Properties

Label 725.2.e.b.157.5
Level $725$
Weight $2$
Character 725.157
Analytic conductor $5.789$
Analytic rank $0$
Dimension $16$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [725,2,Mod(157,725)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(725, base_ring=CyclotomicField(4))
 
chi = DirichletCharacter(H, H._module([1, 1]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("725.157");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 725 = 5^{2} \cdot 29 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 725.e (of order \(4\), degree \(2\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(5.78915414654\)
Analytic rank: \(0\)
Dimension: \(16\)
Relative dimension: \(8\) over \(\Q(i)\)
Coefficient field: \(\mathbb{Q}[x]/(x^{16} + \cdots)\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{16} + 28x^{14} + 288x^{12} + 1372x^{10} + 3184x^{8} + 3696x^{6} + 2076x^{4} + 504x^{2} + 36 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{7}]\)
Coefficient ring index: \( 2^{4} \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{4}]$

Embedding invariants

Embedding label 157.5
Root \(-0.807187i\) of defining polynomial
Character \(\chi\) \(=\) 725.157
Dual form 725.2.e.b.568.4

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+0.192813i q^{2} -1.87822 q^{3} +1.96282 q^{4} -0.362145i q^{6} +(-1.55767 - 1.55767i) q^{7} +0.764084i q^{8} +0.527707 q^{9} +(1.15301 + 1.15301i) q^{11} -3.68661 q^{12} +(2.73688 + 2.73688i) q^{13} +(0.300339 - 0.300339i) q^{14} +3.77832 q^{16} -2.15844i q^{17} +0.101749i q^{18} +(2.15301 - 2.15301i) q^{19} +(2.92565 + 2.92565i) q^{21} +(-0.222316 + 0.222316i) q^{22} +(1.84506 - 1.84506i) q^{23} -1.43512i q^{24} +(-0.527707 + 0.527707i) q^{26} +4.64351 q^{27} +(-3.05743 - 3.05743i) q^{28} +(-1.79087 - 5.07866i) q^{29} +(5.11584 + 5.11584i) q^{31} +2.25668i q^{32} +(-2.16561 - 2.16561i) q^{33} +0.416176 q^{34} +1.03579 q^{36} -2.48506 q^{37} +(0.415129 + 0.415129i) q^{38} +(-5.14047 - 5.14047i) q^{39} +(-0.490530 + 0.490530i) q^{41} +(-0.564103 + 0.564103i) q^{42} +9.89254 q^{43} +(2.26316 + 2.26316i) q^{44} +(0.355752 + 0.355752i) q^{46} +9.44060 q^{47} -7.09651 q^{48} -2.14733i q^{49} +4.05403i q^{51} +(5.37202 + 5.37202i) q^{52} +(-1.29978 + 1.29978i) q^{53} +0.895329i q^{54} +(1.19019 - 1.19019i) q^{56} +(-4.04383 + 4.04383i) q^{57} +(0.979232 - 0.345303i) q^{58} -2.43441i q^{59} +(3.32497 + 3.32497i) q^{61} +(-0.986400 + 0.986400i) q^{62} +(-0.821993 - 0.821993i) q^{63} +7.12153 q^{64} +(0.417558 - 0.417558i) q^{66} +(4.68018 - 4.68018i) q^{67} -4.23664i q^{68} +(-3.46543 + 3.46543i) q^{69} +0.803417i q^{71} +0.403212i q^{72} +11.4797i q^{73} -0.479153i q^{74} +(4.22599 - 4.22599i) q^{76} -3.59203i q^{77} +(0.991149 - 0.991149i) q^{78} +(2.09760 - 2.09760i) q^{79} -10.3046 q^{81} +(-0.0945805 - 0.0945805i) q^{82} +(7.41355 - 7.41355i) q^{83} +(5.74253 + 5.74253i) q^{84} +1.90741i q^{86} +(3.36364 + 9.53884i) q^{87} +(-0.880999 + 0.880999i) q^{88} +(-3.83444 + 3.83444i) q^{89} -8.52632i q^{91} +(3.62153 - 3.62153i) q^{92} +(-9.60866 - 9.60866i) q^{93} +1.82027i q^{94} -4.23853i q^{96} -11.2386 q^{97} +0.414032 q^{98} +(0.608453 + 0.608453i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 16 q - 8 q^{4} + 40 q^{9} - 4 q^{11} - 20 q^{14} - 16 q^{16} + 12 q^{19} - 32 q^{21} - 40 q^{26} + 4 q^{29} + 20 q^{31} - 80 q^{34} - 104 q^{36} - 16 q^{39} - 28 q^{44} + 44 q^{46} + 36 q^{56} + 24 q^{61}+ \cdots + 92 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/725\mathbb{Z}\right)^\times\).

\(n\) \(176\) \(552\)
\(\chi(n)\) \(e\left(\frac{1}{4}\right)\) \(e\left(\frac{1}{4}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0.192813i 0.136339i 0.997674 + 0.0681697i \(0.0217159\pi\)
−0.997674 + 0.0681697i \(0.978284\pi\)
\(3\) −1.87822 −1.08439 −0.542195 0.840253i \(-0.682407\pi\)
−0.542195 + 0.840253i \(0.682407\pi\)
\(4\) 1.96282 0.981412
\(5\) 0 0
\(6\) 0.362145i 0.147845i
\(7\) −1.55767 1.55767i −0.588744 0.588744i 0.348547 0.937291i \(-0.386675\pi\)
−0.937291 + 0.348547i \(0.886675\pi\)
\(8\) 0.764084i 0.270144i
\(9\) 0.527707 0.175902
\(10\) 0 0
\(11\) 1.15301 + 1.15301i 0.347647 + 0.347647i 0.859232 0.511586i \(-0.170942\pi\)
−0.511586 + 0.859232i \(0.670942\pi\)
\(12\) −3.68661 −1.06423
\(13\) 2.73688 + 2.73688i 0.759075 + 0.759075i 0.976154 0.217079i \(-0.0696530\pi\)
−0.217079 + 0.976154i \(0.569653\pi\)
\(14\) 0.300339 0.300339i 0.0802690 0.0802690i
\(15\) 0 0
\(16\) 3.77832 0.944580
\(17\) 2.15844i 0.523500i −0.965136 0.261750i \(-0.915700\pi\)
0.965136 0.261750i \(-0.0842995\pi\)
\(18\) 0.101749i 0.0239824i
\(19\) 2.15301 2.15301i 0.493935 0.493935i −0.415608 0.909544i \(-0.636431\pi\)
0.909544 + 0.415608i \(0.136431\pi\)
\(20\) 0 0
\(21\) 2.92565 + 2.92565i 0.638428 + 0.638428i
\(22\) −0.222316 + 0.222316i −0.0473979 + 0.0473979i
\(23\) 1.84506 1.84506i 0.384722 0.384722i −0.488078 0.872800i \(-0.662302\pi\)
0.872800 + 0.488078i \(0.162302\pi\)
\(24\) 1.43512i 0.292942i
\(25\) 0 0
\(26\) −0.527707 + 0.527707i −0.103492 + 0.103492i
\(27\) 4.64351 0.893644
\(28\) −3.05743 3.05743i −0.577800 0.577800i
\(29\) −1.79087 5.07866i −0.332556 0.943084i
\(30\) 0 0
\(31\) 5.11584 + 5.11584i 0.918831 + 0.918831i 0.996945 0.0781131i \(-0.0248895\pi\)
−0.0781131 + 0.996945i \(0.524890\pi\)
\(32\) 2.25668i 0.398928i
\(33\) −2.16561 2.16561i −0.376985 0.376985i
\(34\) 0.416176 0.0713736
\(35\) 0 0
\(36\) 1.03579 0.172632
\(37\) −2.48506 −0.408542 −0.204271 0.978914i \(-0.565482\pi\)
−0.204271 + 0.978914i \(0.565482\pi\)
\(38\) 0.415129 + 0.415129i 0.0673428 + 0.0673428i
\(39\) −5.14047 5.14047i −0.823133 0.823133i
\(40\) 0 0
\(41\) −0.490530 + 0.490530i −0.0766079 + 0.0766079i −0.744372 0.667765i \(-0.767251\pi\)
0.667765 + 0.744372i \(0.267251\pi\)
\(42\) −0.564103 + 0.564103i −0.0870429 + 0.0870429i
\(43\) 9.89254 1.50860 0.754299 0.656531i \(-0.227977\pi\)
0.754299 + 0.656531i \(0.227977\pi\)
\(44\) 2.26316 + 2.26316i 0.341185 + 0.341185i
\(45\) 0 0
\(46\) 0.355752 + 0.355752i 0.0524528 + 0.0524528i
\(47\) 9.44060 1.37705 0.688527 0.725211i \(-0.258258\pi\)
0.688527 + 0.725211i \(0.258258\pi\)
\(48\) −7.09651 −1.02429
\(49\) 2.14733i 0.306761i
\(50\) 0 0
\(51\) 4.05403i 0.567678i
\(52\) 5.37202 + 5.37202i 0.744965 + 0.744965i
\(53\) −1.29978 + 1.29978i −0.178539 + 0.178539i −0.790718 0.612180i \(-0.790293\pi\)
0.612180 + 0.790718i \(0.290293\pi\)
\(54\) 0.895329i 0.121839i
\(55\) 0 0
\(56\) 1.19019 1.19019i 0.159046 0.159046i
\(57\) −4.04383 + 4.04383i −0.535619 + 0.535619i
\(58\) 0.979232 0.345303i 0.128579 0.0453405i
\(59\) 2.43441i 0.316934i −0.987364 0.158467i \(-0.949345\pi\)
0.987364 0.158467i \(-0.0506551\pi\)
\(60\) 0 0
\(61\) 3.32497 + 3.32497i 0.425719 + 0.425719i 0.887167 0.461448i \(-0.152670\pi\)
−0.461448 + 0.887167i \(0.652670\pi\)
\(62\) −0.986400 + 0.986400i −0.125273 + 0.125273i
\(63\) −0.821993 0.821993i −0.103561 0.103561i
\(64\) 7.12153 0.890191
\(65\) 0 0
\(66\) 0.417558 0.417558i 0.0513979 0.0513979i
\(67\) 4.68018 4.68018i 0.571775 0.571775i −0.360849 0.932624i \(-0.617513\pi\)
0.932624 + 0.360849i \(0.117513\pi\)
\(68\) 4.23664i 0.513769i
\(69\) −3.46543 + 3.46543i −0.417189 + 0.417189i
\(70\) 0 0
\(71\) 0.803417i 0.0953480i 0.998863 + 0.0476740i \(0.0151809\pi\)
−0.998863 + 0.0476740i \(0.984819\pi\)
\(72\) 0.403212i 0.0475190i
\(73\) 11.4797i 1.34360i 0.740733 + 0.671799i \(0.234478\pi\)
−0.740733 + 0.671799i \(0.765522\pi\)
\(74\) 0.479153i 0.0557004i
\(75\) 0 0
\(76\) 4.22599 4.22599i 0.484754 0.484754i
\(77\) 3.59203i 0.409350i
\(78\) 0.991149 0.991149i 0.112225 0.112225i
\(79\) 2.09760 2.09760i 0.235999 0.235999i −0.579192 0.815191i \(-0.696632\pi\)
0.815191 + 0.579192i \(0.196632\pi\)
\(80\) 0 0
\(81\) −10.3046 −1.14496
\(82\) −0.0945805 0.0945805i −0.0104447 0.0104447i
\(83\) 7.41355 7.41355i 0.813742 0.813742i −0.171450 0.985193i \(-0.554845\pi\)
0.985193 + 0.171450i \(0.0548453\pi\)
\(84\) 5.74253 + 5.74253i 0.626561 + 0.626561i
\(85\) 0 0
\(86\) 1.90741i 0.205681i
\(87\) 3.36364 + 9.53884i 0.360620 + 1.02267i
\(88\) −0.880999 + 0.880999i −0.0939148 + 0.0939148i
\(89\) −3.83444 + 3.83444i −0.406450 + 0.406450i −0.880499 0.474049i \(-0.842792\pi\)
0.474049 + 0.880499i \(0.342792\pi\)
\(90\) 0 0
\(91\) 8.52632i 0.893802i
\(92\) 3.62153 3.62153i 0.377571 0.377571i
\(93\) −9.60866 9.60866i −0.996372 0.996372i
\(94\) 1.82027i 0.187747i
\(95\) 0 0
\(96\) 4.23853i 0.432593i
\(97\) −11.2386 −1.14110 −0.570552 0.821261i \(-0.693271\pi\)
−0.570552 + 0.821261i \(0.693271\pi\)
\(98\) 0.414032 0.0418236
\(99\) 0.608453 + 0.608453i 0.0611518 + 0.0611518i
\(100\) 0 0
\(101\) −3.61891 3.61891i −0.360095 0.360095i 0.503753 0.863848i \(-0.331952\pi\)
−0.863848 + 0.503753i \(0.831952\pi\)
\(102\) −0.781670 −0.0773968
\(103\) −3.90893 + 3.90893i −0.385158 + 0.385158i −0.872956 0.487798i \(-0.837800\pi\)
0.487798 + 0.872956i \(0.337800\pi\)
\(104\) −2.09121 + 2.09121i −0.205060 + 0.205060i
\(105\) 0 0
\(106\) −0.250614 0.250614i −0.0243418 0.0243418i
\(107\) −11.2646 11.2646i −1.08899 1.08899i −0.995633 0.0933536i \(-0.970241\pi\)
−0.0933536 0.995633i \(-0.529759\pi\)
\(108\) 9.11439 0.877032
\(109\) 6.52155 0.624651 0.312326 0.949975i \(-0.398892\pi\)
0.312326 + 0.949975i \(0.398892\pi\)
\(110\) 0 0
\(111\) 4.66749 0.443019
\(112\) −5.88538 5.88538i −0.556116 0.556116i
\(113\) 19.0637i 1.79337i 0.442674 + 0.896683i \(0.354030\pi\)
−0.442674 + 0.896683i \(0.645970\pi\)
\(114\) −0.779703 0.779703i −0.0730259 0.0730259i
\(115\) 0 0
\(116\) −3.51516 9.96851i −0.326374 0.925553i
\(117\) 1.44427 + 1.44427i 0.133523 + 0.133523i
\(118\) 0.469386 0.0432105
\(119\) −3.36214 + 3.36214i −0.308207 + 0.308207i
\(120\) 0 0
\(121\) 8.34112i 0.758283i
\(122\) −0.641097 + 0.641097i −0.0580422 + 0.0580422i
\(123\) 0.921322 0.921322i 0.0830728 0.0830728i
\(124\) 10.0415 + 10.0415i 0.901752 + 0.901752i
\(125\) 0 0
\(126\) 0.158491 0.158491i 0.0141195 0.0141195i
\(127\) 6.13610i 0.544491i 0.962228 + 0.272245i \(0.0877663\pi\)
−0.962228 + 0.272245i \(0.912234\pi\)
\(128\) 5.88648i 0.520296i
\(129\) −18.5804 −1.63591
\(130\) 0 0
\(131\) −15.6914 + 15.6914i −1.37097 + 1.37097i −0.511951 + 0.859015i \(0.671077\pi\)
−0.859015 + 0.511951i \(0.828923\pi\)
\(132\) −4.25071 4.25071i −0.369977 0.369977i
\(133\) −6.70737 −0.581603
\(134\) 0.902399 + 0.902399i 0.0779554 + 0.0779554i
\(135\) 0 0
\(136\) 1.64923 0.141420
\(137\) 12.4600i 1.06453i −0.846577 0.532267i \(-0.821340\pi\)
0.846577 0.532267i \(-0.178660\pi\)
\(138\) −0.668181 0.668181i −0.0568793 0.0568793i
\(139\) 1.85129i 0.157025i 0.996913 + 0.0785123i \(0.0250170\pi\)
−0.996913 + 0.0785123i \(0.974983\pi\)
\(140\) 0 0
\(141\) −17.7315 −1.49326
\(142\) −0.154909 −0.0129997
\(143\) 6.31133i 0.527780i
\(144\) 1.99384 0.166154
\(145\) 0 0
\(146\) −2.21344 −0.183185
\(147\) 4.03315i 0.332648i
\(148\) −4.87774 −0.400948
\(149\) −16.4633 −1.34873 −0.674365 0.738398i \(-0.735583\pi\)
−0.674365 + 0.738398i \(0.735583\pi\)
\(150\) 0 0
\(151\) 2.77832i 0.226097i −0.993589 0.113048i \(-0.963939\pi\)
0.993589 0.113048i \(-0.0360615\pi\)
\(152\) 1.64508 + 1.64508i 0.133434 + 0.133434i
\(153\) 1.13903i 0.0920847i
\(154\) 0.692590 0.0558105
\(155\) 0 0
\(156\) −10.0898 10.0898i −0.807833 0.807833i
\(157\) 0.932142 0.0743931 0.0371965 0.999308i \(-0.488157\pi\)
0.0371965 + 0.999308i \(0.488157\pi\)
\(158\) 0.404445 + 0.404445i 0.0321759 + 0.0321759i
\(159\) 2.44127 2.44127i 0.193605 0.193605i
\(160\) 0 0
\(161\) −5.74800 −0.453006
\(162\) 1.98687i 0.156103i
\(163\) 12.6956i 0.994396i −0.867637 0.497198i \(-0.834362\pi\)
0.867637 0.497198i \(-0.165638\pi\)
\(164\) −0.962823 + 0.962823i −0.0751839 + 0.0751839i
\(165\) 0 0
\(166\) 1.42943 + 1.42943i 0.110945 + 0.110945i
\(167\) −11.0826 + 11.0826i −0.857595 + 0.857595i −0.991054 0.133459i \(-0.957392\pi\)
0.133459 + 0.991054i \(0.457392\pi\)
\(168\) −2.23544 + 2.23544i −0.172468 + 0.172468i
\(169\) 1.98106i 0.152389i
\(170\) 0 0
\(171\) 1.13616 1.13616i 0.0868843 0.0868843i
\(172\) 19.4173 1.48056
\(173\) −12.8849 12.8849i −0.979620 0.979620i 0.0201761 0.999796i \(-0.493577\pi\)
−0.999796 + 0.0201761i \(0.993577\pi\)
\(174\) −1.83921 + 0.648554i −0.139430 + 0.0491668i
\(175\) 0 0
\(176\) 4.35646 + 4.35646i 0.328380 + 0.328380i
\(177\) 4.57236i 0.343680i
\(178\) −0.739329 0.739329i −0.0554151 0.0554151i
\(179\) −21.1019 −1.57723 −0.788615 0.614887i \(-0.789202\pi\)
−0.788615 + 0.614887i \(0.789202\pi\)
\(180\) 0 0
\(181\) −12.7532 −0.947940 −0.473970 0.880541i \(-0.657179\pi\)
−0.473970 + 0.880541i \(0.657179\pi\)
\(182\) 1.64399 0.121860
\(183\) −6.24502 6.24502i −0.461645 0.461645i
\(184\) 1.40978 + 1.40978i 0.103931 + 0.103931i
\(185\) 0 0
\(186\) 1.85267 1.85267i 0.135845 0.135845i
\(187\) 2.48872 2.48872i 0.181993 0.181993i
\(188\) 18.5302 1.35146
\(189\) −7.23306 7.23306i −0.526127 0.526127i
\(190\) 0 0
\(191\) −4.60637 4.60637i −0.333305 0.333305i 0.520535 0.853840i \(-0.325732\pi\)
−0.853840 + 0.520535i \(0.825732\pi\)
\(192\) −13.3758 −0.965314
\(193\) 6.03773 0.434606 0.217303 0.976104i \(-0.430274\pi\)
0.217303 + 0.976104i \(0.430274\pi\)
\(194\) 2.16694i 0.155577i
\(195\) 0 0
\(196\) 4.21482i 0.301059i
\(197\) 7.10733 + 7.10733i 0.506377 + 0.506377i 0.913412 0.407036i \(-0.133438\pi\)
−0.407036 + 0.913412i \(0.633438\pi\)
\(198\) −0.117318 + 0.117318i −0.00833740 + 0.00833740i
\(199\) 20.8864i 1.48060i 0.672279 + 0.740298i \(0.265316\pi\)
−0.672279 + 0.740298i \(0.734684\pi\)
\(200\) 0 0
\(201\) −8.79040 + 8.79040i −0.620027 + 0.620027i
\(202\) 0.697774 0.697774i 0.0490952 0.0490952i
\(203\) −5.12130 + 10.7005i −0.359444 + 0.751025i
\(204\) 7.95735i 0.557126i
\(205\) 0 0
\(206\) −0.753692 0.753692i −0.0525122 0.0525122i
\(207\) 0.973652 0.973652i 0.0676735 0.0676735i
\(208\) 10.3408 + 10.3408i 0.717007 + 0.717007i
\(209\) 4.96491 0.343430
\(210\) 0 0
\(211\) 1.14164 1.14164i 0.0785935 0.0785935i −0.666717 0.745311i \(-0.732301\pi\)
0.745311 + 0.666717i \(0.232301\pi\)
\(212\) −2.55124 + 2.55124i −0.175220 + 0.175220i
\(213\) 1.50899i 0.103394i
\(214\) 2.17195 2.17195i 0.148472 0.148472i
\(215\) 0 0
\(216\) 3.54803i 0.241413i
\(217\) 15.9376i 1.08191i
\(218\) 1.25744i 0.0851646i
\(219\) 21.5614i 1.45699i
\(220\) 0 0
\(221\) 5.90741 5.90741i 0.397375 0.397375i
\(222\) 0.899954i 0.0604009i
\(223\) 18.4792 18.4792i 1.23746 1.23746i 0.276425 0.961035i \(-0.410850\pi\)
0.961035 0.276425i \(-0.0891498\pi\)
\(224\) 3.51516 3.51516i 0.234866 0.234866i
\(225\) 0 0
\(226\) −3.67574 −0.244506
\(227\) 18.5773 + 18.5773i 1.23302 + 1.23302i 0.962798 + 0.270222i \(0.0870972\pi\)
0.270222 + 0.962798i \(0.412903\pi\)
\(228\) −7.93733 + 7.93733i −0.525662 + 0.525662i
\(229\) 17.2134 + 17.2134i 1.13750 + 1.13750i 0.988898 + 0.148598i \(0.0474762\pi\)
0.148598 + 0.988898i \(0.452524\pi\)
\(230\) 0 0
\(231\) 6.74662i 0.443895i
\(232\) 3.88052 1.36837i 0.254769 0.0898381i
\(233\) 20.2653 20.2653i 1.32762 1.32762i 0.420184 0.907439i \(-0.361965\pi\)
0.907439 0.420184i \(-0.138035\pi\)
\(234\) −0.278474 + 0.278474i −0.0182044 + 0.0182044i
\(235\) 0 0
\(236\) 4.77832i 0.311042i
\(237\) −3.93975 + 3.93975i −0.255914 + 0.255914i
\(238\) −0.648265 0.648265i −0.0420208 0.0420208i
\(239\) 22.5302i 1.45736i −0.684857 0.728678i \(-0.740135\pi\)
0.684857 0.728678i \(-0.259865\pi\)
\(240\) 0 0
\(241\) 21.5188i 1.38615i −0.720868 0.693073i \(-0.756257\pi\)
0.720868 0.693073i \(-0.243743\pi\)
\(242\) 1.60828 0.103384
\(243\) 5.42386 0.347941
\(244\) 6.52632 + 6.52632i 0.417805 + 0.417805i
\(245\) 0 0
\(246\) 0.177643 + 0.177643i 0.0113261 + 0.0113261i
\(247\) 11.7851 0.749868
\(248\) −3.90893 + 3.90893i −0.248217 + 0.248217i
\(249\) −13.9243 + 13.9243i −0.882414 + 0.882414i
\(250\) 0 0
\(251\) 16.3764 + 16.3764i 1.03367 + 1.03367i 0.999413 + 0.0342592i \(0.0109072\pi\)
0.0342592 + 0.999413i \(0.489093\pi\)
\(252\) −1.61343 1.61343i −0.101636 0.101636i
\(253\) 4.25477 0.267495
\(254\) −1.18312 −0.0742356
\(255\) 0 0
\(256\) 13.1081 0.819254
\(257\) −2.66706 2.66706i −0.166366 0.166366i 0.619014 0.785380i \(-0.287533\pi\)
−0.785380 + 0.619014i \(0.787533\pi\)
\(258\) 3.58253i 0.223039i
\(259\) 3.87091 + 3.87091i 0.240527 + 0.240527i
\(260\) 0 0
\(261\) −0.945053 2.68004i −0.0584973 0.165890i
\(262\) −3.02551 3.02551i −0.186917 0.186917i
\(263\) −21.3510 −1.31656 −0.658280 0.752773i \(-0.728716\pi\)
−0.658280 + 0.752773i \(0.728716\pi\)
\(264\) 1.65471 1.65471i 0.101840 0.101840i
\(265\) 0 0
\(266\) 1.29327i 0.0792954i
\(267\) 7.20192 7.20192i 0.440750 0.440750i
\(268\) 9.18637 9.18637i 0.561147 0.561147i
\(269\) 7.49123 + 7.49123i 0.456749 + 0.456749i 0.897587 0.440838i \(-0.145319\pi\)
−0.440838 + 0.897587i \(0.645319\pi\)
\(270\) 0 0
\(271\) 8.14477 8.14477i 0.494760 0.494760i −0.415042 0.909802i \(-0.636233\pi\)
0.909802 + 0.415042i \(0.136233\pi\)
\(272\) 8.15530i 0.494487i
\(273\) 16.0143i 0.969230i
\(274\) 2.40246 0.145138
\(275\) 0 0
\(276\) −6.80203 + 6.80203i −0.409434 + 0.409434i
\(277\) 2.29225 + 2.29225i 0.137728 + 0.137728i 0.772610 0.634882i \(-0.218951\pi\)
−0.634882 + 0.772610i \(0.718951\pi\)
\(278\) −0.356953 −0.0214086
\(279\) 2.69966 + 2.69966i 0.161624 + 0.161624i
\(280\) 0 0
\(281\) −16.0403 −0.956885 −0.478442 0.878119i \(-0.658798\pi\)
−0.478442 + 0.878119i \(0.658798\pi\)
\(282\) 3.41887i 0.203591i
\(283\) −10.1149 10.1149i −0.601266 0.601266i 0.339383 0.940648i \(-0.389782\pi\)
−0.940648 + 0.339383i \(0.889782\pi\)
\(284\) 1.57696i 0.0935756i
\(285\) 0 0
\(286\) −1.21691 −0.0719572
\(287\) 1.52817 0.0902049
\(288\) 1.19086i 0.0701723i
\(289\) 12.3411 0.725948
\(290\) 0 0
\(291\) 21.1085 1.23740
\(292\) 22.5326i 1.31862i
\(293\) −21.8078 −1.27402 −0.637012 0.770854i \(-0.719830\pi\)
−0.637012 + 0.770854i \(0.719830\pi\)
\(294\) −0.777643 −0.0453531
\(295\) 0 0
\(296\) 1.89880i 0.110365i
\(297\) 5.35403 + 5.35403i 0.310672 + 0.310672i
\(298\) 3.17435i 0.183885i
\(299\) 10.0994 0.584066
\(300\) 0 0
\(301\) −15.4093 15.4093i −0.888178 0.888178i
\(302\) 0.535696 0.0308259
\(303\) 6.79711 + 6.79711i 0.390484 + 0.390484i
\(304\) 8.13478 8.13478i 0.466561 0.466561i
\(305\) 0 0
\(306\) 0.219619 0.0125548
\(307\) 6.59288i 0.376275i 0.982143 + 0.188138i \(0.0602451\pi\)
−0.982143 + 0.188138i \(0.939755\pi\)
\(308\) 7.05052i 0.401741i
\(309\) 7.34182 7.34182i 0.417662 0.417662i
\(310\) 0 0
\(311\) 22.7805 + 22.7805i 1.29177 + 1.29177i 0.933694 + 0.358072i \(0.116566\pi\)
0.358072 + 0.933694i \(0.383434\pi\)
\(312\) 3.92775 3.92775i 0.222365 0.222365i
\(313\) −20.4117 + 20.4117i −1.15374 + 1.15374i −0.167941 + 0.985797i \(0.553712\pi\)
−0.985797 + 0.167941i \(0.946288\pi\)
\(314\) 0.179729i 0.0101427i
\(315\) 0 0
\(316\) 4.11722 4.11722i 0.231612 0.231612i
\(317\) −24.2946 −1.36452 −0.682262 0.731108i \(-0.739003\pi\)
−0.682262 + 0.731108i \(0.739003\pi\)
\(318\) 0.470709 + 0.470709i 0.0263960 + 0.0263960i
\(319\) 3.79087 7.92066i 0.212248 0.443472i
\(320\) 0 0
\(321\) 21.1573 + 21.1573i 1.18089 + 1.18089i
\(322\) 1.10829i 0.0617626i
\(323\) −4.64716 4.64716i −0.258575 0.258575i
\(324\) −20.2262 −1.12368
\(325\) 0 0
\(326\) 2.44788 0.135575
\(327\) −12.2489 −0.677366
\(328\) −0.374806 0.374806i −0.0206952 0.0206952i
\(329\) −14.7053 14.7053i −0.810732 0.810732i
\(330\) 0 0
\(331\) 8.62531 8.62531i 0.474090 0.474090i −0.429146 0.903235i \(-0.641185\pi\)
0.903235 + 0.429146i \(0.141185\pi\)
\(332\) 14.5515 14.5515i 0.798616 0.798616i
\(333\) −1.31138 −0.0718634
\(334\) −2.13686 2.13686i −0.116924 0.116924i
\(335\) 0 0
\(336\) 11.0540 + 11.0540i 0.603047 + 0.603047i
\(337\) −26.7563 −1.45751 −0.728754 0.684776i \(-0.759900\pi\)
−0.728754 + 0.684776i \(0.759900\pi\)
\(338\) −0.381974 −0.0207766
\(339\) 35.8059i 1.94471i
\(340\) 0 0
\(341\) 11.7973i 0.638858i
\(342\) 0.219066 + 0.219066i 0.0118457 + 0.0118457i
\(343\) −14.2485 + 14.2485i −0.769348 + 0.769348i
\(344\) 7.55873i 0.407539i
\(345\) 0 0
\(346\) 2.48437 2.48437i 0.133561 0.133561i
\(347\) −18.4521 + 18.4521i −0.990563 + 0.990563i −0.999956 0.00939290i \(-0.997010\pi\)
0.00939290 + 0.999956i \(0.497010\pi\)
\(348\) 6.60224 + 18.7230i 0.353917 + 1.00366i
\(349\) 24.2654i 1.29890i 0.760406 + 0.649448i \(0.225000\pi\)
−0.760406 + 0.649448i \(0.775000\pi\)
\(350\) 0 0
\(351\) 12.7087 + 12.7087i 0.678342 + 0.678342i
\(352\) −2.60198 + 2.60198i −0.138686 + 0.138686i
\(353\) 21.7308 + 21.7308i 1.15661 + 1.15661i 0.985199 + 0.171415i \(0.0548337\pi\)
0.171415 + 0.985199i \(0.445166\pi\)
\(354\) −0.881610 −0.0468571
\(355\) 0 0
\(356\) −7.52632 + 7.52632i −0.398894 + 0.398894i
\(357\) 6.31484 6.31484i 0.334217 0.334217i
\(358\) 4.06872i 0.215039i
\(359\) 22.6346 22.6346i 1.19461 1.19461i 0.218850 0.975759i \(-0.429770\pi\)
0.975759 0.218850i \(-0.0702305\pi\)
\(360\) 0 0
\(361\) 9.72906i 0.512056i
\(362\) 2.45899i 0.129242i
\(363\) 15.6664i 0.822275i
\(364\) 16.7357i 0.877187i
\(365\) 0 0
\(366\) 1.20412 1.20412i 0.0629404 0.0629404i
\(367\) 9.52855i 0.497386i −0.968582 0.248693i \(-0.919999\pi\)
0.968582 0.248693i \(-0.0800011\pi\)
\(368\) 6.97124 6.97124i 0.363401 0.363401i
\(369\) −0.258856 + 0.258856i −0.0134755 + 0.0134755i
\(370\) 0 0
\(371\) 4.04926 0.210227
\(372\) −18.8601 18.8601i −0.977851 0.977851i
\(373\) 14.0936 14.0936i 0.729739 0.729739i −0.240828 0.970568i \(-0.577419\pi\)
0.970568 + 0.240828i \(0.0774191\pi\)
\(374\) 0.479857 + 0.479857i 0.0248128 + 0.0248128i
\(375\) 0 0
\(376\) 7.21341i 0.372003i
\(377\) 8.99830 18.8011i 0.463436 0.968306i
\(378\) 1.39463 1.39463i 0.0717319 0.0717319i
\(379\) −10.9031 + 10.9031i −0.560055 + 0.560055i −0.929323 0.369268i \(-0.879608\pi\)
0.369268 + 0.929323i \(0.379608\pi\)
\(380\) 0 0
\(381\) 11.5249i 0.590441i
\(382\) 0.888167 0.888167i 0.0454426 0.0454426i
\(383\) 0.989916 + 0.989916i 0.0505823 + 0.0505823i 0.731946 0.681363i \(-0.238613\pi\)
−0.681363 + 0.731946i \(0.738613\pi\)
\(384\) 11.0561i 0.564204i
\(385\) 0 0
\(386\) 1.16415i 0.0592538i
\(387\) 5.22036 0.265366
\(388\) −22.0593 −1.11989
\(389\) 3.15870 + 3.15870i 0.160153 + 0.160153i 0.782634 0.622482i \(-0.213876\pi\)
−0.622482 + 0.782634i \(0.713876\pi\)
\(390\) 0 0
\(391\) −3.98247 3.98247i −0.201402 0.201402i
\(392\) 1.64074 0.0828697
\(393\) 29.4719 29.4719i 1.48666 1.48666i
\(394\) −1.37039 + 1.37039i −0.0690391 + 0.0690391i
\(395\) 0 0
\(396\) 1.19429 + 1.19429i 0.0600151 + 0.0600151i
\(397\) 1.80109 + 1.80109i 0.0903941 + 0.0903941i 0.750858 0.660464i \(-0.229640\pi\)
−0.660464 + 0.750858i \(0.729640\pi\)
\(398\) −4.02717 −0.201864
\(399\) 12.5979 0.630685
\(400\) 0 0
\(401\) 10.4344 0.521070 0.260535 0.965464i \(-0.416101\pi\)
0.260535 + 0.965464i \(0.416101\pi\)
\(402\) −1.69490 1.69490i −0.0845341 0.0845341i
\(403\) 28.0029i 1.39492i
\(404\) −7.10329 7.10329i −0.353402 0.353402i
\(405\) 0 0
\(406\) −2.06319 0.987452i −0.102394 0.0490064i
\(407\) −2.86531 2.86531i −0.142028 0.142028i
\(408\) −3.09762 −0.153355
\(409\) −10.1466 + 10.1466i −0.501718 + 0.501718i −0.911972 0.410253i \(-0.865440\pi\)
0.410253 + 0.911972i \(0.365440\pi\)
\(410\) 0 0
\(411\) 23.4027i 1.15437i
\(412\) −7.67253 + 7.67253i −0.377999 + 0.377999i
\(413\) −3.79201 + 3.79201i −0.186593 + 0.186593i
\(414\) 0.187733 + 0.187733i 0.00922656 + 0.00922656i
\(415\) 0 0
\(416\) −6.17626 + 6.17626i −0.302816 + 0.302816i
\(417\) 3.47713i 0.170276i
\(418\) 0.957299i 0.0468230i
\(419\) −29.5026 −1.44130 −0.720648 0.693301i \(-0.756156\pi\)
−0.720648 + 0.693301i \(0.756156\pi\)
\(420\) 0 0
\(421\) −12.2513 + 12.2513i −0.597093 + 0.597093i −0.939538 0.342445i \(-0.888745\pi\)
0.342445 + 0.939538i \(0.388745\pi\)
\(422\) 0.220122 + 0.220122i 0.0107154 + 0.0107154i
\(423\) 4.98187 0.242227
\(424\) −0.993141 0.993141i −0.0482312 0.0482312i
\(425\) 0 0
\(426\) 0.290953 0.0140967
\(427\) 10.3584i 0.501279i
\(428\) −22.1103 22.1103i −1.06874 1.06874i
\(429\) 11.8541i 0.572319i
\(430\) 0 0
\(431\) 19.8262 0.954994 0.477497 0.878633i \(-0.341544\pi\)
0.477497 + 0.878633i \(0.341544\pi\)
\(432\) 17.5447 0.844118
\(433\) 1.79930i 0.0864687i −0.999065 0.0432344i \(-0.986234\pi\)
0.999065 0.0432344i \(-0.0137662\pi\)
\(434\) 3.07297 0.147507
\(435\) 0 0
\(436\) 12.8007 0.613040
\(437\) 7.94490i 0.380056i
\(438\) 4.15732 0.198644
\(439\) 24.7983 1.18356 0.591779 0.806100i \(-0.298426\pi\)
0.591779 + 0.806100i \(0.298426\pi\)
\(440\) 0 0
\(441\) 1.13316i 0.0539599i
\(442\) 1.13903 + 1.13903i 0.0541779 + 0.0541779i
\(443\) 15.9290i 0.756807i −0.925641 0.378404i \(-0.876473\pi\)
0.925641 0.378404i \(-0.123527\pi\)
\(444\) 9.16147 0.434784
\(445\) 0 0
\(446\) 3.56303 + 3.56303i 0.168715 + 0.168715i
\(447\) 30.9218 1.46255
\(448\) −11.0930 11.0930i −0.524095 0.524095i
\(449\) 7.98176 7.98176i 0.376683 0.376683i −0.493221 0.869904i \(-0.664181\pi\)
0.869904 + 0.493221i \(0.164181\pi\)
\(450\) 0 0
\(451\) −1.13118 −0.0532650
\(452\) 37.4187i 1.76003i
\(453\) 5.21830i 0.245177i
\(454\) −3.58195 + 3.58195i −0.168109 + 0.168109i
\(455\) 0 0
\(456\) −3.08983 3.08983i −0.144694 0.144694i
\(457\) −21.3938 + 21.3938i −1.00076 + 1.00076i −0.000758030 1.00000i \(0.500241\pi\)
−1.00000 0.000758030i \(0.999759\pi\)
\(458\) −3.31897 + 3.31897i −0.155085 + 0.155085i
\(459\) 10.0228i 0.467822i
\(460\) 0 0
\(461\) 15.1101 15.1101i 0.703750 0.703750i −0.261464 0.965213i \(-0.584205\pi\)
0.965213 + 0.261464i \(0.0842051\pi\)
\(462\) −1.30084 −0.0605204
\(463\) −3.82517 3.82517i −0.177771 0.177771i 0.612613 0.790383i \(-0.290119\pi\)
−0.790383 + 0.612613i \(0.790119\pi\)
\(464\) −6.76648 19.1888i −0.314126 0.890818i
\(465\) 0 0
\(466\) 3.90741 + 3.90741i 0.181007 + 0.181007i
\(467\) 5.88766i 0.272449i −0.990678 0.136224i \(-0.956503\pi\)
0.990678 0.136224i \(-0.0434968\pi\)
\(468\) 2.83485 + 2.83485i 0.131041 + 0.131041i
\(469\) −14.5804 −0.673258
\(470\) 0 0
\(471\) −1.75077 −0.0806711
\(472\) 1.86009 0.0856178
\(473\) 11.4062 + 11.4062i 0.524459 + 0.524459i
\(474\) −0.759636 0.759636i −0.0348912 0.0348912i
\(475\) 0 0
\(476\) −6.59930 + 6.59930i −0.302478 + 0.302478i
\(477\) −0.685903 + 0.685903i −0.0314053 + 0.0314053i
\(478\) 4.34411 0.198695
\(479\) 6.77715 + 6.77715i 0.309656 + 0.309656i 0.844776 0.535120i \(-0.179734\pi\)
−0.535120 + 0.844776i \(0.679734\pi\)
\(480\) 0 0
\(481\) −6.80133 6.80133i −0.310114 0.310114i
\(482\) 4.14910 0.188986
\(483\) 10.7960 0.491235
\(484\) 16.3721i 0.744188i
\(485\) 0 0
\(486\) 1.04579i 0.0474380i
\(487\) −7.92933 7.92933i −0.359312 0.359312i 0.504247 0.863559i \(-0.331770\pi\)
−0.863559 + 0.504247i \(0.831770\pi\)
\(488\) −2.54055 + 2.54055i −0.115005 + 0.115005i
\(489\) 23.8451i 1.07831i
\(490\) 0 0
\(491\) 0.661102 0.661102i 0.0298351 0.0298351i −0.692032 0.721867i \(-0.743284\pi\)
0.721867 + 0.692032i \(0.243284\pi\)
\(492\) 1.80839 1.80839i 0.0815286 0.0815286i
\(493\) −10.9620 + 3.86549i −0.493704 + 0.174093i
\(494\) 2.27232i 0.102236i
\(495\) 0 0
\(496\) 19.3293 + 19.3293i 0.867910 + 0.867910i
\(497\) 1.25146 1.25146i 0.0561356 0.0561356i
\(498\) −2.68478 2.68478i −0.120308 0.120308i
\(499\) 25.7405 1.15230 0.576151 0.817343i \(-0.304554\pi\)
0.576151 + 0.817343i \(0.304554\pi\)
\(500\) 0 0
\(501\) 20.8155 20.8155i 0.929968 0.929968i
\(502\) −3.15759 + 3.15759i −0.140930 + 0.140930i
\(503\) 6.69875i 0.298682i −0.988786 0.149341i \(-0.952285\pi\)
0.988786 0.149341i \(-0.0477153\pi\)
\(504\) 0.628071 0.628071i 0.0279765 0.0279765i
\(505\) 0 0
\(506\) 0.820375i 0.0364701i
\(507\) 3.72086i 0.165249i
\(508\) 12.0441i 0.534370i
\(509\) 29.5491i 1.30974i −0.755741 0.654871i \(-0.772723\pi\)
0.755741 0.654871i \(-0.227277\pi\)
\(510\) 0 0
\(511\) 17.8816 17.8816i 0.791036 0.791036i
\(512\) 14.3004i 0.631992i
\(513\) 9.99754 9.99754i 0.441402 0.441402i
\(514\) 0.514243 0.514243i 0.0226823 0.0226823i
\(515\) 0 0
\(516\) −36.4700 −1.60550
\(517\) 10.8851 + 10.8851i 0.478728 + 0.478728i
\(518\) −0.746362 + 0.746362i −0.0327933 + 0.0327933i
\(519\) 24.2007 + 24.2007i 1.06229 + 1.06229i
\(520\) 0 0
\(521\) 9.69781i 0.424869i −0.977175 0.212434i \(-0.931861\pi\)
0.977175 0.212434i \(-0.0681392\pi\)
\(522\) 0.516747 0.182219i 0.0226174 0.00797549i
\(523\) 10.4806 10.4806i 0.458283 0.458283i −0.439808 0.898092i \(-0.644954\pi\)
0.898092 + 0.439808i \(0.144954\pi\)
\(524\) −30.7995 + 30.7995i −1.34548 + 1.34548i
\(525\) 0 0
\(526\) 4.11675i 0.179499i
\(527\) 11.0422 11.0422i 0.481008 0.481008i
\(528\) −8.18238 8.18238i −0.356092 0.356092i
\(529\) 16.1915i 0.703977i
\(530\) 0 0
\(531\) 1.28466i 0.0557493i
\(532\) −13.1654 −0.570792
\(533\) −2.68505 −0.116302
\(534\) 1.38862 + 1.38862i 0.0600916 + 0.0600916i
\(535\) 0 0
\(536\) 3.57605 + 3.57605i 0.154462 + 0.154462i
\(537\) 39.6340 1.71033
\(538\) −1.44441 + 1.44441i −0.0622728 + 0.0622728i
\(539\) 2.47590 2.47590i 0.106644 0.106644i
\(540\) 0 0
\(541\) −20.2464 20.2464i −0.870463 0.870463i 0.122060 0.992523i \(-0.461050\pi\)
−0.992523 + 0.122060i \(0.961050\pi\)
\(542\) 1.57042 + 1.57042i 0.0674552 + 0.0674552i
\(543\) 23.9534 1.02794
\(544\) 4.87091 0.208839
\(545\) 0 0
\(546\) −3.08777 −0.132144
\(547\) 20.1591 + 20.1591i 0.861939 + 0.861939i 0.991563 0.129624i \(-0.0413771\pi\)
−0.129624 + 0.991563i \(0.541377\pi\)
\(548\) 24.4569i 1.04475i
\(549\) 1.75461 + 1.75461i 0.0748848 + 0.0748848i
\(550\) 0 0
\(551\) −14.7902 7.07866i −0.630083 0.301561i
\(552\) −2.64788 2.64788i −0.112701 0.112701i
\(553\) −6.53474 −0.277885
\(554\) −0.441976 + 0.441976i −0.0187778 + 0.0187778i
\(555\) 0 0
\(556\) 3.63376i 0.154106i
\(557\) −10.2070 + 10.2070i −0.432485 + 0.432485i −0.889473 0.456988i \(-0.848928\pi\)
0.456988 + 0.889473i \(0.348928\pi\)
\(558\) −0.520530 + 0.520530i −0.0220358 + 0.0220358i
\(559\) 27.0747 + 27.0747i 1.14514 + 1.14514i
\(560\) 0 0
\(561\) −4.67435 + 4.67435i −0.197351 + 0.197351i
\(562\) 3.09278i 0.130461i
\(563\) 9.06228i 0.381930i −0.981597 0.190965i \(-0.938838\pi\)
0.981597 0.190965i \(-0.0611616\pi\)
\(564\) −34.8038 −1.46551
\(565\) 0 0
\(566\) 1.95028 1.95028i 0.0819762 0.0819762i
\(567\) 16.0512 + 16.0512i 0.674089 + 0.674089i
\(568\) −0.613878 −0.0257577
\(569\) 26.3160 + 26.3160i 1.10323 + 1.10323i 0.994019 + 0.109207i \(0.0348312\pi\)
0.109207 + 0.994019i \(0.465169\pi\)
\(570\) 0 0
\(571\) −7.28850 −0.305014 −0.152507 0.988302i \(-0.548735\pi\)
−0.152507 + 0.988302i \(0.548735\pi\)
\(572\) 12.3880i 0.517969i
\(573\) 8.65177 + 8.65177i 0.361433 + 0.361433i
\(574\) 0.294651i 0.0122985i
\(575\) 0 0
\(576\) 3.75808 0.156587
\(577\) 14.8536 0.618365 0.309183 0.951003i \(-0.399945\pi\)
0.309183 + 0.951003i \(0.399945\pi\)
\(578\) 2.37953i 0.0989753i
\(579\) −11.3402 −0.471282
\(580\) 0 0
\(581\) −23.0957 −0.958172
\(582\) 4.06999i 0.168707i
\(583\) −2.99733 −0.124137
\(584\) −8.77146 −0.362966
\(585\) 0 0
\(586\) 4.20482i 0.173700i
\(587\) −20.8980 20.8980i −0.862552 0.862552i 0.129082 0.991634i \(-0.458797\pi\)
−0.991634 + 0.129082i \(0.958797\pi\)
\(588\) 7.91635i 0.326465i
\(589\) 22.0289 0.907686
\(590\) 0 0
\(591\) −13.3491 13.3491i −0.549110 0.549110i
\(592\) −9.38937 −0.385901
\(593\) 9.91716 + 9.91716i 0.407249 + 0.407249i 0.880778 0.473529i \(-0.157020\pi\)
−0.473529 + 0.880778i \(0.657020\pi\)
\(594\) −1.03233 + 1.03233i −0.0423569 + 0.0423569i
\(595\) 0 0
\(596\) −32.3146 −1.32366
\(597\) 39.2292i 1.60554i
\(598\) 1.94730i 0.0796312i
\(599\) −16.5929 + 16.5929i −0.677968 + 0.677968i −0.959540 0.281572i \(-0.909144\pi\)
0.281572 + 0.959540i \(0.409144\pi\)
\(600\) 0 0
\(601\) −11.6957 11.6957i −0.477079 0.477079i 0.427118 0.904196i \(-0.359529\pi\)
−0.904196 + 0.427118i \(0.859529\pi\)
\(602\) 2.97112 2.97112i 0.121094 0.121094i
\(603\) 2.46976 2.46976i 0.100576 0.100576i
\(604\) 5.45335i 0.221894i
\(605\) 0 0
\(606\) −1.31057 + 1.31057i −0.0532383 + 0.0532383i
\(607\) −11.6762 −0.473921 −0.236961 0.971519i \(-0.576151\pi\)
−0.236961 + 0.971519i \(0.576151\pi\)
\(608\) 4.85866 + 4.85866i 0.197045 + 0.197045i
\(609\) 9.61891 20.0978i 0.389778 0.814404i
\(610\) 0 0
\(611\) 25.8378 + 25.8378i 1.04529 + 1.04529i
\(612\) 2.23571i 0.0903730i
\(613\) −18.8812 18.8812i −0.762605 0.762605i 0.214188 0.976793i \(-0.431290\pi\)
−0.976793 + 0.214188i \(0.931290\pi\)
\(614\) −1.27119 −0.0513011
\(615\) 0 0
\(616\) 2.74461 0.110584
\(617\) 11.3496 0.456916 0.228458 0.973554i \(-0.426632\pi\)
0.228458 + 0.973554i \(0.426632\pi\)
\(618\) 1.41560 + 1.41560i 0.0569437 + 0.0569437i
\(619\) −6.62460 6.62460i −0.266265 0.266265i 0.561328 0.827593i \(-0.310291\pi\)
−0.827593 + 0.561328i \(0.810291\pi\)
\(620\) 0 0
\(621\) 8.56757 8.56757i 0.343805 0.343805i
\(622\) −4.39238 + 4.39238i −0.176119 + 0.176119i
\(623\) 11.9456 0.478590
\(624\) −19.4223 19.4223i −0.777516 0.777516i
\(625\) 0 0
\(626\) −3.93564 3.93564i −0.157300 0.157300i
\(627\) −9.32519 −0.372412
\(628\) 1.82963 0.0730102
\(629\) 5.36387i 0.213872i
\(630\) 0 0
\(631\) 16.5965i 0.660696i −0.943859 0.330348i \(-0.892834\pi\)
0.943859 0.330348i \(-0.107166\pi\)
\(632\) 1.60274 + 1.60274i 0.0637537 + 0.0637537i
\(633\) −2.14424 + 2.14424i −0.0852260 + 0.0852260i
\(634\) 4.68432i 0.186038i
\(635\) 0 0
\(636\) 4.79178 4.79178i 0.190007 0.190007i
\(637\) 5.87698 5.87698i 0.232854 0.232854i
\(638\) 1.52721 + 0.730929i 0.0604627 + 0.0289377i
\(639\) 0.423968i 0.0167719i
\(640\) 0 0
\(641\) −23.3026 23.3026i −0.920396 0.920396i 0.0766614 0.997057i \(-0.475574\pi\)
−0.997057 + 0.0766614i \(0.975574\pi\)
\(642\) −4.07941 + 4.07941i −0.161001 + 0.161001i
\(643\) −15.9279 15.9279i −0.628133 0.628133i 0.319465 0.947598i \(-0.396497\pi\)
−0.947598 + 0.319465i \(0.896497\pi\)
\(644\) −11.2823 −0.444585
\(645\) 0 0
\(646\) 0.896033 0.896033i 0.0352539 0.0352539i
\(647\) −22.0404 + 22.0404i −0.866497 + 0.866497i −0.992083 0.125586i \(-0.959919\pi\)
0.125586 + 0.992083i \(0.459919\pi\)
\(648\) 7.87361i 0.309305i
\(649\) 2.80691 2.80691i 0.110181 0.110181i
\(650\) 0 0
\(651\) 29.9343i 1.17322i
\(652\) 24.9192i 0.975912i
\(653\) 27.2009i 1.06445i −0.846602 0.532227i \(-0.821355\pi\)
0.846602 0.532227i \(-0.178645\pi\)
\(654\) 2.36175i 0.0923516i
\(655\) 0 0
\(656\) −1.85338 + 1.85338i −0.0723623 + 0.0723623i
\(657\) 6.05792i 0.236342i
\(658\) 2.83538 2.83538i 0.110535 0.110535i
\(659\) −4.67457 + 4.67457i −0.182095 + 0.182095i −0.792268 0.610173i \(-0.791100\pi\)
0.610173 + 0.792268i \(0.291100\pi\)
\(660\) 0 0
\(661\) 0.289878 0.0112749 0.00563747 0.999984i \(-0.498206\pi\)
0.00563747 + 0.999984i \(0.498206\pi\)
\(662\) 1.66307 + 1.66307i 0.0646371 + 0.0646371i
\(663\) −11.0954 + 11.0954i −0.430910 + 0.430910i
\(664\) 5.66457 + 5.66457i 0.219828 + 0.219828i
\(665\) 0 0
\(666\) 0.252852i 0.00979782i
\(667\) −12.6747 6.06619i −0.490767 0.234884i
\(668\) −21.7531 + 21.7531i −0.841654 + 0.841654i
\(669\) −34.7080 + 34.7080i −1.34189 + 1.34189i
\(670\) 0 0
\(671\) 7.66747i 0.295999i
\(672\) −6.60224 + 6.60224i −0.254687 + 0.254687i
\(673\) 12.7489 + 12.7489i 0.491434 + 0.491434i 0.908758 0.417324i \(-0.137032\pi\)
−0.417324 + 0.908758i \(0.637032\pi\)
\(674\) 5.15896i 0.198716i
\(675\) 0 0
\(676\) 3.88847i 0.149557i
\(677\) 4.24368 0.163098 0.0815489 0.996669i \(-0.474013\pi\)
0.0815489 + 0.996669i \(0.474013\pi\)
\(678\) 6.90384 0.265140
\(679\) 17.5060 + 17.5060i 0.671819 + 0.671819i
\(680\) 0 0
\(681\) −34.8923 34.8923i −1.33708 1.33708i
\(682\) −2.27467 −0.0871014
\(683\) −31.3545 + 31.3545i −1.19975 + 1.19975i −0.225504 + 0.974242i \(0.572403\pi\)
−0.974242 + 0.225504i \(0.927597\pi\)
\(684\) 2.23008 2.23008i 0.0852693 0.0852693i
\(685\) 0 0
\(686\) −2.74730 2.74730i −0.104892 0.104892i
\(687\) −32.3306 32.3306i −1.23349 1.23349i
\(688\) 37.3772 1.42499
\(689\) −7.11469 −0.271048
\(690\) 0 0
\(691\) −29.5226 −1.12309 −0.561546 0.827445i \(-0.689793\pi\)
−0.561546 + 0.827445i \(0.689793\pi\)
\(692\) −25.2908 25.2908i −0.961411 0.961411i
\(693\) 1.89554i 0.0720056i
\(694\) −3.55781 3.55781i −0.135053 0.135053i
\(695\) 0 0
\(696\) −7.28847 + 2.57011i −0.276269 + 0.0974196i
\(697\) 1.05878 + 1.05878i 0.0401042 + 0.0401042i
\(698\) −4.67868 −0.177091
\(699\) −38.0626 + 38.0626i −1.43966 + 1.43966i
\(700\) 0 0
\(701\) 19.9925i 0.755105i 0.925988 + 0.377552i \(0.123234\pi\)
−0.925988 + 0.377552i \(0.876766\pi\)
\(702\) −2.45041 + 2.45041i −0.0924848 + 0.0924848i
\(703\) −5.35038 + 5.35038i −0.201793 + 0.201793i
\(704\) 8.21122 + 8.21122i 0.309472 + 0.309472i
\(705\) 0 0
\(706\) −4.18998 + 4.18998i −0.157692 + 0.157692i
\(707\) 11.2742i 0.424008i
\(708\) 8.97473i 0.337291i
\(709\) −52.1626 −1.95901 −0.979503 0.201429i \(-0.935442\pi\)
−0.979503 + 0.201429i \(0.935442\pi\)
\(710\) 0 0
\(711\) 1.10692 1.10692i 0.0415127 0.0415127i
\(712\) −2.92983 2.92983i −0.109800 0.109800i
\(713\) 18.8781 0.706990
\(714\) 1.21758 + 1.21758i 0.0455669 + 0.0455669i
\(715\) 0 0
\(716\) −41.4193 −1.54791
\(717\) 42.3166i 1.58034i
\(718\) 4.36424 + 4.36424i 0.162872 + 0.162872i
\(719\) 40.9120i 1.52576i −0.646541 0.762879i \(-0.723785\pi\)
0.646541 0.762879i \(-0.276215\pi\)
\(720\) 0 0
\(721\) 12.1776 0.453519
\(722\) −1.87589 −0.0698134
\(723\) 40.4169i 1.50312i
\(724\) −25.0323 −0.930319
\(725\) 0 0
\(726\) −3.02069 −0.112108
\(727\) 53.5853i 1.98737i −0.112209 0.993685i \(-0.535793\pi\)
0.112209 0.993685i \(-0.464207\pi\)
\(728\) 6.51483 0.241456
\(729\) 20.7267 0.767657
\(730\) 0 0
\(731\) 21.3525i 0.789751i
\(732\) −12.2579 12.2579i −0.453064 0.453064i
\(733\) 25.8493i 0.954765i 0.878695 + 0.477383i \(0.158414\pi\)
−0.878695 + 0.477383i \(0.841586\pi\)
\(734\) 1.83723 0.0678134
\(735\) 0 0
\(736\) 4.16371 + 4.16371i 0.153476 + 0.153476i
\(737\) 10.7926 0.397551
\(738\) −0.0499108 0.0499108i −0.00183724 0.00183724i
\(739\) 16.3056 16.3056i 0.599810 0.599810i −0.340452 0.940262i \(-0.610580\pi\)
0.940262 + 0.340452i \(0.110580\pi\)
\(740\) 0 0
\(741\) −22.1350 −0.813149
\(742\) 0.780750i 0.0286622i
\(743\) 4.30076i 0.157780i −0.996883 0.0788898i \(-0.974862\pi\)
0.996883 0.0788898i \(-0.0251375\pi\)
\(744\) 7.34182 7.34182i 0.269164 0.269164i
\(745\) 0 0
\(746\) 2.71743 + 2.71743i 0.0994922 + 0.0994922i
\(747\) 3.91218 3.91218i 0.143139 0.143139i
\(748\) 4.88491 4.88491i 0.178610 0.178610i
\(749\) 35.0930i 1.28227i
\(750\) 0 0
\(751\) 20.6415 20.6415i 0.753217 0.753217i −0.221861 0.975078i \(-0.571213\pi\)
0.975078 + 0.221861i \(0.0712131\pi\)
\(752\) 35.6696 1.30074
\(753\) −30.7586 30.7586i −1.12090 1.12090i
\(754\) 3.62510 + 1.73499i 0.132018 + 0.0631846i
\(755\) 0 0
\(756\) −14.1972 14.1972i −0.516348 0.516348i
\(757\) 42.3352i 1.53870i 0.638829 + 0.769349i \(0.279419\pi\)
−0.638829 + 0.769349i \(0.720581\pi\)
\(758\) −2.10226 2.10226i −0.0763575 0.0763575i
\(759\) −7.99139 −0.290069
\(760\) 0 0
\(761\) −21.6547 −0.784984 −0.392492 0.919756i \(-0.628387\pi\)
−0.392492 + 0.919756i \(0.628387\pi\)
\(762\) 2.22216 0.0805003
\(763\) −10.1584 10.1584i −0.367760 0.367760i
\(764\) −9.04148 9.04148i −0.327109 0.327109i
\(765\) 0 0
\(766\) −0.190869 + 0.190869i −0.00689636 + 0.00689636i
\(767\) 6.66270 6.66270i 0.240576 0.240576i
\(768\) −24.6198 −0.888391
\(769\) −26.0688 26.0688i −0.940065 0.940065i 0.0582378 0.998303i \(-0.481452\pi\)
−0.998303 + 0.0582378i \(0.981452\pi\)
\(770\) 0 0
\(771\) 5.00932 + 5.00932i 0.180406 + 0.180406i
\(772\) 11.8510 0.426527
\(773\) −21.7119 −0.780922 −0.390461 0.920619i \(-0.627684\pi\)
−0.390461 + 0.920619i \(0.627684\pi\)
\(774\) 1.00655i 0.0361798i
\(775\) 0 0
\(776\) 8.58721i 0.308263i
\(777\) −7.27042 7.27042i −0.260825 0.260825i
\(778\) −0.609039 + 0.609039i −0.0218351 + 0.0218351i
\(779\) 2.11223i 0.0756787i
\(780\) 0 0
\(781\) −0.926350 + 0.926350i −0.0331474 + 0.0331474i
\(782\) 0.767871 0.767871i 0.0274590 0.0274590i
\(783\) −8.31591 23.5828i −0.297187 0.842781i
\(784\) 8.11328i 0.289760i
\(785\) 0 0
\(786\) 5.68257 + 5.68257i 0.202691 + 0.202691i
\(787\) −2.90929 + 2.90929i −0.103705 + 0.103705i −0.757056 0.653351i \(-0.773363\pi\)
0.653351 + 0.757056i \(0.273363\pi\)
\(788\) 13.9504 + 13.9504i 0.496964 + 0.496964i
\(789\) 40.1019 1.42766
\(790\) 0 0
\(791\) 29.6950 29.6950i 1.05583 1.05583i
\(792\) −0.464909 + 0.464909i −0.0165198 + 0.0165198i
\(793\) 18.2001i 0.646304i
\(794\) −0.347273 + 0.347273i −0.0123243 + 0.0123243i
\(795\) 0 0
\(796\) 40.9963i 1.45307i
\(797\) 6.97586i 0.247098i 0.992339 + 0.123549i \(0.0394275\pi\)
−0.992339 + 0.123549i \(0.960572\pi\)
\(798\) 2.42904i 0.0859871i
\(799\) 20.3770i 0.720887i
\(800\) 0 0
\(801\) −2.02346 + 2.02346i −0.0714954 + 0.0714954i
\(802\) 2.01189i 0.0710423i
\(803\) −13.2363 + 13.2363i −0.467098 + 0.467098i
\(804\) −17.2540 + 17.2540i −0.608502 + 0.608502i
\(805\) 0 0
\(806\) −5.39932 −0.190183
\(807\) −14.0702 14.0702i −0.495294 0.495294i
\(808\) 2.76515 2.76515i 0.0972778 0.0972778i
\(809\) 26.8378 + 26.8378i 0.943568 + 0.943568i 0.998491 0.0549228i \(-0.0174913\pi\)
−0.0549228 + 0.998491i \(0.517491\pi\)
\(810\) 0 0
\(811\) 15.8850i 0.557798i 0.960320 + 0.278899i \(0.0899694\pi\)
−0.960320 + 0.278899i \(0.910031\pi\)
\(812\) −10.0522 + 21.0031i −0.352763 + 0.737065i
\(813\) −15.2977 + 15.2977i −0.536513 + 0.536513i
\(814\) 0.552470 0.552470i 0.0193640 0.0193640i
\(815\) 0 0
\(816\) 15.3174i 0.536217i
\(817\) 21.2988 21.2988i 0.745150 0.745150i
\(818\) −1.95640 1.95640i −0.0684039 0.0684039i
\(819\) 4.49940i 0.157222i
\(820\) 0 0
\(821\) 31.4307i 1.09694i −0.836171 0.548469i \(-0.815211\pi\)
0.836171 0.548469i \(-0.184789\pi\)
\(822\) −4.51234 −0.157386
\(823\) 16.4642 0.573905 0.286953 0.957945i \(-0.407358\pi\)
0.286953 + 0.957945i \(0.407358\pi\)
\(824\) −2.98675 2.98675i −0.104048 0.104048i
\(825\) 0 0
\(826\) −0.731149 0.731149i −0.0254399 0.0254399i
\(827\) −40.2890 −1.40099 −0.700493 0.713659i \(-0.747037\pi\)
−0.700493 + 0.713659i \(0.747037\pi\)
\(828\) 1.91111 1.91111i 0.0664156 0.0664156i
\(829\) −32.5842 + 32.5842i −1.13170 + 1.13170i −0.141801 + 0.989895i \(0.545289\pi\)
−0.989895 + 0.141801i \(0.954711\pi\)
\(830\) 0 0
\(831\) −4.30535 4.30535i −0.149351 0.149351i
\(832\) 19.4908 + 19.4908i 0.675721 + 0.675721i
\(833\) −4.63488 −0.160589
\(834\) 0.670436 0.0232153
\(835\) 0 0
\(836\) 9.74524 0.337046
\(837\) 23.7554 + 23.7554i 0.821108 + 0.821108i
\(838\) 5.68849i 0.196505i
\(839\) 21.8745 + 21.8745i 0.755193 + 0.755193i 0.975443 0.220250i \(-0.0706874\pi\)
−0.220250 + 0.975443i \(0.570687\pi\)
\(840\) 0 0
\(841\) −22.5856 + 18.1904i −0.778813 + 0.627256i
\(842\) −2.36221 2.36221i −0.0814072 0.0814072i
\(843\) 30.1272 1.03764
\(844\) 2.24083 2.24083i 0.0771326 0.0771326i
\(845\) 0 0
\(846\) 0.960569i 0.0330250i
\(847\) −12.9927 + 12.9927i −0.446435 + 0.446435i
\(848\) −4.91099 + 4.91099i −0.168644 + 0.168644i
\(849\) 18.9979 + 18.9979i 0.652007 + 0.652007i
\(850\) 0 0
\(851\) −4.58510 + 4.58510i −0.157175 + 0.157175i
\(852\) 2.96189i 0.101473i
\(853\) 42.3889i 1.45137i −0.688028 0.725684i \(-0.741524\pi\)
0.688028 0.725684i \(-0.258476\pi\)
\(854\) 1.99724 0.0683440
\(855\) 0 0
\(856\) 8.60707 8.60707i 0.294184 0.294184i
\(857\) 0.623109 + 0.623109i 0.0212850 + 0.0212850i 0.717669 0.696384i \(-0.245209\pi\)
−0.696384 + 0.717669i \(0.745209\pi\)
\(858\) 2.28562 0.0780296
\(859\) 1.31996 + 1.31996i 0.0450364 + 0.0450364i 0.729266 0.684230i \(-0.239862\pi\)
−0.684230 + 0.729266i \(0.739862\pi\)
\(860\) 0 0
\(861\) −2.87023 −0.0978173
\(862\) 3.82275i 0.130203i
\(863\) 2.30417 + 2.30417i 0.0784348 + 0.0784348i 0.745236 0.666801i \(-0.232337\pi\)
−0.666801 + 0.745236i \(0.732337\pi\)
\(864\) 10.4789i 0.356499i
\(865\) 0 0
\(866\) 0.346928 0.0117891
\(867\) −23.1793 −0.787211
\(868\) 31.2826i 1.06180i
\(869\) 4.83713 0.164088
\(870\) 0 0
\(871\) 25.6182 0.868040
\(872\) 4.98301i 0.168746i
\(873\) −5.93067 −0.200723
\(874\) 1.53188 0.0518166
\(875\) 0 0
\(876\) 42.3212i 1.42990i
\(877\) 4.53313 + 4.53313i 0.153073 + 0.153073i 0.779489 0.626416i \(-0.215479\pi\)
−0.626416 + 0.779489i \(0.715479\pi\)
\(878\) 4.78144i 0.161366i
\(879\) 40.9598 1.38154
\(880\) 0 0
\(881\) 11.8964 + 11.8964i 0.400799 + 0.400799i 0.878515 0.477715i \(-0.158535\pi\)
−0.477715 + 0.878515i \(0.658535\pi\)
\(882\) 0.218488 0.00735686
\(883\) −8.01660 8.01660i −0.269780 0.269780i 0.559231 0.829012i \(-0.311096\pi\)
−0.829012 + 0.559231i \(0.811096\pi\)
\(884\) 11.5952 11.5952i 0.389989 0.389989i
\(885\) 0 0
\(886\) 3.07131 0.103183
\(887\) 25.8619i 0.868358i 0.900827 + 0.434179i \(0.142961\pi\)
−0.900827 + 0.434179i \(0.857039\pi\)
\(888\) 3.56636i 0.119679i
\(889\) 9.55802 9.55802i 0.320566 0.320566i
\(890\) 0 0
\(891\) −11.8814 11.8814i −0.398042 0.398042i
\(892\) 36.2715 36.2715i 1.21446 1.21446i
\(893\) 20.3257 20.3257i 0.680175 0.680175i
\(894\) 5.96212i 0.199403i
\(895\) 0 0
\(896\) 9.16919 9.16919i 0.306321 0.306321i
\(897\) −18.9690 −0.633356
\(898\) 1.53899 + 1.53899i 0.0513567 + 0.0513567i
\(899\) 16.8198 35.1434i 0.560972 1.17210i
\(900\) 0 0
\(901\) 2.80550 + 2.80550i 0.0934649 + 0.0934649i
\(902\) 0.218105i 0.00726211i
\(903\) 28.9421 + 28.9421i 0.963132 + 0.963132i
\(904\) −14.5663 −0.484468
\(905\) 0 0
\(906\) −1.00616 −0.0334273
\(907\) 2.91928 0.0969330 0.0484665 0.998825i \(-0.484567\pi\)
0.0484665 + 0.998825i \(0.484567\pi\)
\(908\) 36.4640 + 36.4640i 1.21010 + 1.21010i
\(909\) −1.90973 1.90973i −0.0633416 0.0633416i
\(910\) 0 0
\(911\) 9.89240 9.89240i 0.327750 0.327750i −0.523980 0.851730i \(-0.675553\pi\)
0.851730 + 0.523980i \(0.175553\pi\)
\(912\) −15.2789 + 15.2789i −0.505935 + 0.505935i
\(913\) 17.0958 0.565790
\(914\) −4.12499 4.12499i −0.136443 0.136443i
\(915\) 0 0
\(916\) 33.7869 + 33.7869i 1.11635 + 1.11635i
\(917\) 48.8841 1.61430
\(918\) 1.93252 0.0637826
\(919\) 41.5614i 1.37098i −0.728080 0.685492i \(-0.759587\pi\)
0.728080 0.685492i \(-0.240413\pi\)
\(920\) 0 0
\(921\) 12.3829i 0.408029i
\(922\) 2.91343 + 2.91343i 0.0959488 + 0.0959488i
\(923\) −2.19886 + 2.19886i −0.0723763 + 0.0723763i
\(924\) 13.2424i 0.435644i
\(925\) 0 0
\(926\) 0.737542 0.737542i 0.0242371 0.0242371i
\(927\) −2.06277 + 2.06277i −0.0677502 + 0.0677502i
\(928\) 11.4609 4.04141i 0.376222 0.132666i
\(929\) 38.2809i 1.25596i 0.778231 + 0.627978i \(0.216117\pi\)
−0.778231 + 0.627978i \(0.783883\pi\)
\(930\) 0 0
\(931\) −4.62322 4.62322i −0.151520 0.151520i
\(932\) 39.7772 39.7772i 1.30294 1.30294i
\(933\) −42.7868 42.7868i −1.40078 1.40078i
\(934\) 1.13522 0.0371455
\(935\) 0 0
\(936\) −1.10354 + 1.10354i −0.0360705 + 0.0360705i
\(937\) 21.8574 21.8574i 0.714051 0.714051i −0.253329 0.967380i \(-0.581526\pi\)
0.967380 + 0.253329i \(0.0815255\pi\)
\(938\) 2.81128i 0.0917916i
\(939\) 38.3376 38.3376i 1.25110 1.25110i
\(940\) 0 0
\(941\) 18.5149i 0.603570i 0.953376 + 0.301785i \(0.0975825\pi\)
−0.953376 + 0.301785i \(0.902418\pi\)
\(942\) 0.337571i 0.0109986i
\(943\) 1.81012i 0.0589455i
\(944\) 9.19799i 0.299369i
\(945\) 0 0
\(946\) −2.19927 + 2.19927i −0.0715044 + 0.0715044i
\(947\) 19.9673i 0.648851i −0.945911 0.324426i \(-0.894829\pi\)
0.945911 0.324426i \(-0.105171\pi\)
\(948\) −7.73304 + 7.73304i −0.251157 + 0.251157i
\(949\) −31.4186 + 31.4186i −1.01989 + 1.01989i
\(950\) 0 0
\(951\) 45.6307 1.47968
\(952\) −2.56896 2.56896i −0.0832605 0.0832605i
\(953\) 29.4327 29.4327i 0.953419 0.953419i −0.0455438 0.998962i \(-0.514502\pi\)
0.998962 + 0.0455438i \(0.0145021\pi\)
\(954\) −0.132251 0.132251i −0.00428178 0.00428178i
\(955\) 0 0
\(956\) 44.2227i 1.43027i
\(957\) −7.12008 + 14.8767i −0.230160 + 0.480897i
\(958\) −1.30672 + 1.30672i −0.0422183 + 0.0422183i
\(959\) −19.4086 + 19.4086i −0.626738 + 0.626738i
\(960\) 0 0
\(961\) 21.3436i 0.688502i
\(962\) 1.31138 1.31138i 0.0422807 0.0422807i
\(963\) −5.94439 5.94439i −0.191555 0.191555i
\(964\) 42.2375i 1.36038i
\(965\) 0 0
\(966\) 2.08161i 0.0669747i
\(967\) −3.89596 −0.125286 −0.0626428 0.998036i \(-0.519953\pi\)
−0.0626428 + 0.998036i \(0.519953\pi\)
\(968\) 6.37331 0.204846
\(969\) 8.72838 + 8.72838i 0.280396 + 0.280396i
\(970\) 0 0
\(971\) 19.4738 + 19.4738i 0.624944 + 0.624944i 0.946792 0.321847i \(-0.104304\pi\)
−0.321847 + 0.946792i \(0.604304\pi\)
\(972\) 10.6461 0.341473
\(973\) 2.88370 2.88370i 0.0924473 0.0924473i
\(974\) 1.52888 1.52888i 0.0489884 0.0489884i
\(975\) 0 0
\(976\) 12.5628 + 12.5628i 0.402125 + 0.402125i
\(977\) 5.83126 + 5.83126i 0.186558 + 0.186558i 0.794206 0.607648i \(-0.207887\pi\)
−0.607648 + 0.794206i \(0.707887\pi\)
\(978\) −4.59765 −0.147017
\(979\) −8.84232 −0.282602
\(980\) 0 0
\(981\) 3.44147 0.109878
\(982\) 0.127469 + 0.127469i 0.00406770 + 0.00406770i
\(983\) 0.962476i 0.0306982i −0.999882 0.0153491i \(-0.995114\pi\)
0.999882 0.0153491i \(-0.00488596\pi\)
\(984\) 0.703967 + 0.703967i 0.0224417 + 0.0224417i
\(985\) 0 0
\(986\) −0.745317 2.11362i −0.0237357 0.0673113i
\(987\) 27.6199 + 27.6199i 0.879150 + 0.879150i
\(988\) 23.1321 0.735929
\(989\) 18.2524 18.2524i 0.580392 0.580392i
\(990\) 0 0
\(991\) 49.5984i 1.57554i 0.615967 + 0.787772i \(0.288765\pi\)
−0.615967 + 0.787772i \(0.711235\pi\)
\(992\) −11.5448 + 11.5448i −0.366547 + 0.366547i
\(993\) −16.2002 + 16.2002i −0.514098 + 0.514098i
\(994\) 0.241297 + 0.241297i 0.00765349 + 0.00765349i
\(995\) 0 0
\(996\) −27.3309 + 27.3309i −0.866012 + 0.866012i
\(997\) 21.7128i 0.687651i 0.939033 + 0.343826i \(0.111723\pi\)
−0.939033 + 0.343826i \(0.888277\pi\)
\(998\) 4.96310i 0.157104i
\(999\) −11.5394 −0.365091
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 725.2.e.b.157.5 yes 16
5.2 odd 4 725.2.j.b.418.4 yes 16
5.3 odd 4 725.2.j.b.418.5 yes 16
5.4 even 2 inner 725.2.e.b.157.4 16
29.17 odd 4 725.2.j.b.307.5 yes 16
145.17 even 4 inner 725.2.e.b.568.5 yes 16
145.104 odd 4 725.2.j.b.307.4 yes 16
145.133 even 4 inner 725.2.e.b.568.4 yes 16
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
725.2.e.b.157.4 16 5.4 even 2 inner
725.2.e.b.157.5 yes 16 1.1 even 1 trivial
725.2.e.b.568.4 yes 16 145.133 even 4 inner
725.2.e.b.568.5 yes 16 145.17 even 4 inner
725.2.j.b.307.4 yes 16 145.104 odd 4
725.2.j.b.307.5 yes 16 29.17 odd 4
725.2.j.b.418.4 yes 16 5.2 odd 4
725.2.j.b.418.5 yes 16 5.3 odd 4