381046i
\(372\) −0.604162 + 1.72660i −0.0313244 + 0.0895199i
\(373\) 36.7720 4.14321i 1.90398 0.214527i 0.919889 0.392179i \(-0.128279\pi\)
0.984093 + 0.177652i \(0.0568501\pi\)
\(374\) −9.83816 1.10849i −0.508719 0.0573189i
\(375\) 0 0
\(376\) 5.17112i 0.266680i
\(377\) 16.6329 + 11.9430i 0.856636 + 0.615098i
\(378\) −0.288379 0.288379i −0.0148326 0.0148326i
\(379\) 22.8719 + 8.00324i 1.17485 + 0.411099i 0.845949 0.533264i \(-0.179035\pi\)
0.328904 + 0.944363i \(0.393321\pi\)
\(380\) 0 0
\(381\) −8.08666 6.44890i −0.414292 0.330387i
\(382\) −22.5509 7.89089i −1.15380 0.403733i
\(383\) 4.68168 1.63819i 0.239223 0.0837077i −0.208005 0.978128i \(-0.566697\pi\)
0.447228 + 0.894420i \(0.352411\pi\)
\(384\) −7.01732 + 5.59612i −0.358101 + 0.285576i
\(385\) 0 0
\(386\) 19.9013 + 4.54233i 1.01295 + 0.231199i
\(387\) −3.57536 + 4.48336i −0.181746 + 0.227902i
\(388\) −2.82027 12.3564i −0.143178 0.627302i
\(389\) −23.2351 + 23.2351i −1.17807 + 1.17807i −0.197832 + 0.980236i \(0.563390\pi\)
−0.980236 + 0.197832i \(0.936610\pi\)
\(390\) 0 0
\(391\) −1.74666 + 0.611183i −0.0883324 + 0.0309088i
\(392\) 8.84476 + 4.25941i 0.446728 + 0.215133i
\(393\) −8.27589 + 13.1710i −0.417463 + 0.664389i
\(394\) −29.1425 29.1425i −1.46818 1.46818i
\(395\) 0 0
\(396\) 0.490787 + 4.35585i 0.0246630 + 0.218890i
\(397\) −11.1348 17.7209i −0.558838 0.889386i 0.441129 0.897444i \(-0.354578\pi\)
−0.999968 + 0.00805748i \(0.997435\pi\)
\(398\) −0.876528 + 3.84032i −0.0439364 + 0.192498i
\(399\) −0.0777286 0.0974686i −0.00389130 0.00487953i
\(400\) 0 0
\(401\) −11.6907 + 5.62994i −0.583806 + 0.281146i −0.702383 0.711799i \(-0.747881\pi\)
0.118578 + 0.992945i \(0.462166\pi\)
\(402\) −1.48542 13.1835i −0.0740861 0.657532i
\(403\) 5.15638 4.11207i 0.256857 0.204837i
\(404\) 4.58041 13.0901i 0.227884 0.651255i
\(405\) 0 0
\(406\) −0.131119 0.464953i −0.00650735 0.0230752i
\(407\) −6.90940 + 6.90940i −0.342486 + 0.342486i
\(408\) 3.77671 1.81877i 0.186975 0.0900423i
\(409\) 0.292252 2.59381i 0.0144509 0.128256i −0.984415 0.175859i \(-0.943730\pi\)
0.998866 + 0.0476033i \(0.0151583\pi\)
\(410\) 0 0
\(411\) −3.43730 7.13762i −0.169549 0.352073i
\(412\) 0.274771 + 0.785249i 0.0135370 + 0.0386865i
\(413\) −0.0241507 + 0.214343i −0.00118838 + 0.0105471i
\(414\) 1.15171 + 1.83293i 0.0566032 + 0.0900835i
\(415\) 0 0
\(416\) −22.9666 + 2.58772i −1.12603 + 0.126873i
\(417\) 15.7491 3.59462i 0.771235 0.176029i
\(418\) 8.26031i 0.404025i
\(419\) 3.84687 + 16.8542i 0.187932 + 0.823384i 0.977705 + 0.209984i \(0.0673413\pi\)
−0.789773 + 0.613399i \(0.789802\pi\)
\(420\) 0 0
\(421\) −3.22153 9.20660i −0.157008 0.448702i 0.838329 0.545165i \(-0.183533\pi\)
−0.995337 + 0.0964625i \(0.969247\pi\)
\(422\) −15.1827 9.53990i −0.739080 0.464395i
\(423\) 8.29412 0.403274
\(424\) −4.01816 2.52478i −0.195139 0.122614i
\(425\) 0 0
\(426\) −2.93854 + 12.8746i −0.142373 + 0.623777i
\(427\) −0.378741 0.0864453i −0.0183286 0.00418338i
\(428\) 16.0168 + 1.80466i 0.774201 + 0.0872315i
\(429\) −2.28496 + 4.74476i −0.110319 + 0.229079i
\(430\) 0 0
\(431\) −10.7212 + 13.4440i −0.516424 + 0.647575i −0.969845 0.243721i \(-0.921632\pi\)
0.453422 + 0.891296i \(0.350203\pi\)
\(432\) −14.0380 17.6031i −0.675404 0.846929i
\(433\) −2.38901 4.96082i −0.114808 0.238402i 0.835645 0.549271i \(-0.185094\pi\)
−0.950453 + 0.310869i \(0.899380\pi\)
\(434\) −0.155597 −0.00746889
\(435\) 0 0
\(436\) 21.3229 1.02118
\(437\) 0.669894 + 1.39105i 0.0320454 + 0.0665430i
\(438\) 2.13326 + 2.67503i 0.101931 + 0.127818i
\(439\) −2.44429 + 3.06504i −0.116659 + 0.146286i −0.836732 0.547612i \(-0.815537\pi\)
0.720073 + 0.693898i \(0.244108\pi\)
\(440\) 0 0
\(441\) −6.83180 + 14.1864i −0.325324 + 0.675542i
\(442\) 23.3884 + 2.63524i 1.11247 + 0.125346i
\(443\) −31.1792 7.11646i −1.48137 0.338113i −0.595995 0.802988i \(-0.703242\pi\)
−0.885376 + 0.464875i \(0.846099\pi\)
\(444\) −1.43368 + 6.28138i −0.0680396 + 0.298101i
\(445\) 0 0
\(446\) 9.43219 + 5.92664i 0.446627 + 0.280634i
\(447\) −9.85416 −0.466086
\(448\) 0.0422803 + 0.0265665i 0.00199756 + 0.00125515i
\(449\) −2.93533 8.38870i −0.138527 0.395887i 0.853631 0.520878i \(-0.174395\pi\)
−0.992158 + 0.124991i \(0.960110\pi\)
\(450\) 0 0
\(451\) −0.962009 4.21484i −0.0452992 0.198469i
\(452\) 3.23101i 0.151974i
\(453\) −14.3127 + 3.26677i −0.672467 + 0.153486i
\(454\) −18.3507 + 2.06763i −0.861243 + 0.0970388i
\(455\) 0 0
\(456\) −1.86073 2.96134i −0.0871368 0.138677i
\(457\) 3.43818 30.5147i 0.160831 1.42742i −0.611021 0.791614i \(-0.709241\pi\)
0.771852 0.635802i \(-0.219331\pi\)
\(458\) 1.72020 + 4.91606i 0.0803798 + 0.229712i
\(459\) 6.80641 + 14.1337i 0.317696 + 0.659703i
\(460\) 0 0
\(461\) −0.686954 + 6.09689i −0.0319946 + 0.283960i 0.967520 + 0.252796i \(0.0813501\pi\)
−0.999514 + 0.0311644i \(0.990078\pi\)
\(462\) 0.111940 0.0539073i 0.00520790 0.00250799i
\(463\) −8.48374 + 8.48374i −0.394273 + 0.394273i −0.876207 0.481935i \(-0.839934\pi\)
0.481935 + 0.876207i \(0.339934\pi\)
\(464\) −4.31925 26.3180i −0.200516 1.22178i
\(465\) 0 0
\(466\) −8.15177 + 23.2964i −0.377624 + 1.07919i
\(467\) −4.46810 + 3.56319i −0.206759 + 0.164885i −0.721395 0.692524i \(-0.756499\pi\)
0.514636 + 0.857409i \(0.327927\pi\)
\(468\) −1.16675 10.3552i −0.0539332 0.478671i
\(469\) 0.384816 0.185318i 0.0177692 0.00855718i
\(470\) 0 0
\(471\) 11.8083 + 14.8072i 0.544099 + 0.682278i
\(472\) −1.34652 + 5.89951i −0.0619788 + 0.271547i
\(473\) −2.16860 3.45131i −0.0997125 0.158692i
\(474\) −0.405074 3.59513i −0.0186057 0.165130i
\(475\) 0 0
\(476\) −0.148607 0.148607i −0.00681141 0.00681141i
\(477\) 4.04957 6.44485i 0.185417 0.295090i
\(478\) −28.6910 13.8168i −1.31229 0.631967i
\(479\) 0.512120 0.179198i 0.0233993 0.00818778i −0.318554 0.947905i \(-0.603197\pi\)
0.341953 + 0.939717i \(0.388912\pi\)
\(480\) 0 0
\(481\) 16.4258 16.4258i 0.748952 0.748952i
\(482\) 7.46151 + 32.6910i 0.339863 + 1.48904i
\(483\) 0.0144791 0.0181562i 0.000658820 0.000826134i
\(484\) 10.0237 + 2.28784i 0.455623 + 0.103993i
\(485\) 0 0
\(486\) 22.5455 17.9795i 1.02269 0.815565i
\(487\) 35.1198 12.2890i 1.59143 0.556866i 0.618065 0.786127i \(-0.287917\pi\)
0.973365 + 0.229261i \(0.0736310\pi\)
\(488\) −10.2869 3.59953i −0.465665 0.162943i
\(489\) 8.02648 + 6.40091i 0.362970 + 0.289459i
\(490\) 0 0
\(491\) 17.2250 + 6.02730i 0.777355 + 0.272008i 0.689654 0.724139i \(-0.257762\pi\)
0.0877005 + 0.996147i \(0.472048\pi\)
\(492\) −2.01568 2.01568i −0.0908737 0.0908737i
\(493\) −1.14637 + 18.5466i −0.0516300 + 0.835298i
\(494\) 19.6373i 0.883526i
\(495\) 0 0
\(496\) −8.53610 0.961788i −0.383282 0.0431856i
\(497\) −0.422471 + 0.0476010i −0.0189504 + 0.00213520i
\(498\) −5.85588 + 16.7351i −0.262408 + 0.749920i
\(499\) 8.25425 + 3.97504i 0.369511 + 0.177947i 0.609419 0.792849i \(-0.291403\pi\)
−0.239908 + 0.970796i \(0.577117\pi\)
\(500\) 0 0
\(501\) −18.0537 + 11.3439i −0.806581 + 0.506808i
\(502\) −6.03483 + 3.79193i −0.269348 + 0.169242i
\(503\) −14.8659 11.8551i −0.662836 0.528594i 0.233282 0.972409i \(-0.425053\pi\)
−0.896119 + 0.443815i \(0.853625\pi\)
\(504\) 0.0839903 0.133670i 0.00374122 0.00595413i
\(505\) 0 0
\(506\) −1.50013 + 0.342394i −0.0666888 + 0.0152213i
\(507\) 0.547867 1.13766i 0.0243316 0.0505251i
\(508\) −6.31214 + 13.1073i −0.280056 + 0.581542i
\(509\) 36.0022 8.21727i 1.59577 0.364224i 0.670014 0.742348i \(-0.266288\pi\)
0.925755 + 0.378124i \(0.123431\pi\)
\(510\) 0 0
\(511\) −0.0586040 + 0.0932678i −0.00259249 + 0.00412592i
\(512\) 12.6709 + 10.1047i 0.559978 + 0.446568i
\(513\) 11.0823 6.96347i 0.489295 0.307445i
\(514\) −37.4048 + 23.5030i −1.64986 + 1.03667i
\(515\) 0 0
\(516\) −2.42147 1.16612i −0.106599 0.0513356i
\(517\) −1.94717 + 5.56469i −0.0856363 + 0.244735i
\(518\) −0.544593 + 0.0613609i −0.0239280 + 0.00269604i
\(519\) 10.8263 + 1.21984i 0.475224 + 0.0535448i
\(520\) 0 0
\(521\) 12.6825i 0.555630i 0.960635 + 0.277815i \(0.0896102\pi\)
−0.960635 + 0.277815i \(0.910390\pi\)
\(522\) 21.4504 3.52039i 0.938858 0.154083i
\(523\) −24.6658 24.6658i −1.07856 1.07856i −0.996639 0.0819190i \(-0.973895\pi\)
−0.0819190 0.996639i \(-0.526105\pi\)
\(524\) 20.6510 + 7.22611i 0.902145 + 0.315674i
\(525\) 0 0
\(526\) −11.3911 9.08410i −0.496676 0.396086i
\(527\) 5.64919 + 1.97674i 0.246083 + 0.0861081i
\(528\) 6.47426 2.26544i 0.281756 0.0985907i
\(529\) 17.7573 14.1609i 0.772055 0.615693i
\(530\) 0 0
\(531\) −9.46240 2.15973i −0.410633 0.0937244i
\(532\) −0.109327 + 0.137092i −0.00473993 + 0.00594368i
\(533\) 2.28700 + 10.0200i 0.0990609 + 0.434014i
\(534\) −2.46275 + 2.46275i −0.106574 + 0.106574i
\(535\) 0 0
\(536\) 11.3098 3.95749i 0.488511 0.170937i
\(537\) 1.54197 + 0.742576i 0.0665411 + 0.0320445i
\(538\) −7.59317 + 12.0845i −0.327365 + 0.520998i
\(539\) −7.91405 7.91405i −0.340882 0.340882i
\(540\) 0 0
\(541\) 1.45294 + 12.8952i 0.0624669 + 0.554409i 0.985498 + 0.169685i \(0.0542749\pi\)
−0.923032 + 0.384724i \(0.874297\pi\)
\(542\) −24.3572 38.7642i −1.04623 1.66506i
\(543\) −2.49995 + 10.9530i −0.107283 + 0.470037i
\(544\) −13.0768 16.3978i −0.560664 0.703051i
\(545\) 0 0
\(546\) −0.266116 + 0.128155i −0.0113887 + 0.00548451i
\(547\) 1.38325 + 12.2767i 0.0591435 + 0.524913i 0.987998 + 0.154468i \(0.0493663\pi\)
−0.928854 + 0.370445i \(0.879205\pi\)
\(548\) −8.71171 + 6.94736i −0.372146 + 0.296776i
\(549\) 5.77340 16.4994i 0.246403 0.704178i
\(550\) 0 0
\(551\) 15.4840 0.782110i 0.659640 0.0333190i
\(552\) 0.460671 0.460671i 0.0196074 0.0196074i
\(553\) 0.104939 0.0505361i 0.00446247 0.00214901i
\(554\) 3.67523 32.6186i 0.156146 1.38583i
\(555\) 0 0
\(556\) −9.85830 20.4710i −0.418085 0.868163i
\(557\) −6.07412 17.3588i −0.257369 0.735518i −0.997977 0.0635804i \(-0.979748\pi\)
0.740608 0.671937i \(-0.234538\pi\)
\(558\) 0.783902 6.95732i 0.0331852 0.294527i
\(559\) 5.15545 + 8.20485i 0.218052 + 0.347028i
\(560\) 0 0
\(561\) −4.74899 + 0.535083i −0.200503 + 0.0225912i
\(562\) 41.8498 9.55194i 1.76533 0.402924i
\(563\) 33.1694i 1.39792i −0.715159 0.698962i \(-0.753646\pi\)
0.715159 0.698962i \(-0.246354\pi\)
\(564\) 0.865009 + 3.78985i 0.0364235 + 0.159582i
\(565\) 0 0
\(566\) −18.6058 53.1724i −0.782062 2.23500i
\(567\) 0.119150 + 0.0748666i 0.00500381 + 0.00314410i
\(568\) −11.9270 −0.500445
\(569\) −12.1703 7.64712i −0.510207 0.320584i 0.252208 0.967673i \(-0.418843\pi\)
−0.762414 + 0.647089i \(0.775986\pi\)
\(570\) 0 0
\(571\) 2.48794 10.9004i 0.104117 0.456166i −0.895814 0.444429i \(-0.853407\pi\)
0.999931 0.0117373i \(-0.00373617\pi\)
\(572\) 7.22144 + 1.64825i 0.301944 + 0.0689166i
\(573\) −11.4602 1.29126i −0.478758 0.0539430i
\(574\) 0.105205 0.218461i 0.00439119 0.00911839i
\(575\) 0 0
\(576\) −1.40090 + 1.75667i −0.0583707 + 0.0731945i
\(577\) −16.5686 20.7764i −0.689761 0.864933i 0.306451 0.951886i \(-0.400858\pi\)
−0.996212 + 0.0869530i \(0.972287\pi\)
\(578\) −3.96432 8.23200i −0.164894 0.342406i
\(579\) 9.85362 0.409502
\(580\) 0 0
\(581\) −0.570802 −0.0236809
\(582\) −7.01350 14.5637i −0.290719 0.603684i
\(583\) 3.37328 + 4.22996i 0.139707 + 0.175187i
\(584\) −1.92670 + 2.41600i −0.0797273 + 0.0999749i
\(585\) 0 0
\(586\) 4.74549 9.85412i 0.196035 0.407070i
\(587\) 8.00006 + 0.901390i 0.330198 + 0.0372044i 0.275507 0.961299i \(-0.411154\pi\)
0.0546906 + 0.998503i \(0.482583\pi\)
\(588\) −7.19472 1.64215i −0.296705 0.0677210i
\(589\) 1.11117 4.86837i 0.0457851 0.200598i
\(590\) 0 0
\(591\) −16.8450 10.5844i −0.692912 0.435385i
\(592\) −30.2558 −1.24351
\(593\) −32.3840 20.3482i −1.32985 0.835600i −0.335529 0.942030i \(-0.608915\pi\)
−0.994320 + 0.106430i \(0.966058\pi\)
\(594\) 4.30815 + 12.3120i 0.176766 + 0.505167i
\(595\) 0 0
\(596\) 3.08416 + 13.5126i 0.126332 + 0.553498i
\(597\) 1.90144i 0.0778207i
\(598\) 3.56627 0.813978i 0.145836 0.0332861i
\(599\) 46.8364 5.27719i 1.91368 0.215620i 0.926625 0.375986i \(-0.122696\pi\)
0.987058 + 0.160366i \(0.0512674\pi\)
\(600\) 0 0
\(601\) 1.29346 + 2.05853i 0.0527614 + 0.0839693i 0.872063 0.489393i \(-0.162782\pi\)
−0.819302 + 0.573362i \(0.805639\pi\)
\(602\) 0.0255964 0.227174i 0.00104323 0.00925893i
\(603\) 6.34753 + 18.1402i 0.258492 + 0.738727i
\(604\) 8.95917 + 18.6039i 0.364543 + 0.756982i
\(605\) 0 0
\(606\) 1.98036 17.5762i 0.0804468 0.713985i
\(607\) −25.4732 + 12.2672i −1.03392 + 0.497912i −0.872316 0.488943i \(-0.837383\pi\)
−0.161609 + 0.986855i \(0.551668\pi\)
\(608\) −12.3737 + 12.3737i −0.501821 + 0.501821i
\(609\) −0.111648 0.204727i −0.00452421 0.00829596i
\(610\) 0 0
\(611\) 4.62903 13.2290i 0.187270 0.535188i
\(612\) 7.39348 5.89610i 0.298864 0.238336i
\(613\) 2.64828 + 23.5041i 0.106963 + 0.949323i 0.926499 + 0.376296i \(0.122802\pi\)
−0.819536 + 0.573027i \(0.805769\pi\)
\(614\) −26.4797 + 12.7520i −1.06864 + 0.514628i
\(615\) 0 0
\(616\) 0.0699637 + 0.0877317i 0.00281892 + 0.00353481i
\(617\) −3.95851 + 17.3434i −0.159364 + 0.698218i 0.830597 + 0.556874i \(0.187999\pi\)
−0.989961 + 0.141344i \(0.954858\pi\)
\(618\) 0.564506 + 0.898406i 0.0227078 + 0.0361392i
\(619\) 5.39810 + 47.9094i 0.216968 + 1.92564i 0.354328 + 0.935121i \(0.384710\pi\)
−0.137360 + 0.990521i \(0.543862\pi\)
\(620\) 0 0
\(621\) 1.72398 + 1.72398i 0.0691809 + 0.0691809i
\(622\) 18.6442 29.6721i 0.747566 1.18974i
\(623\) −0.101023 0.0486501i −0.00404740 0.00194912i
\(624\) −15.3914 + 5.38567i −0.616147 + 0.215599i
\(625\) 0 0
\(626\) 23.8226 23.8226i 0.952143 0.952143i
\(627\) 0.887268 + 3.88737i 0.0354341 + 0.155247i
\(628\) 16.6087 20.8266i 0.662758 0.831072i
\(629\) 20.5518 + 4.69082i 0.819455 + 0.187035i
\(630\) 0 0
\(631\) 24.3390 19.4097i 0.968921 0.772688i −0.00490424 0.999988i \(-0.501561\pi\)
0.973825 + 0.227300i \(0.0729896\pi\)
\(632\) 3.08419 1.07921i 0.122683 0.0429285i
\(633\) −8.16980 2.85874i −0.324721 0.113625i
\(634\) 6.03608 + 4.81361i 0.239723 + 0.191173i
\(635\) 0 0
\(636\) 3.36720 + 1.17823i 0.133518 + 0.0467200i
\(637\) 18.8142 + 18.8142i 0.745445 + 0.745445i
\(638\) −2.67390 + 15.2179i −0.105861 + 0.602484i
\(639\) 19.1301i 0.756773i
\(640\) 0 0
\(641\) −47.2768 5.32682i −1.86732 0.210397i −0.895328 0.445406i \(-0.853059\pi\)
−0.971993 + 0.235010i \(0.924488\pi\)
\(642\) 20.4276 2.30164i 0.806213 0.0908384i
\(643\) 0.0747317 0.213571i 0.00294713 0.00842241i −0.942400 0.334487i \(-0.891437\pi\)
0.945348 + 0.326065i \(0.105723\pi\)
\(644\) −0.0294284 0.0141720i −0.00115964 0.000558455i
\(645\) 0 0
\(646\) 15.0890 9.48106i 0.593670 0.373028i
\(647\) −35.1731 + 22.1007i −1.38280 + 0.868868i −0.998522 0.0543507i \(-0.982691\pi\)
−0.384274 + 0.923219i \(0.625548\pi\)
\(648\) 3.08644 + 2.46136i 0.121247 + 0.0966912i
\(649\) 3.67044 5.84148i 0.144078 0.229298i
\(650\) 0 0
\(651\) −0.0732253 + 0.0167132i −0.00286993 + 0.000655042i
\(652\) 6.26516 13.0097i 0.245363 0.509501i
\(653\) 7.55731 15.6929i 0.295740 0.614111i −0.699161 0.714964i \(-0.746443\pi\)
0.994901 + 0.100853i \(0.0321572\pi\)
\(654\) 26.5131 6.05145i 1.03675 0.236630i
\(655\) 0 0
\(656\) 7.12197 11.3346i 0.278066 0.442540i
\(657\) −3.87510 3.09029i −0.151182 0.120564i
\(658\) −0.279976 + 0.175920i −0.0109146 + 0.00685809i
\(659\) −36.8444 + 23.1509i −1.43526 + 0.901831i −0.435257 + 0.900306i \(0.643342\pi\)
−0.999999 + 0.00152434i \(0.999515\pi\)
\(660\) 0 0
\(661\) −10.9914 5.29320i −0.427518 0.205882i 0.207736 0.978185i \(-0.433390\pi\)
−0.635254 + 0.772303i \(0.719105\pi\)
\(662\) −6.24034 + 17.8339i −0.242538 + 0.693133i
\(663\) 11.2898 1.27206i 0.438461 0.0494027i
\(664\) −15.9126 1.79292i −0.617528 0.0695787i
\(665\) 0 0
\(666\) 24.6599i 0.955552i
\(667\) 0.783855 + 2.77957i 0.0303510 + 0.107626i
\(668\) 21.2059 + 21.2059i 0.820480 + 0.820480i
\(669\) 5.07547 + 1.77598i 0.196229 + 0.0686635i
\(670\) 0 0
\(671\) 9.71439 + 7.74697i 0.375020 + 0.299068i
\(672\) 0.248434 + 0.0869310i 0.00958357 + 0.00335344i
\(673\) 29.8369 10.4404i 1.15013 0.402447i 0.313161 0.949700i \(-0.398612\pi\)
0.836967 + 0.547253i \(0.184326\pi\)
\(674\) 33.4489 26.6746i 1.28841 1.02747i
\(675\) 0 0
\(676\) −1.73149 0.395202i −0.0665959 0.0152001i
\(677\) −16.8498 + 21.1289i −0.647589 + 0.812051i −0.991929 0.126794i \(-0.959531\pi\)
0.344340 + 0.938845i \(0.388103\pi\)
\(678\) 0.916961 + 4.01747i 0.0352157 + 0.154290i
\(679\) 0.367977 0.367977i 0.0141217 0.0141217i
\(680\) 0 0
\(681\) −8.41393 + 2.94416i −0.322422 + 0.112821i
\(682\) 4.48377 + 2.15927i 0.171692 + 0.0826827i
\(683\) 7.06210 11.2393i 0.270224 0.430058i −0.683854 0.729619i \(-0.739697\pi\)
0.954077 + 0.299561i \(0.0968402\pi\)
\(684\) −5.57909 5.57909i −0.213322 0.213322i
\(685\) 0 0
\(686\) −0.140591 1.24778i −0.00536779 0.0476405i
\(687\) 1.33759 + 2.12877i 0.0510323 + 0.0812175i
\(688\) 2.80845 12.3046i 0.107071 0.469110i
\(689\) −8.01935 10.0559i −0.305513 0.383101i
\(690\) 0 0
\(691\) −17.7230 + 8.53497i −0.674216 + 0.324685i −0.739476 0.673183i \(-0.764927\pi\)
0.0652598 + 0.997868i \(0.479212\pi\)
\(692\) −1.71573 15.2275i −0.0652221 0.578862i
\(693\) −0.140716 + 0.112217i −0.00534534 + 0.00426277i
\(694\) 18.8153 53.7711i 0.714219 2.04112i
\(695\) 0 0
\(696\) −2.46942 6.05799i −0.0936033 0.229628i
\(697\) −6.59502 + 6.59502i −0.249804 + 0.249804i
\(698\) −15.1592 + 7.30030i −0.573785 + 0.276320i
\(699\) −1.33395 + 11.8391i −0.0504545 + 0.447796i
\(700\) 0 0
\(701\) 1.46305 + 3.03806i 0.0552588 + 0.114746i 0.926770 0.375630i \(-0.122574\pi\)
−0.871511 + 0.490376i \(0.836859\pi\)
\(702\) −10.2418 29.2695i −0.386553 1.10471i
\(703\) 1.96925 17.4776i 0.0742717 0.659180i
\(704\) −0.849702 1.35229i −0.0320243 0.0509664i
\(705\) 0 0
\(706\) −56.2964 + 6.34308i −2.11874 + 0.238725i
\(707\) 0.555152 0.126710i 0.0208786 0.00476541i
\(708\) 4.54892i 0.170959i
\(709\) 0.0430267 + 0.188512i 0.00161590 + 0.00707973i 0.975729 0.218980i \(-0.0702728\pi\)
−0.974114 + 0.226059i \(0.927416\pi\)
\(710\) 0 0
\(711\) 1.73097 + 4.94683i 0.0649165 + 0.185521i
\(712\) −2.66346 1.67357i −0.0998175 0.0627195i
\(713\) 0.930187 0.0348358
\(714\) −0.226955 0.142605i −0.00849356 0.00533686i
\(715\) 0 0
\(716\) 0.535655 2.34686i 0.0200184 0.0877062i
\(717\) −14.9863 3.42053i −0.559675 0.127742i
\(718\) 36.8454 + 4.15148i 1.37506 + 0.154932i
\(719\) 10.8827 22.5981i 0.405856 0.842768i −0.593427 0.804888i \(-0.702225\pi\)
0.999282 0.0378799i \(-0.0120604\pi\)
\(720\) 0 0
\(721\) −0.0212978 + 0.0267066i −0.000793171 + 0.000994605i
\(722\) 11.9804 + 15.0229i 0.445863 + 0.559094i
\(723\) 7.02291 + 14.5832i 0.261185 + 0.542356i
\(724\) 15.8018 0.587269
\(725\) 0 0
\(726\) 13.1128 0.486663
\(727\) 6.28573 + 13.0524i 0.233125 + 0.484088i 0.984410 0.175889i \(-0.0562800\pi\)
−0.751285 + 0.659978i \(0.770566\pi\)
\(728\) −0.166326 0.208566i −0.00616444 0.00772996i
\(729\) 3.41554 4.28295i 0.126501 0.158628i
\(730\) 0 0
\(731\) −3.81539 + 7.92274i −0.141117 + 0.293033i
\(732\) 8.14124 + 0.917298i 0.300909 + 0.0339043i
\(733\) 21.4360 + 4.89262i 0.791755 + 0.180713i 0.599228 0.800579i \(-0.295474\pi\)
0.192528 + 0.981292i \(0.438332\pi\)
\(734\) −12.0262 + 52.6903i −0.443896 + 1.94484i
\(735\) 0 0
\(736\) −2.76005 1.73425i −0.101737 0.0639255i
\(737\) −13.6608 −0.503202
\(738\) 9.23819 + 5.80474i 0.340062 + 0.213675i
\(739\) 12.6498 + 36.1512i 0.465332 + 1.32984i 0.902588 + 0.430505i \(0.141664\pi\)
−0.437257 + 0.899337i \(0.644050\pi\)
\(740\) 0 0
\(741\) −2.10931 9.24151i −0.0774876 0.339495i
\(742\) 0.303444i 0.0111398i
\(743\) −25.7547 + 5.87833i −0.944847 + 0.215655i −0.667074 0.744992i \(-0.732453\pi\)
−0.277773 + 0.960647i \(0.589596\pi\)
\(744\) −2.09384 + 0.235919i −0.0767640 + 0.00864922i
\(745\) 0 0
\(746\) −35.3169 56.2066i −1.29304 2.05787i
\(747\) 2.87572 25.5227i 0.105217 0.933827i
\(748\) 2.22008 + 6.34463i 0.0811742 + 0.231982i
\(749\) 0.287147 + 0.596267i 0.0104921 + 0.0217871i
\(750\) 0 0
\(751\) 2.42708 21.5409i 0.0885654 0.786039i −0.868405 0.495855i \(-0.834855\pi\)
0.956971 0.290184i \(-0.0937167\pi\)
\(752\) −16.4470 + 7.92045i −0.599760 + 0.288829i
\(753\) −2.43274 + 2.43274i −0.0886539 + 0.0886539i
\(754\) 6.35669 36.1778i 0.231497 1.31752i
\(755\) 0 0
\(756\) −0.0914520 + 0.261355i −0.00332608 + 0.00950538i
\(757\) 15.4075 12.2870i 0.559993 0.446580i −0.302138 0.953264i \(-0.597700\pi\)
0.862132 + 0.506684i \(0.169129\pi\)
\(758\) −4.86691 43.1950i −0.176774 1.56891i
\(759\) −0.669195 + 0.322267i −0.0242902 + 0.0116976i
\(760\) 0 0
\(761\) 11.8638 + 14.8768i 0.430063 + 0.539282i 0.948894 0.315595i \(-0.102204\pi\)
−0.518831 + 0.854877i \(0.673633\pi\)
\(762\) −4.12872 + 18.0891i −0.149568 + 0.655299i
\(763\) 0.465802 + 0.741319i 0.0168632 + 0.0268376i
\(764\) 1.81618 + 16.1191i 0.0657072 + 0.583167i
\(765\) 0 0
\(766\) −6.29154 6.29154i −0.227323 0.227323i
\(767\) −8.72580 + 13.8870i −0.315070 + 0.501432i
\(768\) 16.0643 + 7.73616i 0.579670 + 0.279155i
\(769\) −24.2753 + 8.49430i −0.875390 + 0.306312i −0.730317 0.683109i \(-0.760628\pi\)
−0.145073 + 0.989421i \(0.546342\pi\)
\(770\) 0 0
\(771\) −15.0785 + 15.0785i −0.543039 + 0.543039i
\(772\) −3.08399 13.5119i −0.110995 0.486302i
\(773\) 4.29249 5.38261i 0.154390 0.193599i −0.698621 0.715492i \(-0.746203\pi\)
0.853011 + 0.521893i \(0.174774\pi\)
\(774\) 10.0289 + 2.28902i 0.360480 + 0.0822771i
\(775\) 0 0
\(776\) 11.4142 9.10249i 0.409745 0.326760i
\(777\) −0.249699 + 0.0873735i −0.00895791 + 0.00313451i
\(778\) 55.6374 + 19.4684i 1.99470 + 0.697975i
\(779\) 6.08397 + 4.85181i 0.217981 + 0.173834i
\(780\) 0 0
\(781\) 12.8347 + 4.49106i 0.459263 + 0.160703i
\(782\) 2.34727 + 2.34727i 0.0839383 + 0.0839383i
\(783\) 22.6710 9.24139i 0.810195 0.330260i
\(784\) 34.6552i 1.23768i
\(785\) 0 0
\(786\) 27.7285 + 3.12425i 0.989042 + 0.111438i
\(787\) −35.6320 + 4.01476i −1.27014 + 0.143111i −0.721187 0.692740i \(-0.756403\pi\)
−0.548957 + 0.835851i \(0.684975\pi\)
\(788\) −9.24182 + 26.4116i −0.329226 + 0.940874i
\(789\) −6.33651 3.05150i −0.225586 0.108636i
\(790\) 0 0
\(791\) −0.112330 + 0.0705817i −0.00399400 + 0.00250960i
\(792\) −4.27529 + 2.68634i −0.151916 + 0.0954550i
\(793\) −23.0942 18.4170i −0.820098 0.654006i
\(794\) −19.9742 + 31.7888i −0.708859 + 1.12814i
\(795\) 0 0
\(796\) 2.60736 0.595114i 0.0924156 0.0210933i
\(797\) −19.1346 + 39.7334i −0.677782 + 1.40743i 0.223720 + 0.974654i \(0.428180\pi\)
−0.901502 + 0.432775i \(0.857534\pi\)
\(798\) −0.0970316 + 0.201488i −0.00343488 + 0.00713261i
\(799\) 12.3999 2.83019i 0.438677 0.100125i
\(800\) 0 0
\(801\) 2.68428 4.27201i 0.0948445 0.150944i
\(802\) 18.1984 + 14.5127i 0.642606 + 0.512461i
\(803\) 2.98307 1.87439i 0.105270 0.0661457i
\(804\) −7.62686 + 4.79227i −0.268978 + 0.169010i
\(805\) 0 0
\(806\) −10.6593 5.13326i −0.375459 0.180811i
\(807\) −2.27538 + 6.50266i −0.0800972 + 0.228905i
\(808\) 15.8743 1.78860i 0.558456 0.0629229i
\(809\) 27.0462 + 3.04738i 0.950895 + 0.107140i 0.573765 0.819020i \(-0.305482\pi\)
0.377130 + 0.926160i \(0.376911\pi\)
\(810\) 0 0
\(811\) 15.8296i 0.555851i 0.960603 + 0.277926i \(0.0896469\pi\)
−0.960603 + 0.277926i \(0.910353\pi\)
\(812\) −0.245790 + 0.217174i −0.00862554 + 0.00762132i
\(813\) −15.6265 15.6265i −0.548045 0.548045i
\(814\) 16.5448 + 5.78928i 0.579895 + 0.202914i
\(815\) 0 0
\(816\) −11.5693 9.22623i −0.405007 0.322983i
\(817\) 6.92511 + 2.42320i 0.242279 + 0.0847770i
\(818\) −4.41961 + 1.54649i −0.154528 + 0.0540717i
\(819\) 0.334525 0.266775i 0.0116892 0.00932186i
\(820\) 0 0
\(821\) −9.19783 2.09935i −0.321007 0.0732677i 0.0589814 0.998259i \(-0.481215\pi\)
−0.379988 + 0.924991i \(0.624072\pi\)
\(822\) −8.86056 + 11.1108i −0.309048 + 0.387533i
\(823\) 8.84307 + 38.7440i 0.308250 + 1.35053i 0.857332 + 0.514763i \(0.172120\pi\)
−0.549083 + 0.835768i \(0.685023\pi\)
\(824\) −0.677618 + 0.677618i −0.0236059 + 0.0236059i
\(825\) 0 0
\(826\) 0.365221 0.127796i 0.0127077 0.00444660i
\(827\) 39.9309 + 19.2297i 1.38853 + 0.668683i 0.970801 0.239887i \(-0.0771103\pi\)
0.417734 + 0.908570i \(0.362825\pi\)
\(828\) 0.781944 1.24446i 0.0271744 0.0432479i
\(829\) −17.1511 17.1511i −0.595681 0.595681i 0.343479 0.939160i \(-0.388394\pi\)
−0.939160 + 0.343479i \(0.888394\pi\)
\(830\) 0 0
\(831\) −1.77408 15.7454i −0.0615420 0.546200i
\(832\) 2.02001 + 3.21482i 0.0700312 + 0.111454i
\(833\) −5.37289 + 23.5402i −0.186160 + 0.815618i
\(834\) −18.0676 22.6560i −0.625629 0.784514i
\(835\) 0 0
\(836\) 5.05290 2.43335i 0.174758 0.0841591i
\(837\) −0.882887 7.83584i −0.0305170 0.270846i
\(838\) 24.2459 19.3355i 0.837561 0.667932i
\(839\) 11.9236 34.0758i 0.411650 1.17643i −0.532362 0.846517i \(-0.678695\pi\)
0.944012 0.329911i \(-0.107019\pi\)
\(840\) 0 0
\(841\) 28.7793 + 3.57135i 0.992388 + 0.123150i
\(842\) −12.3724 + 12.3724i −0.426381 + 0.426381i
\(843\) 18.6689 8.99045i 0.642990 0.309648i
\(844\) −1.36308 + 12.0976i −0.0469190 + 0.416418i
\(845\) 0 0
\(846\) −6.45553 13.4051i −0.221946 0.460875i
\(847\) 0.139429 + 0.398465i 0.00479083 + 0.0136914i
\(848\) −1.87567 + 16.6471i −0.0644109 + 0.571663i
\(849\) −14.4675 23.0249i −0.496524 0.790213i
\(850\) 0 0
\(851\) 3.25567 0.366826i 0.111603 0.0125746i
\(852\) 8.74114 1.99511i 0.299467 0.0683513i
\(853\) 6.64060i 0.227370i 0.993517 + 0.113685i \(0.0362654\pi\)
−0.993517 + 0.113685i \(0.963735\pi\)
\(854\) 0.155071 + 0.679409i 0.00530641 + 0.0232489i
\(855\) 0 0
\(856\) 6.13207 + 17.5244i 0.209590 + 0.598973i
\(857\) 6.54364 + 4.11164i 0.223527 + 0.140451i 0.639140 0.769090i \(-0.279290\pi\)
−0.415614 + 0.909541i \(0.636433\pi\)
\(858\) 9.44698 0.322514
\(859\) 24.3070 + 15.2731i 0.829346 + 0.521113i 0.878536 0.477677i \(-0.158521\pi\)
−0.0491898 + 0.998789i \(0.515664\pi\)
\(860\) 0 0
\(861\) 0.0260449 0.114110i 0.000887608 0.00388887i
\(862\) 30.0730 + 6.86396i 1.02429 + 0.233787i
\(863\) 1.28617 + 0.144916i 0.0437816 + 0.00493300i 0.133828 0.991005i \(-0.457273\pi\)
−0.0900465 + 0.995938i \(0.528702\pi\)
\(864\) −11.9896 + 24.8966i −0.407893 + 0.846999i
\(865\) 0 0
\(866\) −6.15831 + 7.72228i −0.209268 + 0.262414i
\(867\) −2.74987 3.44823i −0.0933905 0.117108i
\(868\) 0.0458362 + 0.0951799i 0.00155578 + 0.00323062i
\(869\) −3.72530 −0.126372
\(870\) 0 0
\(871\) 32.4760 1.10041
\(872\) 10.6569 + 22.1293i 0.360888 + 0.749393i
\(873\) 14.5998 + 18.3075i 0.494127 + 0.619616i
\(874\) 1.72683 2.16538i 0.0584110 0.0732451i
\(875\) 0 0
\(876\) 1.00791 2.09295i 0.0340542 0.0707143i
\(877\) −45.0188 5.07240i −1.52018 0.171283i −0.687966 0.725743i \(-0.741496\pi\)
−0.832210 + 0.554460i \(0.812925\pi\)
\(878\) 6.85620 + 1.56488i 0.231385 + 0.0528122i
\(879\) 1.17481 5.14717i 0.0396253 0.173610i
\(880\) 0 0
\(881\) −29.8952 18.7844i −1.00720 0.632863i −0.0758960 0.997116i \(-0.524182\pi\)
−0.931300 + 0.364252i \(0.881325\pi\)
\(882\) 28.2456 0.951078
\(883\) −24.8153 15.5925i −0.835101 0.524729i 0.0452919 0.998974i \(-0.485578\pi\)
−0.880393 + 0.474245i \(0.842721\pi\)
\(884\) −5.27783 15.0832i −0.177513 0.507302i
\(885\) 0 0
\(886\) 12.7659 + 55.9312i 0.428880 + 1.87904i
\(887\) 31.6025i 1.06111i −0.847651 0.530555i \(-0.821984\pi\)
0.847651 0.530555i \(-0.178016\pi\)
\(888\) −7.23546 + 1.65145i −0.242806 + 0.0554189i
\(889\) −0.593581 + 0.0668805i −0.0199081 + 0.00224310i
\(890\) 0 0
\(891\) −2.39453 3.81087i −0.0802198 0.127669i
\(892\) 0.846808 7.51563i 0.0283532 0.251642i
\(893\) −3.50485 10.0163i −0.117285 0.335182i
\(894\) 7.66976 + 15.9264i 0.256515 + 0.532659i
\(895\) 0 0
\(896\) −0.0580365 + 0.515088i −0.00193886 + 0.0172079i
\(897\) 1.59089 0.766131i 0.0531182 0.0255804i
\(898\) −11.2733 + 11.2733i −0.376194 + 0.376194i
\(899\) 3.62302 8.60929i 0.120835 0.287136i
\(900\) 0 0
\(901\) 3.85502 11.0170i 0.128429 0.367030i
\(902\) −6.06331 + 4.83533i −0.201886 + 0.160999i
\(903\) −0.0123557 0.109660i −0.000411171 0.00364924i
\(904\) −3.35319 + 1.61481i −0.111526 + 0.0537079i
\(905\) 0 0
\(906\) 16.4197 + 20.5897i 0.545508 + 0.684046i
\(907\) −1.31997 + 5.78318i −0.0438290 + 0.192027i −0.992103 0.125426i \(-0.959970\pi\)
0.948274 + 0.317453i \(0.102828\pi\)
\(908\) 6.67060 + 10.6162i 0.221372 + 0.352311i
\(909\) 2.86880 + 25.4613i 0.0951520 + 0.844497i
\(910\) 0 0
\(911\) −3.72458 3.72458i −0.123401 0.123401i 0.642709 0.766110i \(-0.277810\pi\)
−0.766110 + 0.642709i \(0.777810\pi\)
\(912\) −6.56864 + 10.4539i −0.217509 + 0.346164i
\(913\) 16.4486 + 7.92120i 0.544368 + 0.262154i
\(914\) −51.9942 + 18.1936i −1.71982 + 0.601789i
\(915\) 0 0
\(916\) 2.50045 2.50045i 0.0826171 0.0826171i
\(917\) 0.199899 + 0.875815i 0.00660125 + 0.0289220i
\(918\) 17.5454 22.0012i 0.579084 0.726148i
\(919\) 33.9679 + 7.75296i 1.12050 + 0.255747i 0.742359 0.670002i \(-0.233707\pi\)
0.378140 + 0.925749i \(0.376564\pi\)
\(920\) 0 0
\(921\) −11.0919 + 8.84547i −0.365489 + 0.291468i
\(922\) 10.3885 3.63510i 0.342128 0.119716i
\(923\) −30.5122 10.6767i −1.00432 0.351427i
\(924\) −0.0659510 0.0525942i −0.00216963 0.00173022i
\(925\) 0 0
\(926\) 20.3146 + 7.10840i 0.667580 + 0.233596i
\(927\) −1.08685 1.08685i −0.0356969 0.0356969i
\(928\) −26.8015 + 18.7907i −0.879803 + 0.616834i
\(929\) 2.84350i 0.0932921i 0.998911 + 0.0466460i \(0.0148533\pi\)
−0.998911 + 0.0466460i \(0.985147\pi\)
\(930\) 0 0
\(931\) 20.0189 + 2.25559i 0.656093 + 0.0739240i
\(932\) 16.6520 1.87623i 0.545454 0.0614579i
\(933\) 5.58696 15.9666i 0.182909 0.522723i
\(934\) 9.23651 + 4.44807i 0.302228 + 0.145545i
\(935\) 0 0
\(936\) 10.1637 6.38628i 0.332211 0.208742i
\(937\) 28.0389 17.6180i 0.915990 0.575555i 0.0105107 0.999945i \(-0.496654\pi\)
0.905480 + 0.424390i \(0.139511\pi\)
\(938\) −0.599025 0.477707i −0.0195589 0.0155977i
\(939\) 8.65226 13.7700i 0.282356 0.449367i
\(940\) 0 0
\(941\) −36.8079 + 8.40116i −1.19990 + 0.273870i −0.775349 0.631533i \(-0.782426\pi\)
−0.424554 + 0.905403i \(0.639569\pi\)
\(942\) 14.7408 30.6095i 0.480281 0.997313i
\(943\) −0.628936 + 1.30600i −0.0204810 + 0.0425292i
\(944\) 20.8261 4.75341i 0.677831 0.154710i
\(945\) 0 0
\(946\) −3.89017 + 6.19117i −0.126480 + 0.201292i
\(947\) −6.42093 5.12052i −0.208652 0.166394i 0.513588 0.858037i \(-0.328316\pi\)
−0.722240 + 0.691642i \(0.756887\pi\)
\(948\) −2.07984 + 1.30685i −0.0675501 + 0.0424446i
\(949\) −7.09170 + 4.45601i −0.230206 + 0.144648i
\(950\) 0 0
\(951\) 3.35768 + 1.61697i 0.108880 + 0.0524339i
\(952\) 0.0799553 0.228499i 0.00259137 0.00740570i
\(953\) −20.0953 + 2.26419i −0.650950 + 0.0733444i −0.431263 0.902226i \(-0.641932\pi\)
−0.219687 + 0.975571i \(0.570503\pi\)
\(954\) −13.5681 1.52876i −0.439285 0.0494955i
\(955\) 0 0
\(956\) 21.6207i 0.699263i
\(957\) 0.376251 + 7.44891i 0.0121625 + 0.240789i
\(958\) −0.688219 0.688219i −0.0222353 0.0222353i
\(959\) −0.431842 0.151108i −0.0139449 0.00487953i
\(960\) 0 0
\(961\) 21.8846 + 17.4524i 0.705956 + 0.562981i
\(962\) −39.3322 13.7629i −1.26812 0.443735i
\(963\) −28.1080 + 9.83541i −0.905767 + 0.316942i
\(964\) 17.7993 14.1945i 0.573278 0.457174i
\(965\) 0 0
\(966\) −0.0406136 0.00926979i −0.00130672 0.000298251i
\(967\) 7.32367 9.18359i 0.235513 0.295324i −0.650004 0.759931i \(-0.725233\pi\)
0.885517 + 0.464606i \(0.153804\pi\)
\(968\) 2.63534 + 11.5462i 0.0847031 + 0.371109i
\(969\) 6.08264 6.08264i 0.195402 0.195402i
\(970\) 0 0
\(971\) 25.2257 8.82685i 0.809531 0.283267i 0.106396 0.994324i \(-0.466069\pi\)
0.703135 + 0.711057i \(0.251783\pi\)
\(972\) −17.6397 8.49483i −0.565794 0.272472i
\(973\) 0.496344 0.789927i 0.0159121 0.0253239i
\(974\) −47.1962 47.1962i −1.51226 1.51226i
\(975\) 0 0
\(976\) 4.30761 + 38.2311i 0.137883 + 1.22375i
\(977\) 8.05689 + 12.8225i 0.257763 + 0.410227i 0.950386 0.311072i \(-0.100688\pi\)
−0.692624 + 0.721299i \(0.743545\pi\)
\(978\) 4.09799 17.9545i 0.131039 0.574121i
\(979\) 2.23600 + 2.80385i 0.0714629 + 0.0896116i
\(980\) 0 0
\(981\) −35.4939 + 17.0929i −1.13323 + 0.545736i
\(982\) −3.66531 32.5305i −0.116965 1.03809i
\(983\) −6.90007 + 5.50262i −0.220078 + 0.175506i −0.727323 0.686296i \(-0.759236\pi\)
0.507244 + 0.861802i \(0.330664\pi\)
\(984\) 1.08450 3.09931i 0.0345724 0.0988024i
\(985\) 0 0
\(986\) 30.8675 12.5826i 0.983022 0.400710i
\(987\) −0.112863 + 0.112863i −0.00359246 + 0.00359246i
\(988\) −12.0123 + 5.78483i −0.382163 + 0.184040i
\(989\) −0.153020 + 1.35809i −0.00486575 + 0.0431847i
\(990\) 0 0
\(991\) 11.0604 + 22.9671i 0.351345 + 0.729575i 0.999490 0.0319421i \(-0.0101692\pi\)
−0.648145 + 0.761517i \(0.724455\pi\)
\(992\) 3.48204 + 9.95110i 0.110555 + 0.315948i
\(993\) −1.02116 + 9.06307i −0.0324056 + 0.287608i
\(994\) 0.405753 + 0.645753i 0.0128697 + 0.0204820i
\(995\) 0 0
\(996\) 11.9621 1.34780i 0.379032 0.0427067i
\(997\) −15.5544 + 3.55020i −0.492614 + 0.112436i −0.461609 0.887083i \(-0.652728\pi\)
−0.0310044 + 0.999519i \(0.509871\pi\)
\(998\) 16.4345i 0.520225i
\(999\) −6.18025 27.0774i −0.195534 0.856692i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 725.2.bd.a.543.2 yes 120
5.2 odd 4 725.2.y.a.282.9 yes 120
5.3 odd 4 725.2.y.a.282.2 yes 120
5.4 even 2 inner 725.2.bd.a.543.9 yes 120
29.18 odd 28 725.2.y.a.18.9 yes 120
145.18 even 28 inner 725.2.bd.a.482.9 yes 120
145.47 even 28 inner 725.2.bd.a.482.2 yes 120
145.134 odd 28 725.2.y.a.18.2 120
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
725.2.y.a.18.2 120 145.134 odd 28
725.2.y.a.18.9 yes 120 29.18 odd 28
725.2.y.a.282.2 yes 120 5.3 odd 4
725.2.y.a.282.9 yes 120 5.2 odd 4
725.2.bd.a.482.2 yes 120 145.47 even 28 inner
725.2.bd.a.482.9 yes 120 145.18 even 28 inner
725.2.bd.a.543.2 yes 120 1.1 even 1 trivial
725.2.bd.a.543.9 yes 120 5.4 even 2 inner