Properties

Label 725.2.j.b.307.6
Level $725$
Weight $2$
Character 725.307
Analytic conductor $5.789$
Analytic rank $0$
Dimension $16$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [725,2,Mod(307,725)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(725, base_ring=CyclotomicField(4))
 
chi = DirichletCharacter(H, H._module([1, 3]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("725.307");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 725 = 5^{2} \cdot 29 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 725.j (of order \(4\), degree \(2\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(5.78915414654\)
Analytic rank: \(0\)
Dimension: \(16\)
Relative dimension: \(8\) over \(\Q(i)\)
Coefficient field: \(\mathbb{Q}[x]/(x^{16} + \cdots)\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{16} + 28x^{14} + 288x^{12} + 1372x^{10} + 3184x^{8} + 3696x^{6} + 2076x^{4} + 504x^{2} + 36 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{7}]\)
Coefficient ring index: \( 2^{4} \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{4}]$

Embedding invariants

Embedding label 307.6
Root \(-0.343006i\) of defining polynomial
Character \(\chi\) \(=\) 725.307
Dual form 725.2.j.b.418.6

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+1.34301 q^{2} +0.842805i q^{3} -0.196335 q^{4} +1.13189i q^{6} +(0.720606 + 0.720606i) q^{7} -2.94969 q^{8} +2.28968 q^{9} +(-3.92923 + 3.92923i) q^{11} -0.165472i q^{12} +(1.70489 + 1.70489i) q^{13} +(0.967779 + 0.967779i) q^{14} -3.56878 q^{16} +5.73391 q^{17} +3.07505 q^{18} +(2.92923 + 2.92923i) q^{19} +(-0.607331 + 0.607331i) q^{21} +(-5.27698 + 5.27698i) q^{22} +(-4.87499 + 4.87499i) q^{23} -2.48601i q^{24} +(2.28968 + 2.28968i) q^{26} +4.45817i q^{27} +(-0.141480 - 0.141480i) q^{28} +(-4.06112 + 3.53656i) q^{29} +(-1.73290 + 1.73290i) q^{31} +1.10648 q^{32} +(-3.31158 - 3.31158i) q^{33} +7.70068 q^{34} -0.449543 q^{36} -10.1921i q^{37} +(3.93398 + 3.93398i) q^{38} +(-1.43689 + 1.43689i) q^{39} +(4.09335 + 4.09335i) q^{41} +(-0.815649 + 0.815649i) q^{42} -4.30057i q^{43} +(0.771444 - 0.771444i) q^{44} +(-6.54714 + 6.54714i) q^{46} -9.82103i q^{47} -3.00779i q^{48} -5.96145i q^{49} +4.83257i q^{51} +(-0.334729 - 0.334729i) q^{52} +(3.18621 - 3.18621i) q^{53} +5.98735i q^{54} +(-2.12557 - 2.12557i) q^{56} +(-2.46877 + 2.46877i) q^{57} +(-5.45411 + 4.74962i) q^{58} +13.0837i q^{59} +(2.32823 - 2.32823i) q^{61} +(-2.32729 + 2.32729i) q^{62} +(1.64996 + 1.64996i) q^{63} +8.62358 q^{64} +(-4.44747 - 4.44747i) q^{66} +(-0.260514 + 0.260514i) q^{67} -1.12577 q^{68} +(-4.10866 - 4.10866i) q^{69} +3.55346i q^{71} -6.75385 q^{72} +3.04002 q^{73} -13.6880i q^{74} +(-0.575110 - 0.575110i) q^{76} -5.66286 q^{77} +(-1.92975 + 1.92975i) q^{78} +(-2.65013 - 2.65013i) q^{79} +3.11167 q^{81} +(5.49739 + 5.49739i) q^{82} +(8.47107 - 8.47107i) q^{83} +(0.119240 - 0.119240i) q^{84} -5.77569i q^{86} +(-2.98063 - 3.42274i) q^{87} +(11.5900 - 11.5900i) q^{88} +(7.42157 + 7.42157i) q^{89} +2.45711i q^{91} +(0.957129 - 0.957129i) q^{92} +(-1.46049 - 1.46049i) q^{93} -13.1897i q^{94} +0.932550i q^{96} -1.36383i q^{97} -8.00627i q^{98} +(-8.99668 + 8.99668i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 16 q + 8 q^{4} - 40 q^{9} - 4 q^{11} + 20 q^{14} - 16 q^{16} - 12 q^{19} - 32 q^{21} - 40 q^{26} - 4 q^{29} + 20 q^{31} + 80 q^{34} - 104 q^{36} + 16 q^{39} + 28 q^{44} + 44 q^{46} + 36 q^{56} + 24 q^{61}+ \cdots - 92 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/725\mathbb{Z}\right)^\times\).

\(n\) \(176\) \(552\)
\(\chi(n)\) \(e\left(\frac{3}{4}\right)\) \(e\left(\frac{1}{4}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 1.34301 0.949649 0.474824 0.880081i \(-0.342512\pi\)
0.474824 + 0.880081i \(0.342512\pi\)
\(3\) 0.842805i 0.486594i 0.969952 + 0.243297i \(0.0782289\pi\)
−0.969952 + 0.243297i \(0.921771\pi\)
\(4\) −0.196335 −0.0981673
\(5\) 0 0
\(6\) 1.13189i 0.462093i
\(7\) 0.720606 + 0.720606i 0.272364 + 0.272364i 0.830051 0.557687i \(-0.188311\pi\)
−0.557687 + 0.830051i \(0.688311\pi\)
\(8\) −2.94969 −1.04287
\(9\) 2.28968 0.763227
\(10\) 0 0
\(11\) −3.92923 + 3.92923i −1.18471 + 1.18471i −0.206197 + 0.978510i \(0.566109\pi\)
−0.978510 + 0.206197i \(0.933891\pi\)
\(12\) 0.165472i 0.0477676i
\(13\) 1.70489 + 1.70489i 0.472852 + 0.472852i 0.902836 0.429984i \(-0.141481\pi\)
−0.429984 + 0.902836i \(0.641481\pi\)
\(14\) 0.967779 + 0.967779i 0.258650 + 0.258650i
\(15\) 0 0
\(16\) −3.56878 −0.892196
\(17\) 5.73391 1.39068 0.695339 0.718682i \(-0.255254\pi\)
0.695339 + 0.718682i \(0.255254\pi\)
\(18\) 3.07505 0.724797
\(19\) 2.92923 + 2.92923i 0.672012 + 0.672012i 0.958180 0.286168i \(-0.0923815\pi\)
−0.286168 + 0.958180i \(0.592381\pi\)
\(20\) 0 0
\(21\) −0.607331 + 0.607331i −0.132530 + 0.132530i
\(22\) −5.27698 + 5.27698i −1.12506 + 1.12506i
\(23\) −4.87499 + 4.87499i −1.01651 + 1.01651i −0.0166437 + 0.999861i \(0.505298\pi\)
−0.999861 + 0.0166437i \(0.994702\pi\)
\(24\) 2.48601i 0.507456i
\(25\) 0 0
\(26\) 2.28968 + 2.28968i 0.449043 + 0.449043i
\(27\) 4.45817i 0.857975i
\(28\) −0.141480 0.141480i −0.0267372 0.0267372i
\(29\) −4.06112 + 3.53656i −0.754132 + 0.656723i
\(30\) 0 0
\(31\) −1.73290 + 1.73290i −0.311237 + 0.311237i −0.845389 0.534151i \(-0.820631\pi\)
0.534151 + 0.845389i \(0.320631\pi\)
\(32\) 1.10648 0.195601
\(33\) −3.31158 3.31158i −0.576471 0.576471i
\(34\) 7.70068 1.32065
\(35\) 0 0
\(36\) −0.449543 −0.0749239
\(37\) 10.1921i 1.67557i −0.546002 0.837784i \(-0.683851\pi\)
0.546002 0.837784i \(-0.316149\pi\)
\(38\) 3.93398 + 3.93398i 0.638175 + 0.638175i
\(39\) −1.43689 + 1.43689i −0.230087 + 0.230087i
\(40\) 0 0
\(41\) 4.09335 + 4.09335i 0.639273 + 0.639273i 0.950376 0.311103i \(-0.100698\pi\)
−0.311103 + 0.950376i \(0.600698\pi\)
\(42\) −0.815649 + 0.815649i −0.125857 + 0.125857i
\(43\) 4.30057i 0.655831i −0.944707 0.327916i \(-0.893654\pi\)
0.944707 0.327916i \(-0.106346\pi\)
\(44\) 0.771444 0.771444i 0.116300 0.116300i
\(45\) 0 0
\(46\) −6.54714 + 6.54714i −0.965323 + 0.965323i
\(47\) 9.82103i 1.43254i −0.697821 0.716272i \(-0.745847\pi\)
0.697821 0.716272i \(-0.254153\pi\)
\(48\) 3.00779i 0.434137i
\(49\) 5.96145i 0.851636i
\(50\) 0 0
\(51\) 4.83257i 0.676695i
\(52\) −0.334729 0.334729i −0.0464186 0.0464186i
\(53\) 3.18621 3.18621i 0.437660 0.437660i −0.453564 0.891224i \(-0.649848\pi\)
0.891224 + 0.453564i \(0.149848\pi\)
\(54\) 5.98735i 0.814775i
\(55\) 0 0
\(56\) −2.12557 2.12557i −0.284041 0.284041i
\(57\) −2.46877 + 2.46877i −0.326997 + 0.326997i
\(58\) −5.45411 + 4.74962i −0.716160 + 0.623656i
\(59\) 13.0837i 1.70335i 0.524068 + 0.851676i \(0.324414\pi\)
−0.524068 + 0.851676i \(0.675586\pi\)
\(60\) 0 0
\(61\) 2.32823 2.32823i 0.298099 0.298099i −0.542170 0.840269i \(-0.682397\pi\)
0.840269 + 0.542170i \(0.182397\pi\)
\(62\) −2.32729 + 2.32729i −0.295566 + 0.295566i
\(63\) 1.64996 + 1.64996i 0.207875 + 0.207875i
\(64\) 8.62358 1.07795
\(65\) 0 0
\(66\) −4.44747 4.44747i −0.547445 0.547445i
\(67\) −0.260514 + 0.260514i −0.0318269 + 0.0318269i −0.722841 0.691014i \(-0.757164\pi\)
0.691014 + 0.722841i \(0.257164\pi\)
\(68\) −1.12577 −0.136519
\(69\) −4.10866 4.10866i −0.494625 0.494625i
\(70\) 0 0
\(71\) 3.55346i 0.421719i 0.977516 + 0.210859i \(0.0676262\pi\)
−0.977516 + 0.210859i \(0.932374\pi\)
\(72\) −6.75385 −0.795949
\(73\) 3.04002 0.355808 0.177904 0.984048i \(-0.443068\pi\)
0.177904 + 0.984048i \(0.443068\pi\)
\(74\) 13.6880i 1.59120i
\(75\) 0 0
\(76\) −0.575110 0.575110i −0.0659696 0.0659696i
\(77\) −5.66286 −0.645343
\(78\) −1.92975 + 1.92975i −0.218502 + 0.218502i
\(79\) −2.65013 2.65013i −0.298163 0.298163i 0.542131 0.840294i \(-0.317618\pi\)
−0.840294 + 0.542131i \(0.817618\pi\)
\(80\) 0 0
\(81\) 3.11167 0.345741
\(82\) 5.49739 + 5.49739i 0.607085 + 0.607085i
\(83\) 8.47107 8.47107i 0.929821 0.929821i −0.0678732 0.997694i \(-0.521621\pi\)
0.997694 + 0.0678732i \(0.0216213\pi\)
\(84\) 0.119240 0.119240i 0.0130102 0.0130102i
\(85\) 0 0
\(86\) 5.77569i 0.622809i
\(87\) −2.98063 3.42274i −0.319557 0.366956i
\(88\) 11.5900 11.5900i 1.23550 1.23550i
\(89\) 7.42157 + 7.42157i 0.786685 + 0.786685i 0.980949 0.194264i \(-0.0622319\pi\)
−0.194264 + 0.980949i \(0.562232\pi\)
\(90\) 0 0
\(91\) 2.45711i 0.257575i
\(92\) 0.957129 0.957129i 0.0997876 0.0997876i
\(93\) −1.46049 1.46049i −0.151446 0.151446i
\(94\) 13.1897i 1.36041i
\(95\) 0 0
\(96\) 0.932550i 0.0951780i
\(97\) 1.36383i 0.138476i −0.997600 0.0692382i \(-0.977943\pi\)
0.997600 0.0692382i \(-0.0220568\pi\)
\(98\) 8.00627i 0.808755i
\(99\) −8.99668 + 8.99668i −0.904201 + 0.904201i
\(100\) 0 0
\(101\) 6.31858 6.31858i 0.628722 0.628722i −0.319024 0.947747i \(-0.603355\pi\)
0.947747 + 0.319024i \(0.103355\pi\)
\(102\) 6.49017i 0.642622i
\(103\) 5.11151 5.11151i 0.503652 0.503652i −0.408919 0.912571i \(-0.634094\pi\)
0.912571 + 0.408919i \(0.134094\pi\)
\(104\) −5.02890 5.02890i −0.493124 0.493124i
\(105\) 0 0
\(106\) 4.27910 4.27910i 0.415623 0.415623i
\(107\) −4.65929 4.65929i −0.450431 0.450431i 0.445067 0.895497i \(-0.353180\pi\)
−0.895497 + 0.445067i \(0.853180\pi\)
\(108\) 0.875293i 0.0842251i
\(109\) −9.88169 −0.946494 −0.473247 0.880930i \(-0.656918\pi\)
−0.473247 + 0.880930i \(0.656918\pi\)
\(110\) 0 0
\(111\) 8.58994 0.815321
\(112\) −2.57169 2.57169i −0.243002 0.243002i
\(113\) −15.8164 −1.48788 −0.743940 0.668247i \(-0.767045\pi\)
−0.743940 + 0.668247i \(0.767045\pi\)
\(114\) −3.31557 + 3.31557i −0.310532 + 0.310532i
\(115\) 0 0
\(116\) 0.797339 0.694350i 0.0740311 0.0644687i
\(117\) 3.90366 + 3.90366i 0.360893 + 0.360893i
\(118\) 17.5715i 1.61759i
\(119\) 4.13189 + 4.13189i 0.378770 + 0.378770i
\(120\) 0 0
\(121\) 19.8777i 1.80707i
\(122\) 3.12682 3.12682i 0.283089 0.283089i
\(123\) −3.44989 + 3.44989i −0.311066 + 0.311066i
\(124\) 0.340228 0.340228i 0.0305533 0.0305533i
\(125\) 0 0
\(126\) 2.21590 + 2.21590i 0.197408 + 0.197408i
\(127\) 2.61496 0.232040 0.116020 0.993247i \(-0.462986\pi\)
0.116020 + 0.993247i \(0.462986\pi\)
\(128\) 9.36855 0.828071
\(129\) 3.62454 0.319123
\(130\) 0 0
\(131\) −3.31623 3.31623i −0.289740 0.289740i 0.547237 0.836977i \(-0.315679\pi\)
−0.836977 + 0.547237i \(0.815679\pi\)
\(132\) 0.650177 + 0.650177i 0.0565907 + 0.0565907i
\(133\) 4.22165i 0.366063i
\(134\) −0.349872 + 0.349872i −0.0302244 + 0.0302244i
\(135\) 0 0
\(136\) −16.9133 −1.45030
\(137\) 19.7299 1.68564 0.842819 0.538197i \(-0.180894\pi\)
0.842819 + 0.538197i \(0.180894\pi\)
\(138\) −5.51796 5.51796i −0.469720 0.469720i
\(139\) 5.21466i 0.442302i −0.975240 0.221151i \(-0.929019\pi\)
0.975240 0.221151i \(-0.0709813\pi\)
\(140\) 0 0
\(141\) 8.27721 0.697067
\(142\) 4.77232i 0.400485i
\(143\) −13.3978 −1.12038
\(144\) −8.17137 −0.680948
\(145\) 0 0
\(146\) 4.08277 0.337892
\(147\) 5.02434 0.414401
\(148\) 2.00106i 0.164486i
\(149\) −10.9316 −0.895551 −0.447775 0.894146i \(-0.647784\pi\)
−0.447775 + 0.894146i \(0.647784\pi\)
\(150\) 0 0
\(151\) 4.56878i 0.371802i −0.982568 0.185901i \(-0.940480\pi\)
0.982568 0.185901i \(-0.0595204\pi\)
\(152\) −8.64033 8.64033i −0.700823 0.700823i
\(153\) 13.1288 1.06140
\(154\) −7.60525 −0.612849
\(155\) 0 0
\(156\) 0.282111 0.282111i 0.0225870 0.0225870i
\(157\) 11.3102i 0.902654i 0.892359 + 0.451327i \(0.149049\pi\)
−0.892359 + 0.451327i \(0.850951\pi\)
\(158\) −3.55914 3.55914i −0.283150 0.283150i
\(159\) 2.68536 + 2.68536i 0.212963 + 0.212963i
\(160\) 0 0
\(161\) −7.02590 −0.553718
\(162\) 4.17899 0.328333
\(163\) −8.22196 −0.643994 −0.321997 0.946741i \(-0.604354\pi\)
−0.321997 + 0.946741i \(0.604354\pi\)
\(164\) −0.803665 0.803665i −0.0627557 0.0627557i
\(165\) 0 0
\(166\) 11.3767 11.3767i 0.883003 0.883003i
\(167\) 18.0764 18.0764i 1.39879 1.39879i 0.595263 0.803531i \(-0.297048\pi\)
0.803531 0.595263i \(-0.202952\pi\)
\(168\) 1.79144 1.79144i 0.138212 0.138212i
\(169\) 7.18669i 0.552822i
\(170\) 0 0
\(171\) 6.70700 + 6.70700i 0.512897 + 0.512897i
\(172\) 0.844351i 0.0643812i
\(173\) 3.03649 + 3.03649i 0.230860 + 0.230860i 0.813052 0.582192i \(-0.197805\pi\)
−0.582192 + 0.813052i \(0.697805\pi\)
\(174\) −4.00301 4.59675i −0.303467 0.348479i
\(175\) 0 0
\(176\) 14.0226 14.0226i 1.05699 1.05699i
\(177\) −11.0270 −0.828841
\(178\) 9.96722 + 9.96722i 0.747074 + 0.747074i
\(179\) 9.50623 0.710529 0.355265 0.934766i \(-0.384391\pi\)
0.355265 + 0.934766i \(0.384391\pi\)
\(180\) 0 0
\(181\) −2.41590 −0.179572 −0.0897861 0.995961i \(-0.528618\pi\)
−0.0897861 + 0.995961i \(0.528618\pi\)
\(182\) 3.29992i 0.244606i
\(183\) 1.96224 + 1.96224i 0.145053 + 0.145053i
\(184\) 14.3797 14.3797i 1.06009 1.06009i
\(185\) 0 0
\(186\) −1.96145 1.96145i −0.143821 0.143821i
\(187\) −22.5299 + 22.5299i −1.64755 + 1.64755i
\(188\) 1.92821i 0.140629i
\(189\) −3.21259 + 3.21259i −0.233681 + 0.233681i
\(190\) 0 0
\(191\) 6.82624 6.82624i 0.493930 0.493930i −0.415612 0.909542i \(-0.636433\pi\)
0.909542 + 0.415612i \(0.136433\pi\)
\(192\) 7.26800i 0.524523i
\(193\) 26.4787i 1.90598i 0.303009 + 0.952988i \(0.402009\pi\)
−0.303009 + 0.952988i \(0.597991\pi\)
\(194\) 1.83164i 0.131504i
\(195\) 0 0
\(196\) 1.17044i 0.0836028i
\(197\) 11.7523 + 11.7523i 0.837319 + 0.837319i 0.988505 0.151187i \(-0.0483095\pi\)
−0.151187 + 0.988505i \(0.548309\pi\)
\(198\) −12.0826 + 12.0826i −0.858673 + 0.858673i
\(199\) 4.23392i 0.300135i −0.988676 0.150067i \(-0.952051\pi\)
0.988676 0.150067i \(-0.0479490\pi\)
\(200\) 0 0
\(201\) −0.219563 0.219563i −0.0154868 0.0154868i
\(202\) 8.48589 8.48589i 0.597065 0.597065i
\(203\) −5.47494 0.378002i −0.384266 0.0265306i
\(204\) 0.948800i 0.0664293i
\(205\) 0 0
\(206\) 6.86479 6.86479i 0.478293 0.478293i
\(207\) −11.1622 + 11.1622i −0.775824 + 0.775824i
\(208\) −6.08439 6.08439i −0.421876 0.421876i
\(209\) −23.0193 −1.59228
\(210\) 0 0
\(211\) 13.8521 + 13.8521i 0.953620 + 0.953620i 0.998971 0.0453507i \(-0.0144405\pi\)
−0.0453507 + 0.998971i \(0.514441\pi\)
\(212\) −0.625564 + 0.625564i −0.0429639 + 0.0429639i
\(213\) −2.99488 −0.205206
\(214\) −6.25746 6.25746i −0.427751 0.427751i
\(215\) 0 0
\(216\) 13.1502i 0.894759i
\(217\) −2.49747 −0.169540
\(218\) −13.2712 −0.898837
\(219\) 2.56215i 0.173134i
\(220\) 0 0
\(221\) 9.77569 + 9.77569i 0.657584 + 0.657584i
\(222\) 11.5363 0.774268
\(223\) −2.57522 + 2.57522i −0.172450 + 0.172450i −0.788055 0.615605i \(-0.788912\pi\)
0.615605 + 0.788055i \(0.288912\pi\)
\(224\) 0.797339 + 0.797339i 0.0532745 + 0.0532745i
\(225\) 0 0
\(226\) −21.2415 −1.41296
\(227\) −17.9881 17.9881i −1.19391 1.19391i −0.975960 0.217949i \(-0.930063\pi\)
−0.217949 0.975960i \(-0.569937\pi\)
\(228\) 0.484705 0.484705i 0.0321004 0.0321004i
\(229\) −10.9172 + 10.9172i −0.721431 + 0.721431i −0.968897 0.247466i \(-0.920402\pi\)
0.247466 + 0.968897i \(0.420402\pi\)
\(230\) 0 0
\(231\) 4.77269i 0.314020i
\(232\) 11.9791 10.4318i 0.786464 0.684879i
\(233\) 5.78977 5.78977i 0.379300 0.379300i −0.491549 0.870850i \(-0.663569\pi\)
0.870850 + 0.491549i \(0.163569\pi\)
\(234\) 5.24263 + 5.24263i 0.342722 + 0.342722i
\(235\) 0 0
\(236\) 2.56878i 0.167214i
\(237\) 2.23354 2.23354i 0.145084 0.145084i
\(238\) 5.54916 + 5.54916i 0.359698 + 0.359698i
\(239\) 1.59391i 0.103101i −0.998670 0.0515506i \(-0.983584\pi\)
0.998670 0.0515506i \(-0.0164163\pi\)
\(240\) 0 0
\(241\) 11.5109i 0.741485i −0.928736 0.370743i \(-0.879103\pi\)
0.928736 0.370743i \(-0.120897\pi\)
\(242\) 26.6959i 1.71608i
\(243\) 15.9970i 1.02621i
\(244\) −0.457112 + 0.457112i −0.0292636 + 0.0292636i
\(245\) 0 0
\(246\) −4.63323 + 4.63323i −0.295404 + 0.295404i
\(247\) 9.98804i 0.635524i
\(248\) 5.11151 5.11151i 0.324581 0.324581i
\(249\) 7.13946 + 7.13946i 0.452445 + 0.452445i
\(250\) 0 0
\(251\) −16.0466 + 16.0466i −1.01285 + 1.01285i −0.0129347 + 0.999916i \(0.504117\pi\)
−0.999916 + 0.0129347i \(0.995883\pi\)
\(252\) −0.323944 0.323944i −0.0204065 0.0204065i
\(253\) 38.3099i 2.40852i
\(254\) 3.51191 0.220357
\(255\) 0 0
\(256\) −4.66514 −0.291571
\(257\) 3.22503 + 3.22503i 0.201172 + 0.201172i 0.800502 0.599330i \(-0.204566\pi\)
−0.599330 + 0.800502i \(0.704566\pi\)
\(258\) 4.86778 0.303055
\(259\) 7.34448 7.34448i 0.456364 0.456364i
\(260\) 0 0
\(261\) −9.29867 + 8.09759i −0.575573 + 0.501229i
\(262\) −4.45371 4.45371i −0.275151 0.275151i
\(263\) 1.63737i 0.100965i −0.998725 0.0504824i \(-0.983924\pi\)
0.998725 0.0504824i \(-0.0160759\pi\)
\(264\) 9.76813 + 9.76813i 0.601187 + 0.601187i
\(265\) 0 0
\(266\) 5.66970i 0.347631i
\(267\) −6.25494 + 6.25494i −0.382796 + 0.382796i
\(268\) 0.0511480 0.0511480i 0.00312436 0.00312436i
\(269\) −19.4764 + 19.4764i −1.18750 + 1.18750i −0.209737 + 0.977758i \(0.567261\pi\)
−0.977758 + 0.209737i \(0.932739\pi\)
\(270\) 0 0
\(271\) −10.5808 10.5808i −0.642737 0.642737i 0.308491 0.951227i \(-0.400176\pi\)
−0.951227 + 0.308491i \(0.900176\pi\)
\(272\) −20.4631 −1.24076
\(273\) −2.07087 −0.125335
\(274\) 26.4974 1.60076
\(275\) 0 0
\(276\) 0.806673 + 0.806673i 0.0485560 + 0.0485560i
\(277\) 8.84907 + 8.84907i 0.531689 + 0.531689i 0.921075 0.389386i \(-0.127313\pi\)
−0.389386 + 0.921075i \(0.627313\pi\)
\(278\) 7.00332i 0.420031i
\(279\) −3.96778 + 3.96778i −0.237545 + 0.237545i
\(280\) 0 0
\(281\) 13.6293 0.813053 0.406527 0.913639i \(-0.366740\pi\)
0.406527 + 0.913639i \(0.366740\pi\)
\(282\) 11.1163 0.661969
\(283\) −0.976410 0.976410i −0.0580416 0.0580416i 0.677490 0.735532i \(-0.263068\pi\)
−0.735532 + 0.677490i \(0.763068\pi\)
\(284\) 0.697668i 0.0413990i
\(285\) 0 0
\(286\) −17.9934 −1.06397
\(287\) 5.89938i 0.348229i
\(288\) 2.53349 0.149288
\(289\) 15.8777 0.933984
\(290\) 0 0
\(291\) 1.14945 0.0673817
\(292\) −0.596862 −0.0349287
\(293\) 16.5338i 0.965916i 0.875644 + 0.482958i \(0.160438\pi\)
−0.875644 + 0.482958i \(0.839562\pi\)
\(294\) 6.74772 0.393535
\(295\) 0 0
\(296\) 30.0635i 1.74740i
\(297\) −17.5172 17.5172i −1.01645 1.01645i
\(298\) −14.6812 −0.850458
\(299\) −16.6226 −0.961313
\(300\) 0 0
\(301\) 3.09902 3.09902i 0.178625 0.178625i
\(302\) 6.13590i 0.353082i
\(303\) 5.32533 + 5.32533i 0.305932 + 0.305932i
\(304\) −10.4538 10.4538i −0.599566 0.599566i
\(305\) 0 0
\(306\) 17.6321 1.00796
\(307\) 20.7862 1.18633 0.593164 0.805082i \(-0.297879\pi\)
0.593164 + 0.805082i \(0.297879\pi\)
\(308\) 1.11182 0.0633516
\(309\) 4.30801 + 4.30801i 0.245074 + 0.245074i
\(310\) 0 0
\(311\) −16.5356 + 16.5356i −0.937648 + 0.937648i −0.998167 0.0605192i \(-0.980724\pi\)
0.0605192 + 0.998167i \(0.480724\pi\)
\(312\) 4.23838 4.23838i 0.239951 0.239951i
\(313\) 15.3699 15.3699i 0.868760 0.868760i −0.123575 0.992335i \(-0.539436\pi\)
0.992335 + 0.123575i \(0.0394361\pi\)
\(314\) 15.1897i 0.857204i
\(315\) 0 0
\(316\) 0.520312 + 0.520312i 0.0292698 + 0.0292698i
\(317\) 23.7769i 1.33544i 0.744411 + 0.667722i \(0.232730\pi\)
−0.744411 + 0.667722i \(0.767270\pi\)
\(318\) 3.60645 + 3.60645i 0.202240 + 0.202240i
\(319\) 2.06112 29.8531i 0.115401 1.67145i
\(320\) 0 0
\(321\) 3.92688 3.92688i 0.219177 0.219177i
\(322\) −9.43582 −0.525838
\(323\) 16.7959 + 16.7959i 0.934552 + 0.934552i
\(324\) −0.610929 −0.0339405
\(325\) 0 0
\(326\) −11.0421 −0.611568
\(327\) 8.32834i 0.460558i
\(328\) −12.0741 12.0741i −0.666681 0.666681i
\(329\) 7.07709 7.07709i 0.390173 0.390173i
\(330\) 0 0
\(331\) 6.36045 + 6.36045i 0.349602 + 0.349602i 0.859961 0.510359i \(-0.170488\pi\)
−0.510359 + 0.859961i \(0.670488\pi\)
\(332\) −1.66316 + 1.66316i −0.0912780 + 0.0912780i
\(333\) 23.3366i 1.27884i
\(334\) 24.2767 24.2767i 1.32836 1.32836i
\(335\) 0 0
\(336\) 2.16743 2.16743i 0.118243 0.118243i
\(337\) 7.39775i 0.402981i −0.979490 0.201490i \(-0.935422\pi\)
0.979490 0.201490i \(-0.0645785\pi\)
\(338\) 9.65177i 0.524987i
\(339\) 13.3301i 0.723993i
\(340\) 0 0
\(341\) 13.6179i 0.737451i
\(342\) 9.00754 + 9.00754i 0.487072 + 0.487072i
\(343\) 9.34011 9.34011i 0.504318 0.504318i
\(344\) 12.6854i 0.683949i
\(345\) 0 0
\(346\) 4.07803 + 4.07803i 0.219236 + 0.219236i
\(347\) 6.06956 6.06956i 0.325831 0.325831i −0.525168 0.850999i \(-0.675997\pi\)
0.850999 + 0.525168i \(0.175997\pi\)
\(348\) 0.585201 + 0.672002i 0.0313701 + 0.0360231i
\(349\) 10.7383i 0.574806i −0.957810 0.287403i \(-0.907208\pi\)
0.957810 0.287403i \(-0.0927919\pi\)
\(350\) 0 0
\(351\) −7.60069 + 7.60069i −0.405695 + 0.405695i
\(352\) −4.34763 + 4.34763i −0.231729 + 0.231729i
\(353\) −12.5913 12.5913i −0.670170 0.670170i 0.287585 0.957755i \(-0.407148\pi\)
−0.957755 + 0.287585i \(0.907148\pi\)
\(354\) −14.8093 −0.787108
\(355\) 0 0
\(356\) −1.45711 1.45711i −0.0772268 0.0772268i
\(357\) −3.48238 + 3.48238i −0.184307 + 0.184307i
\(358\) 12.7669 0.674753
\(359\) 17.2438 + 17.2438i 0.910095 + 0.910095i 0.996279 0.0861840i \(-0.0274673\pi\)
−0.0861840 + 0.996279i \(0.527467\pi\)
\(360\) 0 0
\(361\) 1.83920i 0.0968003i
\(362\) −3.24456 −0.170531
\(363\) 16.7530 0.879307
\(364\) 0.482416i 0.0252855i
\(365\) 0 0
\(366\) 2.63530 + 2.63530i 0.137749 + 0.137749i
\(367\) −31.1348 −1.62522 −0.812611 0.582806i \(-0.801955\pi\)
−0.812611 + 0.582806i \(0.801955\pi\)
\(368\) 17.3978 17.3978i 0.906922 0.906922i
\(369\) 9.37245 + 9.37245i 0.487910 + 0.487910i
\(370\) 0 0
\(371\) 4.59201 0.238405
\(372\) 0.286746 + 0.286746i 0.0148671 + 0.0148671i
\(373\) −4.56778 + 4.56778i −0.236511 + 0.236511i −0.815404 0.578893i \(-0.803485\pi\)
0.578893 + 0.815404i \(0.303485\pi\)
\(374\) −30.2577 + 30.2577i −1.56459 + 1.56459i
\(375\) 0 0
\(376\) 28.9690i 1.49396i
\(377\) −12.9532 0.894321i −0.667125 0.0460599i
\(378\) −4.31452 + 4.31452i −0.221915 + 0.221915i
\(379\) 26.9196 + 26.9196i 1.38277 + 1.38277i 0.839671 + 0.543095i \(0.182748\pi\)
0.543095 + 0.839671i \(0.317252\pi\)
\(380\) 0 0
\(381\) 2.20390i 0.112909i
\(382\) 9.16768 9.16768i 0.469060 0.469060i
\(383\) 12.2427 + 12.2427i 0.625575 + 0.625575i 0.946951 0.321377i \(-0.104146\pi\)
−0.321377 + 0.946951i \(0.604146\pi\)
\(384\) 7.89587i 0.402934i
\(385\) 0 0
\(386\) 35.5610i 1.81001i
\(387\) 9.84693i 0.500548i
\(388\) 0.267768i 0.0135938i
\(389\) 10.8199 10.8199i 0.548592 0.548592i −0.377442 0.926033i \(-0.623196\pi\)
0.926033 + 0.377442i \(0.123196\pi\)
\(390\) 0 0
\(391\) −27.9527 + 27.9527i −1.41363 + 1.41363i
\(392\) 17.5844i 0.888148i
\(393\) 2.79493 2.79493i 0.140986 0.140986i
\(394\) 15.7834 + 15.7834i 0.795158 + 0.795158i
\(395\) 0 0
\(396\) 1.76636 1.76636i 0.0887629 0.0887629i
\(397\) −25.3529 25.3529i −1.27243 1.27243i −0.944812 0.327613i \(-0.893756\pi\)
−0.327613 0.944812i \(-0.606244\pi\)
\(398\) 5.68618i 0.285022i
\(399\) −3.55802 −0.178124
\(400\) 0 0
\(401\) −5.08370 −0.253868 −0.126934 0.991911i \(-0.540514\pi\)
−0.126934 + 0.991911i \(0.540514\pi\)
\(402\) −0.294874 0.294874i −0.0147070 0.0147070i
\(403\) −5.90880 −0.294338
\(404\) −1.24056 + 1.24056i −0.0617200 + 0.0617200i
\(405\) 0 0
\(406\) −7.35288 0.507660i −0.364917 0.0251947i
\(407\) 40.0470 + 40.0470i 1.98506 + 1.98506i
\(408\) 14.2546i 0.705707i
\(409\) −2.60826 2.60826i −0.128970 0.128970i 0.639675 0.768645i \(-0.279069\pi\)
−0.768645 + 0.639675i \(0.779069\pi\)
\(410\) 0 0
\(411\) 16.6285i 0.820221i
\(412\) −1.00357 + 1.00357i −0.0494422 + 0.0494422i
\(413\) −9.42820 + 9.42820i −0.463931 + 0.463931i
\(414\) −14.9908 + 14.9908i −0.736760 + 0.736760i
\(415\) 0 0
\(416\) 1.88643 + 1.88643i 0.0924901 + 0.0924901i
\(417\) 4.39494 0.215221
\(418\) −30.9150 −1.51210
\(419\) 23.6950 1.15758 0.578788 0.815478i \(-0.303526\pi\)
0.578788 + 0.815478i \(0.303526\pi\)
\(420\) 0 0
\(421\) −24.2906 24.2906i −1.18385 1.18385i −0.978738 0.205114i \(-0.934244\pi\)
−0.205114 0.978738i \(-0.565756\pi\)
\(422\) 18.6035 + 18.6035i 0.905604 + 0.905604i
\(423\) 22.4870i 1.09336i
\(424\) −9.39834 + 9.39834i −0.456424 + 0.456424i
\(425\) 0 0
\(426\) −4.02214 −0.194873
\(427\) 3.35547 0.162383
\(428\) 0.914780 + 0.914780i 0.0442176 + 0.0442176i
\(429\) 11.2918i 0.545171i
\(430\) 0 0
\(431\) 9.77002 0.470605 0.235303 0.971922i \(-0.424392\pi\)
0.235303 + 0.971922i \(0.424392\pi\)
\(432\) 15.9102i 0.765482i
\(433\) 25.1499 1.20863 0.604314 0.796747i \(-0.293447\pi\)
0.604314 + 0.796747i \(0.293447\pi\)
\(434\) −3.35412 −0.161003
\(435\) 0 0
\(436\) 1.94012 0.0929148
\(437\) −28.5599 −1.36621
\(438\) 3.44098i 0.164416i
\(439\) 24.6379 1.17590 0.587952 0.808896i \(-0.299934\pi\)
0.587952 + 0.808896i \(0.299934\pi\)
\(440\) 0 0
\(441\) 13.6498i 0.649991i
\(442\) 13.1288 + 13.1288i 0.624474 + 0.624474i
\(443\) −36.1431 −1.71721 −0.858606 0.512636i \(-0.828669\pi\)
−0.858606 + 0.512636i \(0.828669\pi\)
\(444\) −1.68650 −0.0800378
\(445\) 0 0
\(446\) −3.45854 + 3.45854i −0.163766 + 0.163766i
\(447\) 9.21320i 0.435769i
\(448\) 6.21421 + 6.21421i 0.293594 + 0.293594i
\(449\) −15.3830 15.3830i −0.725970 0.725970i 0.243845 0.969814i \(-0.421591\pi\)
−0.969814 + 0.243845i \(0.921591\pi\)
\(450\) 0 0
\(451\) −32.1674 −1.51470
\(452\) 3.10530 0.146061
\(453\) 3.85059 0.180917
\(454\) −24.1581 24.1581i −1.13379 1.13379i
\(455\) 0 0
\(456\) 7.28211 7.28211i 0.341016 0.341016i
\(457\) 8.52755 8.52755i 0.398902 0.398902i −0.478944 0.877846i \(-0.658980\pi\)
0.877846 + 0.478944i \(0.158980\pi\)
\(458\) −14.6619 + 14.6619i −0.685106 + 0.685106i
\(459\) 25.5627i 1.19317i
\(460\) 0 0
\(461\) 17.1578 + 17.1578i 0.799118 + 0.799118i 0.982956 0.183839i \(-0.0588524\pi\)
−0.183839 + 0.982956i \(0.558852\pi\)
\(462\) 6.40975i 0.298208i
\(463\) 15.1460 + 15.1460i 0.703894 + 0.703894i 0.965244 0.261350i \(-0.0841677\pi\)
−0.261350 + 0.965244i \(0.584168\pi\)
\(464\) 14.4933 12.6212i 0.672833 0.585926i
\(465\) 0 0
\(466\) 7.77569 7.77569i 0.360202 0.360202i
\(467\) 17.6567 0.817057 0.408528 0.912746i \(-0.366042\pi\)
0.408528 + 0.912746i \(0.366042\pi\)
\(468\) −0.766423 0.766423i −0.0354279 0.0354279i
\(469\) −0.375457 −0.0173370
\(470\) 0 0
\(471\) −9.53231 −0.439226
\(472\) 38.5929i 1.77638i
\(473\) 16.8979 + 16.8979i 0.776968 + 0.776968i
\(474\) 2.99966 2.99966i 0.137779 0.137779i
\(475\) 0 0
\(476\) −0.811234 0.811234i −0.0371828 0.0371828i
\(477\) 7.29541 7.29541i 0.334034 0.334034i
\(478\) 2.14062i 0.0979099i
\(479\) 19.8578 19.8578i 0.907327 0.907327i −0.0887292 0.996056i \(-0.528281\pi\)
0.996056 + 0.0887292i \(0.0282806\pi\)
\(480\) 0 0
\(481\) 17.3764 17.3764i 0.792295 0.792295i
\(482\) 15.4593i 0.704151i
\(483\) 5.92146i 0.269436i
\(484\) 3.90269i 0.177395i
\(485\) 0 0
\(486\) 21.4841i 0.974540i
\(487\) −13.4023 13.4023i −0.607315 0.607315i 0.334928 0.942244i \(-0.391288\pi\)
−0.942244 + 0.334928i \(0.891288\pi\)
\(488\) −6.86755 + 6.86755i −0.310879 + 0.310879i
\(489\) 6.92951i 0.313363i
\(490\) 0 0
\(491\) −3.08910 3.08910i −0.139409 0.139409i 0.633958 0.773367i \(-0.281429\pi\)
−0.773367 + 0.633958i \(0.781429\pi\)
\(492\) 0.677333 0.677333i 0.0305365 0.0305365i
\(493\) −23.2861 + 20.2783i −1.04875 + 0.913290i
\(494\) 13.4140i 0.603525i
\(495\) 0 0
\(496\) 6.18433 6.18433i 0.277685 0.277685i
\(497\) −2.56065 + 2.56065i −0.114861 + 0.114861i
\(498\) 9.58834 + 9.58834i 0.429664 + 0.429664i
\(499\) −29.9441 −1.34048 −0.670240 0.742144i \(-0.733809\pi\)
−0.670240 + 0.742144i \(0.733809\pi\)
\(500\) 0 0
\(501\) 15.2349 + 15.2349i 0.680644 + 0.680644i
\(502\) −21.5507 + 21.5507i −0.961853 + 0.961853i
\(503\) −34.4190 −1.53467 −0.767333 0.641249i \(-0.778416\pi\)
−0.767333 + 0.641249i \(0.778416\pi\)
\(504\) −4.86687 4.86687i −0.216787 0.216787i
\(505\) 0 0
\(506\) 51.4504i 2.28725i
\(507\) 6.05698 0.269000
\(508\) −0.513408 −0.0227788
\(509\) 17.7806i 0.788111i −0.919087 0.394056i \(-0.871072\pi\)
0.919087 0.394056i \(-0.128928\pi\)
\(510\) 0 0
\(511\) 2.19066 + 2.19066i 0.0969091 + 0.0969091i
\(512\) −25.0024 −1.10496
\(513\) −13.0590 + 13.0590i −0.576569 + 0.576569i
\(514\) 4.33123 + 4.33123i 0.191043 + 0.191043i
\(515\) 0 0
\(516\) −0.711623 −0.0313275
\(517\) 38.5891 + 38.5891i 1.69715 + 1.69715i
\(518\) 9.86368 9.86368i 0.433385 0.433385i
\(519\) −2.55917 + 2.55917i −0.112335 + 0.112335i
\(520\) 0 0
\(521\) 4.99526i 0.218846i 0.993995 + 0.109423i \(0.0349003\pi\)
−0.993995 + 0.109423i \(0.965100\pi\)
\(522\) −12.4882 + 10.8751i −0.546593 + 0.475991i
\(523\) 12.7767 12.7767i 0.558687 0.558687i −0.370247 0.928934i \(-0.620727\pi\)
0.928934 + 0.370247i \(0.120727\pi\)
\(524\) 0.651090 + 0.651090i 0.0284430 + 0.0284430i
\(525\) 0 0
\(526\) 2.19900i 0.0958810i
\(527\) −9.93627 + 9.93627i −0.432831 + 0.432831i
\(528\) 11.8183 + 11.8183i 0.514325 + 0.514325i
\(529\) 24.5310i 1.06657i
\(530\) 0 0
\(531\) 29.9575i 1.30004i
\(532\) 0.828855i 0.0359354i
\(533\) 13.9574i 0.604563i
\(534\) −8.40042 + 8.40042i −0.363522 + 0.363522i
\(535\) 0 0
\(536\) 0.768437 0.768437i 0.0331914 0.0331914i
\(537\) 8.01190i 0.345739i
\(538\) −26.1569 + 26.1569i −1.12770 + 1.12770i
\(539\) 23.4239 + 23.4239i 1.00894 + 1.00894i
\(540\) 0 0
\(541\) 23.9250 23.9250i 1.02861 1.02861i 0.0290356 0.999578i \(-0.490756\pi\)
0.999578 0.0290356i \(-0.00924362\pi\)
\(542\) −14.2101 14.2101i −0.610374 0.610374i
\(543\) 2.03613i 0.0873787i
\(544\) 6.34448 0.272017
\(545\) 0 0
\(546\) −2.78119 −0.119024
\(547\) 12.8364 + 12.8364i 0.548843 + 0.548843i 0.926106 0.377263i \(-0.123135\pi\)
−0.377263 + 0.926106i \(0.623135\pi\)
\(548\) −3.87366 −0.165475
\(549\) 5.33089 5.33089i 0.227517 0.227517i
\(550\) 0 0
\(551\) −22.2554 1.53656i −0.948111 0.0654598i
\(552\) 12.1193 + 12.1193i 0.515831 + 0.515831i
\(553\) 3.81940i 0.162417i
\(554\) 11.8844 + 11.8844i 0.504918 + 0.504918i
\(555\) 0 0
\(556\) 1.02382i 0.0434196i
\(557\) −8.49859 + 8.49859i −0.360097 + 0.360097i −0.863849 0.503752i \(-0.831953\pi\)
0.503752 + 0.863849i \(0.331953\pi\)
\(558\) −5.32875 + 5.32875i −0.225584 + 0.225584i
\(559\) 7.33201 7.33201i 0.310111 0.310111i
\(560\) 0 0
\(561\) −18.9883 18.9883i −0.801686 0.801686i
\(562\) 18.3042 0.772115
\(563\) 12.1685 0.512842 0.256421 0.966565i \(-0.417457\pi\)
0.256421 + 0.966565i \(0.417457\pi\)
\(564\) −1.62510 −0.0684292
\(565\) 0 0
\(566\) −1.31132 1.31132i −0.0551191 0.0551191i
\(567\) 2.24229 + 2.24229i 0.0941674 + 0.0941674i
\(568\) 10.4816i 0.439799i
\(569\) −24.9932 + 24.9932i −1.04777 + 1.04777i −0.0489683 + 0.998800i \(0.515593\pi\)
−0.998800 + 0.0489683i \(0.984407\pi\)
\(570\) 0 0
\(571\) −21.0943 −0.882768 −0.441384 0.897318i \(-0.645512\pi\)
−0.441384 + 0.897318i \(0.645512\pi\)
\(572\) 2.63046 0.109985
\(573\) 5.75319 + 5.75319i 0.240343 + 0.240343i
\(574\) 7.92291i 0.330696i
\(575\) 0 0
\(576\) 19.7452 0.822718
\(577\) 40.5782i 1.68929i −0.535325 0.844646i \(-0.679811\pi\)
0.535325 0.844646i \(-0.320189\pi\)
\(578\) 21.3239 0.886956
\(579\) −22.3163 −0.927436
\(580\) 0 0
\(581\) 12.2086 0.506499
\(582\) 1.54371 0.0639890
\(583\) 25.0387i 1.03700i
\(584\) −8.96713 −0.371062
\(585\) 0 0
\(586\) 22.2050i 0.917281i
\(587\) 3.81873 + 3.81873i 0.157616 + 0.157616i 0.781509 0.623894i \(-0.214450\pi\)
−0.623894 + 0.781509i \(0.714450\pi\)
\(588\) −0.986452 −0.0406806
\(589\) −10.1521 −0.418311
\(590\) 0 0
\(591\) −9.90492 + 9.90492i −0.407434 + 0.407434i
\(592\) 36.3733i 1.49493i
\(593\) 24.9702 + 24.9702i 1.02540 + 1.02540i 0.999669 + 0.0257336i \(0.00819217\pi\)
0.0257336 + 0.999669i \(0.491808\pi\)
\(594\) −23.5257 23.5257i −0.965270 0.965270i
\(595\) 0 0
\(596\) 2.14625 0.0879138
\(597\) 3.56837 0.146044
\(598\) −22.3243 −0.912909
\(599\) 3.13220 + 3.13220i 0.127978 + 0.127978i 0.768195 0.640216i \(-0.221155\pi\)
−0.640216 + 0.768195i \(0.721155\pi\)
\(600\) 0 0
\(601\) 12.8277 12.8277i 0.523251 0.523251i −0.395300 0.918552i \(-0.629360\pi\)
0.918552 + 0.395300i \(0.129360\pi\)
\(602\) 4.16200 4.16200i 0.169631 0.169631i
\(603\) −0.596494 + 0.596494i −0.0242911 + 0.0242911i
\(604\) 0.897010i 0.0364988i
\(605\) 0 0
\(606\) 7.15195 + 7.15195i 0.290528 + 0.290528i
\(607\) 10.6408i 0.431895i −0.976405 0.215948i \(-0.930716\pi\)
0.976405 0.215948i \(-0.0692841\pi\)
\(608\) 3.24115 + 3.24115i 0.131446 + 0.131446i
\(609\) 0.318582 4.61431i 0.0129096 0.186981i
\(610\) 0 0
\(611\) 16.7438 16.7438i 0.677381 0.677381i
\(612\) −2.57764 −0.104195
\(613\) −19.6421 19.6421i −0.793335 0.793335i 0.188700 0.982035i \(-0.439573\pi\)
−0.982035 + 0.188700i \(0.939573\pi\)
\(614\) 27.9159 1.12660
\(615\) 0 0
\(616\) 16.7037 0.673011
\(617\) 5.28522i 0.212775i −0.994325 0.106388i \(-0.966072\pi\)
0.994325 0.106388i \(-0.0339284\pi\)
\(618\) 5.78568 + 5.78568i 0.232734 + 0.232734i
\(619\) −12.2093 + 12.2093i −0.490732 + 0.490732i −0.908537 0.417805i \(-0.862800\pi\)
0.417805 + 0.908537i \(0.362800\pi\)
\(620\) 0 0
\(621\) −21.7335 21.7335i −0.872136 0.872136i
\(622\) −22.2074 + 22.2074i −0.890436 + 0.890436i
\(623\) 10.6961i 0.428529i
\(624\) 5.12795 5.12795i 0.205282 0.205282i
\(625\) 0 0
\(626\) 20.6419 20.6419i 0.825017 0.825017i
\(627\) 19.4007i 0.774791i
\(628\) 2.22059i 0.0886111i
\(629\) 58.4405i 2.33017i
\(630\) 0 0
\(631\) 25.5814i 1.01838i −0.860654 0.509190i \(-0.829945\pi\)
0.860654 0.509190i \(-0.170055\pi\)
\(632\) 7.81706 + 7.81706i 0.310946 + 0.310946i
\(633\) −11.6747 + 11.6747i −0.464026 + 0.464026i
\(634\) 31.9325i 1.26820i
\(635\) 0 0
\(636\) −0.527228 0.527228i −0.0209060 0.0209060i
\(637\) 10.1636 10.1636i 0.402698 0.402698i
\(638\) 2.76810 40.0929i 0.109590 1.58729i
\(639\) 8.13629i 0.321867i
\(640\) 0 0
\(641\) 9.93460 9.93460i 0.392393 0.392393i −0.483147 0.875539i \(-0.660506\pi\)
0.875539 + 0.483147i \(0.160506\pi\)
\(642\) 5.27382 5.27382i 0.208141 0.208141i
\(643\) −24.2029 24.2029i −0.954469 0.954469i 0.0445391 0.999008i \(-0.485818\pi\)
−0.999008 + 0.0445391i \(0.985818\pi\)
\(644\) 1.37943 0.0543570
\(645\) 0 0
\(646\) 22.5571 + 22.5571i 0.887496 + 0.887496i
\(647\) −22.8586 + 22.8586i −0.898664 + 0.898664i −0.995318 0.0966543i \(-0.969186\pi\)
0.0966543 + 0.995318i \(0.469186\pi\)
\(648\) −9.17847 −0.360564
\(649\) −51.4089 51.4089i −2.01798 2.01798i
\(650\) 0 0
\(651\) 2.10488i 0.0824969i
\(652\) 1.61426 0.0632191
\(653\) −3.15622 −0.123512 −0.0617562 0.998091i \(-0.519670\pi\)
−0.0617562 + 0.998091i \(0.519670\pi\)
\(654\) 11.1850i 0.437369i
\(655\) 0 0
\(656\) −14.6083 14.6083i −0.570357 0.570357i
\(657\) 6.96068 0.271562
\(658\) 9.50458 9.50458i 0.370527 0.370527i
\(659\) 2.95246 + 2.95246i 0.115011 + 0.115011i 0.762270 0.647259i \(-0.224085\pi\)
−0.647259 + 0.762270i \(0.724085\pi\)
\(660\) 0 0
\(661\) 17.3475 0.674739 0.337369 0.941372i \(-0.390463\pi\)
0.337369 + 0.941372i \(0.390463\pi\)
\(662\) 8.54212 + 8.54212i 0.331999 + 0.331999i
\(663\) −8.23900 + 8.23900i −0.319976 + 0.319976i
\(664\) −24.9870 + 24.9870i −0.969685 + 0.969685i
\(665\) 0 0
\(666\) 31.3412i 1.21445i
\(667\) 2.55723 37.0386i 0.0990164 1.43414i
\(668\) −3.54902 + 3.54902i −0.137316 + 0.137316i
\(669\) −2.17041 2.17041i −0.0839128 0.0839128i
\(670\) 0 0
\(671\) 18.2963i 0.706320i
\(672\) −0.672002 + 0.672002i −0.0259230 + 0.0259230i
\(673\) −12.3340 12.3340i −0.475441 0.475441i 0.428229 0.903670i \(-0.359138\pi\)
−0.903670 + 0.428229i \(0.859138\pi\)
\(674\) 9.93522i 0.382690i
\(675\) 0 0
\(676\) 1.41100i 0.0542691i
\(677\) 20.9567i 0.805430i −0.915325 0.402715i \(-0.868067\pi\)
0.915325 0.402715i \(-0.131933\pi\)
\(678\) 17.9024i 0.687539i
\(679\) 0.982787 0.982787i 0.0377159 0.0377159i
\(680\) 0 0
\(681\) 15.1604 15.1604i 0.580949 0.580949i
\(682\) 18.2889i 0.700319i
\(683\) 22.5870 22.5870i 0.864269 0.864269i −0.127562 0.991831i \(-0.540715\pi\)
0.991831 + 0.127562i \(0.0407151\pi\)
\(684\) −1.31682 1.31682i −0.0503497 0.0503497i
\(685\) 0 0
\(686\) 12.5438 12.5438i 0.478925 0.478925i
\(687\) −9.20110 9.20110i −0.351044 0.351044i
\(688\) 15.3478i 0.585130i
\(689\) 10.8643 0.413897
\(690\) 0 0
\(691\) 18.3742 0.698986 0.349493 0.936939i \(-0.386354\pi\)
0.349493 + 0.936939i \(0.386354\pi\)
\(692\) −0.596168 0.596168i −0.0226629 0.0226629i
\(693\) −12.9661 −0.492543
\(694\) 8.15146 8.15146i 0.309425 0.309425i
\(695\) 0 0
\(696\) 8.79194 + 10.0960i 0.333258 + 0.382688i
\(697\) 23.4709 + 23.4709i 0.889023 + 0.889023i
\(698\) 14.4215i 0.545864i
\(699\) 4.87965 + 4.87965i 0.184565 + 0.184565i
\(700\) 0 0
\(701\) 22.9182i 0.865607i −0.901488 0.432804i \(-0.857524\pi\)
0.901488 0.432804i \(-0.142476\pi\)
\(702\) −10.2078 + 10.2078i −0.385268 + 0.385268i
\(703\) 29.8550 29.8550i 1.12600 1.12600i
\(704\) −33.8840 + 33.8840i −1.27705 + 1.27705i
\(705\) 0 0
\(706\) −16.9103 16.9103i −0.636426 0.636426i
\(707\) 9.10642 0.342482
\(708\) 2.16498 0.0813651
\(709\) 53.2031 1.99808 0.999042 0.0437582i \(-0.0139331\pi\)
0.999042 + 0.0437582i \(0.0139331\pi\)
\(710\) 0 0
\(711\) −6.06794 6.06794i −0.227566 0.227566i
\(712\) −21.8913 21.8913i −0.820413 0.820413i
\(713\) 16.8957i 0.632749i
\(714\) −4.67686 + 4.67686i −0.175027 + 0.175027i
\(715\) 0 0
\(716\) −1.86640 −0.0697508
\(717\) 1.34335 0.0501684
\(718\) 23.1586 + 23.1586i 0.864271 + 0.864271i
\(719\) 46.4822i 1.73349i −0.498748 0.866747i \(-0.666207\pi\)
0.498748 0.866747i \(-0.333793\pi\)
\(720\) 0 0
\(721\) 7.36677 0.274353
\(722\) 2.47006i 0.0919262i
\(723\) 9.70148 0.360802
\(724\) 0.474324 0.0176281
\(725\) 0 0
\(726\) 22.4994 0.835033
\(727\) 27.5262 1.02089 0.510446 0.859910i \(-0.329480\pi\)
0.510446 + 0.859910i \(0.329480\pi\)
\(728\) 7.24772i 0.268618i
\(729\) −4.14737 −0.153606
\(730\) 0 0
\(731\) 24.6591i 0.912049i
\(732\) −0.385256 0.385256i −0.0142395 0.0142395i
\(733\) −15.6923 −0.579608 −0.289804 0.957086i \(-0.593590\pi\)
−0.289804 + 0.957086i \(0.593590\pi\)
\(734\) −41.8142 −1.54339
\(735\) 0 0
\(736\) −5.39409 + 5.39409i −0.198829 + 0.198829i
\(737\) 2.04724i 0.0754111i
\(738\) 12.5873 + 12.5873i 0.463343 + 0.463343i
\(739\) −3.42222 3.42222i −0.125889 0.125889i 0.641355 0.767244i \(-0.278372\pi\)
−0.767244 + 0.641355i \(0.778372\pi\)
\(740\) 0 0
\(741\) −8.41797 −0.309242
\(742\) 6.16710 0.226401
\(743\) 34.1903 1.25432 0.627160 0.778890i \(-0.284217\pi\)
0.627160 + 0.778890i \(0.284217\pi\)
\(744\) 4.30801 + 4.30801i 0.157939 + 0.157939i
\(745\) 0 0
\(746\) −6.13456 + 6.13456i −0.224602 + 0.224602i
\(747\) 19.3960 19.3960i 0.709664 0.709664i
\(748\) 4.42339 4.42339i 0.161735 0.161735i
\(749\) 6.71503i 0.245362i
\(750\) 0 0
\(751\) −8.84550 8.84550i −0.322777 0.322777i 0.527055 0.849831i \(-0.323296\pi\)
−0.849831 + 0.527055i \(0.823296\pi\)
\(752\) 35.0491i 1.27811i
\(753\) −13.5241 13.5241i −0.492847 0.492847i
\(754\) −17.3963 1.20108i −0.633535 0.0437407i
\(755\) 0 0
\(756\) 0.630742 0.630742i 0.0229399 0.0229399i
\(757\) −23.6888 −0.860984 −0.430492 0.902594i \(-0.641660\pi\)
−0.430492 + 0.902594i \(0.641660\pi\)
\(758\) 36.1532 + 36.1532i 1.31314 + 1.31314i
\(759\) 32.2878 1.17197
\(760\) 0 0
\(761\) −40.1181 −1.45428 −0.727140 0.686489i \(-0.759151\pi\)
−0.727140 + 0.686489i \(0.759151\pi\)
\(762\) 2.95985i 0.107224i
\(763\) −7.12081 7.12081i −0.257791 0.257791i
\(764\) −1.34023 + 1.34023i −0.0484877 + 0.0484877i
\(765\) 0 0
\(766\) 16.4421 + 16.4421i 0.594076 + 0.594076i
\(767\) −22.3063 + 22.3063i −0.805433 + 0.805433i
\(768\) 3.93180i 0.141877i
\(769\) −13.2917 + 13.2917i −0.479312 + 0.479312i −0.904912 0.425600i \(-0.860063\pi\)
0.425600 + 0.904912i \(0.360063\pi\)
\(770\) 0 0
\(771\) −2.71807 + 2.71807i −0.0978889 + 0.0978889i
\(772\) 5.19868i 0.187105i
\(773\) 8.06617i 0.290120i 0.989423 + 0.145060i \(0.0463375\pi\)
−0.989423 + 0.145060i \(0.953663\pi\)
\(774\) 13.2245i 0.475344i
\(775\) 0 0
\(776\) 4.02289i 0.144413i
\(777\) 6.18996 + 6.18996i 0.222064 + 0.222064i
\(778\) 14.5312 14.5312i 0.520969 0.520969i
\(779\) 23.9807i 0.859198i
\(780\) 0 0
\(781\) −13.9624 13.9624i −0.499613 0.499613i
\(782\) −37.5407 + 37.5407i −1.34245 + 1.34245i
\(783\) −15.7666 18.1052i −0.563452 0.647026i
\(784\) 21.2751i 0.759826i
\(785\) 0 0
\(786\) 3.75361 3.75361i 0.133887 0.133887i
\(787\) −19.5691 + 19.5691i −0.697564 + 0.697564i −0.963885 0.266320i \(-0.914192\pi\)
0.266320 + 0.963885i \(0.414192\pi\)
\(788\) −2.30739 2.30739i −0.0821973 0.0821973i
\(789\) 1.37999 0.0491288
\(790\) 0 0
\(791\) −11.3974 11.3974i −0.405244 0.405244i
\(792\) 26.5374 26.5374i 0.942966 0.942966i
\(793\) 7.93875 0.281913
\(794\) −34.0491 34.0491i −1.20836 1.20836i
\(795\) 0 0
\(796\) 0.831265i 0.0294634i
\(797\) −4.45791 −0.157907 −0.0789537 0.996878i \(-0.525158\pi\)
−0.0789537 + 0.996878i \(0.525158\pi\)
\(798\) −4.77845 −0.169155
\(799\) 56.3129i 1.99221i
\(800\) 0 0
\(801\) 16.9930 + 16.9930i 0.600419 + 0.600419i
\(802\) −6.82744 −0.241085
\(803\) −11.9450 + 11.9450i −0.421528 + 0.421528i
\(804\) 0.0431078 + 0.0431078i 0.00152029 + 0.00152029i
\(805\) 0 0
\(806\) −7.93556 −0.279518
\(807\) −16.4148 16.4148i −0.577828 0.577828i
\(808\) −18.6379 + 18.6379i −0.655678 + 0.655678i
\(809\) −17.7438 + 17.7438i −0.623838 + 0.623838i −0.946511 0.322672i \(-0.895419\pi\)
0.322672 + 0.946511i \(0.395419\pi\)
\(810\) 0 0
\(811\) 12.4871i 0.438482i 0.975671 + 0.219241i \(0.0703582\pi\)
−0.975671 + 0.219241i \(0.929642\pi\)
\(812\) 1.07492 + 0.0742150i 0.0377223 + 0.00260443i
\(813\) 8.91754 8.91754i 0.312752 0.312752i
\(814\) 53.7834 + 53.7834i 1.88511 + 1.88511i
\(815\) 0 0
\(816\) 17.2464i 0.603744i
\(817\) 12.5974 12.5974i 0.440726 0.440726i
\(818\) −3.50291 3.50291i −0.122476 0.122476i
\(819\) 5.62600i 0.196588i
\(820\) 0 0
\(821\) 25.9150i 0.904439i −0.891907 0.452219i \(-0.850632\pi\)
0.891907 0.452219i \(-0.149368\pi\)
\(822\) 22.3321i 0.778922i
\(823\) 22.1888i 0.773453i −0.922194 0.386726i \(-0.873606\pi\)
0.922194 0.386726i \(-0.126394\pi\)
\(824\) −15.0774 + 15.0774i −0.525245 + 0.525245i
\(825\) 0 0
\(826\) −12.6621 + 12.6621i −0.440572 + 0.440572i
\(827\) 10.6389i 0.369951i 0.982743 + 0.184976i \(0.0592206\pi\)
−0.982743 + 0.184976i \(0.940779\pi\)
\(828\) 2.19152 2.19152i 0.0761605 0.0761605i
\(829\) 2.76134 + 2.76134i 0.0959052 + 0.0959052i 0.753432 0.657526i \(-0.228397\pi\)
−0.657526 + 0.753432i \(0.728397\pi\)
\(830\) 0 0
\(831\) −7.45804 + 7.45804i −0.258717 + 0.258717i
\(832\) 14.7023 + 14.7023i 0.509710 + 0.509710i
\(833\) 34.1824i 1.18435i
\(834\) 5.90244 0.204385
\(835\) 0 0
\(836\) 4.51948 0.156309
\(837\) −7.72555 7.72555i −0.267034 0.267034i
\(838\) 31.8225 1.09929
\(839\) −11.8281 + 11.8281i −0.408353 + 0.408353i −0.881164 0.472811i \(-0.843239\pi\)
0.472811 + 0.881164i \(0.343239\pi\)
\(840\) 0 0
\(841\) 3.98545 28.7248i 0.137429 0.990512i
\(842\) −32.6224 32.6224i −1.12424 1.12424i
\(843\) 11.4868i 0.395627i
\(844\) −2.71965 2.71965i −0.0936144 0.0936144i
\(845\) 0 0
\(846\) 30.2002i 1.03830i
\(847\) 14.3240 14.3240i 0.492179 0.492179i
\(848\) −11.3709 + 11.3709i −0.390478 + 0.390478i
\(849\) 0.822924 0.822924i 0.0282427 0.0282427i
\(850\) 0 0
\(851\) 49.6863 + 49.6863i 1.70322 + 1.70322i
\(852\) 0.587998 0.0201445
\(853\) 23.4895 0.804264 0.402132 0.915582i \(-0.368269\pi\)
0.402132 + 0.915582i \(0.368269\pi\)
\(854\) 4.50642 0.154206
\(855\) 0 0
\(856\) 13.7435 + 13.7435i 0.469742 + 0.469742i
\(857\) −14.0556 14.0556i −0.480131 0.480131i 0.425042 0.905173i \(-0.360259\pi\)
−0.905173 + 0.425042i \(0.860259\pi\)
\(858\) 15.1649i 0.517721i
\(859\) 4.09759 4.09759i 0.139808 0.139808i −0.633739 0.773547i \(-0.718481\pi\)
0.773547 + 0.633739i \(0.218481\pi\)
\(860\) 0 0
\(861\) −4.97203 −0.169446
\(862\) 13.1212 0.446910
\(863\) −11.6689 11.6689i −0.397215 0.397215i 0.480034 0.877250i \(-0.340624\pi\)
−0.877250 + 0.480034i \(0.840624\pi\)
\(864\) 4.93289i 0.167820i
\(865\) 0 0
\(866\) 33.7765 1.14777
\(867\) 13.3818i 0.454471i
\(868\) 0.490341 0.0166432
\(869\) 20.8259 0.706471
\(870\) 0 0
\(871\) −0.888297 −0.0300988
\(872\) 29.1479 0.987074
\(873\) 3.12274i 0.105689i
\(874\) −38.3562 −1.29742
\(875\) 0 0
\(876\) 0.503038i 0.0169961i
\(877\) −31.1074 31.1074i −1.05042 1.05042i −0.998659 0.0517621i \(-0.983516\pi\)
−0.0517621 0.998659i \(-0.516484\pi\)
\(878\) 33.0889 1.11670
\(879\) −13.9348 −0.470009
\(880\) 0 0
\(881\) −34.2685 + 34.2685i −1.15453 + 1.15453i −0.168902 + 0.985633i \(0.554022\pi\)
−0.985633 + 0.168902i \(0.945978\pi\)
\(882\) 18.3318i 0.617263i
\(883\) −16.7707 16.7707i −0.564378 0.564378i 0.366170 0.930548i \(-0.380669\pi\)
−0.930548 + 0.366170i \(0.880669\pi\)
\(884\) −1.91931 1.91931i −0.0645533 0.0645533i
\(885\) 0 0
\(886\) −48.5404 −1.63075
\(887\) −20.0504 −0.673226 −0.336613 0.941643i \(-0.609281\pi\)
−0.336613 + 0.941643i \(0.609281\pi\)
\(888\) −25.3377 −0.850276
\(889\) 1.88436 + 1.88436i 0.0631993 + 0.0631993i
\(890\) 0 0
\(891\) −12.2265 + 12.2265i −0.409602 + 0.409602i
\(892\) 0.505605 0.505605i 0.0169289 0.0169289i
\(893\) 28.7681 28.7681i 0.962686 0.962686i
\(894\) 12.3734i 0.413828i
\(895\) 0 0
\(896\) 6.75104 + 6.75104i 0.225536 + 0.225536i
\(897\) 14.0097i 0.467769i
\(898\) −20.6595 20.6595i −0.689416 0.689416i
\(899\) 0.909011 13.1660i 0.0303172 0.439111i
\(900\) 0 0
\(901\) 18.2695 18.2695i 0.608644 0.608644i
\(902\) −43.2010 −1.43844
\(903\) 2.61187 + 2.61187i 0.0869176 + 0.0869176i
\(904\) 46.6534 1.55167
\(905\) 0 0
\(906\) 5.17137 0.171807
\(907\) 11.5003i 0.381861i 0.981604 + 0.190931i \(0.0611506\pi\)
−0.981604 + 0.190931i \(0.938849\pi\)
\(908\) 3.53168 + 3.53168i 0.117203 + 0.117203i
\(909\) 14.4675 14.4675i 0.479858 0.479858i
\(910\) 0 0
\(911\) 30.3844 + 30.3844i 1.00668 + 1.00668i 0.999978 + 0.00670420i \(0.00213403\pi\)
0.00670420 + 0.999978i \(0.497866\pi\)
\(912\) 8.81051 8.81051i 0.291745 0.291745i
\(913\) 66.5696i 2.20313i
\(914\) 11.4526 11.4526i 0.378817 0.378817i
\(915\) 0 0
\(916\) 2.14343 2.14343i 0.0708209 0.0708209i
\(917\) 4.77939i 0.157829i
\(918\) 34.3309i 1.13309i
\(919\) 17.4379i 0.575222i −0.957747 0.287611i \(-0.907139\pi\)
0.957747 0.287611i \(-0.0928610\pi\)
\(920\) 0 0
\(921\) 17.5187i 0.577260i
\(922\) 23.0430 + 23.0430i 0.758881 + 0.758881i
\(923\) −6.05827 + 6.05827i −0.199410 + 0.199410i
\(924\) 0.937044i 0.0308265i
\(925\) 0 0
\(926\) 20.3412 + 20.3412i 0.668452 + 0.668452i
\(927\) 11.7037 11.7037i 0.384401 0.384401i
\(928\) −4.49357 + 3.91315i −0.147509 + 0.128455i
\(929\) 25.1262i 0.824364i 0.911101 + 0.412182i \(0.135233\pi\)
−0.911101 + 0.412182i \(0.864767\pi\)
\(930\) 0 0
\(931\) 17.4625 17.4625i 0.572310 0.572310i
\(932\) −1.13673 + 1.13673i −0.0372349 + 0.0372349i
\(933\) −13.9363 13.9363i −0.456254 0.456254i
\(934\) 23.7131 0.775917
\(935\) 0 0
\(936\) −11.5146 11.5146i −0.376366 0.376366i
\(937\) −24.7520 + 24.7520i −0.808612 + 0.808612i −0.984424 0.175811i \(-0.943745\pi\)
0.175811 + 0.984424i \(0.443745\pi\)
\(938\) −0.504240 −0.0164640
\(939\) 12.9539 + 12.9539i 0.422733 + 0.422733i
\(940\) 0 0
\(941\) 30.2385i 0.985746i −0.870101 0.492873i \(-0.835947\pi\)
0.870101 0.492873i \(-0.164053\pi\)
\(942\) −12.8020 −0.417110
\(943\) −39.9100 −1.29965
\(944\) 46.6929i 1.51972i
\(945\) 0 0
\(946\) 22.6940 + 22.6940i 0.737847 + 0.737847i
\(947\) 0.446886 0.0145218 0.00726092 0.999974i \(-0.497689\pi\)
0.00726092 + 0.999974i \(0.497689\pi\)
\(948\) −0.438521 + 0.438521i −0.0142425 + 0.0142425i
\(949\) 5.18291 + 5.18291i 0.168244 + 0.168244i
\(950\) 0 0
\(951\) −20.0393 −0.649818
\(952\) −12.1878 12.1878i −0.395009 0.395009i
\(953\) −17.2854 + 17.2854i −0.559930 + 0.559930i −0.929287 0.369357i \(-0.879578\pi\)
0.369357 + 0.929287i \(0.379578\pi\)
\(954\) 9.79778 9.79778i 0.317215 0.317215i
\(955\) 0 0
\(956\) 0.312939i 0.0101212i
\(957\) 25.1603 + 1.73713i 0.813318 + 0.0561533i
\(958\) 26.6692 26.6692i 0.861642 0.861642i
\(959\) 14.2175 + 14.2175i 0.459107 + 0.459107i
\(960\) 0 0
\(961\) 24.9941i 0.806262i
\(962\) 23.3366 23.3366i 0.752402 0.752402i
\(963\) −10.6683 10.6683i −0.343781 0.343781i
\(964\) 2.26000i 0.0727896i
\(965\) 0 0
\(966\) 7.95256i 0.255869i
\(967\) 22.6100i 0.727090i −0.931577 0.363545i \(-0.881566\pi\)
0.931577 0.363545i \(-0.118434\pi\)
\(968\) 58.6331i 1.88454i
\(969\) −14.1557 + 14.1557i −0.454747 + 0.454747i
\(970\) 0 0
\(971\) −26.2469 + 26.2469i −0.842302 + 0.842302i −0.989158 0.146856i \(-0.953085\pi\)
0.146856 + 0.989158i \(0.453085\pi\)
\(972\) 3.14077i 0.100740i
\(973\) 3.75772 3.75772i 0.120467 0.120467i
\(974\) −17.9993 17.9993i −0.576736 0.576736i
\(975\) 0 0
\(976\) −8.30894 + 8.30894i −0.265963 + 0.265963i
\(977\) 38.4624 + 38.4624i 1.23052 + 1.23052i 0.963763 + 0.266759i \(0.0859527\pi\)
0.266759 + 0.963763i \(0.414047\pi\)
\(978\) 9.30638i 0.297585i
\(979\) −58.3221 −1.86398
\(980\) 0 0
\(981\) −22.6259 −0.722390
\(982\) −4.14867 4.14867i −0.132390 0.132390i
\(983\) −11.6191 −0.370591 −0.185296 0.982683i \(-0.559324\pi\)
−0.185296 + 0.982683i \(0.559324\pi\)
\(984\) 10.1761 10.1761i 0.324403 0.324403i
\(985\) 0 0
\(986\) −31.2734 + 27.2339i −0.995948 + 0.867305i
\(987\) 5.96461 + 5.96461i 0.189856 + 0.189856i
\(988\) 1.96100i 0.0623877i
\(989\) 20.9652 + 20.9652i 0.666656 + 0.666656i
\(990\) 0 0
\(991\) 38.3726i 1.21895i −0.792807 0.609473i \(-0.791381\pi\)
0.792807 0.609473i \(-0.208619\pi\)
\(992\) −1.91742 + 1.91742i −0.0608782 + 0.0608782i
\(993\) −5.36062 + 5.36062i −0.170114 + 0.170114i
\(994\) −3.43897 + 3.43897i −0.109077 + 0.109077i
\(995\) 0 0
\(996\) −1.40172 1.40172i −0.0444153 0.0444153i
\(997\) −4.59110 −0.145402 −0.0727008 0.997354i \(-0.523162\pi\)
−0.0727008 + 0.997354i \(0.523162\pi\)
\(998\) −40.2151 −1.27299
\(999\) 45.4380 1.43759
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 725.2.j.b.307.6 yes 16
5.2 odd 4 725.2.e.b.568.6 yes 16
5.3 odd 4 725.2.e.b.568.3 yes 16
5.4 even 2 inner 725.2.j.b.307.3 yes 16
29.12 odd 4 725.2.e.b.157.6 yes 16
145.12 even 4 inner 725.2.j.b.418.3 yes 16
145.99 odd 4 725.2.e.b.157.3 16
145.128 even 4 inner 725.2.j.b.418.6 yes 16
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
725.2.e.b.157.3 16 145.99 odd 4
725.2.e.b.157.6 yes 16 29.12 odd 4
725.2.e.b.568.3 yes 16 5.3 odd 4
725.2.e.b.568.6 yes 16 5.2 odd 4
725.2.j.b.307.3 yes 16 5.4 even 2 inner
725.2.j.b.307.6 yes 16 1.1 even 1 trivial
725.2.j.b.418.3 yes 16 145.12 even 4 inner
725.2.j.b.418.6 yes 16 145.128 even 4 inner