Properties

Label 725.2.y.a.18.2
Level $725$
Weight $2$
Character 725.18
Analytic conductor $5.789$
Analytic rank $0$
Dimension $120$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [725,2,Mod(18,725)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(725, base_ring=CyclotomicField(28))
 
chi = DirichletCharacter(H, H._module([21, 11]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("725.18");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 725 = 5^{2} \cdot 29 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 725.y (of order \(28\), degree \(12\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(5.78915414654\)
Analytic rank: \(0\)
Dimension: \(120\)
Relative dimension: \(10\) over \(\Q(\zeta_{28})\)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{28}]$

Embedding invariants

Embedding label 18.2
Character \(\chi\) \(=\) 725.18
Dual form 725.2.y.a.282.2

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-1.61621 - 0.778326i) q^{2} +(0.677001 + 0.539890i) q^{3} +(0.759368 + 0.952217i) q^{4} +(-0.673965 - 1.39950i) q^{6} +(-0.00559911 - 0.0496935i) q^{7} +(0.312179 + 1.36775i) q^{8} +(-0.500714 - 2.19377i) q^{9} +(1.35429 - 0.850959i) q^{11} +1.05463i q^{12} +(2.02300 + 3.21958i) q^{13} +(-0.0296284 + 0.0846731i) q^{14} +(1.10204 - 4.82834i) q^{16} -3.45060 q^{17} +(-0.898211 + 3.93532i) q^{18} +(2.86087 + 0.322342i) q^{19} +(0.0230384 - 0.0366654i) q^{21} +(-2.85115 + 0.321247i) q^{22} +(0.506191 + 0.177124i) q^{23} +(-0.527087 + 1.09451i) q^{24} +(-0.763706 - 6.77808i) q^{26} +(1.97253 - 4.09601i) q^{27} +(0.0430672 - 0.0430672i) q^{28} +(5.37491 - 0.332224i) q^{29} +(-0.572869 - 1.63716i) q^{31} +(-3.78973 + 4.75217i) q^{32} +(1.37628 + 0.155070i) q^{33} +(5.57689 + 2.68569i) q^{34} +(1.70872 - 2.14267i) q^{36} +(5.95603 - 1.35942i) q^{37} +(-4.37288 - 2.74766i) q^{38} +(-0.368650 + 3.27185i) q^{39} +(-1.91127 + 1.91127i) q^{41} +(-0.0657726 + 0.0413277i) q^{42} +(1.10572 + 2.29605i) q^{43} +(1.83870 + 0.643391i) q^{44} +(-0.680251 - 0.680251i) q^{46} +(3.59355 + 0.820205i) q^{47} +(3.35285 - 2.67381i) q^{48} +(6.82206 - 1.55709i) q^{49} +(-2.33605 - 1.86294i) q^{51} +(-1.52954 + 4.37118i) q^{52} +(-1.11721 - 3.19279i) q^{53} +(-6.37606 + 5.08474i) q^{54} +(0.0662202 - 0.0231715i) q^{56} +(1.76278 + 1.76278i) q^{57} +(-8.94556 - 3.64649i) q^{58} -4.31330i q^{59} +(7.71955 - 0.869785i) q^{61} +(-0.348372 + 3.09188i) q^{62} +(-0.106213 + 0.0371654i) q^{63} +(0.899637 - 0.433242i) q^{64} +(-2.10367 - 1.32182i) q^{66} +(4.54405 - 7.23181i) q^{67} +(-2.62027 - 3.28571i) q^{68} +(0.247064 + 0.393200i) q^{69} +(8.28838 + 1.89177i) q^{71} +(2.84421 - 1.36970i) q^{72} +(1.98454 - 0.955706i) q^{73} +(-10.6843 - 2.43862i) q^{74} +(1.86551 + 2.96894i) q^{76} +(-0.0498700 - 0.0625350i) q^{77} +(3.14239 - 5.00108i) q^{78} +(1.97211 + 1.23916i) q^{79} +(-2.53525 + 1.22091i) q^{81} +(4.57661 - 1.60143i) q^{82} +(1.27799 - 11.3425i) q^{83} +(0.0524080 - 0.00590497i) q^{84} -4.57151i q^{86} +(3.81818 + 2.67694i) q^{87} +(1.58668 + 1.58668i) q^{88} +(-2.11636 + 0.740547i) q^{89} +(0.148665 - 0.118557i) q^{91} +(0.215725 + 0.616506i) q^{92} +(0.496056 - 1.41765i) q^{93} +(-5.16955 - 4.12258i) q^{94} +(-5.13130 + 1.17119i) q^{96} +(8.13599 - 6.48824i) q^{97} +(-12.2378 - 2.79320i) q^{98} +(-2.54493 - 2.54493i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 120 q - 20 q^{4} + 28 q^{9} - 12 q^{11} + 20 q^{16} + 4 q^{19} + 4 q^{21} + 12 q^{29} - 32 q^{31} - 40 q^{34} - 16 q^{36} - 184 q^{39} - 4 q^{41} + 36 q^{44} + 76 q^{46} - 84 q^{49} + 112 q^{51} + 168 q^{54}+ \cdots - 208 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/725\mathbb{Z}\right)^\times\).

\(n\) \(176\) \(552\)
\(\chi(n)\) \(e\left(\frac{11}{28}\right)\) \(e\left(\frac{3}{4}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −1.61621 0.778326i −1.14283 0.550360i −0.235960 0.971763i \(-0.575824\pi\)
−0.906874 + 0.421403i \(0.861538\pi\)
\(3\) 0.677001 + 0.539890i 0.390866 + 0.311706i 0.799130 0.601159i \(-0.205294\pi\)
−0.408263 + 0.912864i \(0.633865\pi\)
\(4\) 0.759368 + 0.952217i 0.379684 + 0.476108i
\(5\) 0 0
\(6\) −0.673965 1.39950i −0.275145 0.571345i
\(7\) −0.00559911 0.0496935i −0.00211626 0.0187824i 0.992610 0.121351i \(-0.0387226\pi\)
−0.994726 + 0.102568i \(0.967294\pi\)
\(8\) 0.312179 + 1.36775i 0.110372 + 0.483572i
\(9\) −0.500714 2.19377i −0.166905 0.731257i
\(10\) 0 0
\(11\) 1.35429 0.850959i 0.408335 0.256574i −0.312166 0.950027i \(-0.601055\pi\)
0.720501 + 0.693454i \(0.243912\pi\)
\(12\) 1.05463i 0.304444i
\(13\) 2.02300 + 3.21958i 0.561079 + 0.892951i 0.999984 0.00558163i \(-0.00177670\pi\)
−0.438906 + 0.898533i \(0.644634\pi\)
\(14\) −0.0296284 + 0.0846731i −0.00791852 + 0.0226298i
\(15\) 0 0
\(16\) 1.10204 4.82834i 0.275509 1.20708i
\(17\) −3.45060 −0.836892 −0.418446 0.908242i \(-0.637425\pi\)
−0.418446 + 0.908242i \(0.637425\pi\)
\(18\) −0.898211 + 3.93532i −0.211710 + 0.927563i
\(19\) 2.86087 + 0.322342i 0.656328 + 0.0739504i 0.433847 0.900987i \(-0.357156\pi\)
0.222481 + 0.974937i \(0.428584\pi\)
\(20\) 0 0
\(21\) 0.0230384 0.0366654i 0.00502739 0.00800105i
\(22\) −2.85115 + 0.321247i −0.607867 + 0.0684902i
\(23\) 0.506191 + 0.177124i 0.105548 + 0.0369329i 0.382536 0.923940i \(-0.375051\pi\)
−0.276988 + 0.960873i \(0.589336\pi\)
\(24\) −0.527087 + 1.09451i −0.107591 + 0.223416i
\(25\) 0 0
\(26\) −0.763706 6.77808i −0.149775 1.32929i
\(27\) 1.97253 4.09601i 0.379614 0.788277i
\(28\) 0.0430672 0.0430672i 0.00813893 0.00813893i
\(29\) 5.37491 0.332224i 0.998095 0.0616925i
\(30\) 0 0
\(31\) −0.572869 1.63716i −0.102890 0.294043i 0.880918 0.473270i \(-0.156926\pi\)
−0.983808 + 0.179226i \(0.942641\pi\)
\(32\) −3.78973 + 4.75217i −0.669936 + 0.840073i
\(33\) 1.37628 + 0.155070i 0.239580 + 0.0269942i
\(34\) 5.57689 + 2.68569i 0.956429 + 0.460592i
\(35\) 0 0
\(36\) 1.70872 2.14267i 0.284787 0.357111i
\(37\) 5.95603 1.35942i 0.979165 0.223488i 0.297154 0.954830i \(-0.403963\pi\)
0.682011 + 0.731342i \(0.261106\pi\)
\(38\) −4.37288 2.74766i −0.709374 0.445729i
\(39\) −0.368650 + 3.27185i −0.0590312 + 0.523916i
\(40\) 0 0
\(41\) −1.91127 + 1.91127i −0.298490 + 0.298490i −0.840422 0.541932i \(-0.817693\pi\)
0.541932 + 0.840422i \(0.317693\pi\)
\(42\) −0.0657726 + 0.0413277i −0.0101489 + 0.00637700i
\(43\) 1.10572 + 2.29605i 0.168621 + 0.350144i 0.968106 0.250541i \(-0.0806086\pi\)
−0.799485 + 0.600686i \(0.794894\pi\)
\(44\) 1.83870 + 0.643391i 0.277195 + 0.0969948i
\(45\) 0 0
\(46\) −0.680251 0.680251i −0.100298 0.100298i
\(47\) 3.59355 + 0.820205i 0.524173 + 0.119639i 0.476416 0.879220i \(-0.341936\pi\)
0.0477571 + 0.998859i \(0.484793\pi\)
\(48\) 3.35285 2.67381i 0.483942 0.385931i
\(49\) 6.82206 1.55709i 0.974580 0.222441i
\(50\) 0 0
\(51\) −2.33605 1.86294i −0.327113 0.260864i
\(52\) −1.52954 + 4.37118i −0.212109 + 0.606173i
\(53\) −1.11721 3.19279i −0.153460 0.438563i 0.841328 0.540524i \(-0.181774\pi\)
−0.994788 + 0.101961i \(0.967488\pi\)
\(54\) −6.37606 + 5.08474i −0.867672 + 0.691945i
\(55\) 0 0
\(56\) 0.0662202 0.0231715i 0.00884905 0.00309642i
\(57\) 1.76278 + 1.76278i 0.233486 + 0.233486i
\(58\) −8.94556 3.64649i −1.17461 0.478807i
\(59\) 4.31330i 0.561544i −0.959774 0.280772i \(-0.909410\pi\)
0.959774 0.280772i \(-0.0905905\pi\)
\(60\) 0 0
\(61\) 7.71955 0.869785i 0.988387 0.111365i 0.397057 0.917794i \(-0.370031\pi\)
0.591330 + 0.806429i \(0.298603\pi\)
\(62\) −0.348372 + 3.09188i −0.0442432 + 0.392670i
\(63\) −0.106213 + 0.0371654i −0.0133815 + 0.00468240i
\(64\) 0.899637 0.433242i 0.112455 0.0541553i
\(65\) 0 0
\(66\) −2.10367 1.32182i −0.258944 0.162705i
\(67\) 4.54405 7.23181i 0.555144 0.883506i −0.444783 0.895639i \(-0.646719\pi\)
0.999926 + 0.0121324i \(0.00386195\pi\)
\(68\) −2.62027 3.28571i −0.317754 0.398451i
\(69\) 0.247064 + 0.393200i 0.0297430 + 0.0473358i
\(70\) 0 0
\(71\) 8.28838 + 1.89177i 0.983650 + 0.224512i 0.683956 0.729524i \(-0.260258\pi\)
0.299694 + 0.954035i \(0.403115\pi\)
\(72\) 2.84421 1.36970i 0.335194 0.161421i
\(73\) 1.98454 0.955706i 0.232273 0.111857i −0.314127 0.949381i \(-0.601712\pi\)
0.546401 + 0.837524i \(0.315998\pi\)
\(74\) −10.6843 2.43862i −1.24202 0.283483i
\(75\) 0 0
\(76\) 1.86551 + 2.96894i 0.213989 + 0.340561i
\(77\) −0.0498700 0.0625350i −0.00568321 0.00712652i
\(78\) 3.14239 5.00108i 0.355805 0.566261i
\(79\) 1.97211 + 1.23916i 0.221880 + 0.139416i 0.638386 0.769717i \(-0.279603\pi\)
−0.416506 + 0.909133i \(0.636745\pi\)
\(80\) 0 0
\(81\) −2.53525 + 1.22091i −0.281695 + 0.135657i
\(82\) 4.57661 1.60143i 0.505402 0.176848i
\(83\) 1.27799 11.3425i 0.140278 1.24500i −0.704432 0.709772i \(-0.748798\pi\)
0.844709 0.535226i \(-0.179773\pi\)
\(84\) 0.0524080 0.00590497i 0.00571819 0.000644285i
\(85\) 0 0
\(86\) 4.57151i 0.492959i
\(87\) 3.81818 + 2.67694i 0.409352 + 0.286998i
\(88\) 1.58668 + 1.58668i 0.169141 + 0.169141i
\(89\) −2.11636 + 0.740547i −0.224334 + 0.0784978i −0.440106 0.897946i \(-0.645059\pi\)
0.215772 + 0.976444i \(0.430773\pi\)
\(90\) 0 0
\(91\) 0.148665 0.118557i 0.0155844 0.0124281i
\(92\) 0.215725 + 0.616506i 0.0224909 + 0.0642752i
\(93\) 0.496056 1.41765i 0.0514386 0.147003i
\(94\) −5.16955 4.12258i −0.533199 0.425212i
\(95\) 0 0
\(96\) −5.13130 + 1.17119i −0.523711 + 0.119534i
\(97\) 8.13599 6.48824i 0.826085 0.658781i −0.116336 0.993210i \(-0.537115\pi\)
0.942421 + 0.334429i \(0.108544\pi\)
\(98\) −12.2378 2.79320i −1.23621 0.282156i
\(99\) −2.54493 2.54493i −0.255775 0.255775i
\(100\) 0 0
\(101\) −10.7478 3.76081i −1.06944 0.374215i −0.262555 0.964917i \(-0.584565\pi\)
−0.806890 + 0.590702i \(0.798851\pi\)
\(102\) 2.32558 + 4.82912i 0.230267 + 0.478154i
\(103\) 0.578374 0.363416i 0.0569889 0.0358085i −0.503236 0.864149i \(-0.667857\pi\)
0.560225 + 0.828340i \(0.310715\pi\)
\(104\) −3.77204 + 3.77204i −0.369879 + 0.369879i
\(105\) 0 0
\(106\) −0.679392 + 6.02977i −0.0659884 + 0.585663i
\(107\) −11.2056 7.04093i −1.08328 0.680673i −0.132706 0.991156i \(-0.542366\pi\)
−0.950579 + 0.310483i \(0.899509\pi\)
\(108\) 5.39816 1.23210i 0.519438 0.118558i
\(109\) 10.9158 13.6879i 1.04554 1.31107i 0.0966979 0.995314i \(-0.469172\pi\)
0.948842 0.315752i \(-0.102257\pi\)
\(110\) 0 0
\(111\) 4.76617 + 2.29527i 0.452385 + 0.217857i
\(112\) −0.246107 0.0277296i −0.0232549 0.00262020i
\(113\) 1.65404 2.07410i 0.155599 0.195114i −0.697922 0.716174i \(-0.745892\pi\)
0.853520 + 0.521060i \(0.174463\pi\)
\(114\) −1.47701 4.22104i −0.138334 0.395337i
\(115\) 0 0
\(116\) 4.39788 + 4.86580i 0.408333 + 0.451778i
\(117\) 6.05009 6.05009i 0.559331 0.559331i
\(118\) −3.35716 + 6.97121i −0.309051 + 0.641752i
\(119\) 0.0193203 + 0.171472i 0.00177109 + 0.0157188i
\(120\) 0 0
\(121\) −3.66274 + 7.60576i −0.332976 + 0.691433i
\(122\) −13.1534 4.60258i −1.19085 0.416698i
\(123\) −2.32581 + 0.262056i −0.209711 + 0.0236288i
\(124\) 1.12392 1.78870i 0.100931 0.160630i
\(125\) 0 0
\(126\) 0.200589 + 0.0226009i 0.0178699 + 0.00201345i
\(127\) −2.65798 + 11.6454i −0.235857 + 1.03336i 0.708828 + 0.705381i \(0.249224\pi\)
−0.944686 + 0.327977i \(0.893633\pi\)
\(128\) 10.3653 0.916172
\(129\) −0.491041 + 2.15139i −0.0432338 + 0.189420i
\(130\) 0 0
\(131\) −5.93311 + 16.9558i −0.518378 + 1.48144i 0.325833 + 0.945427i \(0.394355\pi\)
−0.844211 + 0.536011i \(0.819930\pi\)
\(132\) 0.897444 + 1.42827i 0.0781125 + 0.124315i
\(133\) 0.143971i 0.0124839i
\(134\) −12.9728 + 8.15138i −1.12068 + 0.704172i
\(135\) 0 0
\(136\) −1.07721 4.71954i −0.0923696 0.404698i
\(137\) 2.03582 + 8.91949i 0.173932 + 0.762044i 0.984355 + 0.176199i \(0.0563801\pi\)
−0.810423 + 0.585845i \(0.800763\pi\)
\(138\) −0.0932697 0.827791i −0.00793964 0.0704663i
\(139\) 8.09430 + 16.8080i 0.686550 + 1.42564i 0.894306 + 0.447455i \(0.147670\pi\)
−0.207756 + 0.978181i \(0.566616\pi\)
\(140\) 0 0
\(141\) 1.99002 + 2.49540i 0.167590 + 0.210151i
\(142\) −11.9234 9.50856i −1.00059 0.797941i
\(143\) 5.47947 + 2.63877i 0.458216 + 0.220665i
\(144\) −11.1441 −0.928673
\(145\) 0 0
\(146\) −3.95129 −0.327011
\(147\) 5.45919 + 2.62901i 0.450267 + 0.216837i
\(148\) 5.81728 + 4.63913i 0.478177 + 0.381334i
\(149\) −7.09534 8.89728i −0.581273 0.728893i 0.401056 0.916053i \(-0.368643\pi\)
−0.982329 + 0.187160i \(0.940072\pi\)
\(150\) 0 0
\(151\) 7.35606 + 15.2750i 0.598627 + 1.24306i 0.951574 + 0.307419i \(0.0994654\pi\)
−0.352947 + 0.935643i \(0.614820\pi\)
\(152\) 0.452221 + 4.01357i 0.0366800 + 0.325544i
\(153\) 1.72776 + 7.56982i 0.139681 + 0.611984i
\(154\) 0.0319278 + 0.139885i 0.00257282 + 0.0112722i
\(155\) 0 0
\(156\) −3.39546 + 2.13351i −0.271854 + 0.170817i
\(157\) 21.8717i 1.74555i −0.488120 0.872776i \(-0.662317\pi\)
0.488120 0.872776i \(-0.337683\pi\)
\(158\) −2.22288 3.53769i −0.176843 0.281444i
\(159\) 0.967406 2.76469i 0.0767203 0.219254i
\(160\) 0 0
\(161\) 0.00596768 0.0261461i 0.000470319 0.00206060i
\(162\) 5.04777 0.396591
\(163\) −2.63820 + 11.5587i −0.206640 + 0.905347i 0.760145 + 0.649754i \(0.225128\pi\)
−0.966784 + 0.255593i \(0.917729\pi\)
\(164\) −3.27130 0.368587i −0.255446 0.0287818i
\(165\) 0 0
\(166\) −10.8936 + 17.3371i −0.845510 + 1.34562i
\(167\) −24.4686 + 2.75695i −1.89344 + 0.213339i −0.980743 0.195302i \(-0.937431\pi\)
−0.912695 + 0.408641i \(0.866003\pi\)
\(168\) 0.0573412 + 0.0200645i 0.00442397 + 0.00154801i
\(169\) −0.632702 + 1.31382i −0.0486694 + 0.101063i
\(170\) 0 0
\(171\) −0.725331 6.43749i −0.0554674 0.492287i
\(172\) −1.34669 + 2.79643i −0.102684 + 0.213226i
\(173\) −8.89672 + 8.89672i −0.676405 + 0.676405i −0.959185 0.282780i \(-0.908744\pi\)
0.282780 + 0.959185i \(0.408744\pi\)
\(174\) −4.08745 7.29829i −0.309869 0.553282i
\(175\) 0 0
\(176\) −2.61624 7.47678i −0.197206 0.563583i
\(177\) 2.32871 2.92011i 0.175036 0.219489i
\(178\) 3.99687 + 0.450339i 0.299578 + 0.0337544i
\(179\) 1.78074 + 0.857561i 0.133099 + 0.0640971i 0.499248 0.866459i \(-0.333610\pi\)
−0.366149 + 0.930556i \(0.619324\pi\)
\(180\) 0 0
\(181\) −8.08934 + 10.1437i −0.601276 + 0.753976i −0.985576 0.169232i \(-0.945871\pi\)
0.384300 + 0.923208i \(0.374443\pi\)
\(182\) −0.332550 + 0.0759024i −0.0246503 + 0.00562626i
\(183\) 5.69573 + 3.57886i 0.421040 + 0.264557i
\(184\) −0.0842383 + 0.747636i −0.00621013 + 0.0551165i
\(185\) 0 0
\(186\) −1.90512 + 1.90512i −0.139690 + 0.139690i
\(187\) −4.67312 + 2.93632i −0.341732 + 0.214725i
\(188\) 1.94781 + 4.04468i 0.142059 + 0.294988i
\(189\) −0.214589 0.0750880i −0.0156091 0.00546185i
\(190\) 0 0
\(191\) 9.41763 + 9.41763i 0.681436 + 0.681436i 0.960324 0.278888i \(-0.0899658\pi\)
−0.278888 + 0.960324i \(0.589966\pi\)
\(192\) 0.842958 + 0.192400i 0.0608353 + 0.0138853i
\(193\) −8.89678 + 7.09495i −0.640404 + 0.510705i −0.889003 0.457901i \(-0.848601\pi\)
0.248599 + 0.968607i \(0.420030\pi\)
\(194\) −18.1994 + 4.15391i −1.30664 + 0.298233i
\(195\) 0 0
\(196\) 6.66314 + 5.31367i 0.475938 + 0.379548i
\(197\) −7.58813 + 21.6856i −0.540632 + 1.54504i 0.272022 + 0.962291i \(0.412308\pi\)
−0.812654 + 0.582746i \(0.801978\pi\)
\(198\) 2.13235 + 6.09392i 0.151540 + 0.433076i
\(199\) 1.71680 1.36910i 0.121701 0.0970531i −0.560748 0.827986i \(-0.689486\pi\)
0.682449 + 0.730933i \(0.260915\pi\)
\(200\) 0 0
\(201\) 6.98070 2.44265i 0.492381 0.172292i
\(202\) 14.4435 + 14.4435i 1.01624 + 1.01624i
\(203\) −0.0466041 0.265238i −0.00327097 0.0186160i
\(204\) 3.63909i 0.254787i
\(205\) 0 0
\(206\) −1.21763 + 0.137194i −0.0848363 + 0.00955876i
\(207\) 0.135112 1.19916i 0.00939096 0.0833471i
\(208\) 17.7746 6.21962i 1.23245 0.431253i
\(209\) 4.14875 1.99793i 0.286975 0.138200i
\(210\) 0 0
\(211\) 8.46368 + 5.31808i 0.582664 + 0.366112i 0.790880 0.611971i \(-0.209623\pi\)
−0.208216 + 0.978083i \(0.566766\pi\)
\(212\) 2.19186 3.48832i 0.150537 0.239579i
\(213\) 4.58989 + 5.75554i 0.314494 + 0.394363i
\(214\) 12.6304 + 20.1012i 0.863399 + 1.37409i
\(215\) 0 0
\(216\) 6.21809 + 1.41924i 0.423087 + 0.0965669i
\(217\) −0.0781489 + 0.0376345i −0.00530509 + 0.00255480i
\(218\) −28.2958 + 13.6266i −1.91644 + 0.922907i
\(219\) 1.85951 + 0.424422i 0.125654 + 0.0286798i
\(220\) 0 0
\(221\) −6.98055 11.1095i −0.469562 0.747304i
\(222\) −5.91667 7.41927i −0.397101 0.497949i
\(223\) −3.30385 + 5.25804i −0.221242 + 0.352105i −0.938840 0.344352i \(-0.888098\pi\)
0.717598 + 0.696457i \(0.245241\pi\)
\(224\) 0.257371 + 0.161717i 0.0171963 + 0.0108052i
\(225\) 0 0
\(226\) −4.28759 + 2.06480i −0.285207 + 0.137348i
\(227\) −9.71679 + 3.40005i −0.644926 + 0.225669i −0.632870 0.774258i \(-0.718123\pi\)
−0.0120560 + 0.999927i \(0.503838\pi\)
\(228\) −0.339950 + 3.01714i −0.0225138 + 0.199815i
\(229\) 2.88517 0.325080i 0.190657 0.0214819i −0.0161195 0.999870i \(-0.505131\pi\)
0.206777 + 0.978388i \(0.433703\pi\)
\(230\) 0 0
\(231\) 0.0692605i 0.00455701i
\(232\) 2.13233 + 7.24780i 0.139995 + 0.475842i
\(233\) 9.72899 + 9.72899i 0.637367 + 0.637367i 0.949905 0.312538i \(-0.101179\pi\)
−0.312538 + 0.949905i \(0.601179\pi\)
\(234\) −14.4872 + 5.06928i −0.947055 + 0.331389i
\(235\) 0 0
\(236\) 4.10720 3.27538i 0.267356 0.213209i
\(237\) 0.666111 + 1.90364i 0.0432686 + 0.123654i
\(238\) 0.102236 0.292173i 0.00662695 0.0189387i
\(239\) −13.8791 11.0682i −0.897762 0.715941i 0.0616058 0.998101i \(-0.480378\pi\)
−0.959368 + 0.282160i \(0.908949\pi\)
\(240\) 0 0
\(241\) −18.2239 + 4.15948i −1.17390 + 0.267935i −0.764625 0.644475i \(-0.777076\pi\)
−0.409276 + 0.912411i \(0.634219\pi\)
\(242\) 11.8395 9.44171i 0.761074 0.606936i
\(243\) −15.6722 3.57709i −1.00538 0.229470i
\(244\) 6.69020 + 6.69020i 0.428296 + 0.428296i
\(245\) 0 0
\(246\) 3.96296 + 1.38670i 0.252669 + 0.0884128i
\(247\) 4.74972 + 9.86289i 0.302217 + 0.627561i
\(248\) 2.06039 1.29463i 0.130835 0.0822090i
\(249\) 6.98888 6.98888i 0.442902 0.442902i
\(250\) 0 0
\(251\) −0.444851 + 3.94816i −0.0280788 + 0.249206i 0.971830 + 0.235684i \(0.0757329\pi\)
−0.999909 + 0.0135222i \(0.995696\pi\)
\(252\) −0.116044 0.0729152i −0.00731008 0.00459323i
\(253\) 0.836257 0.190870i 0.0525750 0.0119999i
\(254\) 13.3597 16.7526i 0.838265 1.05115i
\(255\) 0 0
\(256\) −18.5518 8.93407i −1.15949 0.558380i
\(257\) −24.4713 2.75726i −1.52648 0.171993i −0.691542 0.722336i \(-0.743068\pi\)
−0.834939 + 0.550343i \(0.814497\pi\)
\(258\) 2.46811 3.09491i 0.153658 0.192681i
\(259\) −0.100903 0.288364i −0.00626980 0.0179181i
\(260\) 0 0
\(261\) −3.42012 11.6250i −0.211700 0.719568i
\(262\) 22.7863 22.7863i 1.40774 1.40774i
\(263\) 3.52401 7.31769i 0.217300 0.451228i −0.763613 0.645674i \(-0.776577\pi\)
0.980913 + 0.194446i \(0.0622908\pi\)
\(264\) 0.217551 + 1.93082i 0.0133893 + 0.118834i
\(265\) 0 0
\(266\) −0.112057 + 0.232688i −0.00687063 + 0.0142670i
\(267\) −1.83259 0.641251i −0.112153 0.0392439i
\(268\) 10.3369 1.16468i 0.631424 0.0711444i
\(269\) 4.23287 6.73657i 0.258083 0.410736i −0.692400 0.721514i \(-0.743447\pi\)
0.950483 + 0.310778i \(0.100589\pi\)
\(270\) 0 0
\(271\) 25.3607 + 2.85746i 1.54055 + 0.173579i 0.841013 0.541015i \(-0.181960\pi\)
0.699539 + 0.714594i \(0.253389\pi\)
\(272\) −3.80268 + 16.6606i −0.230571 + 1.01020i
\(273\) 0.164654 0.00996531
\(274\) 3.65197 16.0003i 0.220623 0.966614i
\(275\) 0 0
\(276\) −0.186799 + 0.533842i −0.0112440 + 0.0321335i
\(277\) 9.73540 + 15.4938i 0.584943 + 0.930932i 0.999779 + 0.0210355i \(0.00669631\pi\)
−0.414835 + 0.909896i \(0.636161\pi\)
\(278\) 33.4653i 2.00711i
\(279\) −3.30472 + 2.07650i −0.197849 + 0.124317i
\(280\) 0 0
\(281\) −5.32480 23.3295i −0.317651 1.39172i −0.841660 0.540007i \(-0.818422\pi\)
0.524009 0.851712i \(-0.324436\pi\)
\(282\) −1.27405 5.58198i −0.0758686 0.332402i
\(283\) −3.51609 31.2062i −0.209010 1.85501i −0.461148 0.887323i \(-0.652562\pi\)
0.252138 0.967691i \(-0.418866\pi\)
\(284\) 4.49255 + 9.32888i 0.266584 + 0.553567i
\(285\) 0 0
\(286\) −6.80215 8.52963i −0.402220 0.504367i
\(287\) 0.105679 + 0.0842763i 0.00623804 + 0.00497467i
\(288\) 12.3228 + 5.93433i 0.726125 + 0.349683i
\(289\) −5.09339 −0.299611
\(290\) 0 0
\(291\) 9.01101 0.528234
\(292\) 2.41704 + 1.16398i 0.141446 + 0.0681170i
\(293\) −4.76687 3.80145i −0.278483 0.222083i 0.474280 0.880374i \(-0.342708\pi\)
−0.752764 + 0.658291i \(0.771280\pi\)
\(294\) −6.77698 8.49807i −0.395242 0.495617i
\(295\) 0 0
\(296\) 3.71870 + 7.72196i 0.216145 + 0.448830i
\(297\) −0.814146 7.22574i −0.0472415 0.419280i
\(298\) 4.54259 + 19.9024i 0.263145 + 1.15291i
\(299\) 0.453758 + 1.98804i 0.0262415 + 0.114972i
\(300\) 0 0
\(301\) 0.107908 0.0678028i 0.00621969 0.00390809i
\(302\) 30.4131i 1.75007i
\(303\) −5.24583 8.34869i −0.301365 0.479620i
\(304\) 4.70915 13.4580i 0.270089 0.771869i
\(305\) 0 0
\(306\) 3.09936 13.5792i 0.177179 0.776271i
\(307\) −16.3838 −0.935075 −0.467538 0.883973i \(-0.654859\pi\)
−0.467538 + 0.883973i \(0.654859\pi\)
\(308\) 0.0216772 0.0949741i 0.00123517 0.00541165i
\(309\) 0.587764 + 0.0662251i 0.0334367 + 0.00376741i
\(310\) 0 0
\(311\) 10.3934 16.5410i 0.589354 0.937951i −0.410308 0.911947i \(-0.634579\pi\)
0.999662 0.0260043i \(-0.00827836\pi\)
\(312\) −4.59016 + 0.517186i −0.259866 + 0.0292799i
\(313\) −17.7270 6.20293i −1.00199 0.350610i −0.221079 0.975256i \(-0.570958\pi\)
−0.780908 + 0.624646i \(0.785243\pi\)
\(314\) −17.0233 + 35.3493i −0.960682 + 1.99488i
\(315\) 0 0
\(316\) 0.317609 + 2.81886i 0.0178669 + 0.158573i
\(317\) 1.86736 3.87760i 0.104881 0.217788i −0.841923 0.539597i \(-0.818577\pi\)
0.946805 + 0.321809i \(0.104291\pi\)
\(318\) −3.71536 + 3.71536i −0.208347 + 0.208347i
\(319\) 6.99650 5.02376i 0.391729 0.281276i
\(320\) 0 0
\(321\) −3.78486 10.8165i −0.211250 0.603718i
\(322\) −0.0299953 + 0.0376129i −0.00167157 + 0.00209608i
\(323\) −9.87169 1.11227i −0.549276 0.0618885i
\(324\) −3.08776 1.48699i −0.171542 0.0826105i
\(325\) 0 0
\(326\) 13.2603 16.6279i 0.734421 0.920935i
\(327\) 14.7799 3.37343i 0.817333 0.186551i
\(328\) −3.21080 2.01748i −0.177287 0.111397i
\(329\) 0.0206381 0.183168i 0.00113782 0.0100984i
\(330\) 0 0
\(331\) −7.44773 + 7.44773i −0.409364 + 0.409364i −0.881517 0.472153i \(-0.843477\pi\)
0.472153 + 0.881517i \(0.343477\pi\)
\(332\) 11.7709 7.39618i 0.646015 0.405918i
\(333\) −5.96453 12.3855i −0.326854 0.678720i
\(334\) 41.6923 + 14.5888i 2.28130 + 0.798261i
\(335\) 0 0
\(336\) −0.151644 0.151644i −0.00827285 0.00827285i
\(337\) 23.2516 + 5.30703i 1.26660 + 0.289092i 0.802479 0.596681i \(-0.203514\pi\)
0.464118 + 0.885773i \(0.346371\pi\)
\(338\) 2.04516 1.63096i 0.111242 0.0887125i
\(339\) 2.23957 0.511166i 0.121637 0.0277627i
\(340\) 0 0
\(341\) −2.16899 1.72971i −0.117458 0.0936693i
\(342\) −3.83818 + 10.9689i −0.207545 + 0.593130i
\(343\) −0.231191 0.660705i −0.0124831 0.0356747i
\(344\) −2.79523 + 2.22912i −0.150709 + 0.120186i
\(345\) 0 0
\(346\) 21.3035 7.45443i 1.14529 0.400753i
\(347\) 22.4557 + 22.4557i 1.20549 + 1.20549i 0.972474 + 0.233012i \(0.0748581\pi\)
0.233012 + 0.972474i \(0.425142\pi\)
\(348\) 0.350372 + 5.66852i 0.0187819 + 0.303864i
\(349\) 9.37948i 0.502072i −0.967978 0.251036i \(-0.919229\pi\)
0.967978 0.251036i \(-0.0807713\pi\)
\(350\) 0 0
\(351\) 17.1779 1.93548i 0.916886 0.103308i
\(352\) −1.08850 + 9.66074i −0.0580175 + 0.514919i
\(353\) 29.8092 10.4307i 1.58658 0.555169i 0.614319 0.789058i \(-0.289431\pi\)
0.972263 + 0.233889i \(0.0751452\pi\)
\(354\) −6.03648 + 2.90702i −0.320835 + 0.154506i
\(355\) 0 0
\(356\) −2.31226 1.45289i −0.122549 0.0770029i
\(357\) −0.0794962 + 0.126518i −0.00420739 + 0.00669602i
\(358\) −2.21060 2.77200i −0.116834 0.146505i
\(359\) 10.9969 + 17.5015i 0.580397 + 0.923696i 0.999873 + 0.0159298i \(0.00507083\pi\)
−0.419476 + 0.907766i \(0.637786\pi\)
\(360\) 0 0
\(361\) −10.4430 2.38354i −0.549631 0.125450i
\(362\) 20.9692 10.0982i 1.10212 0.530752i
\(363\) −6.58595 + 3.17163i −0.345673 + 0.166467i
\(364\) 0.225783 + 0.0515335i 0.0118343 + 0.00270109i
\(365\) 0 0
\(366\) −6.41998 10.2173i −0.335578 0.534069i
\(367\) −18.7845 23.5550i −0.980542 1.22956i −0.973288 0.229588i \(-0.926262\pi\)
−0.00725434 0.999974i \(-0.502309\pi\)
\(368\) 1.41305 2.24886i 0.0736606 0.117230i
\(369\) 5.14989 + 3.23589i 0.268093 + 0.168454i
\(370\) 0 0
\(371\) −0.152405 + 0.0733946i −0.00791250 + 0.00381046i
\(372\) 1.72660 0.604162i 0.0895199 0.0313244i
\(373\) 4.14321 36.7720i 0.214527 1.90398i −0.177652 0.984093i \(-0.556850\pi\)
0.392179 0.919889i \(-0.371721\pi\)
\(374\) 9.83816 1.10849i 0.508719 0.0573189i
\(375\) 0 0
\(376\) 5.17112i 0.266680i
\(377\) 11.9430 + 16.6329i 0.615098 + 0.856636i
\(378\) 0.288379 + 0.288379i 0.0148326 + 0.0148326i
\(379\) −22.8719 + 8.00324i −1.17485 + 0.411099i −0.845949 0.533264i \(-0.820965\pi\)
−0.328904 + 0.944363i \(0.606679\pi\)
\(380\) 0 0
\(381\) −8.08666 + 6.44890i −0.414292 + 0.330387i
\(382\) −7.89089 22.5509i −0.403733 1.15380i
\(383\) 1.63819 4.68168i 0.0837077 0.239223i −0.894420 0.447228i \(-0.852411\pi\)
0.978128 + 0.208005i \(0.0666970\pi\)
\(384\) 7.01732 + 5.59612i 0.358101 + 0.285576i
\(385\) 0 0
\(386\) 19.9013 4.54233i 1.01295 0.231199i
\(387\) 4.48336 3.57536i 0.227902 0.181746i
\(388\) 12.3564 + 2.82027i 0.627302 + 0.143178i
\(389\) 23.2351 + 23.2351i 1.17807 + 1.17807i 0.980236 + 0.197832i \(0.0633900\pi\)
0.197832 + 0.980236i \(0.436610\pi\)
\(390\) 0 0
\(391\) −1.74666 0.611183i −0.0883324 0.0309088i
\(392\) 4.25941 + 8.84476i 0.215133 + 0.446728i
\(393\) −13.1710 + 8.27589i −0.664389 + 0.417463i
\(394\) 29.1425 29.1425i 1.46818 1.46818i
\(395\) 0 0
\(396\) 0.490787 4.35585i 0.0246630 0.218890i
\(397\) −17.7209 11.1348i −0.889386 0.558838i 0.00805748 0.999968i \(-0.497435\pi\)
−0.897444 + 0.441129i \(0.854578\pi\)
\(398\) −3.84032 + 0.876528i −0.192498 + 0.0439364i
\(399\) 0.0777286 0.0974686i 0.00389130 0.00487953i
\(400\) 0 0
\(401\) −11.6907 5.62994i −0.583806 0.281146i 0.118578 0.992945i \(-0.462166\pi\)
−0.702383 + 0.711799i \(0.747881\pi\)
\(402\) −13.1835 1.48542i −0.657532 0.0740861i
\(403\) 4.11207 5.15638i 0.204837 0.256857i
\(404\) −4.58041 13.0901i −0.227884 0.651255i
\(405\) 0 0
\(406\) −0.131119 + 0.464953i −0.00650735 + 0.0230752i
\(407\) 6.90940 6.90940i 0.342486 0.342486i
\(408\) 1.81877 3.77671i 0.0900423 0.186975i
\(409\) −0.292252 2.59381i −0.0144509 0.128256i 0.984415 0.175859i \(-0.0562702\pi\)
−0.998866 + 0.0476033i \(0.984842\pi\)
\(410\) 0 0
\(411\) −3.43730 + 7.13762i −0.169549 + 0.352073i
\(412\) 0.785249 + 0.274771i 0.0386865 + 0.0135370i
\(413\) −0.214343 + 0.0241507i −0.0105471 + 0.00118838i
\(414\) −1.15171 + 1.83293i −0.0566032 + 0.0900835i
\(415\) 0 0
\(416\) −22.9666 2.58772i −1.12603 0.126873i
\(417\) −3.59462 + 15.7491i −0.176029 + 0.771235i
\(418\) −8.26031 −0.404025
\(419\) −3.84687 + 16.8542i −0.187932 + 0.823384i 0.789773 + 0.613399i \(0.210198\pi\)
−0.977705 + 0.209984i \(0.932659\pi\)
\(420\) 0 0
\(421\) −3.22153 + 9.20660i −0.157008 + 0.448702i −0.995337 0.0964625i \(-0.969247\pi\)
0.838329 + 0.545165i \(0.183533\pi\)
\(422\) −9.53990 15.1827i −0.464395 0.739080i
\(423\) 8.29412i 0.403274i
\(424\) 4.01816 2.52478i 0.195139 0.122614i
\(425\) 0 0
\(426\) −2.93854 12.8746i −0.142373 0.623777i
\(427\) −0.0864453 0.378741i −0.00418338 0.0183286i
\(428\) −1.80466 16.0168i −0.0872315 0.774201i
\(429\) 2.28496 + 4.74476i 0.110319 + 0.229079i
\(430\) 0 0
\(431\) −10.7212 13.4440i −0.516424 0.647575i 0.453422 0.891296i \(-0.350203\pi\)
−0.969845 + 0.243721i \(0.921632\pi\)
\(432\) −17.6031 14.0380i −0.846929 0.675404i
\(433\) 4.96082 + 2.38901i 0.238402 + 0.114808i 0.549271 0.835645i \(-0.314906\pi\)
−0.310869 + 0.950453i \(0.600620\pi\)
\(434\) 0.155597 0.00746889
\(435\) 0 0
\(436\) 21.3229 1.02118
\(437\) 1.39105 + 0.669894i 0.0665430 + 0.0320454i
\(438\) −2.67503 2.13326i −0.127818 0.101931i
\(439\) 2.44429 + 3.06504i 0.116659 + 0.146286i 0.836732 0.547612i \(-0.184463\pi\)
−0.720073 + 0.693898i \(0.755892\pi\)
\(440\) 0 0
\(441\) −6.83180 14.1864i −0.325324 0.675542i
\(442\) 2.63524 + 23.3884i 0.125346 + 1.11247i
\(443\) 7.11646 + 31.1792i 0.338113 + 1.48137i 0.802988 + 0.595995i \(0.203242\pi\)
−0.464875 + 0.885376i \(0.653901\pi\)
\(444\) 1.43368 + 6.28138i 0.0680396 + 0.298101i
\(445\) 0 0
\(446\) 9.43219 5.92664i 0.446627 0.280634i
\(447\) 9.85416i 0.466086i
\(448\) −0.0265665 0.0422803i −0.00125515 0.00199756i
\(449\) 2.93533 8.38870i 0.138527 0.395887i −0.853631 0.520878i \(-0.825605\pi\)
0.992158 + 0.124991i \(0.0398902\pi\)
\(450\) 0 0
\(451\) −0.962009 + 4.21484i −0.0452992 + 0.198469i
\(452\) 3.23101 0.151974
\(453\) −3.26677 + 14.3127i −0.153486 + 0.672467i
\(454\) 18.3507 + 2.06763i 0.861243 + 0.0970388i
\(455\) 0 0
\(456\) −1.86073 + 2.96134i −0.0871368 + 0.138677i
\(457\) −30.5147 + 3.43818i −1.42742 + 0.160831i −0.791614 0.611021i \(-0.790759\pi\)
−0.635802 + 0.771852i \(0.719331\pi\)
\(458\) −4.91606 1.72020i −0.229712 0.0803798i
\(459\) −6.80641 + 14.1337i −0.317696 + 0.659703i
\(460\) 0 0
\(461\) −0.686954 6.09689i −0.0319946 0.283960i −0.999514 0.0311644i \(-0.990078\pi\)
0.967520 0.252796i \(-0.0813501\pi\)
\(462\) −0.0539073 + 0.111940i −0.00250799 + 0.00520790i
\(463\) −8.48374 + 8.48374i −0.394273 + 0.394273i −0.876207 0.481935i \(-0.839934\pi\)
0.481935 + 0.876207i \(0.339934\pi\)
\(464\) 4.31925 26.3180i 0.200516 1.22178i
\(465\) 0 0
\(466\) −8.15177 23.2964i −0.377624 1.07919i
\(467\) 3.56319 4.46810i 0.164885 0.206759i −0.692524 0.721395i \(-0.743501\pi\)
0.857409 + 0.514636i \(0.172073\pi\)
\(468\) 10.3552 + 1.16675i 0.478671 + 0.0539332i
\(469\) −0.384816 0.185318i −0.0177692 0.00855718i
\(470\) 0 0
\(471\) 11.8083 14.8072i 0.544099 0.682278i
\(472\) 5.89951 1.34652i 0.271547 0.0619788i
\(473\) 3.45131 + 2.16860i 0.158692 + 0.0997125i
\(474\) 0.405074 3.59513i 0.0186057 0.165130i
\(475\) 0 0
\(476\) −0.148607 + 0.148607i −0.00681141 + 0.00681141i
\(477\) −6.44485 + 4.04957i −0.295090 + 0.185417i
\(478\) 13.8168 + 28.6910i 0.631967 + 1.31229i
\(479\) −0.512120 0.179198i −0.0233993 0.00818778i 0.318554 0.947905i \(-0.396803\pi\)
−0.341953 + 0.939717i \(0.611088\pi\)
\(480\) 0 0
\(481\) 16.4258 + 16.4258i 0.748952 + 0.748952i
\(482\) 32.6910 + 7.46151i 1.48904 + 0.339863i
\(483\) 0.0181562 0.0144791i 0.000826134 0.000658820i
\(484\) −10.0237 + 2.28784i −0.455623 + 0.103993i
\(485\) 0 0
\(486\) 22.5455 + 17.9795i 1.02269 + 0.815565i
\(487\) −12.2890 + 35.1198i −0.556866 + 1.59143i 0.229261 + 0.973365i \(0.426369\pi\)
−0.786127 + 0.618065i \(0.787917\pi\)
\(488\) 3.59953 + 10.2869i 0.162943 + 0.465665i
\(489\) −8.02648 + 6.40091i −0.362970 + 0.289459i
\(490\) 0 0
\(491\) 17.2250 6.02730i 0.777355 0.272008i 0.0877005 0.996147i \(-0.472048\pi\)
0.689654 + 0.724139i \(0.257762\pi\)
\(492\) −2.01568 2.01568i −0.0908737 0.0908737i
\(493\) −18.5466 + 1.14637i −0.835298 + 0.0516300i
\(494\) 19.6373i 0.883526i
\(495\) 0 0
\(496\) −8.53610 + 0.961788i −0.383282 + 0.0431856i
\(497\) 0.0476010 0.422471i 0.00213520 0.0189504i
\(498\) −16.7351 + 5.85588i −0.749920 + 0.262408i
\(499\) −8.25425 + 3.97504i −0.369511 + 0.177947i −0.609419 0.792849i \(-0.708597\pi\)
0.239908 + 0.970796i \(0.422883\pi\)
\(500\) 0 0
\(501\) −18.0537 11.3439i −0.806581 0.506808i
\(502\) 3.79193 6.03483i 0.169242 0.269348i
\(503\) 11.8551 + 14.8659i 0.528594 + 0.662836i 0.972409 0.233282i \(-0.0749466\pi\)
−0.443815 + 0.896119i \(0.646375\pi\)
\(504\) −0.0839903 0.133670i −0.00374122 0.00595413i
\(505\) 0 0
\(506\) −1.50013 0.342394i −0.0666888 0.0152213i
\(507\) −1.13766 + 0.547867i −0.0505251 + 0.0243316i
\(508\) −13.1073 + 6.31214i −0.581542 + 0.280056i
\(509\) −36.0022 8.21727i −1.59577 0.364224i −0.670014 0.742348i \(-0.733712\pi\)
−0.925755 + 0.378124i \(0.876569\pi\)
\(510\) 0 0
\(511\) −0.0586040 0.0932678i −0.00259249 0.00412592i
\(512\) 10.1047 + 12.6709i 0.446568 + 0.559978i
\(513\) 6.96347 11.0823i 0.307445 0.489295i
\(514\) 37.4048 + 23.5030i 1.64986 + 1.03667i
\(515\) 0 0
\(516\) −2.42147 + 1.16612i −0.106599 + 0.0513356i
\(517\) 5.56469 1.94717i 0.244735 0.0856363i
\(518\) −0.0613609 + 0.544593i −0.00269604 + 0.0239280i
\(519\) −10.8263 + 1.21984i −0.475224 + 0.0535448i
\(520\) 0 0
\(521\) 12.6825i 0.555630i −0.960635 0.277815i \(-0.910390\pi\)
0.960635 0.277815i \(-0.0896102\pi\)
\(522\) −3.52039 + 21.4504i −0.154083 + 0.938858i
\(523\) 24.6658 + 24.6658i 1.07856 + 1.07856i 0.996639 + 0.0819190i \(0.0261049\pi\)
0.0819190 + 0.996639i \(0.473895\pi\)
\(524\) −20.6510 + 7.22611i −0.902145 + 0.315674i
\(525\) 0 0
\(526\) −11.3911 + 9.08410i −0.496676 + 0.396086i
\(527\) 1.97674 + 5.64919i 0.0861081 + 0.246083i
\(528\) 2.26544 6.47426i 0.0985907 0.281756i
\(529\) −17.7573 14.1609i −0.772055 0.615693i
\(530\) 0 0
\(531\) −9.46240 + 2.15973i −0.410633 + 0.0937244i
\(532\) 0.137092 0.109327i 0.00594368 0.00473993i
\(533\) −10.0200 2.28700i −0.434014 0.0990609i
\(534\) 2.46275 + 2.46275i 0.106574 + 0.106574i
\(535\) 0 0
\(536\) 11.3098 + 3.95749i 0.488511 + 0.170937i
\(537\) 0.742576 + 1.54197i 0.0320445 + 0.0665411i
\(538\) −12.0845 + 7.59317i −0.520998 + 0.327365i
\(539\) 7.91405 7.91405i 0.340882 0.340882i
\(540\) 0 0
\(541\) 1.45294 12.8952i 0.0624669 0.554409i −0.923032 0.384724i \(-0.874297\pi\)
0.985498 0.169685i \(-0.0542749\pi\)
\(542\) −38.7642 24.3572i −1.66506 1.04623i
\(543\) −10.9530 + 2.49995i −0.470037 + 0.107283i
\(544\) 13.0768 16.3978i 0.560664 0.703051i
\(545\) 0 0
\(546\) −0.266116 0.128155i −0.0113887 0.00548451i
\(547\) 12.2767 + 1.38325i 0.524913 + 0.0591435i 0.370445 0.928854i \(-0.379205\pi\)
0.154468 + 0.987998i \(0.450634\pi\)
\(548\) −6.94736 + 8.71171i −0.296776 + 0.372146i
\(549\) −5.77340 16.4994i −0.246403 0.704178i
\(550\) 0 0
\(551\) 15.4840 + 0.782110i 0.659640 + 0.0333190i
\(552\) −0.460671 + 0.460671i −0.0196074 + 0.0196074i
\(553\) 0.0505361 0.104939i 0.00214901 0.00446247i
\(554\) −3.67523 32.6186i −0.156146 1.38583i
\(555\) 0 0
\(556\) −9.85830 + 20.4710i −0.418085 + 0.868163i
\(557\) −17.3588 6.07412i −0.735518 0.257369i −0.0635804 0.997977i \(-0.520252\pi\)
−0.671937 + 0.740608i \(0.734538\pi\)
\(558\) 6.95732 0.783902i 0.294527 0.0331852i
\(559\) −5.15545 + 8.20485i −0.218052 + 0.347028i
\(560\) 0 0
\(561\) −4.74899 0.535083i −0.200503 0.0225912i
\(562\) −9.55194 + 41.8498i −0.402924 + 1.76533i
\(563\) 33.1694 1.39792 0.698962 0.715159i \(-0.253646\pi\)
0.698962 + 0.715159i \(0.253646\pi\)
\(564\) −0.865009 + 3.78985i −0.0364235 + 0.159582i
\(565\) 0 0
\(566\) −18.6058 + 53.1724i −0.782062 + 2.23500i
\(567\) 0.0748666 + 0.119150i 0.00314410 + 0.00500381i
\(568\) 11.9270i 0.500445i
\(569\) 12.1703 7.64712i 0.510207 0.320584i −0.252208 0.967673i \(-0.581157\pi\)
0.762414 + 0.647089i \(0.224014\pi\)
\(570\) 0 0
\(571\) 2.48794 + 10.9004i 0.104117 + 0.456166i 0.999931 + 0.0117373i \(0.00373617\pi\)
−0.895814 + 0.444429i \(0.853407\pi\)
\(572\) 1.64825 + 7.22144i 0.0689166 + 0.301944i
\(573\) 1.29126 + 11.4602i 0.0539430 + 0.478758i
\(574\) −0.105205 0.218461i −0.00439119 0.00911839i
\(575\) 0 0
\(576\) −1.40090 1.75667i −0.0583707 0.0731945i
\(577\) −20.7764 16.5686i −0.864933 0.689761i 0.0869530 0.996212i \(-0.472287\pi\)
−0.951886 + 0.306451i \(0.900858\pi\)
\(578\) 8.23200 + 3.96432i 0.342406 + 0.164894i
\(579\) −9.85362 −0.409502
\(580\) 0 0
\(581\) −0.570802 −0.0236809
\(582\) −14.5637 7.01350i −0.603684 0.290719i
\(583\) −4.22996 3.37328i −0.175187 0.139707i
\(584\) 1.92670 + 2.41600i 0.0797273 + 0.0999749i
\(585\) 0 0
\(586\) 4.74549 + 9.85412i 0.196035 + 0.407070i
\(587\) 0.901390 + 8.00006i 0.0372044 + 0.330198i 0.998503 + 0.0546906i \(0.0174172\pi\)
−0.961299 + 0.275507i \(0.911154\pi\)
\(588\) 1.64215 + 7.19472i 0.0677210 + 0.296705i
\(589\) −1.11117 4.86837i −0.0457851 0.200598i
\(590\) 0 0
\(591\) −16.8450 + 10.5844i −0.692912 + 0.435385i
\(592\) 30.2558i 1.24351i
\(593\) 20.3482 + 32.3840i 0.835600 + 1.32985i 0.942030 + 0.335529i \(0.108915\pi\)
−0.106430 + 0.994320i \(0.533942\pi\)
\(594\) −4.30815 + 12.3120i −0.176766 + 0.505167i
\(595\) 0 0
\(596\) 3.08416 13.5126i 0.126332 0.553498i
\(597\) 1.90144 0.0778207
\(598\) 0.813978 3.56627i 0.0332861 0.145836i
\(599\) −46.8364 5.27719i −1.91368 0.215620i −0.926625 0.375986i \(-0.877304\pi\)
−0.987058 + 0.160366i \(0.948733\pi\)
\(600\) 0 0
\(601\) 1.29346 2.05853i 0.0527614 0.0839693i −0.819302 0.573362i \(-0.805639\pi\)
0.872063 + 0.489393i \(0.162782\pi\)
\(602\) −0.227174 + 0.0255964i −0.00925893 + 0.00104323i
\(603\) −18.1402 6.34753i −0.738727 0.258492i
\(604\) −8.95917 + 18.6039i −0.364543 + 0.756982i
\(605\) 0 0
\(606\) 1.98036 + 17.5762i 0.0804468 + 0.713985i
\(607\) 12.2672 25.4732i 0.497912 1.03392i −0.488943 0.872316i \(-0.662617\pi\)
0.986855 0.161609i \(-0.0516683\pi\)
\(608\) −12.3737 + 12.3737i −0.501821 + 0.501821i
\(609\) 0.111648 0.204727i 0.00452421 0.00829596i
\(610\) 0 0
\(611\) 4.62903 + 13.2290i 0.187270 + 0.535188i
\(612\) −5.89610 + 7.39348i −0.238336 + 0.298864i
\(613\) −23.5041 2.64828i −0.949323 0.106963i −0.376296 0.926499i \(-0.622802\pi\)
−0.573027 + 0.819536i \(0.694231\pi\)
\(614\) 26.4797 + 12.7520i 1.06864 + 0.514628i
\(615\) 0 0
\(616\) 0.0699637 0.0877317i 0.00281892 0.00353481i
\(617\) 17.3434 3.95851i 0.698218 0.159364i 0.141344 0.989961i \(-0.454858\pi\)
0.556874 + 0.830597i \(0.312001\pi\)
\(618\) −0.898406 0.564506i −0.0361392 0.0227078i
\(619\) −5.39810 + 47.9094i −0.216968 + 1.92564i 0.137360 + 0.990521i \(0.456138\pi\)
−0.354328 + 0.935121i \(0.615290\pi\)
\(620\) 0 0
\(621\) 1.72398 1.72398i 0.0691809 0.0691809i
\(622\) −29.6721 + 18.6442i −1.18974 + 0.747566i
\(623\) 0.0486501 + 0.101023i 0.00194912 + 0.00404740i
\(624\) 15.3914 + 5.38567i 0.616147 + 0.215599i
\(625\) 0 0
\(626\) 23.8226 + 23.8226i 0.952143 + 0.952143i
\(627\) 3.88737 + 0.887268i 0.155247 + 0.0354341i
\(628\) 20.8266 16.6087i 0.831072 0.662758i
\(629\) −20.5518 + 4.69082i −0.819455 + 0.187035i
\(630\) 0 0
\(631\) 24.3390 + 19.4097i 0.968921 + 0.772688i 0.973825 0.227300i \(-0.0729896\pi\)
−0.00490424 + 0.999988i \(0.501561\pi\)
\(632\) −1.07921 + 3.08419i −0.0429285 + 0.122683i
\(633\) 2.85874 + 8.16980i 0.113625 + 0.324721i
\(634\) −6.03608 + 4.81361i −0.239723 + 0.191173i
\(635\) 0 0
\(636\) 3.36720 1.17823i 0.133518 0.0467200i
\(637\) 18.8142 + 18.8142i 0.745445 + 0.745445i
\(638\) −15.2179 + 2.67390i −0.602484 + 0.105861i
\(639\) 19.1301i 0.756773i
\(640\) 0 0
\(641\) −47.2768 + 5.32682i −1.86732 + 0.210397i −0.971993 0.235010i \(-0.924488\pi\)
−0.895328 + 0.445406i \(0.853059\pi\)
\(642\) −2.30164 + 20.4276i −0.0908384 + 0.806213i
\(643\) 0.213571 0.0747317i 0.00842241 0.00294713i −0.326065 0.945348i \(-0.605723\pi\)
0.334487 + 0.942400i \(0.391437\pi\)
\(644\) 0.0294284 0.0141720i 0.00115964 0.000558455i
\(645\) 0 0
\(646\) 15.0890 + 9.48106i 0.593670 + 0.373028i
\(647\) 22.1007 35.1731i 0.868868 1.38280i −0.0543507 0.998522i \(-0.517309\pi\)
0.923219 0.384274i \(-0.125548\pi\)
\(648\) −2.46136 3.08644i −0.0966912 0.121247i
\(649\) −3.67044 5.84148i −0.144078 0.229298i
\(650\) 0 0
\(651\) −0.0732253 0.0167132i −0.00286993 0.000655042i
\(652\) −13.0097 + 6.26516i −0.509501 + 0.245363i
\(653\) 15.6929 7.55731i 0.614111 0.295740i −0.100853 0.994901i \(-0.532157\pi\)
0.714964 + 0.699161i \(0.246443\pi\)
\(654\) −26.5131 6.05145i −1.03675 0.236630i
\(655\) 0 0
\(656\) 7.12197 + 11.3346i 0.278066 + 0.442540i
\(657\) −3.09029 3.87510i −0.120564 0.151182i
\(658\) −0.175920 + 0.279976i −0.00685809 + 0.0109146i
\(659\) 36.8444 + 23.1509i 1.43526 + 0.901831i 0.999999 + 0.00152434i \(0.000485211\pi\)
0.435257 + 0.900306i \(0.356658\pi\)
\(660\) 0 0
\(661\) −10.9914 + 5.29320i −0.427518 + 0.205882i −0.635254 0.772303i \(-0.719105\pi\)
0.207736 + 0.978185i \(0.433390\pi\)
\(662\) 17.8339 6.24034i 0.693133 0.242538i
\(663\) 1.27206 11.2898i 0.0494027 0.438461i
\(664\) 15.9126 1.79292i 0.617528 0.0695787i
\(665\) 0 0
\(666\) 24.6599i 0.955552i
\(667\) 2.77957 + 0.783855i 0.107626 + 0.0303510i
\(668\) −21.2059 21.2059i −0.820480 0.820480i
\(669\) −5.07547 + 1.77598i −0.196229 + 0.0686635i
\(670\) 0 0
\(671\) 9.71439 7.74697i 0.375020 0.299068i
\(672\) 0.0869310 + 0.248434i 0.00335344 + 0.00958357i
\(673\) 10.4404 29.8369i 0.402447 1.15013i −0.547253 0.836967i \(-0.684326\pi\)
0.949700 0.313161i \(-0.101388\pi\)
\(674\) −33.4489 26.6746i −1.28841 1.02747i
\(675\) 0 0
\(676\) −1.73149 + 0.395202i −0.0665959 + 0.0152001i
\(677\) 21.1289 16.8498i 0.812051 0.647589i −0.126794 0.991929i \(-0.540469\pi\)
0.938845 + 0.344340i \(0.111897\pi\)
\(678\) −4.01747 0.916961i −0.154290 0.0352157i
\(679\) −0.367977 0.367977i −0.0141217 0.0141217i
\(680\) 0 0
\(681\) −8.41393 2.94416i −0.322422 0.112821i
\(682\) 2.15927 + 4.48377i 0.0826827 + 0.171692i
\(683\) 11.2393 7.06210i 0.430058 0.270224i −0.299561 0.954077i \(-0.596840\pi\)
0.729619 + 0.683854i \(0.239697\pi\)
\(684\) 5.57909 5.57909i 0.213322 0.213322i
\(685\) 0 0
\(686\) −0.140591 + 1.24778i −0.00536779 + 0.0476405i
\(687\) 2.12877 + 1.33759i 0.0812175 + 0.0510323i
\(688\) 12.3046 2.80845i 0.469110 0.107071i
\(689\) 8.01935 10.0559i 0.305513 0.383101i
\(690\) 0 0
\(691\) −17.7230 8.53497i −0.674216 0.324685i 0.0652598 0.997868i \(-0.479212\pi\)
−0.739476 + 0.673183i \(0.764927\pi\)
\(692\) −15.2275 1.71573i −0.578862 0.0652221i
\(693\) −0.112217 + 0.140716i −0.00426277 + 0.00534534i
\(694\) −18.8153 53.7711i −0.714219 2.04112i
\(695\) 0 0
\(696\) −2.46942 + 6.05799i −0.0936033 + 0.229628i
\(697\) 6.59502 6.59502i 0.249804 0.249804i
\(698\) −7.30030 + 15.1592i −0.276320 + 0.573785i
\(699\) 1.33395 + 11.8391i 0.0504545 + 0.447796i
\(700\) 0 0
\(701\) 1.46305 3.03806i 0.0552588 0.114746i −0.871511 0.490376i \(-0.836859\pi\)
0.926770 + 0.375630i \(0.122574\pi\)
\(702\) −29.2695 10.2418i −1.10471 0.386553i
\(703\) 17.4776 1.96925i 0.659180 0.0742717i
\(704\) 0.849702 1.35229i 0.0320243 0.0509664i
\(705\) 0 0
\(706\) −56.2964 6.34308i −2.11874 0.238725i
\(707\) −0.126710 + 0.555152i −0.00476541 + 0.0208786i
\(708\) 4.54892 0.170959
\(709\) −0.0430267 + 0.188512i −0.00161590 + 0.00707973i −0.975729 0.218980i \(-0.929727\pi\)
0.974114 + 0.226059i \(0.0725843\pi\)
\(710\) 0 0
\(711\) 1.73097 4.94683i 0.0649165 0.185521i
\(712\) −1.67357 2.66346i −0.0627195 0.0998175i
\(713\) 0.930187i 0.0348358i
\(714\) 0.226955 0.142605i 0.00849356 0.00533686i
\(715\) 0 0
\(716\) 0.535655 + 2.34686i 0.0200184 + 0.0877062i
\(717\) −3.42053 14.9863i −0.127742 0.559675i
\(718\) −4.15148 36.8454i −0.154932 1.37506i
\(719\) −10.8827 22.5981i −0.405856 0.842768i −0.999282 0.0378799i \(-0.987940\pi\)
0.593427 0.804888i \(-0.297775\pi\)
\(720\) 0 0
\(721\) −0.0212978 0.0267066i −0.000793171 0.000994605i
\(722\) 15.0229 + 11.9804i 0.559094 + 0.445863i
\(723\) −14.5832 7.02291i −0.542356 0.261185i
\(724\) −15.8018 −0.587269
\(725\) 0 0
\(726\) 13.1128 0.486663
\(727\) 13.0524 + 6.28573i 0.484088 + 0.233125i 0.659978 0.751285i \(-0.270566\pi\)
−0.175889 + 0.984410i \(0.556280\pi\)
\(728\) 0.208566 + 0.166326i 0.00772996 + 0.00616444i
\(729\) −3.41554 4.28295i −0.126501 0.158628i
\(730\) 0 0
\(731\) −3.81539 7.92274i −0.141117 0.293033i
\(732\) 0.917298 + 8.14124i 0.0339043 + 0.300909i
\(733\) −4.89262 21.4360i −0.180713 0.791755i −0.981292 0.192528i \(-0.938332\pi\)
0.800579 0.599228i \(-0.204526\pi\)
\(734\) 12.0262 + 52.6903i 0.443896 + 1.94484i
\(735\) 0 0
\(736\) −2.76005 + 1.73425i −0.101737 + 0.0639255i
\(737\) 13.6608i 0.503202i
\(738\) −5.80474 9.23819i −0.213675 0.340062i
\(739\) −12.6498 + 36.1512i −0.465332 + 1.32984i 0.437257 + 0.899337i \(0.355950\pi\)
−0.902588 + 0.430505i \(0.858336\pi\)
\(740\) 0 0
\(741\) −2.10931 + 9.24151i −0.0774876 + 0.339495i
\(742\) 0.303444 0.0111398
\(743\) −5.87833 + 25.7547i −0.215655 + 0.944847i 0.744992 + 0.667074i \(0.232453\pi\)
−0.960647 + 0.277773i \(0.910404\pi\)
\(744\) 2.09384 + 0.235919i 0.0767640 + 0.00864922i
\(745\) 0 0
\(746\) −35.3169 + 56.2066i −1.29304 + 2.05787i
\(747\) −25.5227 + 2.87572i −0.933827 + 0.105217i
\(748\) −6.34463 2.22008i −0.231982 0.0811742i
\(749\) −0.287147 + 0.596267i −0.0104921 + 0.0217871i
\(750\) 0 0
\(751\) 2.42708 + 21.5409i 0.0885654 + 0.786039i 0.956971 + 0.290184i \(0.0937167\pi\)
−0.868405 + 0.495855i \(0.834855\pi\)
\(752\) 7.92045 16.4470i 0.288829 0.599760i
\(753\) −2.43274 + 2.43274i −0.0886539 + 0.0886539i
\(754\) −6.35669 36.1778i −0.231497 1.31752i
\(755\) 0 0
\(756\) −0.0914520 0.261355i −0.00332608 0.00950538i
\(757\) −12.2870 + 15.4075i −0.446580 + 0.559993i −0.953264 0.302138i \(-0.902300\pi\)
0.506684 + 0.862132i \(0.330871\pi\)
\(758\) 43.1950 + 4.86691i 1.56891 + 0.176774i
\(759\) 0.669195 + 0.322267i 0.0242902 + 0.0116976i
\(760\) 0 0
\(761\) 11.8638 14.8768i 0.430063 0.539282i −0.518831 0.854877i \(-0.673633\pi\)
0.948894 + 0.315595i \(0.102204\pi\)
\(762\) 18.0891 4.12872i 0.655299 0.149568i
\(763\) −0.741319 0.465802i −0.0268376 0.0168632i
\(764\) −1.81618 + 16.1191i −0.0657072 + 0.583167i
\(765\) 0 0
\(766\) −6.29154 + 6.29154i −0.227323 + 0.227323i
\(767\) 13.8870 8.72580i 0.501432 0.315070i
\(768\) −7.73616 16.0643i −0.279155 0.579670i
\(769\) 24.2753 + 8.49430i 0.875390 + 0.306312i 0.730317 0.683109i \(-0.239372\pi\)
0.145073 + 0.989421i \(0.453658\pi\)
\(770\) 0 0
\(771\) −15.0785 15.0785i −0.543039 0.543039i
\(772\) −13.5119 3.08399i −0.486302 0.110995i
\(773\) 5.38261 4.29249i 0.193599 0.154390i −0.521893 0.853011i \(-0.674774\pi\)
0.715492 + 0.698621i \(0.246203\pi\)
\(774\) −10.0289 + 2.28902i −0.360480 + 0.0822771i
\(775\) 0 0
\(776\) 11.4142 + 9.10249i 0.409745 + 0.326760i
\(777\) 0.0873735 0.249699i 0.00313451 0.00895791i
\(778\) −19.4684 55.6374i −0.697975 1.99470i
\(779\) −6.08397 + 4.85181i −0.217981 + 0.173834i
\(780\) 0 0
\(781\) 12.8347 4.49106i 0.459263 0.160703i
\(782\) 2.34727 + 2.34727i 0.0839383 + 0.0839383i
\(783\) 9.24139 22.6710i 0.330260 0.810195i
\(784\) 34.6552i 1.23768i
\(785\) 0 0
\(786\) 27.7285 3.12425i 0.989042 0.111438i
\(787\) 4.01476 35.6320i 0.143111 1.27014i −0.692740 0.721187i \(-0.743597\pi\)
0.835851 0.548957i \(-0.184975\pi\)
\(788\) −26.4116 + 9.24182i −0.940874 + 0.329226i
\(789\) 6.33651 3.05150i 0.225586 0.108636i
\(790\) 0 0
\(791\) −0.112330 0.0705817i −0.00399400 0.00250960i
\(792\) 2.68634 4.27529i 0.0954550 0.151916i
\(793\) 18.4170 + 23.0942i 0.654006 + 0.820098i
\(794\) 19.9742 + 31.7888i 0.708859 + 1.12814i
\(795\) 0 0
\(796\) 2.60736 + 0.595114i 0.0924156 + 0.0210933i
\(797\) 39.7334 19.1346i 1.40743 0.677782i 0.432775 0.901502i \(-0.357534\pi\)
0.974654 + 0.223720i \(0.0718200\pi\)
\(798\) −0.201488 + 0.0970316i −0.00713261 + 0.00343488i
\(799\) −12.3999 2.83019i −0.438677 0.100125i
\(800\) 0 0
\(801\) 2.68428 + 4.27201i 0.0948445 + 0.150944i
\(802\) 14.5127 + 18.1984i 0.512461 + 0.642606i
\(803\) 1.87439 2.98307i 0.0661457 0.105270i
\(804\) 7.62686 + 4.79227i 0.268978 + 0.169010i
\(805\) 0 0
\(806\) −10.6593 + 5.13326i −0.375459 + 0.180811i
\(807\) 6.50266 2.27538i 0.228905 0.0800972i
\(808\) 1.78860 15.8743i 0.0629229 0.558456i
\(809\) −27.0462 + 3.04738i −0.950895 + 0.107140i −0.573765 0.819020i \(-0.694518\pi\)
−0.377130 + 0.926160i \(0.623089\pi\)
\(810\) 0 0
\(811\) 15.8296i 0.555851i −0.960603 0.277926i \(-0.910353\pi\)
0.960603 0.277926i \(-0.0896469\pi\)
\(812\) 0.217174 0.245790i 0.00762132 0.00862554i
\(813\) 15.6265 + 15.6265i 0.548045 + 0.548045i
\(814\) −16.5448 + 5.78928i −0.579895 + 0.202914i
\(815\) 0 0
\(816\) −11.5693 + 9.22623i −0.405007 + 0.322983i
\(817\) 2.42320 + 6.92511i 0.0847770 + 0.242279i
\(818\) −1.54649 + 4.41961i −0.0540717 + 0.154528i
\(819\) −0.334525 0.266775i −0.0116892 0.00932186i
\(820\) 0 0
\(821\) −9.19783 + 2.09935i −0.321007 + 0.0732677i −0.379988 0.924991i \(-0.624072\pi\)
0.0589814 + 0.998259i \(0.481215\pi\)
\(822\) 11.1108 8.86056i 0.387533 0.309048i
\(823\) −38.7440 8.84307i −1.35053 0.308250i −0.514763 0.857332i \(-0.672120\pi\)
−0.835768 + 0.549083i \(0.814977\pi\)
\(824\) 0.677618 + 0.677618i 0.0236059 + 0.0236059i
\(825\) 0 0
\(826\) 0.365221 + 0.127796i 0.0127077 + 0.00444660i
\(827\) 19.2297 + 39.9309i 0.668683 + 1.38853i 0.908570 + 0.417734i \(0.137175\pi\)
−0.239887 + 0.970801i \(0.577110\pi\)
\(828\) 1.24446 0.781944i 0.0432479 0.0271744i
\(829\) 17.1511 17.1511i 0.595681 0.595681i −0.343479 0.939160i \(-0.611606\pi\)
0.939160 + 0.343479i \(0.111606\pi\)
\(830\) 0 0
\(831\) −1.77408 + 15.7454i −0.0615420 + 0.546200i
\(832\) 3.21482 + 2.02001i 0.111454 + 0.0700312i
\(833\) −23.5402 + 5.37289i −0.815618 + 0.186160i
\(834\) 18.0676 22.6560i 0.625629 0.784514i
\(835\) 0 0
\(836\) 5.05290 + 2.43335i 0.174758 + 0.0841591i
\(837\) −7.83584 0.882887i −0.270846 0.0305170i
\(838\) 19.3355 24.2459i 0.667932 0.837561i
\(839\) −11.9236 34.0758i −0.411650 1.17643i −0.944012 0.329911i \(-0.892981\pi\)
0.532362 0.846517i \(-0.321305\pi\)
\(840\) 0 0
\(841\) 28.7793 3.57135i 0.992388 0.123150i
\(842\) 12.3724 12.3724i 0.426381 0.426381i
\(843\) 8.99045 18.6689i 0.309648 0.642990i
\(844\) 1.36308 + 12.0976i 0.0469190 + 0.416418i
\(845\) 0 0
\(846\) −6.45553 + 13.4051i −0.221946 + 0.460875i
\(847\) 0.398465 + 0.139429i 0.0136914 + 0.00479083i
\(848\) −16.6471 + 1.87567i −0.571663 + 0.0644109i
\(849\) 14.4675 23.0249i 0.496524 0.790213i
\(850\) 0 0
\(851\) 3.25567 + 0.366826i 0.111603 + 0.0125746i
\(852\) −1.99511 + 8.74114i −0.0683513 + 0.299467i
\(853\) −6.64060 −0.227370 −0.113685 0.993517i \(-0.536265\pi\)
−0.113685 + 0.993517i \(0.536265\pi\)
\(854\) −0.155071 + 0.679409i −0.00530641 + 0.0232489i
\(855\) 0 0
\(856\) 6.13207 17.5244i 0.209590 0.598973i
\(857\) 4.11164 + 6.54364i 0.140451 + 0.223527i 0.909541 0.415614i \(-0.136433\pi\)
−0.769090 + 0.639140i \(0.779290\pi\)
\(858\) 9.44698i 0.322514i
\(859\) −24.3070 + 15.2731i −0.829346 + 0.521113i −0.878536 0.477677i \(-0.841479\pi\)
0.0491898 + 0.998789i \(0.484336\pi\)
\(860\) 0 0
\(861\) 0.0260449 + 0.114110i 0.000887608 + 0.00388887i
\(862\) 6.86396 + 30.0730i 0.233787 + 1.02429i
\(863\) −0.144916 1.28617i −0.00493300 0.0437816i 0.991005 0.133828i \(-0.0427270\pi\)
−0.995938 + 0.0900465i \(0.971298\pi\)
\(864\) 11.9896 + 24.8966i 0.407893 + 0.846999i
\(865\) 0 0
\(866\) −6.15831 7.72228i −0.209268 0.262414i
\(867\) −3.44823 2.74987i −0.117108 0.0933905i
\(868\) −0.0951799 0.0458362i −0.00323062 0.00155578i
\(869\) 3.72530 0.126372
\(870\) 0 0
\(871\) 32.4760 1.10041
\(872\) 22.1293 + 10.6569i 0.749393 + 0.360888i
\(873\) −18.3075 14.5998i −0.619616 0.494127i
\(874\) −1.72683 2.16538i −0.0584110 0.0732451i
\(875\) 0 0
\(876\) 1.00791 + 2.09295i 0.0340542 + 0.0707143i
\(877\) −5.07240 45.0188i −0.171283 1.52018i −0.725743 0.687966i \(-0.758504\pi\)
0.554460 0.832210i \(-0.312925\pi\)
\(878\) −1.56488 6.85620i −0.0528122 0.231385i
\(879\) −1.17481 5.14717i −0.0396253 0.173610i
\(880\) 0 0
\(881\) −29.8952 + 18.7844i −1.00720 + 0.632863i −0.931300 0.364252i \(-0.881325\pi\)
−0.0758960 + 0.997116i \(0.524182\pi\)
\(882\) 28.2456i 0.951078i
\(883\) 15.5925 + 24.8153i 0.524729 + 0.835101i 0.998974 0.0452919i \(-0.0144218\pi\)
−0.474245 + 0.880393i \(0.657279\pi\)
\(884\) 5.27783 15.0832i 0.177513 0.507302i
\(885\) 0 0
\(886\) 12.7659 55.9312i 0.428880 1.87904i
\(887\) −31.6025 −1.06111 −0.530555 0.847651i \(-0.678016\pi\)
−0.530555 + 0.847651i \(0.678016\pi\)
\(888\) −1.65145 + 7.23546i −0.0554189 + 0.242806i
\(889\) 0.593581 + 0.0668805i 0.0199081 + 0.00224310i
\(890\) 0 0
\(891\) −2.39453 + 3.81087i −0.0802198 + 0.127669i
\(892\) −7.51563 + 0.846808i −0.251642 + 0.0283532i
\(893\) 10.0163 + 3.50485i 0.335182 + 0.117285i
\(894\) −7.66976 + 15.9264i −0.256515 + 0.532659i
\(895\) 0 0
\(896\) −0.0580365 0.515088i −0.00193886 0.0172079i
\(897\) −0.766131 + 1.59089i −0.0255804 + 0.0531182i
\(898\) −11.2733 + 11.2733i −0.376194 + 0.376194i
\(899\) −3.62302 8.60929i −0.120835 0.287136i
\(900\) 0 0
\(901\) 3.85502 + 11.0170i 0.128429 + 0.367030i
\(902\) 4.83533 6.06331i 0.160999 0.201886i
\(903\) 0.109660 + 0.0123557i 0.00364924 + 0.000411171i
\(904\) 3.35319 + 1.61481i 0.111526 + 0.0537079i
\(905\) 0 0
\(906\) 16.4197 20.5897i 0.545508 0.684046i
\(907\) 5.78318 1.31997i 0.192027 0.0438290i −0.125426 0.992103i \(-0.540030\pi\)
0.317453 + 0.948274i \(0.397172\pi\)
\(908\) −10.6162 6.67060i −0.352311 0.221372i
\(909\) −2.86880 + 25.4613i −0.0951520 + 0.844497i
\(910\) 0 0
\(911\) −3.72458 + 3.72458i −0.123401 + 0.123401i −0.766110 0.642709i \(-0.777810\pi\)
0.642709 + 0.766110i \(0.277810\pi\)
\(912\) 10.4539 6.56864i 0.346164 0.217509i
\(913\) −7.92120 16.4486i −0.262154 0.544368i
\(914\) 51.9942 + 18.1936i 1.71982 + 0.601789i
\(915\) 0 0
\(916\) 2.50045 + 2.50045i 0.0826171 + 0.0826171i
\(917\) 0.875815 + 0.199899i 0.0289220 + 0.00660125i
\(918\) 22.0012 17.5454i 0.726148 0.579084i
\(919\) −33.9679 + 7.75296i −1.12050 + 0.255747i −0.742359 0.670002i \(-0.766293\pi\)
−0.378140 + 0.925749i \(0.623436\pi\)
\(920\) 0 0
\(921\) −11.0919 8.84547i −0.365489 0.291468i
\(922\) −3.63510 + 10.3885i −0.119716 + 0.342128i
\(923\) 10.6767 + 30.5122i 0.351427 + 1.00432i
\(924\) 0.0659510 0.0525942i 0.00216963 0.00173022i
\(925\) 0 0
\(926\) 20.3146 7.10840i 0.667580 0.233596i
\(927\) −1.08685 1.08685i −0.0356969 0.0356969i
\(928\) −18.7907 + 26.8015i −0.616834 + 0.879803i
\(929\) 2.84350i 0.0932921i 0.998911 + 0.0466460i \(0.0148533\pi\)
−0.998911 + 0.0466460i \(0.985147\pi\)
\(930\) 0 0
\(931\) 20.0189 2.25559i 0.656093 0.0739240i
\(932\) −1.87623 + 16.6520i −0.0614579 + 0.545454i
\(933\) 15.9666 5.58696i 0.522723 0.182909i
\(934\) −9.23651 + 4.44807i −0.302228 + 0.145545i
\(935\) 0 0
\(936\) 10.1637 + 6.38628i 0.332211 + 0.208742i
\(937\) −17.6180 + 28.0389i −0.575555 + 0.915990i 0.424390 + 0.905480i \(0.360489\pi\)
−0.999945 + 0.0105107i \(0.996654\pi\)
\(938\) 0.477707 + 0.599025i 0.0155977 + 0.0195589i
\(939\) −8.65226 13.7700i −0.282356 0.449367i
\(940\) 0 0
\(941\) −36.8079 8.40116i −1.19990 0.273870i −0.424554 0.905403i \(-0.639569\pi\)
−0.775349 + 0.631533i \(0.782426\pi\)
\(942\) −30.6095 + 14.7408i −0.997313 + 0.480281i
\(943\) −1.30600 + 0.628936i −0.0425292 + 0.0204810i
\(944\) −20.8261 4.75341i −0.677831 0.154710i
\(945\) 0 0
\(946\) −3.89017 6.19117i −0.126480 0.201292i
\(947\) −5.12052 6.42093i −0.166394 0.208652i 0.691642 0.722240i \(-0.256887\pi\)
−0.858037 + 0.513588i \(0.828316\pi\)
\(948\) −1.30685 + 2.07984i −0.0424446 + 0.0675501i
\(949\) 7.09170 + 4.45601i 0.230206 + 0.144648i
\(950\) 0 0
\(951\) 3.35768 1.61697i 0.108880 0.0524339i
\(952\) −0.228499 + 0.0799553i −0.00740570 + 0.00259137i
\(953\) −2.26419 + 20.0953i −0.0733444 + 0.650950i 0.902226 + 0.431263i \(0.141932\pi\)
−0.975571 + 0.219687i \(0.929497\pi\)
\(954\) 13.5681 1.52876i 0.439285 0.0494955i
\(955\) 0 0
\(956\) 21.6207i 0.699263i
\(957\) 7.44891 + 0.376251i 0.240789 + 0.0121625i
\(958\) 0.688219 + 0.688219i 0.0222353 + 0.0222353i
\(959\) 0.431842 0.151108i 0.0139449 0.00487953i
\(960\) 0 0
\(961\) 21.8846 17.4524i 0.705956 0.562981i
\(962\) −13.7629 39.3322i −0.443735 1.26812i
\(963\) −9.83541 + 28.1080i −0.316942 + 0.905767i
\(964\) −17.7993 14.1945i −0.573278 0.457174i
\(965\) 0 0
\(966\) −0.0406136 + 0.00926979i −0.00130672 + 0.000298251i
\(967\) −9.18359 + 7.32367i −0.295324 + 0.235513i −0.759931 0.650004i \(-0.774767\pi\)
0.464606 + 0.885517i \(0.346196\pi\)
\(968\) −11.5462 2.63534i −0.371109 0.0847031i
\(969\) −6.08264 6.08264i −0.195402 0.195402i
\(970\) 0 0
\(971\) 25.2257 + 8.82685i 0.809531 + 0.283267i 0.703135 0.711057i \(-0.251783\pi\)
0.106396 + 0.994324i \(0.466069\pi\)
\(972\) −8.49483 17.6397i −0.272472 0.565794i
\(973\) 0.789927 0.496344i 0.0253239 0.0159121i
\(974\) 47.1962 47.1962i 1.51226 1.51226i
\(975\) 0 0
\(976\) 4.30761 38.2311i 0.137883 1.22375i
\(977\) 12.8225 + 8.05689i 0.410227 + 0.257763i 0.721299 0.692624i \(-0.243545\pi\)
−0.311072 + 0.950386i \(0.600688\pi\)
\(978\) 17.9545 4.09799i 0.574121 0.131039i
\(979\) −2.23600 + 2.80385i −0.0714629 + 0.0896116i
\(980\) 0 0
\(981\) −35.4939 17.0929i −1.13323 0.545736i
\(982\) −32.5305 3.66531i −1.03809 0.116965i
\(983\) −5.50262 + 6.90007i −0.175506 + 0.220078i −0.861802 0.507244i \(-0.830664\pi\)
0.686296 + 0.727323i \(0.259236\pi\)
\(984\) −1.08450 3.09931i −0.0345724 0.0988024i
\(985\) 0 0
\(986\) 30.8675 + 12.5826i 0.983022 + 0.400710i
\(987\) 0.112863 0.112863i 0.00359246 0.00359246i
\(988\) −5.78483 + 12.0123i −0.184040 + 0.382163i
\(989\) 0.153020 + 1.35809i 0.00486575 + 0.0431847i
\(990\) 0 0
\(991\) 11.0604 22.9671i 0.351345 0.729575i −0.648145 0.761517i \(-0.724455\pi\)
0.999490 + 0.0319421i \(0.0101692\pi\)
\(992\) 9.95110 + 3.48204i 0.315948 + 0.110555i
\(993\) −9.06307 + 1.02116i −0.287608 + 0.0324056i
\(994\) −0.405753 + 0.645753i −0.0128697 + 0.0204820i
\(995\) 0 0
\(996\) 11.9621 + 1.34780i 0.379032 + 0.0427067i
\(997\) 3.55020 15.5544i 0.112436 0.492614i −0.887083 0.461609i \(-0.847272\pi\)
0.999519 0.0310044i \(-0.00987059\pi\)
\(998\) 16.4345 0.520225
\(999\) 6.18025 27.0774i 0.195534 0.856692i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 725.2.y.a.18.2 120
5.2 odd 4 725.2.bd.a.482.9 yes 120
5.3 odd 4 725.2.bd.a.482.2 yes 120
5.4 even 2 inner 725.2.y.a.18.9 yes 120
29.21 odd 28 725.2.bd.a.543.9 yes 120
145.79 odd 28 725.2.bd.a.543.2 yes 120
145.108 even 28 inner 725.2.y.a.282.9 yes 120
145.137 even 28 inner 725.2.y.a.282.2 yes 120
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
725.2.y.a.18.2 120 1.1 even 1 trivial
725.2.y.a.18.9 yes 120 5.4 even 2 inner
725.2.y.a.282.2 yes 120 145.137 even 28 inner
725.2.y.a.282.9 yes 120 145.108 even 28 inner
725.2.bd.a.482.2 yes 120 5.3 odd 4
725.2.bd.a.482.9 yes 120 5.2 odd 4
725.2.bd.a.543.2 yes 120 145.79 odd 28
725.2.bd.a.543.9 yes 120 29.21 odd 28