Properties

Label 725.2.e.b.157.3
Level $725$
Weight $2$
Character 725.157
Analytic conductor $5.789$
Analytic rank $0$
Dimension $16$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [725,2,Mod(157,725)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(725, base_ring=CyclotomicField(4))
 
chi = DirichletCharacter(H, H._module([1, 1]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("725.157");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 725 = 5^{2} \cdot 29 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 725.e (of order \(4\), degree \(2\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(5.78915414654\)
Analytic rank: \(0\)
Dimension: \(16\)
Relative dimension: \(8\) over \(\Q(i)\)
Coefficient field: \(\mathbb{Q}[x]/(x^{16} + \cdots)\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{16} + 28x^{14} + 288x^{12} + 1372x^{10} + 3184x^{8} + 3696x^{6} + 2076x^{4} + 504x^{2} + 36 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{7}]\)
Coefficient ring index: \( 2^{4} \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{4}]$

Embedding invariants

Embedding label 157.3
Root \(-2.34301i\) of defining polynomial
Character \(\chi\) \(=\) 725.157
Dual form 725.2.e.b.568.6

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-1.34301i q^{2} +0.842805 q^{3} +0.196335 q^{4} -1.13189i q^{6} +(-0.720606 - 0.720606i) q^{7} -2.94969i q^{8} -2.28968 q^{9} +(-3.92923 - 3.92923i) q^{11} +0.165472 q^{12} +(1.70489 + 1.70489i) q^{13} +(-0.967779 + 0.967779i) q^{14} -3.56878 q^{16} -5.73391i q^{17} +3.07505i q^{18} +(-2.92923 + 2.92923i) q^{19} +(-0.607331 - 0.607331i) q^{21} +(-5.27698 + 5.27698i) q^{22} +(4.87499 - 4.87499i) q^{23} -2.48601i q^{24} +(2.28968 - 2.28968i) q^{26} -4.45817 q^{27} +(-0.141480 - 0.141480i) q^{28} +(4.06112 + 3.53656i) q^{29} +(-1.73290 - 1.73290i) q^{31} -1.10648i q^{32} +(-3.31158 - 3.31158i) q^{33} -7.70068 q^{34} -0.449543 q^{36} +10.1921 q^{37} +(3.93398 + 3.93398i) q^{38} +(1.43689 + 1.43689i) q^{39} +(4.09335 - 4.09335i) q^{41} +(-0.815649 + 0.815649i) q^{42} -4.30057 q^{43} +(-0.771444 - 0.771444i) q^{44} +(-6.54714 - 6.54714i) q^{46} +9.82103 q^{47} -3.00779 q^{48} -5.96145i q^{49} -4.83257i q^{51} +(0.334729 + 0.334729i) q^{52} +(-3.18621 + 3.18621i) q^{53} +5.98735i q^{54} +(-2.12557 + 2.12557i) q^{56} +(-2.46877 + 2.46877i) q^{57} +(4.74962 - 5.45411i) q^{58} +13.0837i q^{59} +(2.32823 + 2.32823i) q^{61} +(-2.32729 + 2.32729i) q^{62} +(1.64996 + 1.64996i) q^{63} -8.62358 q^{64} +(-4.44747 + 4.44747i) q^{66} +(-0.260514 + 0.260514i) q^{67} -1.12577i q^{68} +(4.10866 - 4.10866i) q^{69} -3.55346i q^{71} +6.75385i q^{72} +3.04002i q^{73} -13.6880i q^{74} +(-0.575110 + 0.575110i) q^{76} +5.66286i q^{77} +(1.92975 - 1.92975i) q^{78} +(2.65013 - 2.65013i) q^{79} +3.11167 q^{81} +(-5.49739 - 5.49739i) q^{82} +(-8.47107 + 8.47107i) q^{83} +(-0.119240 - 0.119240i) q^{84} +5.77569i q^{86} +(3.42274 + 2.98063i) q^{87} +(-11.5900 + 11.5900i) q^{88} +(-7.42157 + 7.42157i) q^{89} -2.45711i q^{91} +(0.957129 - 0.957129i) q^{92} +(-1.46049 - 1.46049i) q^{93} -13.1897i q^{94} -0.932550i q^{96} +1.36383 q^{97} -8.00627 q^{98} +(8.99668 + 8.99668i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 16 q - 8 q^{4} + 40 q^{9} - 4 q^{11} - 20 q^{14} - 16 q^{16} + 12 q^{19} - 32 q^{21} - 40 q^{26} + 4 q^{29} + 20 q^{31} - 80 q^{34} - 104 q^{36} - 16 q^{39} - 28 q^{44} + 44 q^{46} + 36 q^{56} + 24 q^{61}+ \cdots + 92 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/725\mathbb{Z}\right)^\times\).

\(n\) \(176\) \(552\)
\(\chi(n)\) \(e\left(\frac{1}{4}\right)\) \(e\left(\frac{1}{4}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 1.34301i 0.949649i −0.880081 0.474824i \(-0.842512\pi\)
0.880081 0.474824i \(-0.157488\pi\)
\(3\) 0.842805 0.486594 0.243297 0.969952i \(-0.421771\pi\)
0.243297 + 0.969952i \(0.421771\pi\)
\(4\) 0.196335 0.0981673
\(5\) 0 0
\(6\) 1.13189i 0.462093i
\(7\) −0.720606 0.720606i −0.272364 0.272364i 0.557687 0.830051i \(-0.311689\pi\)
−0.830051 + 0.557687i \(0.811689\pi\)
\(8\) 2.94969i 1.04287i
\(9\) −2.28968 −0.763227
\(10\) 0 0
\(11\) −3.92923 3.92923i −1.18471 1.18471i −0.978510 0.206197i \(-0.933891\pi\)
−0.206197 0.978510i \(-0.566109\pi\)
\(12\) 0.165472 0.0477676
\(13\) 1.70489 + 1.70489i 0.472852 + 0.472852i 0.902836 0.429984i \(-0.141481\pi\)
−0.429984 + 0.902836i \(0.641481\pi\)
\(14\) −0.967779 + 0.967779i −0.258650 + 0.258650i
\(15\) 0 0
\(16\) −3.56878 −0.892196
\(17\) 5.73391i 1.39068i −0.718682 0.695339i \(-0.755254\pi\)
0.718682 0.695339i \(-0.244746\pi\)
\(18\) 3.07505i 0.724797i
\(19\) −2.92923 + 2.92923i −0.672012 + 0.672012i −0.958180 0.286168i \(-0.907619\pi\)
0.286168 + 0.958180i \(0.407619\pi\)
\(20\) 0 0
\(21\) −0.607331 0.607331i −0.132530 0.132530i
\(22\) −5.27698 + 5.27698i −1.12506 + 1.12506i
\(23\) 4.87499 4.87499i 1.01651 1.01651i 0.0166437 0.999861i \(-0.494702\pi\)
0.999861 0.0166437i \(-0.00529810\pi\)
\(24\) 2.48601i 0.507456i
\(25\) 0 0
\(26\) 2.28968 2.28968i 0.449043 0.449043i
\(27\) −4.45817 −0.857975
\(28\) −0.141480 0.141480i −0.0267372 0.0267372i
\(29\) 4.06112 + 3.53656i 0.754132 + 0.656723i
\(30\) 0 0
\(31\) −1.73290 1.73290i −0.311237 0.311237i 0.534151 0.845389i \(-0.320631\pi\)
−0.845389 + 0.534151i \(0.820631\pi\)
\(32\) 1.10648i 0.195601i
\(33\) −3.31158 3.31158i −0.576471 0.576471i
\(34\) −7.70068 −1.32065
\(35\) 0 0
\(36\) −0.449543 −0.0749239
\(37\) 10.1921 1.67557 0.837784 0.546002i \(-0.183851\pi\)
0.837784 + 0.546002i \(0.183851\pi\)
\(38\) 3.93398 + 3.93398i 0.638175 + 0.638175i
\(39\) 1.43689 + 1.43689i 0.230087 + 0.230087i
\(40\) 0 0
\(41\) 4.09335 4.09335i 0.639273 0.639273i −0.311103 0.950376i \(-0.600698\pi\)
0.950376 + 0.311103i \(0.100698\pi\)
\(42\) −0.815649 + 0.815649i −0.125857 + 0.125857i
\(43\) −4.30057 −0.655831 −0.327916 0.944707i \(-0.606346\pi\)
−0.327916 + 0.944707i \(0.606346\pi\)
\(44\) −0.771444 0.771444i −0.116300 0.116300i
\(45\) 0 0
\(46\) −6.54714 6.54714i −0.965323 0.965323i
\(47\) 9.82103 1.43254 0.716272 0.697821i \(-0.245847\pi\)
0.716272 + 0.697821i \(0.245847\pi\)
\(48\) −3.00779 −0.434137
\(49\) 5.96145i 0.851636i
\(50\) 0 0
\(51\) 4.83257i 0.676695i
\(52\) 0.334729 + 0.334729i 0.0464186 + 0.0464186i
\(53\) −3.18621 + 3.18621i −0.437660 + 0.437660i −0.891224 0.453564i \(-0.850152\pi\)
0.453564 + 0.891224i \(0.350152\pi\)
\(54\) 5.98735i 0.814775i
\(55\) 0 0
\(56\) −2.12557 + 2.12557i −0.284041 + 0.284041i
\(57\) −2.46877 + 2.46877i −0.326997 + 0.326997i
\(58\) 4.74962 5.45411i 0.623656 0.716160i
\(59\) 13.0837i 1.70335i 0.524068 + 0.851676i \(0.324414\pi\)
−0.524068 + 0.851676i \(0.675586\pi\)
\(60\) 0 0
\(61\) 2.32823 + 2.32823i 0.298099 + 0.298099i 0.840269 0.542170i \(-0.182397\pi\)
−0.542170 + 0.840269i \(0.682397\pi\)
\(62\) −2.32729 + 2.32729i −0.295566 + 0.295566i
\(63\) 1.64996 + 1.64996i 0.207875 + 0.207875i
\(64\) −8.62358 −1.07795
\(65\) 0 0
\(66\) −4.44747 + 4.44747i −0.547445 + 0.547445i
\(67\) −0.260514 + 0.260514i −0.0318269 + 0.0318269i −0.722841 0.691014i \(-0.757164\pi\)
0.691014 + 0.722841i \(0.257164\pi\)
\(68\) 1.12577i 0.136519i
\(69\) 4.10866 4.10866i 0.494625 0.494625i
\(70\) 0 0
\(71\) 3.55346i 0.421719i −0.977516 0.210859i \(-0.932374\pi\)
0.977516 0.210859i \(-0.0676262\pi\)
\(72\) 6.75385i 0.795949i
\(73\) 3.04002i 0.355808i 0.984048 + 0.177904i \(0.0569316\pi\)
−0.984048 + 0.177904i \(0.943068\pi\)
\(74\) 13.6880i 1.59120i
\(75\) 0 0
\(76\) −0.575110 + 0.575110i −0.0659696 + 0.0659696i
\(77\) 5.66286i 0.645343i
\(78\) 1.92975 1.92975i 0.218502 0.218502i
\(79\) 2.65013 2.65013i 0.298163 0.298163i −0.542131 0.840294i \(-0.682382\pi\)
0.840294 + 0.542131i \(0.182382\pi\)
\(80\) 0 0
\(81\) 3.11167 0.345741
\(82\) −5.49739 5.49739i −0.607085 0.607085i
\(83\) −8.47107 + 8.47107i −0.929821 + 0.929821i −0.997694 0.0678732i \(-0.978379\pi\)
0.0678732 + 0.997694i \(0.478379\pi\)
\(84\) −0.119240 0.119240i −0.0130102 0.0130102i
\(85\) 0 0
\(86\) 5.77569i 0.622809i
\(87\) 3.42274 + 2.98063i 0.366956 + 0.319557i
\(88\) −11.5900 + 11.5900i −1.23550 + 1.23550i
\(89\) −7.42157 + 7.42157i −0.786685 + 0.786685i −0.980949 0.194264i \(-0.937768\pi\)
0.194264 + 0.980949i \(0.437768\pi\)
\(90\) 0 0
\(91\) 2.45711i 0.257575i
\(92\) 0.957129 0.957129i 0.0997876 0.0997876i
\(93\) −1.46049 1.46049i −0.151446 0.151446i
\(94\) 13.1897i 1.36041i
\(95\) 0 0
\(96\) 0.932550i 0.0951780i
\(97\) 1.36383 0.138476 0.0692382 0.997600i \(-0.477943\pi\)
0.0692382 + 0.997600i \(0.477943\pi\)
\(98\) −8.00627 −0.808755
\(99\) 8.99668 + 8.99668i 0.904201 + 0.904201i
\(100\) 0 0
\(101\) 6.31858 + 6.31858i 0.628722 + 0.628722i 0.947747 0.319024i \(-0.103355\pi\)
−0.319024 + 0.947747i \(0.603355\pi\)
\(102\) −6.49017 −0.642622
\(103\) −5.11151 + 5.11151i −0.503652 + 0.503652i −0.912571 0.408919i \(-0.865906\pi\)
0.408919 + 0.912571i \(0.365906\pi\)
\(104\) 5.02890 5.02890i 0.493124 0.493124i
\(105\) 0 0
\(106\) 4.27910 + 4.27910i 0.415623 + 0.415623i
\(107\) 4.65929 + 4.65929i 0.450431 + 0.450431i 0.895497 0.445067i \(-0.146820\pi\)
−0.445067 + 0.895497i \(0.646820\pi\)
\(108\) −0.875293 −0.0842251
\(109\) 9.88169 0.946494 0.473247 0.880930i \(-0.343082\pi\)
0.473247 + 0.880930i \(0.343082\pi\)
\(110\) 0 0
\(111\) 8.58994 0.815321
\(112\) 2.57169 + 2.57169i 0.243002 + 0.243002i
\(113\) 15.8164i 1.48788i −0.668247 0.743940i \(-0.732955\pi\)
0.668247 0.743940i \(-0.267045\pi\)
\(114\) 3.31557 + 3.31557i 0.310532 + 0.310532i
\(115\) 0 0
\(116\) 0.797339 + 0.694350i 0.0740311 + 0.0644687i
\(117\) −3.90366 3.90366i −0.360893 0.360893i
\(118\) 17.5715 1.61759
\(119\) −4.13189 + 4.13189i −0.378770 + 0.378770i
\(120\) 0 0
\(121\) 19.8777i 1.80707i
\(122\) 3.12682 3.12682i 0.283089 0.283089i
\(123\) 3.44989 3.44989i 0.311066 0.311066i
\(124\) −0.340228 0.340228i −0.0305533 0.0305533i
\(125\) 0 0
\(126\) 2.21590 2.21590i 0.197408 0.197408i
\(127\) 2.61496i 0.232040i −0.993247 0.116020i \(-0.962986\pi\)
0.993247 0.116020i \(-0.0370137\pi\)
\(128\) 9.36855i 0.828071i
\(129\) −3.62454 −0.319123
\(130\) 0 0
\(131\) −3.31623 + 3.31623i −0.289740 + 0.289740i −0.836977 0.547237i \(-0.815679\pi\)
0.547237 + 0.836977i \(0.315679\pi\)
\(132\) −0.650177 0.650177i −0.0565907 0.0565907i
\(133\) 4.22165 0.366063
\(134\) 0.349872 + 0.349872i 0.0302244 + 0.0302244i
\(135\) 0 0
\(136\) −16.9133 −1.45030
\(137\) 19.7299i 1.68564i −0.538197 0.842819i \(-0.680894\pi\)
0.538197 0.842819i \(-0.319106\pi\)
\(138\) −5.51796 5.51796i −0.469720 0.469720i
\(139\) 5.21466i 0.442302i −0.975240 0.221151i \(-0.929019\pi\)
0.975240 0.221151i \(-0.0709813\pi\)
\(140\) 0 0
\(141\) 8.27721 0.697067
\(142\) −4.77232 −0.400485
\(143\) 13.3978i 1.12038i
\(144\) 8.17137 0.680948
\(145\) 0 0
\(146\) 4.08277 0.337892
\(147\) 5.02434i 0.414401i
\(148\) 2.00106 0.164486
\(149\) 10.9316 0.895551 0.447775 0.894146i \(-0.352216\pi\)
0.447775 + 0.894146i \(0.352216\pi\)
\(150\) 0 0
\(151\) 4.56878i 0.371802i 0.982568 + 0.185901i \(0.0595204\pi\)
−0.982568 + 0.185901i \(0.940480\pi\)
\(152\) 8.64033 + 8.64033i 0.700823 + 0.700823i
\(153\) 13.1288i 1.06140i
\(154\) 7.60525 0.612849
\(155\) 0 0
\(156\) 0.282111 + 0.282111i 0.0225870 + 0.0225870i
\(157\) −11.3102 −0.902654 −0.451327 0.892359i \(-0.649049\pi\)
−0.451327 + 0.892359i \(0.649049\pi\)
\(158\) −3.55914 3.55914i −0.283150 0.283150i
\(159\) −2.68536 + 2.68536i −0.212963 + 0.212963i
\(160\) 0 0
\(161\) −7.02590 −0.553718
\(162\) 4.17899i 0.328333i
\(163\) 8.22196i 0.643994i −0.946741 0.321997i \(-0.895646\pi\)
0.946741 0.321997i \(-0.104354\pi\)
\(164\) 0.803665 0.803665i 0.0627557 0.0627557i
\(165\) 0 0
\(166\) 11.3767 + 11.3767i 0.883003 + 0.883003i
\(167\) 18.0764 18.0764i 1.39879 1.39879i 0.595263 0.803531i \(-0.297048\pi\)
0.803531 0.595263i \(-0.202952\pi\)
\(168\) −1.79144 + 1.79144i −0.138212 + 0.138212i
\(169\) 7.18669i 0.552822i
\(170\) 0 0
\(171\) 6.70700 6.70700i 0.512897 0.512897i
\(172\) −0.844351 −0.0643812
\(173\) 3.03649 + 3.03649i 0.230860 + 0.230860i 0.813052 0.582192i \(-0.197805\pi\)
−0.582192 + 0.813052i \(0.697805\pi\)
\(174\) 4.00301 4.59675i 0.303467 0.348479i
\(175\) 0 0
\(176\) 14.0226 + 14.0226i 1.05699 + 1.05699i
\(177\) 11.0270i 0.828841i
\(178\) 9.96722 + 9.96722i 0.747074 + 0.747074i
\(179\) −9.50623 −0.710529 −0.355265 0.934766i \(-0.615609\pi\)
−0.355265 + 0.934766i \(0.615609\pi\)
\(180\) 0 0
\(181\) −2.41590 −0.179572 −0.0897861 0.995961i \(-0.528618\pi\)
−0.0897861 + 0.995961i \(0.528618\pi\)
\(182\) −3.29992 −0.244606
\(183\) 1.96224 + 1.96224i 0.145053 + 0.145053i
\(184\) −14.3797 14.3797i −1.06009 1.06009i
\(185\) 0 0
\(186\) −1.96145 + 1.96145i −0.143821 + 0.143821i
\(187\) −22.5299 + 22.5299i −1.64755 + 1.64755i
\(188\) 1.92821 0.140629
\(189\) 3.21259 + 3.21259i 0.233681 + 0.233681i
\(190\) 0 0
\(191\) 6.82624 + 6.82624i 0.493930 + 0.493930i 0.909542 0.415612i \(-0.136433\pi\)
−0.415612 + 0.909542i \(0.636433\pi\)
\(192\) −7.26800 −0.524523
\(193\) 26.4787 1.90598 0.952988 0.303009i \(-0.0979911\pi\)
0.952988 + 0.303009i \(0.0979911\pi\)
\(194\) 1.83164i 0.131504i
\(195\) 0 0
\(196\) 1.17044i 0.0836028i
\(197\) −11.7523 11.7523i −0.837319 0.837319i 0.151187 0.988505i \(-0.451691\pi\)
−0.988505 + 0.151187i \(0.951691\pi\)
\(198\) 12.0826 12.0826i 0.858673 0.858673i
\(199\) 4.23392i 0.300135i −0.988676 0.150067i \(-0.952051\pi\)
0.988676 0.150067i \(-0.0479490\pi\)
\(200\) 0 0
\(201\) −0.219563 + 0.219563i −0.0154868 + 0.0154868i
\(202\) 8.48589 8.48589i 0.597065 0.597065i
\(203\) −0.378002 5.47494i −0.0265306 0.384266i
\(204\) 0.948800i 0.0664293i
\(205\) 0 0
\(206\) 6.86479 + 6.86479i 0.478293 + 0.478293i
\(207\) −11.1622 + 11.1622i −0.775824 + 0.775824i
\(208\) −6.08439 6.08439i −0.421876 0.421876i
\(209\) 23.0193 1.59228
\(210\) 0 0
\(211\) 13.8521 13.8521i 0.953620 0.953620i −0.0453507 0.998971i \(-0.514441\pi\)
0.998971 + 0.0453507i \(0.0144405\pi\)
\(212\) −0.625564 + 0.625564i −0.0429639 + 0.0429639i
\(213\) 2.99488i 0.205206i
\(214\) 6.25746 6.25746i 0.427751 0.427751i
\(215\) 0 0
\(216\) 13.1502i 0.894759i
\(217\) 2.49747i 0.169540i
\(218\) 13.2712i 0.898837i
\(219\) 2.56215i 0.173134i
\(220\) 0 0
\(221\) 9.77569 9.77569i 0.657584 0.657584i
\(222\) 11.5363i 0.774268i
\(223\) 2.57522 2.57522i 0.172450 0.172450i −0.615605 0.788055i \(-0.711088\pi\)
0.788055 + 0.615605i \(0.211088\pi\)
\(224\) −0.797339 + 0.797339i −0.0532745 + 0.0532745i
\(225\) 0 0
\(226\) −21.2415 −1.41296
\(227\) 17.9881 + 17.9881i 1.19391 + 1.19391i 0.975960 + 0.217949i \(0.0699366\pi\)
0.217949 + 0.975960i \(0.430063\pi\)
\(228\) −0.484705 + 0.484705i −0.0321004 + 0.0321004i
\(229\) 10.9172 + 10.9172i 0.721431 + 0.721431i 0.968897 0.247466i \(-0.0795978\pi\)
−0.247466 + 0.968897i \(0.579598\pi\)
\(230\) 0 0
\(231\) 4.77269i 0.314020i
\(232\) 10.4318 11.9791i 0.684879 0.786464i
\(233\) −5.78977 + 5.78977i −0.379300 + 0.379300i −0.870850 0.491549i \(-0.836431\pi\)
0.491549 + 0.870850i \(0.336431\pi\)
\(234\) −5.24263 + 5.24263i −0.342722 + 0.342722i
\(235\) 0 0
\(236\) 2.56878i 0.167214i
\(237\) 2.23354 2.23354i 0.145084 0.145084i
\(238\) 5.54916 + 5.54916i 0.359698 + 0.359698i
\(239\) 1.59391i 0.103101i −0.998670 0.0515506i \(-0.983584\pi\)
0.998670 0.0515506i \(-0.0164163\pi\)
\(240\) 0 0
\(241\) 11.5109i 0.741485i 0.928736 + 0.370743i \(0.120897\pi\)
−0.928736 + 0.370743i \(0.879103\pi\)
\(242\) 26.6959 1.71608
\(243\) 15.9970 1.02621
\(244\) 0.457112 + 0.457112i 0.0292636 + 0.0292636i
\(245\) 0 0
\(246\) −4.63323 4.63323i −0.295404 0.295404i
\(247\) −9.98804 −0.635524
\(248\) −5.11151 + 5.11151i −0.324581 + 0.324581i
\(249\) −7.13946 + 7.13946i −0.452445 + 0.452445i
\(250\) 0 0
\(251\) −16.0466 16.0466i −1.01285 1.01285i −0.999916 0.0129347i \(-0.995883\pi\)
−0.0129347 0.999916i \(-0.504117\pi\)
\(252\) 0.323944 + 0.323944i 0.0204065 + 0.0204065i
\(253\) −38.3099 −2.40852
\(254\) −3.51191 −0.220357
\(255\) 0 0
\(256\) −4.66514 −0.291571
\(257\) −3.22503 3.22503i −0.201172 0.201172i 0.599330 0.800502i \(-0.295434\pi\)
−0.800502 + 0.599330i \(0.795434\pi\)
\(258\) 4.86778i 0.303055i
\(259\) −7.34448 7.34448i −0.456364 0.456364i
\(260\) 0 0
\(261\) −9.29867 8.09759i −0.575573 0.501229i
\(262\) 4.45371 + 4.45371i 0.275151 + 0.275151i
\(263\) −1.63737 −0.100965 −0.0504824 0.998725i \(-0.516076\pi\)
−0.0504824 + 0.998725i \(0.516076\pi\)
\(264\) −9.76813 + 9.76813i −0.601187 + 0.601187i
\(265\) 0 0
\(266\) 5.66970i 0.347631i
\(267\) −6.25494 + 6.25494i −0.382796 + 0.382796i
\(268\) −0.0511480 + 0.0511480i −0.00312436 + 0.00312436i
\(269\) 19.4764 + 19.4764i 1.18750 + 1.18750i 0.977758 + 0.209737i \(0.0672609\pi\)
0.209737 + 0.977758i \(0.432739\pi\)
\(270\) 0 0
\(271\) −10.5808 + 10.5808i −0.642737 + 0.642737i −0.951227 0.308491i \(-0.900176\pi\)
0.308491 + 0.951227i \(0.400176\pi\)
\(272\) 20.4631i 1.24076i
\(273\) 2.07087i 0.125335i
\(274\) −26.4974 −1.60076
\(275\) 0 0
\(276\) 0.806673 0.806673i 0.0485560 0.0485560i
\(277\) −8.84907 8.84907i −0.531689 0.531689i 0.389386 0.921075i \(-0.372687\pi\)
−0.921075 + 0.389386i \(0.872687\pi\)
\(278\) −7.00332 −0.420031
\(279\) 3.96778 + 3.96778i 0.237545 + 0.237545i
\(280\) 0 0
\(281\) 13.6293 0.813053 0.406527 0.913639i \(-0.366740\pi\)
0.406527 + 0.913639i \(0.366740\pi\)
\(282\) 11.1163i 0.661969i
\(283\) −0.976410 0.976410i −0.0580416 0.0580416i 0.677490 0.735532i \(-0.263068\pi\)
−0.735532 + 0.677490i \(0.763068\pi\)
\(284\) 0.697668i 0.0413990i
\(285\) 0 0
\(286\) −17.9934 −1.06397
\(287\) −5.89938 −0.348229
\(288\) 2.53349i 0.149288i
\(289\) −15.8777 −0.933984
\(290\) 0 0
\(291\) 1.14945 0.0673817
\(292\) 0.596862i 0.0349287i
\(293\) 16.5338 0.965916 0.482958 0.875644i \(-0.339562\pi\)
0.482958 + 0.875644i \(0.339562\pi\)
\(294\) −6.74772 −0.393535
\(295\) 0 0
\(296\) 30.0635i 1.74740i
\(297\) 17.5172 + 17.5172i 1.01645 + 1.01645i
\(298\) 14.6812i 0.850458i
\(299\) 16.6226 0.961313
\(300\) 0 0
\(301\) 3.09902 + 3.09902i 0.178625 + 0.178625i
\(302\) 6.13590 0.353082
\(303\) 5.32533 + 5.32533i 0.305932 + 0.305932i
\(304\) 10.4538 10.4538i 0.599566 0.599566i
\(305\) 0 0
\(306\) 17.6321 1.00796
\(307\) 20.7862i 1.18633i −0.805082 0.593164i \(-0.797879\pi\)
0.805082 0.593164i \(-0.202121\pi\)
\(308\) 1.11182i 0.0633516i
\(309\) −4.30801 + 4.30801i −0.245074 + 0.245074i
\(310\) 0 0
\(311\) −16.5356 16.5356i −0.937648 0.937648i 0.0605192 0.998167i \(-0.480724\pi\)
−0.998167 + 0.0605192i \(0.980724\pi\)
\(312\) 4.23838 4.23838i 0.239951 0.239951i
\(313\) −15.3699 + 15.3699i −0.868760 + 0.868760i −0.992335 0.123575i \(-0.960564\pi\)
0.123575 + 0.992335i \(0.460564\pi\)
\(314\) 15.1897i 0.857204i
\(315\) 0 0
\(316\) 0.520312 0.520312i 0.0292698 0.0292698i
\(317\) −23.7769 −1.33544 −0.667722 0.744411i \(-0.732730\pi\)
−0.667722 + 0.744411i \(0.732730\pi\)
\(318\) 3.60645 + 3.60645i 0.202240 + 0.202240i
\(319\) −2.06112 29.8531i −0.115401 1.67145i
\(320\) 0 0
\(321\) 3.92688 + 3.92688i 0.219177 + 0.219177i
\(322\) 9.43582i 0.525838i
\(323\) 16.7959 + 16.7959i 0.934552 + 0.934552i
\(324\) 0.610929 0.0339405
\(325\) 0 0
\(326\) −11.0421 −0.611568
\(327\) 8.32834 0.460558
\(328\) −12.0741 12.0741i −0.666681 0.666681i
\(329\) −7.07709 7.07709i −0.390173 0.390173i
\(330\) 0 0
\(331\) 6.36045 6.36045i 0.349602 0.349602i −0.510359 0.859961i \(-0.670488\pi\)
0.859961 + 0.510359i \(0.170488\pi\)
\(332\) −1.66316 + 1.66316i −0.0912780 + 0.0912780i
\(333\) −23.3366 −1.27884
\(334\) −24.2767 24.2767i −1.32836 1.32836i
\(335\) 0 0
\(336\) 2.16743 + 2.16743i 0.118243 + 0.118243i
\(337\) 7.39775 0.402981 0.201490 0.979490i \(-0.435422\pi\)
0.201490 + 0.979490i \(0.435422\pi\)
\(338\) −9.65177 −0.524987
\(339\) 13.3301i 0.723993i
\(340\) 0 0
\(341\) 13.6179i 0.737451i
\(342\) −9.00754 9.00754i −0.487072 0.487072i
\(343\) −9.34011 + 9.34011i −0.504318 + 0.504318i
\(344\) 12.6854i 0.683949i
\(345\) 0 0
\(346\) 4.07803 4.07803i 0.219236 0.219236i
\(347\) 6.06956 6.06956i 0.325831 0.325831i −0.525168 0.850999i \(-0.675997\pi\)
0.850999 + 0.525168i \(0.175997\pi\)
\(348\) 0.672002 + 0.585201i 0.0360231 + 0.0313701i
\(349\) 10.7383i 0.574806i −0.957810 0.287403i \(-0.907208\pi\)
0.957810 0.287403i \(-0.0927919\pi\)
\(350\) 0 0
\(351\) −7.60069 7.60069i −0.405695 0.405695i
\(352\) −4.34763 + 4.34763i −0.231729 + 0.231729i
\(353\) −12.5913 12.5913i −0.670170 0.670170i 0.287585 0.957755i \(-0.407148\pi\)
−0.957755 + 0.287585i \(0.907148\pi\)
\(354\) 14.8093 0.787108
\(355\) 0 0
\(356\) −1.45711 + 1.45711i −0.0772268 + 0.0772268i
\(357\) −3.48238 + 3.48238i −0.184307 + 0.184307i
\(358\) 12.7669i 0.674753i
\(359\) −17.2438 + 17.2438i −0.910095 + 0.910095i −0.996279 0.0861840i \(-0.972533\pi\)
0.0861840 + 0.996279i \(0.472533\pi\)
\(360\) 0 0
\(361\) 1.83920i 0.0968003i
\(362\) 3.24456i 0.170531i
\(363\) 16.7530i 0.879307i
\(364\) 0.482416i 0.0252855i
\(365\) 0 0
\(366\) 2.63530 2.63530i 0.137749 0.137749i
\(367\) 31.1348i 1.62522i 0.582806 + 0.812611i \(0.301955\pi\)
−0.582806 + 0.812611i \(0.698045\pi\)
\(368\) −17.3978 + 17.3978i −0.906922 + 0.906922i
\(369\) −9.37245 + 9.37245i −0.487910 + 0.487910i
\(370\) 0 0
\(371\) 4.59201 0.238405
\(372\) −0.286746 0.286746i −0.0148671 0.0148671i
\(373\) 4.56778 4.56778i 0.236511 0.236511i −0.578893 0.815404i \(-0.696515\pi\)
0.815404 + 0.578893i \(0.196515\pi\)
\(374\) 30.2577 + 30.2577i 1.56459 + 1.56459i
\(375\) 0 0
\(376\) 28.9690i 1.49396i
\(377\) 0.894321 + 12.9532i 0.0460599 + 0.667125i
\(378\) 4.31452 4.31452i 0.221915 0.221915i
\(379\) −26.9196 + 26.9196i −1.38277 + 1.38277i −0.543095 + 0.839671i \(0.682748\pi\)
−0.839671 + 0.543095i \(0.817252\pi\)
\(380\) 0 0
\(381\) 2.20390i 0.112909i
\(382\) 9.16768 9.16768i 0.469060 0.469060i
\(383\) 12.2427 + 12.2427i 0.625575 + 0.625575i 0.946951 0.321377i \(-0.104146\pi\)
−0.321377 + 0.946951i \(0.604146\pi\)
\(384\) 7.89587i 0.402934i
\(385\) 0 0
\(386\) 35.5610i 1.81001i
\(387\) 9.84693 0.500548
\(388\) 0.267768 0.0135938
\(389\) −10.8199 10.8199i −0.548592 0.548592i 0.377442 0.926033i \(-0.376804\pi\)
−0.926033 + 0.377442i \(0.876804\pi\)
\(390\) 0 0
\(391\) −27.9527 27.9527i −1.41363 1.41363i
\(392\) −17.5844 −0.888148
\(393\) −2.79493 + 2.79493i −0.140986 + 0.140986i
\(394\) −15.7834 + 15.7834i −0.795158 + 0.795158i
\(395\) 0 0
\(396\) 1.76636 + 1.76636i 0.0887629 + 0.0887629i
\(397\) 25.3529 + 25.3529i 1.27243 + 1.27243i 0.944812 + 0.327613i \(0.106244\pi\)
0.327613 + 0.944812i \(0.393756\pi\)
\(398\) −5.68618 −0.285022
\(399\) 3.55802 0.178124
\(400\) 0 0
\(401\) −5.08370 −0.253868 −0.126934 0.991911i \(-0.540514\pi\)
−0.126934 + 0.991911i \(0.540514\pi\)
\(402\) 0.294874 + 0.294874i 0.0147070 + 0.0147070i
\(403\) 5.90880i 0.294338i
\(404\) 1.24056 + 1.24056i 0.0617200 + 0.0617200i
\(405\) 0 0
\(406\) −7.35288 + 0.507660i −0.364917 + 0.0251947i
\(407\) −40.0470 40.0470i −1.98506 1.98506i
\(408\) −14.2546 −0.705707
\(409\) 2.60826 2.60826i 0.128970 0.128970i −0.639675 0.768645i \(-0.720931\pi\)
0.768645 + 0.639675i \(0.220931\pi\)
\(410\) 0 0
\(411\) 16.6285i 0.820221i
\(412\) −1.00357 + 1.00357i −0.0494422 + 0.0494422i
\(413\) 9.42820 9.42820i 0.463931 0.463931i
\(414\) 14.9908 + 14.9908i 0.736760 + 0.736760i
\(415\) 0 0
\(416\) 1.88643 1.88643i 0.0924901 0.0924901i
\(417\) 4.39494i 0.215221i
\(418\) 30.9150i 1.51210i
\(419\) −23.6950 −1.15758 −0.578788 0.815478i \(-0.696474\pi\)
−0.578788 + 0.815478i \(0.696474\pi\)
\(420\) 0 0
\(421\) −24.2906 + 24.2906i −1.18385 + 1.18385i −0.205114 + 0.978738i \(0.565756\pi\)
−0.978738 + 0.205114i \(0.934244\pi\)
\(422\) −18.6035 18.6035i −0.905604 0.905604i
\(423\) −22.4870 −1.09336
\(424\) 9.39834 + 9.39834i 0.456424 + 0.456424i
\(425\) 0 0
\(426\) −4.02214 −0.194873
\(427\) 3.35547i 0.162383i
\(428\) 0.914780 + 0.914780i 0.0442176 + 0.0442176i
\(429\) 11.2918i 0.545171i
\(430\) 0 0
\(431\) 9.77002 0.470605 0.235303 0.971922i \(-0.424392\pi\)
0.235303 + 0.971922i \(0.424392\pi\)
\(432\) 15.9102 0.765482
\(433\) 25.1499i 1.20863i 0.796747 + 0.604314i \(0.206553\pi\)
−0.796747 + 0.604314i \(0.793447\pi\)
\(434\) 3.35412 0.161003
\(435\) 0 0
\(436\) 1.94012 0.0929148
\(437\) 28.5599i 1.36621i
\(438\) 3.44098 0.164416
\(439\) −24.6379 −1.17590 −0.587952 0.808896i \(-0.700066\pi\)
−0.587952 + 0.808896i \(0.700066\pi\)
\(440\) 0 0
\(441\) 13.6498i 0.649991i
\(442\) −13.1288 13.1288i −0.624474 0.624474i
\(443\) 36.1431i 1.71721i −0.512636 0.858606i \(-0.671331\pi\)
0.512636 0.858606i \(-0.328669\pi\)
\(444\) 1.68650 0.0800378
\(445\) 0 0
\(446\) −3.45854 3.45854i −0.163766 0.163766i
\(447\) 9.21320 0.435769
\(448\) 6.21421 + 6.21421i 0.293594 + 0.293594i
\(449\) 15.3830 15.3830i 0.725970 0.725970i −0.243845 0.969814i \(-0.578409\pi\)
0.969814 + 0.243845i \(0.0784087\pi\)
\(450\) 0 0
\(451\) −32.1674 −1.51470
\(452\) 3.10530i 0.146061i
\(453\) 3.85059i 0.180917i
\(454\) 24.1581 24.1581i 1.13379 1.13379i
\(455\) 0 0
\(456\) 7.28211 + 7.28211i 0.341016 + 0.341016i
\(457\) 8.52755 8.52755i 0.398902 0.398902i −0.478944 0.877846i \(-0.658980\pi\)
0.877846 + 0.478944i \(0.158980\pi\)
\(458\) 14.6619 14.6619i 0.685106 0.685106i
\(459\) 25.5627i 1.19317i
\(460\) 0 0
\(461\) 17.1578 17.1578i 0.799118 0.799118i −0.183839 0.982956i \(-0.558852\pi\)
0.982956 + 0.183839i \(0.0588524\pi\)
\(462\) 6.40975 0.298208
\(463\) 15.1460 + 15.1460i 0.703894 + 0.703894i 0.965244 0.261350i \(-0.0841677\pi\)
−0.261350 + 0.965244i \(0.584168\pi\)
\(464\) −14.4933 12.6212i −0.672833 0.585926i
\(465\) 0 0
\(466\) 7.77569 + 7.77569i 0.360202 + 0.360202i
\(467\) 17.6567i 0.817057i −0.912746 0.408528i \(-0.866042\pi\)
0.912746 0.408528i \(-0.133958\pi\)
\(468\) −0.766423 0.766423i −0.0354279 0.0354279i
\(469\) 0.375457 0.0173370
\(470\) 0 0
\(471\) −9.53231 −0.439226
\(472\) 38.5929 1.77638
\(473\) 16.8979 + 16.8979i 0.776968 + 0.776968i
\(474\) −2.99966 2.99966i −0.137779 0.137779i
\(475\) 0 0
\(476\) −0.811234 + 0.811234i −0.0371828 + 0.0371828i
\(477\) 7.29541 7.29541i 0.334034 0.334034i
\(478\) −2.14062 −0.0979099
\(479\) −19.8578 19.8578i −0.907327 0.907327i 0.0887292 0.996056i \(-0.471719\pi\)
−0.996056 + 0.0887292i \(0.971719\pi\)
\(480\) 0 0
\(481\) 17.3764 + 17.3764i 0.792295 + 0.792295i
\(482\) 15.4593 0.704151
\(483\) −5.92146 −0.269436
\(484\) 3.90269i 0.177395i
\(485\) 0 0
\(486\) 21.4841i 0.974540i
\(487\) 13.4023 + 13.4023i 0.607315 + 0.607315i 0.942244 0.334928i \(-0.108712\pi\)
−0.334928 + 0.942244i \(0.608712\pi\)
\(488\) 6.86755 6.86755i 0.310879 0.310879i
\(489\) 6.92951i 0.313363i
\(490\) 0 0
\(491\) −3.08910 + 3.08910i −0.139409 + 0.139409i −0.773367 0.633958i \(-0.781429\pi\)
0.633958 + 0.773367i \(0.281429\pi\)
\(492\) 0.677333 0.677333i 0.0305365 0.0305365i
\(493\) 20.2783 23.2861i 0.913290 1.04875i
\(494\) 13.4140i 0.603525i
\(495\) 0 0
\(496\) 6.18433 + 6.18433i 0.277685 + 0.277685i
\(497\) −2.56065 + 2.56065i −0.114861 + 0.114861i
\(498\) 9.58834 + 9.58834i 0.429664 + 0.429664i
\(499\) 29.9441 1.34048 0.670240 0.742144i \(-0.266191\pi\)
0.670240 + 0.742144i \(0.266191\pi\)
\(500\) 0 0
\(501\) 15.2349 15.2349i 0.680644 0.680644i
\(502\) −21.5507 + 21.5507i −0.961853 + 0.961853i
\(503\) 34.4190i 1.53467i −0.641249 0.767333i \(-0.721584\pi\)
0.641249 0.767333i \(-0.278416\pi\)
\(504\) 4.86687 4.86687i 0.216787 0.216787i
\(505\) 0 0
\(506\) 51.4504i 2.28725i
\(507\) 6.05698i 0.269000i
\(508\) 0.513408i 0.0227788i
\(509\) 17.7806i 0.788111i −0.919087 0.394056i \(-0.871072\pi\)
0.919087 0.394056i \(-0.128928\pi\)
\(510\) 0 0
\(511\) 2.19066 2.19066i 0.0969091 0.0969091i
\(512\) 25.0024i 1.10496i
\(513\) 13.0590 13.0590i 0.576569 0.576569i
\(514\) −4.33123 + 4.33123i −0.191043 + 0.191043i
\(515\) 0 0
\(516\) −0.711623 −0.0313275
\(517\) −38.5891 38.5891i −1.69715 1.69715i
\(518\) −9.86368 + 9.86368i −0.433385 + 0.433385i
\(519\) 2.55917 + 2.55917i 0.112335 + 0.112335i
\(520\) 0 0
\(521\) 4.99526i 0.218846i −0.993995 0.109423i \(-0.965100\pi\)
0.993995 0.109423i \(-0.0349003\pi\)
\(522\) −10.8751 + 12.4882i −0.475991 + 0.546593i
\(523\) −12.7767 + 12.7767i −0.558687 + 0.558687i −0.928934 0.370247i \(-0.879273\pi\)
0.370247 + 0.928934i \(0.379273\pi\)
\(524\) −0.651090 + 0.651090i −0.0284430 + 0.0284430i
\(525\) 0 0
\(526\) 2.19900i 0.0958810i
\(527\) −9.93627 + 9.93627i −0.432831 + 0.432831i
\(528\) 11.8183 + 11.8183i 0.514325 + 0.514325i
\(529\) 24.5310i 1.06657i
\(530\) 0 0
\(531\) 29.9575i 1.30004i
\(532\) 0.828855 0.0359354
\(533\) 13.9574 0.604563
\(534\) 8.40042 + 8.40042i 0.363522 + 0.363522i
\(535\) 0 0
\(536\) 0.768437 + 0.768437i 0.0331914 + 0.0331914i
\(537\) −8.01190 −0.345739
\(538\) 26.1569 26.1569i 1.12770 1.12770i
\(539\) −23.4239 + 23.4239i −1.00894 + 1.00894i
\(540\) 0 0
\(541\) 23.9250 + 23.9250i 1.02861 + 1.02861i 0.999578 + 0.0290356i \(0.00924362\pi\)
0.0290356 + 0.999578i \(0.490756\pi\)
\(542\) 14.2101 + 14.2101i 0.610374 + 0.610374i
\(543\) −2.03613 −0.0873787
\(544\) −6.34448 −0.272017
\(545\) 0 0
\(546\) −2.78119 −0.119024
\(547\) −12.8364 12.8364i −0.548843 0.548843i 0.377263 0.926106i \(-0.376865\pi\)
−0.926106 + 0.377263i \(0.876865\pi\)
\(548\) 3.87366i 0.165475i
\(549\) −5.33089 5.33089i −0.227517 0.227517i
\(550\) 0 0
\(551\) −22.2554 + 1.53656i −0.948111 + 0.0654598i
\(552\) −12.1193 12.1193i −0.515831 0.515831i
\(553\) −3.81940 −0.162417
\(554\) −11.8844 + 11.8844i −0.504918 + 0.504918i
\(555\) 0 0
\(556\) 1.02382i 0.0434196i
\(557\) −8.49859 + 8.49859i −0.360097 + 0.360097i −0.863849 0.503752i \(-0.831953\pi\)
0.503752 + 0.863849i \(0.331953\pi\)
\(558\) 5.32875 5.32875i 0.225584 0.225584i
\(559\) −7.33201 7.33201i −0.310111 0.310111i
\(560\) 0 0
\(561\) −18.9883 + 18.9883i −0.801686 + 0.801686i
\(562\) 18.3042i 0.772115i
\(563\) 12.1685i 0.512842i 0.966565 + 0.256421i \(0.0825434\pi\)
−0.966565 + 0.256421i \(0.917457\pi\)
\(564\) 1.62510 0.0684292
\(565\) 0 0
\(566\) −1.31132 + 1.31132i −0.0551191 + 0.0551191i
\(567\) −2.24229 2.24229i −0.0941674 0.0941674i
\(568\) −10.4816 −0.439799
\(569\) 24.9932 + 24.9932i 1.04777 + 1.04777i 0.998800 + 0.0489683i \(0.0155933\pi\)
0.0489683 + 0.998800i \(0.484407\pi\)
\(570\) 0 0
\(571\) −21.0943 −0.882768 −0.441384 0.897318i \(-0.645512\pi\)
−0.441384 + 0.897318i \(0.645512\pi\)
\(572\) 2.63046i 0.109985i
\(573\) 5.75319 + 5.75319i 0.240343 + 0.240343i
\(574\) 7.92291i 0.330696i
\(575\) 0 0
\(576\) 19.7452 0.822718
\(577\) 40.5782 1.68929 0.844646 0.535325i \(-0.179811\pi\)
0.844646 + 0.535325i \(0.179811\pi\)
\(578\) 21.3239i 0.886956i
\(579\) 22.3163 0.927436
\(580\) 0 0
\(581\) 12.2086 0.506499
\(582\) 1.54371i 0.0639890i
\(583\) 25.0387 1.03700
\(584\) 8.96713 0.371062
\(585\) 0 0
\(586\) 22.2050i 0.917281i
\(587\) −3.81873 3.81873i −0.157616 0.157616i 0.623894 0.781509i \(-0.285550\pi\)
−0.781509 + 0.623894i \(0.785550\pi\)
\(588\) 0.986452i 0.0406806i
\(589\) 10.1521 0.418311
\(590\) 0 0
\(591\) −9.90492 9.90492i −0.407434 0.407434i
\(592\) −36.3733 −1.49493
\(593\) 24.9702 + 24.9702i 1.02540 + 1.02540i 0.999669 + 0.0257336i \(0.00819217\pi\)
0.0257336 + 0.999669i \(0.491808\pi\)
\(594\) 23.5257 23.5257i 0.965270 0.965270i
\(595\) 0 0
\(596\) 2.14625 0.0879138
\(597\) 3.56837i 0.146044i
\(598\) 22.3243i 0.912909i
\(599\) −3.13220 + 3.13220i −0.127978 + 0.127978i −0.768195 0.640216i \(-0.778845\pi\)
0.640216 + 0.768195i \(0.278845\pi\)
\(600\) 0 0
\(601\) 12.8277 + 12.8277i 0.523251 + 0.523251i 0.918552 0.395300i \(-0.129360\pi\)
−0.395300 + 0.918552i \(0.629360\pi\)
\(602\) 4.16200 4.16200i 0.169631 0.169631i
\(603\) 0.596494 0.596494i 0.0242911 0.0242911i
\(604\) 0.897010i 0.0364988i
\(605\) 0 0
\(606\) 7.15195 7.15195i 0.290528 0.290528i
\(607\) 10.6408 0.431895 0.215948 0.976405i \(-0.430716\pi\)
0.215948 + 0.976405i \(0.430716\pi\)
\(608\) 3.24115 + 3.24115i 0.131446 + 0.131446i
\(609\) −0.318582 4.61431i −0.0129096 0.186981i
\(610\) 0 0
\(611\) 16.7438 + 16.7438i 0.677381 + 0.677381i
\(612\) 2.57764i 0.104195i
\(613\) −19.6421 19.6421i −0.793335 0.793335i 0.188700 0.982035i \(-0.439573\pi\)
−0.982035 + 0.188700i \(0.939573\pi\)
\(614\) −27.9159 −1.12660
\(615\) 0 0
\(616\) 16.7037 0.673011
\(617\) 5.28522 0.212775 0.106388 0.994325i \(-0.466072\pi\)
0.106388 + 0.994325i \(0.466072\pi\)
\(618\) 5.78568 + 5.78568i 0.232734 + 0.232734i
\(619\) 12.2093 + 12.2093i 0.490732 + 0.490732i 0.908537 0.417805i \(-0.137200\pi\)
−0.417805 + 0.908537i \(0.637200\pi\)
\(620\) 0 0
\(621\) −21.7335 + 21.7335i −0.872136 + 0.872136i
\(622\) −22.2074 + 22.2074i −0.890436 + 0.890436i
\(623\) 10.6961 0.428529
\(624\) −5.12795 5.12795i −0.205282 0.205282i
\(625\) 0 0
\(626\) 20.6419 + 20.6419i 0.825017 + 0.825017i
\(627\) 19.4007 0.774791
\(628\) −2.22059 −0.0886111
\(629\) 58.4405i 2.33017i
\(630\) 0 0
\(631\) 25.5814i 1.01838i 0.860654 + 0.509190i \(0.170055\pi\)
−0.860654 + 0.509190i \(0.829945\pi\)
\(632\) −7.81706 7.81706i −0.310946 0.310946i
\(633\) 11.6747 11.6747i 0.464026 0.464026i
\(634\) 31.9325i 1.26820i
\(635\) 0 0
\(636\) −0.527228 + 0.527228i −0.0209060 + 0.0209060i
\(637\) 10.1636 10.1636i 0.402698 0.402698i
\(638\) −40.0929 + 2.76810i −1.58729 + 0.109590i
\(639\) 8.13629i 0.321867i
\(640\) 0 0
\(641\) 9.93460 + 9.93460i 0.392393 + 0.392393i 0.875539 0.483147i \(-0.160506\pi\)
−0.483147 + 0.875539i \(0.660506\pi\)
\(642\) 5.27382 5.27382i 0.208141 0.208141i
\(643\) −24.2029 24.2029i −0.954469 0.954469i 0.0445391 0.999008i \(-0.485818\pi\)
−0.999008 + 0.0445391i \(0.985818\pi\)
\(644\) −1.37943 −0.0543570
\(645\) 0 0
\(646\) 22.5571 22.5571i 0.887496 0.887496i
\(647\) −22.8586 + 22.8586i −0.898664 + 0.898664i −0.995318 0.0966543i \(-0.969186\pi\)
0.0966543 + 0.995318i \(0.469186\pi\)
\(648\) 9.17847i 0.360564i
\(649\) 51.4089 51.4089i 2.01798 2.01798i
\(650\) 0 0
\(651\) 2.10488i 0.0824969i
\(652\) 1.61426i 0.0632191i
\(653\) 3.15622i 0.123512i −0.998091 0.0617562i \(-0.980330\pi\)
0.998091 0.0617562i \(-0.0196701\pi\)
\(654\) 11.1850i 0.437369i
\(655\) 0 0
\(656\) −14.6083 + 14.6083i −0.570357 + 0.570357i
\(657\) 6.96068i 0.271562i
\(658\) −9.50458 + 9.50458i −0.370527 + 0.370527i
\(659\) −2.95246 + 2.95246i −0.115011 + 0.115011i −0.762270 0.647259i \(-0.775915\pi\)
0.647259 + 0.762270i \(0.275915\pi\)
\(660\) 0 0
\(661\) 17.3475 0.674739 0.337369 0.941372i \(-0.390463\pi\)
0.337369 + 0.941372i \(0.390463\pi\)
\(662\) −8.54212 8.54212i −0.331999 0.331999i
\(663\) 8.23900 8.23900i 0.319976 0.319976i
\(664\) 24.9870 + 24.9870i 0.969685 + 0.969685i
\(665\) 0 0
\(666\) 31.3412i 1.21445i
\(667\) 37.0386 2.55723i 1.43414 0.0990164i
\(668\) 3.54902 3.54902i 0.137316 0.137316i
\(669\) 2.17041 2.17041i 0.0839128 0.0839128i
\(670\) 0 0
\(671\) 18.2963i 0.706320i
\(672\) −0.672002 + 0.672002i −0.0259230 + 0.0259230i
\(673\) −12.3340 12.3340i −0.475441 0.475441i 0.428229 0.903670i \(-0.359138\pi\)
−0.903670 + 0.428229i \(0.859138\pi\)
\(674\) 9.93522i 0.382690i
\(675\) 0 0
\(676\) 1.41100i 0.0542691i
\(677\) 20.9567 0.805430 0.402715 0.915325i \(-0.368067\pi\)
0.402715 + 0.915325i \(0.368067\pi\)
\(678\) −17.9024 −0.687539
\(679\) −0.982787 0.982787i −0.0377159 0.0377159i
\(680\) 0 0
\(681\) 15.1604 + 15.1604i 0.580949 + 0.580949i
\(682\) 18.2889 0.700319
\(683\) −22.5870 + 22.5870i −0.864269 + 0.864269i −0.991831 0.127562i \(-0.959285\pi\)
0.127562 + 0.991831i \(0.459285\pi\)
\(684\) 1.31682 1.31682i 0.0503497 0.0503497i
\(685\) 0 0
\(686\) 12.5438 + 12.5438i 0.478925 + 0.478925i
\(687\) 9.20110 + 9.20110i 0.351044 + 0.351044i
\(688\) 15.3478 0.585130
\(689\) −10.8643 −0.413897
\(690\) 0 0
\(691\) 18.3742 0.698986 0.349493 0.936939i \(-0.386354\pi\)
0.349493 + 0.936939i \(0.386354\pi\)
\(692\) 0.596168 + 0.596168i 0.0226629 + 0.0226629i
\(693\) 12.9661i 0.492543i
\(694\) −8.15146 8.15146i −0.309425 0.309425i
\(695\) 0 0
\(696\) 8.79194 10.0960i 0.333258 0.382688i
\(697\) −23.4709 23.4709i −0.889023 0.889023i
\(698\) −14.4215 −0.545864
\(699\) −4.87965 + 4.87965i −0.184565 + 0.184565i
\(700\) 0 0
\(701\) 22.9182i 0.865607i 0.901488 + 0.432804i \(0.142476\pi\)
−0.901488 + 0.432804i \(0.857524\pi\)
\(702\) −10.2078 + 10.2078i −0.385268 + 0.385268i
\(703\) −29.8550 + 29.8550i −1.12600 + 1.12600i
\(704\) 33.8840 + 33.8840i 1.27705 + 1.27705i
\(705\) 0 0
\(706\) −16.9103 + 16.9103i −0.636426 + 0.636426i
\(707\) 9.10642i 0.342482i
\(708\) 2.16498i 0.0813651i
\(709\) −53.2031 −1.99808 −0.999042 0.0437582i \(-0.986067\pi\)
−0.999042 + 0.0437582i \(0.986067\pi\)
\(710\) 0 0
\(711\) −6.06794 + 6.06794i −0.227566 + 0.227566i
\(712\) 21.8913 + 21.8913i 0.820413 + 0.820413i
\(713\) −16.8957 −0.632749
\(714\) 4.67686 + 4.67686i 0.175027 + 0.175027i
\(715\) 0 0
\(716\) −1.86640 −0.0697508
\(717\) 1.34335i 0.0501684i
\(718\) 23.1586 + 23.1586i 0.864271 + 0.864271i
\(719\) 46.4822i 1.73349i −0.498748 0.866747i \(-0.666207\pi\)
0.498748 0.866747i \(-0.333793\pi\)
\(720\) 0 0
\(721\) 7.36677 0.274353
\(722\) 2.47006 0.0919262
\(723\) 9.70148i 0.360802i
\(724\) −0.474324 −0.0176281
\(725\) 0 0
\(726\) 22.4994 0.835033
\(727\) 27.5262i 1.02089i −0.859910 0.510446i \(-0.829480\pi\)
0.859910 0.510446i \(-0.170520\pi\)
\(728\) −7.24772 −0.268618
\(729\) 4.14737 0.153606
\(730\) 0 0
\(731\) 24.6591i 0.912049i
\(732\) 0.385256 + 0.385256i 0.0142395 + 0.0142395i
\(733\) 15.6923i 0.579608i −0.957086 0.289804i \(-0.906410\pi\)
0.957086 0.289804i \(-0.0935902\pi\)
\(734\) 41.8142 1.54339
\(735\) 0 0
\(736\) −5.39409 5.39409i −0.198829 0.198829i
\(737\) 2.04724 0.0754111
\(738\) 12.5873 + 12.5873i 0.463343 + 0.463343i
\(739\) 3.42222 3.42222i 0.125889 0.125889i −0.641355 0.767244i \(-0.721628\pi\)
0.767244 + 0.641355i \(0.221628\pi\)
\(740\) 0 0
\(741\) −8.41797 −0.309242
\(742\) 6.16710i 0.226401i
\(743\) 34.1903i 1.25432i 0.778890 + 0.627160i \(0.215783\pi\)
−0.778890 + 0.627160i \(0.784217\pi\)
\(744\) −4.30801 + 4.30801i −0.157939 + 0.157939i
\(745\) 0 0
\(746\) −6.13456 6.13456i −0.224602 0.224602i
\(747\) 19.3960 19.3960i 0.709664 0.709664i
\(748\) −4.42339 + 4.42339i −0.161735 + 0.161735i
\(749\) 6.71503i 0.245362i
\(750\) 0 0
\(751\) −8.84550 + 8.84550i −0.322777 + 0.322777i −0.849831 0.527055i \(-0.823296\pi\)
0.527055 + 0.849831i \(0.323296\pi\)
\(752\) −35.0491 −1.27811
\(753\) −13.5241 13.5241i −0.492847 0.492847i
\(754\) 17.3963 1.20108i 0.633535 0.0437407i
\(755\) 0 0
\(756\) 0.630742 + 0.630742i 0.0229399 + 0.0229399i
\(757\) 23.6888i 0.860984i 0.902594 + 0.430492i \(0.141660\pi\)
−0.902594 + 0.430492i \(0.858340\pi\)
\(758\) 36.1532 + 36.1532i 1.31314 + 1.31314i
\(759\) −32.2878 −1.17197
\(760\) 0 0
\(761\) −40.1181 −1.45428 −0.727140 0.686489i \(-0.759151\pi\)
−0.727140 + 0.686489i \(0.759151\pi\)
\(762\) −2.95985 −0.107224
\(763\) −7.12081 7.12081i −0.257791 0.257791i
\(764\) 1.34023 + 1.34023i 0.0484877 + 0.0484877i
\(765\) 0 0
\(766\) 16.4421 16.4421i 0.594076 0.594076i
\(767\) −22.3063 + 22.3063i −0.805433 + 0.805433i
\(768\) −3.93180 −0.141877
\(769\) 13.2917 + 13.2917i 0.479312 + 0.479312i 0.904912 0.425600i \(-0.139937\pi\)
−0.425600 + 0.904912i \(0.639937\pi\)
\(770\) 0 0
\(771\) −2.71807 2.71807i −0.0978889 0.0978889i
\(772\) 5.19868 0.187105
\(773\) 8.06617 0.290120 0.145060 0.989423i \(-0.453663\pi\)
0.145060 + 0.989423i \(0.453663\pi\)
\(774\) 13.2245i 0.475344i
\(775\) 0 0
\(776\) 4.02289i 0.144413i
\(777\) −6.18996 6.18996i −0.222064 0.222064i
\(778\) −14.5312 + 14.5312i −0.520969 + 0.520969i
\(779\) 23.9807i 0.859198i
\(780\) 0 0
\(781\) −13.9624 + 13.9624i −0.499613 + 0.499613i
\(782\) −37.5407 + 37.5407i −1.34245 + 1.34245i
\(783\) −18.1052 15.7666i −0.647026 0.563452i
\(784\) 21.2751i 0.759826i
\(785\) 0 0
\(786\) 3.75361 + 3.75361i 0.133887 + 0.133887i
\(787\) −19.5691 + 19.5691i −0.697564 + 0.697564i −0.963885 0.266320i \(-0.914192\pi\)
0.266320 + 0.963885i \(0.414192\pi\)
\(788\) −2.30739 2.30739i −0.0821973 0.0821973i
\(789\) −1.37999 −0.0491288
\(790\) 0 0
\(791\) −11.3974 + 11.3974i −0.405244 + 0.405244i
\(792\) 26.5374 26.5374i 0.942966 0.942966i
\(793\) 7.93875i 0.281913i
\(794\) 34.0491 34.0491i 1.20836 1.20836i
\(795\) 0 0
\(796\) 0.831265i 0.0294634i
\(797\) 4.45791i 0.157907i 0.996878 + 0.0789537i \(0.0251579\pi\)
−0.996878 + 0.0789537i \(0.974842\pi\)
\(798\) 4.77845i 0.169155i
\(799\) 56.3129i 1.99221i
\(800\) 0 0
\(801\) 16.9930 16.9930i 0.600419 0.600419i
\(802\) 6.82744i 0.241085i
\(803\) 11.9450 11.9450i 0.421528 0.421528i
\(804\) −0.0431078 + 0.0431078i −0.00152029 + 0.00152029i
\(805\) 0 0
\(806\) −7.93556 −0.279518
\(807\) 16.4148 + 16.4148i 0.577828 + 0.577828i
\(808\) 18.6379 18.6379i 0.655678 0.655678i
\(809\) 17.7438 + 17.7438i 0.623838 + 0.623838i 0.946511 0.322672i \(-0.104581\pi\)
−0.322672 + 0.946511i \(0.604581\pi\)
\(810\) 0 0
\(811\) 12.4871i 0.438482i −0.975671 0.219241i \(-0.929642\pi\)
0.975671 0.219241i \(-0.0703582\pi\)
\(812\) −0.0742150 1.07492i −0.00260443 0.0377223i
\(813\) −8.91754 + 8.91754i −0.312752 + 0.312752i
\(814\) −53.7834 + 53.7834i −1.88511 + 1.88511i
\(815\) 0 0
\(816\) 17.2464i 0.603744i
\(817\) 12.5974 12.5974i 0.440726 0.440726i
\(818\) −3.50291 3.50291i −0.122476 0.122476i
\(819\) 5.62600i 0.196588i
\(820\) 0 0
\(821\) 25.9150i 0.904439i 0.891907 + 0.452219i \(0.149368\pi\)
−0.891907 + 0.452219i \(0.850632\pi\)
\(822\) −22.3321 −0.778922
\(823\) −22.1888 −0.773453 −0.386726 0.922194i \(-0.626394\pi\)
−0.386726 + 0.922194i \(0.626394\pi\)
\(824\) 15.0774 + 15.0774i 0.525245 + 0.525245i
\(825\) 0 0
\(826\) −12.6621 12.6621i −0.440572 0.440572i
\(827\) −10.6389 −0.369951 −0.184976 0.982743i \(-0.559221\pi\)
−0.184976 + 0.982743i \(0.559221\pi\)
\(828\) −2.19152 + 2.19152i −0.0761605 + 0.0761605i
\(829\) −2.76134 + 2.76134i −0.0959052 + 0.0959052i −0.753432 0.657526i \(-0.771603\pi\)
0.657526 + 0.753432i \(0.271603\pi\)
\(830\) 0 0
\(831\) −7.45804 7.45804i −0.258717 0.258717i
\(832\) −14.7023 14.7023i −0.509710 0.509710i
\(833\) −34.1824 −1.18435
\(834\) −5.90244 −0.204385
\(835\) 0 0
\(836\) 4.51948 0.156309
\(837\) 7.72555 + 7.72555i 0.267034 + 0.267034i
\(838\) 31.8225i 1.09929i
\(839\) 11.8281 + 11.8281i 0.408353 + 0.408353i 0.881164 0.472811i \(-0.156761\pi\)
−0.472811 + 0.881164i \(0.656761\pi\)
\(840\) 0 0
\(841\) 3.98545 + 28.7248i 0.137429 + 0.990512i
\(842\) 32.6224 + 32.6224i 1.12424 + 1.12424i
\(843\) 11.4868 0.395627
\(844\) 2.71965 2.71965i 0.0936144 0.0936144i
\(845\) 0 0
\(846\) 30.2002i 1.03830i
\(847\) 14.3240 14.3240i 0.492179 0.492179i
\(848\) 11.3709 11.3709i 0.390478 0.390478i
\(849\) −0.822924 0.822924i −0.0282427 0.0282427i
\(850\) 0 0
\(851\) 49.6863 49.6863i 1.70322 1.70322i
\(852\) 0.587998i 0.0201445i
\(853\) 23.4895i 0.804264i 0.915582 + 0.402132i \(0.131731\pi\)
−0.915582 + 0.402132i \(0.868269\pi\)
\(854\) −4.50642 −0.154206
\(855\) 0 0
\(856\) 13.7435 13.7435i 0.469742 0.469742i
\(857\) 14.0556 + 14.0556i 0.480131 + 0.480131i 0.905173 0.425042i \(-0.139741\pi\)
−0.425042 + 0.905173i \(0.639741\pi\)
\(858\) −15.1649 −0.517721
\(859\) −4.09759 4.09759i −0.139808 0.139808i 0.633739 0.773547i \(-0.281519\pi\)
−0.773547 + 0.633739i \(0.781519\pi\)
\(860\) 0 0
\(861\) −4.97203 −0.169446
\(862\) 13.1212i 0.446910i
\(863\) −11.6689 11.6689i −0.397215 0.397215i 0.480034 0.877250i \(-0.340624\pi\)
−0.877250 + 0.480034i \(0.840624\pi\)
\(864\) 4.93289i 0.167820i
\(865\) 0 0
\(866\) 33.7765 1.14777
\(867\) −13.3818 −0.454471
\(868\) 0.490341i 0.0166432i
\(869\) −20.8259 −0.706471
\(870\) 0 0
\(871\) −0.888297 −0.0300988
\(872\) 29.1479i 0.987074i
\(873\) −3.12274 −0.105689
\(874\) 38.3562 1.29742
\(875\) 0 0
\(876\) 0.503038i 0.0169961i
\(877\) 31.1074 + 31.1074i 1.05042 + 1.05042i 0.998659 + 0.0517621i \(0.0164837\pi\)
0.0517621 + 0.998659i \(0.483516\pi\)
\(878\) 33.0889i 1.11670i
\(879\) 13.9348 0.470009
\(880\) 0 0
\(881\) −34.2685 34.2685i −1.15453 1.15453i −0.985633 0.168902i \(-0.945978\pi\)
−0.168902 0.985633i \(-0.554022\pi\)
\(882\) 18.3318 0.617263
\(883\) −16.7707 16.7707i −0.564378 0.564378i 0.366170 0.930548i \(-0.380669\pi\)
−0.930548 + 0.366170i \(0.880669\pi\)
\(884\) 1.91931 1.91931i 0.0645533 0.0645533i
\(885\) 0 0
\(886\) −48.5404 −1.63075
\(887\) 20.0504i 0.673226i 0.941643 + 0.336613i \(0.109281\pi\)
−0.941643 + 0.336613i \(0.890719\pi\)
\(888\) 25.3377i 0.850276i
\(889\) −1.88436 + 1.88436i −0.0631993 + 0.0631993i
\(890\) 0 0
\(891\) −12.2265 12.2265i −0.409602 0.409602i
\(892\) 0.505605 0.505605i 0.0169289 0.0169289i
\(893\) −28.7681 + 28.7681i −0.962686 + 0.962686i
\(894\) 12.3734i 0.413828i
\(895\) 0 0
\(896\) 6.75104 6.75104i 0.225536 0.225536i
\(897\) 14.0097 0.467769
\(898\) −20.6595 20.6595i −0.689416 0.689416i
\(899\) −0.909011 13.1660i −0.0303172 0.439111i
\(900\) 0 0
\(901\) 18.2695 + 18.2695i 0.608644 + 0.608644i
\(902\) 43.2010i 1.43844i
\(903\) 2.61187 + 2.61187i 0.0869176 + 0.0869176i
\(904\) −46.6534 −1.55167
\(905\) 0 0
\(906\) 5.17137 0.171807
\(907\) −11.5003 −0.381861 −0.190931 0.981604i \(-0.561151\pi\)
−0.190931 + 0.981604i \(0.561151\pi\)
\(908\) 3.53168 + 3.53168i 0.117203 + 0.117203i
\(909\) −14.4675 14.4675i −0.479858 0.479858i
\(910\) 0 0
\(911\) 30.3844 30.3844i 1.00668 1.00668i 0.00670420 0.999978i \(-0.497866\pi\)
0.999978 0.00670420i \(-0.00213403\pi\)
\(912\) 8.81051 8.81051i 0.291745 0.291745i
\(913\) 66.5696 2.20313
\(914\) −11.4526 11.4526i −0.378817 0.378817i
\(915\) 0 0
\(916\) 2.14343 + 2.14343i 0.0708209 + 0.0708209i
\(917\) 4.77939 0.157829
\(918\) 34.3309 1.13309
\(919\) 17.4379i 0.575222i −0.957747 0.287611i \(-0.907139\pi\)
0.957747 0.287611i \(-0.0928610\pi\)
\(920\) 0 0
\(921\) 17.5187i 0.577260i
\(922\) −23.0430 23.0430i −0.758881 0.758881i
\(923\) 6.05827 6.05827i 0.199410 0.199410i
\(924\) 0.937044i 0.0308265i
\(925\) 0 0
\(926\) 20.3412 20.3412i 0.668452 0.668452i
\(927\) 11.7037 11.7037i 0.384401 0.384401i
\(928\) 3.91315 4.49357i 0.128455 0.147509i
\(929\) 25.1262i 0.824364i 0.911101 + 0.412182i \(0.135233\pi\)
−0.911101 + 0.412182i \(0.864767\pi\)
\(930\) 0 0
\(931\) 17.4625 + 17.4625i 0.572310 + 0.572310i
\(932\) −1.13673 + 1.13673i −0.0372349 + 0.0372349i
\(933\) −13.9363 13.9363i −0.456254 0.456254i
\(934\) −23.7131 −0.775917
\(935\) 0 0
\(936\) −11.5146 + 11.5146i −0.376366 + 0.376366i
\(937\) −24.7520 + 24.7520i −0.808612 + 0.808612i −0.984424 0.175811i \(-0.943745\pi\)
0.175811 + 0.984424i \(0.443745\pi\)
\(938\) 0.504240i 0.0164640i
\(939\) −12.9539 + 12.9539i −0.422733 + 0.422733i
\(940\) 0 0
\(941\) 30.2385i 0.985746i 0.870101 + 0.492873i \(0.164053\pi\)
−0.870101 + 0.492873i \(0.835947\pi\)
\(942\) 12.8020i 0.417110i
\(943\) 39.9100i 1.29965i
\(944\) 46.6929i 1.51972i
\(945\) 0 0
\(946\) 22.6940 22.6940i 0.737847 0.737847i
\(947\) 0.446886i 0.0145218i −0.999974 0.00726092i \(-0.997689\pi\)
0.999974 0.00726092i \(-0.00231124\pi\)
\(948\) 0.438521 0.438521i 0.0142425 0.0142425i
\(949\) −5.18291 + 5.18291i −0.168244 + 0.168244i
\(950\) 0 0
\(951\) −20.0393 −0.649818
\(952\) 12.1878 + 12.1878i 0.395009 + 0.395009i
\(953\) 17.2854 17.2854i 0.559930 0.559930i −0.369357 0.929287i \(-0.620422\pi\)
0.929287 + 0.369357i \(0.120422\pi\)
\(954\) −9.79778 9.79778i −0.317215 0.317215i
\(955\) 0 0
\(956\) 0.312939i 0.0101212i
\(957\) −1.73713 25.1603i −0.0561533 0.813318i
\(958\) −26.6692 + 26.6692i −0.861642 + 0.861642i
\(959\) −14.2175 + 14.2175i −0.459107 + 0.459107i
\(960\) 0 0
\(961\) 24.9941i 0.806262i
\(962\) 23.3366 23.3366i 0.752402 0.752402i
\(963\) −10.6683 10.6683i −0.343781 0.343781i
\(964\) 2.26000i 0.0727896i
\(965\) 0 0
\(966\) 7.95256i 0.255869i
\(967\) 22.6100 0.727090 0.363545 0.931577i \(-0.381566\pi\)
0.363545 + 0.931577i \(0.381566\pi\)
\(968\) 58.6331 1.88454
\(969\) 14.1557 + 14.1557i 0.454747 + 0.454747i
\(970\) 0 0
\(971\) −26.2469 26.2469i −0.842302 0.842302i 0.146856 0.989158i \(-0.453085\pi\)
−0.989158 + 0.146856i \(0.953085\pi\)
\(972\) 3.14077 0.100740
\(973\) −3.75772 + 3.75772i −0.120467 + 0.120467i
\(974\) 17.9993 17.9993i 0.576736 0.576736i
\(975\) 0 0
\(976\) −8.30894 8.30894i −0.265963 0.265963i
\(977\) −38.4624 38.4624i −1.23052 1.23052i −0.963763 0.266759i \(-0.914047\pi\)
−0.266759 0.963763i \(-0.585953\pi\)
\(978\) −9.30638 −0.297585
\(979\) 58.3221 1.86398
\(980\) 0 0
\(981\) −22.6259 −0.722390
\(982\) 4.14867 + 4.14867i 0.132390 + 0.132390i
\(983\) 11.6191i 0.370591i −0.982683 0.185296i \(-0.940676\pi\)
0.982683 0.185296i \(-0.0593243\pi\)
\(984\) −10.1761 10.1761i −0.324403 0.324403i
\(985\) 0 0
\(986\) −31.2734 27.2339i −0.995948 0.867305i
\(987\) −5.96461 5.96461i −0.189856 0.189856i
\(988\) −1.96100 −0.0623877
\(989\) −20.9652 + 20.9652i −0.666656 + 0.666656i
\(990\) 0 0
\(991\) 38.3726i 1.21895i 0.792807 + 0.609473i \(0.208619\pi\)
−0.792807 + 0.609473i \(0.791381\pi\)
\(992\) −1.91742 + 1.91742i −0.0608782 + 0.0608782i
\(993\) 5.36062 5.36062i 0.170114 0.170114i
\(994\) 3.43897 + 3.43897i 0.109077 + 0.109077i
\(995\) 0 0
\(996\) −1.40172 + 1.40172i −0.0444153 + 0.0444153i
\(997\) 4.59110i 0.145402i 0.997354 + 0.0727008i \(0.0231618\pi\)
−0.997354 + 0.0727008i \(0.976838\pi\)
\(998\) 40.2151i 1.27299i
\(999\) −45.4380 −1.43759
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 725.2.e.b.157.3 16
5.2 odd 4 725.2.j.b.418.6 yes 16
5.3 odd 4 725.2.j.b.418.3 yes 16
5.4 even 2 inner 725.2.e.b.157.6 yes 16
29.17 odd 4 725.2.j.b.307.3 yes 16
145.17 even 4 inner 725.2.e.b.568.3 yes 16
145.104 odd 4 725.2.j.b.307.6 yes 16
145.133 even 4 inner 725.2.e.b.568.6 yes 16
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
725.2.e.b.157.3 16 1.1 even 1 trivial
725.2.e.b.157.6 yes 16 5.4 even 2 inner
725.2.e.b.568.3 yes 16 145.17 even 4 inner
725.2.e.b.568.6 yes 16 145.133 even 4 inner
725.2.j.b.307.3 yes 16 29.17 odd 4
725.2.j.b.307.6 yes 16 145.104 odd 4
725.2.j.b.418.3 yes 16 5.3 odd 4
725.2.j.b.418.6 yes 16 5.2 odd 4