Properties

Label 725.2.j.b.418.5
Level $725$
Weight $2$
Character 725.418
Analytic conductor $5.789$
Analytic rank $0$
Dimension $16$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [725,2,Mod(307,725)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(725, base_ring=CyclotomicField(4))
 
chi = DirichletCharacter(H, H._module([1, 3]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("725.307");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 725 = 5^{2} \cdot 29 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 725.j (of order \(4\), degree \(2\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(5.78915414654\)
Analytic rank: \(0\)
Dimension: \(16\)
Relative dimension: \(8\) over \(\Q(i)\)
Coefficient field: \(\mathbb{Q}[x]/(x^{16} + \cdots)\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{16} + 28x^{14} + 288x^{12} + 1372x^{10} + 3184x^{8} + 3696x^{6} + 2076x^{4} + 504x^{2} + 36 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{7}]\)
Coefficient ring index: \( 2^{4} \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{4}]$

Embedding invariants

Embedding label 418.5
Root \(-0.807187i\) of defining polynomial
Character \(\chi\) \(=\) 725.418
Dual form 725.2.j.b.307.5

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+0.192813 q^{2} -1.87822i q^{3} -1.96282 q^{4} -0.362145i q^{6} +(-1.55767 + 1.55767i) q^{7} -0.764084 q^{8} -0.527707 q^{9} +(1.15301 + 1.15301i) q^{11} +3.68661i q^{12} +(-2.73688 + 2.73688i) q^{13} +(-0.300339 + 0.300339i) q^{14} +3.77832 q^{16} -2.15844 q^{17} -0.101749 q^{18} +(-2.15301 + 2.15301i) q^{19} +(2.92565 + 2.92565i) q^{21} +(0.222316 + 0.222316i) q^{22} +(1.84506 + 1.84506i) q^{23} +1.43512i q^{24} +(-0.527707 + 0.527707i) q^{26} -4.64351i q^{27} +(3.05743 - 3.05743i) q^{28} +(1.79087 + 5.07866i) q^{29} +(5.11584 + 5.11584i) q^{31} +2.25668 q^{32} +(2.16561 - 2.16561i) q^{33} -0.416176 q^{34} +1.03579 q^{36} +2.48506i q^{37} +(-0.415129 + 0.415129i) q^{38} +(5.14047 + 5.14047i) q^{39} +(-0.490530 + 0.490530i) q^{41} +(0.564103 + 0.564103i) q^{42} +9.89254i q^{43} +(-2.26316 - 2.26316i) q^{44} +(0.355752 + 0.355752i) q^{46} -9.44060i q^{47} -7.09651i q^{48} +2.14733i q^{49} +4.05403i q^{51} +(5.37202 - 5.37202i) q^{52} +(-1.29978 - 1.29978i) q^{53} -0.895329i q^{54} +(1.19019 - 1.19019i) q^{56} +(4.04383 + 4.04383i) q^{57} +(0.345303 + 0.979232i) q^{58} +2.43441i q^{59} +(3.32497 + 3.32497i) q^{61} +(0.986400 + 0.986400i) q^{62} +(0.821993 - 0.821993i) q^{63} -7.12153 q^{64} +(0.417558 - 0.417558i) q^{66} +(-4.68018 - 4.68018i) q^{67} +4.23664 q^{68} +(3.46543 - 3.46543i) q^{69} +0.803417i q^{71} +0.403212 q^{72} -11.4797 q^{73} +0.479153i q^{74} +(4.22599 - 4.22599i) q^{76} -3.59203 q^{77} +(0.991149 + 0.991149i) q^{78} +(-2.09760 + 2.09760i) q^{79} -10.3046 q^{81} +(-0.0945805 + 0.0945805i) q^{82} +(7.41355 + 7.41355i) q^{83} +(-5.74253 - 5.74253i) q^{84} +1.90741i q^{86} +(9.53884 - 3.36364i) q^{87} +(-0.880999 - 0.880999i) q^{88} +(3.83444 - 3.83444i) q^{89} -8.52632i q^{91} +(-3.62153 - 3.62153i) q^{92} +(9.60866 - 9.60866i) q^{93} -1.82027i q^{94} -4.23853i q^{96} +11.2386i q^{97} +0.414032i q^{98} +(-0.608453 - 0.608453i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 16 q + 8 q^{4} - 40 q^{9} - 4 q^{11} + 20 q^{14} - 16 q^{16} - 12 q^{19} - 32 q^{21} - 40 q^{26} - 4 q^{29} + 20 q^{31} + 80 q^{34} - 104 q^{36} + 16 q^{39} + 28 q^{44} + 44 q^{46} + 36 q^{56} + 24 q^{61}+ \cdots - 92 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/725\mathbb{Z}\right)^\times\).

\(n\) \(176\) \(552\)
\(\chi(n)\) \(e\left(\frac{1}{4}\right)\) \(e\left(\frac{3}{4}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0.192813 0.136339 0.0681697 0.997674i \(-0.478284\pi\)
0.0681697 + 0.997674i \(0.478284\pi\)
\(3\) 1.87822i 1.08439i −0.840253 0.542195i \(-0.817593\pi\)
0.840253 0.542195i \(-0.182407\pi\)
\(4\) −1.96282 −0.981412
\(5\) 0 0
\(6\) 0.362145i 0.147845i
\(7\) −1.55767 + 1.55767i −0.588744 + 0.588744i −0.937291 0.348547i \(-0.886675\pi\)
0.348547 + 0.937291i \(0.386675\pi\)
\(8\) −0.764084 −0.270144
\(9\) −0.527707 −0.175902
\(10\) 0 0
\(11\) 1.15301 + 1.15301i 0.347647 + 0.347647i 0.859232 0.511586i \(-0.170942\pi\)
−0.511586 + 0.859232i \(0.670942\pi\)
\(12\) 3.68661i 1.06423i
\(13\) −2.73688 + 2.73688i −0.759075 + 0.759075i −0.976154 0.217079i \(-0.930347\pi\)
0.217079 + 0.976154i \(0.430347\pi\)
\(14\) −0.300339 + 0.300339i −0.0802690 + 0.0802690i
\(15\) 0 0
\(16\) 3.77832 0.944580
\(17\) −2.15844 −0.523500 −0.261750 0.965136i \(-0.584300\pi\)
−0.261750 + 0.965136i \(0.584300\pi\)
\(18\) −0.101749 −0.0239824
\(19\) −2.15301 + 2.15301i −0.493935 + 0.493935i −0.909544 0.415608i \(-0.863569\pi\)
0.415608 + 0.909544i \(0.363569\pi\)
\(20\) 0 0
\(21\) 2.92565 + 2.92565i 0.638428 + 0.638428i
\(22\) 0.222316 + 0.222316i 0.0473979 + 0.0473979i
\(23\) 1.84506 + 1.84506i 0.384722 + 0.384722i 0.872800 0.488078i \(-0.162302\pi\)
−0.488078 + 0.872800i \(0.662302\pi\)
\(24\) 1.43512i 0.292942i
\(25\) 0 0
\(26\) −0.527707 + 0.527707i −0.103492 + 0.103492i
\(27\) 4.64351i 0.893644i
\(28\) 3.05743 3.05743i 0.577800 0.577800i
\(29\) 1.79087 + 5.07866i 0.332556 + 0.943084i
\(30\) 0 0
\(31\) 5.11584 + 5.11584i 0.918831 + 0.918831i 0.996945 0.0781131i \(-0.0248895\pi\)
−0.0781131 + 0.996945i \(0.524890\pi\)
\(32\) 2.25668 0.398928
\(33\) 2.16561 2.16561i 0.376985 0.376985i
\(34\) −0.416176 −0.0713736
\(35\) 0 0
\(36\) 1.03579 0.172632
\(37\) 2.48506i 0.408542i 0.978914 + 0.204271i \(0.0654824\pi\)
−0.978914 + 0.204271i \(0.934518\pi\)
\(38\) −0.415129 + 0.415129i −0.0673428 + 0.0673428i
\(39\) 5.14047 + 5.14047i 0.823133 + 0.823133i
\(40\) 0 0
\(41\) −0.490530 + 0.490530i −0.0766079 + 0.0766079i −0.744372 0.667765i \(-0.767251\pi\)
0.667765 + 0.744372i \(0.267251\pi\)
\(42\) 0.564103 + 0.564103i 0.0870429 + 0.0870429i
\(43\) 9.89254i 1.50860i 0.656531 + 0.754299i \(0.272023\pi\)
−0.656531 + 0.754299i \(0.727977\pi\)
\(44\) −2.26316 2.26316i −0.341185 0.341185i
\(45\) 0 0
\(46\) 0.355752 + 0.355752i 0.0524528 + 0.0524528i
\(47\) 9.44060i 1.37705i −0.725211 0.688527i \(-0.758258\pi\)
0.725211 0.688527i \(-0.241742\pi\)
\(48\) 7.09651i 1.02429i
\(49\) 2.14733i 0.306761i
\(50\) 0 0
\(51\) 4.05403i 0.567678i
\(52\) 5.37202 5.37202i 0.744965 0.744965i
\(53\) −1.29978 1.29978i −0.178539 0.178539i 0.612180 0.790718i \(-0.290293\pi\)
−0.790718 + 0.612180i \(0.790293\pi\)
\(54\) 0.895329i 0.121839i
\(55\) 0 0
\(56\) 1.19019 1.19019i 0.159046 0.159046i
\(57\) 4.04383 + 4.04383i 0.535619 + 0.535619i
\(58\) 0.345303 + 0.979232i 0.0453405 + 0.128579i
\(59\) 2.43441i 0.316934i 0.987364 + 0.158467i \(0.0506551\pi\)
−0.987364 + 0.158467i \(0.949345\pi\)
\(60\) 0 0
\(61\) 3.32497 + 3.32497i 0.425719 + 0.425719i 0.887167 0.461448i \(-0.152670\pi\)
−0.461448 + 0.887167i \(0.652670\pi\)
\(62\) 0.986400 + 0.986400i 0.125273 + 0.125273i
\(63\) 0.821993 0.821993i 0.103561 0.103561i
\(64\) −7.12153 −0.890191
\(65\) 0 0
\(66\) 0.417558 0.417558i 0.0513979 0.0513979i
\(67\) −4.68018 4.68018i −0.571775 0.571775i 0.360849 0.932624i \(-0.382487\pi\)
−0.932624 + 0.360849i \(0.882487\pi\)
\(68\) 4.23664 0.513769
\(69\) 3.46543 3.46543i 0.417189 0.417189i
\(70\) 0 0
\(71\) 0.803417i 0.0953480i 0.998863 + 0.0476740i \(0.0151809\pi\)
−0.998863 + 0.0476740i \(0.984819\pi\)
\(72\) 0.403212 0.0475190
\(73\) −11.4797 −1.34360 −0.671799 0.740733i \(-0.734478\pi\)
−0.671799 + 0.740733i \(0.734478\pi\)
\(74\) 0.479153i 0.0557004i
\(75\) 0 0
\(76\) 4.22599 4.22599i 0.484754 0.484754i
\(77\) −3.59203 −0.409350
\(78\) 0.991149 + 0.991149i 0.112225 + 0.112225i
\(79\) −2.09760 + 2.09760i −0.235999 + 0.235999i −0.815191 0.579192i \(-0.803368\pi\)
0.579192 + 0.815191i \(0.303368\pi\)
\(80\) 0 0
\(81\) −10.3046 −1.14496
\(82\) −0.0945805 + 0.0945805i −0.0104447 + 0.0104447i
\(83\) 7.41355 + 7.41355i 0.813742 + 0.813742i 0.985193 0.171450i \(-0.0548453\pi\)
−0.171450 + 0.985193i \(0.554845\pi\)
\(84\) −5.74253 5.74253i −0.626561 0.626561i
\(85\) 0 0
\(86\) 1.90741i 0.205681i
\(87\) 9.53884 3.36364i 1.02267 0.360620i
\(88\) −0.880999 0.880999i −0.0939148 0.0939148i
\(89\) 3.83444 3.83444i 0.406450 0.406450i −0.474049 0.880499i \(-0.657208\pi\)
0.880499 + 0.474049i \(0.157208\pi\)
\(90\) 0 0
\(91\) 8.52632i 0.893802i
\(92\) −3.62153 3.62153i −0.377571 0.377571i
\(93\) 9.60866 9.60866i 0.996372 0.996372i
\(94\) 1.82027i 0.187747i
\(95\) 0 0
\(96\) 4.23853i 0.432593i
\(97\) 11.2386i 1.14110i 0.821261 + 0.570552i \(0.193271\pi\)
−0.821261 + 0.570552i \(0.806729\pi\)
\(98\) 0.414032i 0.0418236i
\(99\) −0.608453 0.608453i −0.0611518 0.0611518i
\(100\) 0 0
\(101\) −3.61891 3.61891i −0.360095 0.360095i 0.503753 0.863848i \(-0.331952\pi\)
−0.863848 + 0.503753i \(0.831952\pi\)
\(102\) 0.781670i 0.0773968i
\(103\) −3.90893 3.90893i −0.385158 0.385158i 0.487798 0.872956i \(-0.337800\pi\)
−0.872956 + 0.487798i \(0.837800\pi\)
\(104\) 2.09121 2.09121i 0.205060 0.205060i
\(105\) 0 0
\(106\) −0.250614 0.250614i −0.0243418 0.0243418i
\(107\) −11.2646 + 11.2646i −1.08899 + 1.08899i −0.0933536 + 0.995633i \(0.529759\pi\)
−0.995633 + 0.0933536i \(0.970241\pi\)
\(108\) 9.11439i 0.877032i
\(109\) −6.52155 −0.624651 −0.312326 0.949975i \(-0.601108\pi\)
−0.312326 + 0.949975i \(0.601108\pi\)
\(110\) 0 0
\(111\) 4.66749 0.443019
\(112\) −5.88538 + 5.88538i −0.556116 + 0.556116i
\(113\) −19.0637 −1.79337 −0.896683 0.442674i \(-0.854030\pi\)
−0.896683 + 0.442674i \(0.854030\pi\)
\(114\) 0.779703 + 0.779703i 0.0730259 + 0.0730259i
\(115\) 0 0
\(116\) −3.51516 9.96851i −0.326374 0.925553i
\(117\) 1.44427 1.44427i 0.133523 0.133523i
\(118\) 0.469386i 0.0432105i
\(119\) 3.36214 3.36214i 0.308207 0.308207i
\(120\) 0 0
\(121\) 8.34112i 0.758283i
\(122\) 0.641097 + 0.641097i 0.0580422 + 0.0580422i
\(123\) 0.921322 + 0.921322i 0.0830728 + 0.0830728i
\(124\) −10.0415 10.0415i −0.901752 0.901752i
\(125\) 0 0
\(126\) 0.158491 0.158491i 0.0141195 0.0141195i
\(127\) 6.13610 0.544491 0.272245 0.962228i \(-0.412234\pi\)
0.272245 + 0.962228i \(0.412234\pi\)
\(128\) −5.88648 −0.520296
\(129\) 18.5804 1.63591
\(130\) 0 0
\(131\) −15.6914 + 15.6914i −1.37097 + 1.37097i −0.511951 + 0.859015i \(0.671077\pi\)
−0.859015 + 0.511951i \(0.828923\pi\)
\(132\) −4.25071 + 4.25071i −0.369977 + 0.369977i
\(133\) 6.70737i 0.581603i
\(134\) −0.902399 0.902399i −0.0779554 0.0779554i
\(135\) 0 0
\(136\) 1.64923 0.141420
\(137\) −12.4600 −1.06453 −0.532267 0.846577i \(-0.678660\pi\)
−0.532267 + 0.846577i \(0.678660\pi\)
\(138\) 0.668181 0.668181i 0.0568793 0.0568793i
\(139\) 1.85129i 0.157025i −0.996913 0.0785123i \(-0.974983\pi\)
0.996913 0.0785123i \(-0.0250170\pi\)
\(140\) 0 0
\(141\) −17.7315 −1.49326
\(142\) 0.154909i 0.0129997i
\(143\) −6.31133 −0.527780
\(144\) −1.99384 −0.166154
\(145\) 0 0
\(146\) −2.21344 −0.183185
\(147\) 4.03315 0.332648
\(148\) 4.87774i 0.400948i
\(149\) 16.4633 1.34873 0.674365 0.738398i \(-0.264417\pi\)
0.674365 + 0.738398i \(0.264417\pi\)
\(150\) 0 0
\(151\) 2.77832i 0.226097i −0.993589 0.113048i \(-0.963939\pi\)
0.993589 0.113048i \(-0.0360615\pi\)
\(152\) 1.64508 1.64508i 0.133434 0.133434i
\(153\) 1.13903 0.0920847
\(154\) −0.692590 −0.0558105
\(155\) 0 0
\(156\) −10.0898 10.0898i −0.807833 0.807833i
\(157\) 0.932142i 0.0743931i −0.999308 0.0371965i \(-0.988157\pi\)
0.999308 0.0371965i \(-0.0118428\pi\)
\(158\) −0.404445 + 0.404445i −0.0321759 + 0.0321759i
\(159\) −2.44127 + 2.44127i −0.193605 + 0.193605i
\(160\) 0 0
\(161\) −5.74800 −0.453006
\(162\) −1.98687 −0.156103
\(163\) 12.6956 0.994396 0.497198 0.867637i \(-0.334362\pi\)
0.497198 + 0.867637i \(0.334362\pi\)
\(164\) 0.962823 0.962823i 0.0751839 0.0751839i
\(165\) 0 0
\(166\) 1.42943 + 1.42943i 0.110945 + 0.110945i
\(167\) 11.0826 + 11.0826i 0.857595 + 0.857595i 0.991054 0.133459i \(-0.0426085\pi\)
−0.133459 + 0.991054i \(0.542608\pi\)
\(168\) −2.23544 2.23544i −0.172468 0.172468i
\(169\) 1.98106i 0.152389i
\(170\) 0 0
\(171\) 1.13616 1.13616i 0.0868843 0.0868843i
\(172\) 19.4173i 1.48056i
\(173\) 12.8849 12.8849i 0.979620 0.979620i −0.0201761 0.999796i \(-0.506423\pi\)
0.999796 + 0.0201761i \(0.00642269\pi\)
\(174\) 1.83921 0.648554i 0.139430 0.0491668i
\(175\) 0 0
\(176\) 4.35646 + 4.35646i 0.328380 + 0.328380i
\(177\) 4.57236 0.343680
\(178\) 0.739329 0.739329i 0.0554151 0.0554151i
\(179\) 21.1019 1.57723 0.788615 0.614887i \(-0.210798\pi\)
0.788615 + 0.614887i \(0.210798\pi\)
\(180\) 0 0
\(181\) −12.7532 −0.947940 −0.473970 0.880541i \(-0.657179\pi\)
−0.473970 + 0.880541i \(0.657179\pi\)
\(182\) 1.64399i 0.121860i
\(183\) 6.24502 6.24502i 0.461645 0.461645i
\(184\) −1.40978 1.40978i −0.103931 0.103931i
\(185\) 0 0
\(186\) 1.85267 1.85267i 0.135845 0.135845i
\(187\) −2.48872 2.48872i −0.181993 0.181993i
\(188\) 18.5302i 1.35146i
\(189\) 7.23306 + 7.23306i 0.526127 + 0.526127i
\(190\) 0 0
\(191\) −4.60637 4.60637i −0.333305 0.333305i 0.520535 0.853840i \(-0.325732\pi\)
−0.853840 + 0.520535i \(0.825732\pi\)
\(192\) 13.3758i 0.965314i
\(193\) 6.03773i 0.434606i 0.976104 + 0.217303i \(0.0697259\pi\)
−0.976104 + 0.217303i \(0.930274\pi\)
\(194\) 2.16694i 0.155577i
\(195\) 0 0
\(196\) 4.21482i 0.301059i
\(197\) 7.10733 7.10733i 0.506377 0.506377i −0.407036 0.913412i \(-0.633438\pi\)
0.913412 + 0.407036i \(0.133438\pi\)
\(198\) −0.117318 0.117318i −0.00833740 0.00833740i
\(199\) 20.8864i 1.48060i −0.672279 0.740298i \(-0.734684\pi\)
0.672279 0.740298i \(-0.265316\pi\)
\(200\) 0 0
\(201\) −8.79040 + 8.79040i −0.620027 + 0.620027i
\(202\) −0.697774 0.697774i −0.0490952 0.0490952i
\(203\) −10.7005 5.12130i −0.751025 0.359444i
\(204\) 7.95735i 0.557126i
\(205\) 0 0
\(206\) −0.753692 0.753692i −0.0525122 0.0525122i
\(207\) −0.973652 0.973652i −0.0676735 0.0676735i
\(208\) −10.3408 + 10.3408i −0.717007 + 0.717007i
\(209\) −4.96491 −0.343430
\(210\) 0 0
\(211\) 1.14164 1.14164i 0.0785935 0.0785935i −0.666717 0.745311i \(-0.732301\pi\)
0.745311 + 0.666717i \(0.232301\pi\)
\(212\) 2.55124 + 2.55124i 0.175220 + 0.175220i
\(213\) 1.50899 0.103394
\(214\) −2.17195 + 2.17195i −0.148472 + 0.148472i
\(215\) 0 0
\(216\) 3.54803i 0.241413i
\(217\) −15.9376 −1.08191
\(218\) −1.25744 −0.0851646
\(219\) 21.5614i 1.45699i
\(220\) 0 0
\(221\) 5.90741 5.90741i 0.397375 0.397375i
\(222\) 0.899954 0.0604009
\(223\) 18.4792 + 18.4792i 1.23746 + 1.23746i 0.961035 + 0.276425i \(0.0891498\pi\)
0.276425 + 0.961035i \(0.410850\pi\)
\(224\) −3.51516 + 3.51516i −0.234866 + 0.234866i
\(225\) 0 0
\(226\) −3.67574 −0.244506
\(227\) 18.5773 18.5773i 1.23302 1.23302i 0.270222 0.962798i \(-0.412903\pi\)
0.962798 0.270222i \(-0.0870972\pi\)
\(228\) −7.93733 7.93733i −0.525662 0.525662i
\(229\) −17.2134 17.2134i −1.13750 1.13750i −0.988898 0.148598i \(-0.952524\pi\)
−0.148598 0.988898i \(-0.547476\pi\)
\(230\) 0 0
\(231\) 6.74662i 0.443895i
\(232\) −1.36837 3.88052i −0.0898381 0.254769i
\(233\) 20.2653 + 20.2653i 1.32762 + 1.32762i 0.907439 + 0.420184i \(0.138035\pi\)
0.420184 + 0.907439i \(0.361965\pi\)
\(234\) 0.278474 0.278474i 0.0182044 0.0182044i
\(235\) 0 0
\(236\) 4.77832i 0.311042i
\(237\) 3.93975 + 3.93975i 0.255914 + 0.255914i
\(238\) 0.648265 0.648265i 0.0420208 0.0420208i
\(239\) 22.5302i 1.45736i 0.684857 + 0.728678i \(0.259865\pi\)
−0.684857 + 0.728678i \(0.740135\pi\)
\(240\) 0 0
\(241\) 21.5188i 1.38615i −0.720868 0.693073i \(-0.756257\pi\)
0.720868 0.693073i \(-0.243743\pi\)
\(242\) 1.60828i 0.103384i
\(243\) 5.42386i 0.347941i
\(244\) −6.52632 6.52632i −0.417805 0.417805i
\(245\) 0 0
\(246\) 0.177643 + 0.177643i 0.0113261 + 0.0113261i
\(247\) 11.7851i 0.749868i
\(248\) −3.90893 3.90893i −0.248217 0.248217i
\(249\) 13.9243 13.9243i 0.882414 0.882414i
\(250\) 0 0
\(251\) 16.3764 + 16.3764i 1.03367 + 1.03367i 0.999413 + 0.0342592i \(0.0109072\pi\)
0.0342592 + 0.999413i \(0.489093\pi\)
\(252\) −1.61343 + 1.61343i −0.101636 + 0.101636i
\(253\) 4.25477i 0.267495i
\(254\) 1.18312 0.0742356
\(255\) 0 0
\(256\) 13.1081 0.819254
\(257\) −2.66706 + 2.66706i −0.166366 + 0.166366i −0.785380 0.619014i \(-0.787533\pi\)
0.619014 + 0.785380i \(0.287533\pi\)
\(258\) 3.58253 0.223039
\(259\) −3.87091 3.87091i −0.240527 0.240527i
\(260\) 0 0
\(261\) −0.945053 2.68004i −0.0584973 0.165890i
\(262\) −3.02551 + 3.02551i −0.186917 + 0.186917i
\(263\) 21.3510i 1.31656i −0.752773 0.658280i \(-0.771284\pi\)
0.752773 0.658280i \(-0.228716\pi\)
\(264\) −1.65471 + 1.65471i −0.101840 + 0.101840i
\(265\) 0 0
\(266\) 1.29327i 0.0792954i
\(267\) −7.20192 7.20192i −0.440750 0.440750i
\(268\) 9.18637 + 9.18637i 0.561147 + 0.561147i
\(269\) −7.49123 7.49123i −0.456749 0.456749i 0.440838 0.897587i \(-0.354681\pi\)
−0.897587 + 0.440838i \(0.854681\pi\)
\(270\) 0 0
\(271\) 8.14477 8.14477i 0.494760 0.494760i −0.415042 0.909802i \(-0.636233\pi\)
0.909802 + 0.415042i \(0.136233\pi\)
\(272\) −8.15530 −0.494487
\(273\) −16.0143 −0.969230
\(274\) −2.40246 −0.145138
\(275\) 0 0
\(276\) −6.80203 + 6.80203i −0.409434 + 0.409434i
\(277\) 2.29225 2.29225i 0.137728 0.137728i −0.634882 0.772610i \(-0.718951\pi\)
0.772610 + 0.634882i \(0.218951\pi\)
\(278\) 0.356953i 0.0214086i
\(279\) −2.69966 2.69966i −0.161624 0.161624i
\(280\) 0 0
\(281\) −16.0403 −0.956885 −0.478442 0.878119i \(-0.658798\pi\)
−0.478442 + 0.878119i \(0.658798\pi\)
\(282\) −3.41887 −0.203591
\(283\) 10.1149 10.1149i 0.601266 0.601266i −0.339383 0.940648i \(-0.610218\pi\)
0.940648 + 0.339383i \(0.110218\pi\)
\(284\) 1.57696i 0.0935756i
\(285\) 0 0
\(286\) −1.21691 −0.0719572
\(287\) 1.52817i 0.0902049i
\(288\) −1.19086 −0.0701723
\(289\) −12.3411 −0.725948
\(290\) 0 0
\(291\) 21.1085 1.23740
\(292\) 22.5326 1.31862
\(293\) 21.8078i 1.27402i −0.770854 0.637012i \(-0.780170\pi\)
0.770854 0.637012i \(-0.219830\pi\)
\(294\) 0.777643 0.0453531
\(295\) 0 0
\(296\) 1.89880i 0.110365i
\(297\) 5.35403 5.35403i 0.310672 0.310672i
\(298\) 3.17435 0.183885
\(299\) −10.0994 −0.584066
\(300\) 0 0
\(301\) −15.4093 15.4093i −0.888178 0.888178i
\(302\) 0.535696i 0.0308259i
\(303\) −6.79711 + 6.79711i −0.390484 + 0.390484i
\(304\) −8.13478 + 8.13478i −0.466561 + 0.466561i
\(305\) 0 0
\(306\) 0.219619 0.0125548
\(307\) 6.59288 0.376275 0.188138 0.982143i \(-0.439755\pi\)
0.188138 + 0.982143i \(0.439755\pi\)
\(308\) 7.05052 0.401741
\(309\) −7.34182 + 7.34182i −0.417662 + 0.417662i
\(310\) 0 0
\(311\) 22.7805 + 22.7805i 1.29177 + 1.29177i 0.933694 + 0.358072i \(0.116566\pi\)
0.358072 + 0.933694i \(0.383434\pi\)
\(312\) −3.92775 3.92775i −0.222365 0.222365i
\(313\) −20.4117 20.4117i −1.15374 1.15374i −0.985797 0.167941i \(-0.946288\pi\)
−0.167941 0.985797i \(-0.553712\pi\)
\(314\) 0.179729i 0.0101427i
\(315\) 0 0
\(316\) 4.11722 4.11722i 0.231612 0.231612i
\(317\) 24.2946i 1.36452i 0.731108 + 0.682262i \(0.239003\pi\)
−0.731108 + 0.682262i \(0.760997\pi\)
\(318\) −0.470709 + 0.470709i −0.0263960 + 0.0263960i
\(319\) −3.79087 + 7.92066i −0.212248 + 0.443472i
\(320\) 0 0
\(321\) 21.1573 + 21.1573i 1.18089 + 1.18089i
\(322\) −1.10829 −0.0617626
\(323\) 4.64716 4.64716i 0.258575 0.258575i
\(324\) 20.2262 1.12368
\(325\) 0 0
\(326\) 2.44788 0.135575
\(327\) 12.2489i 0.677366i
\(328\) 0.374806 0.374806i 0.0206952 0.0206952i
\(329\) 14.7053 + 14.7053i 0.810732 + 0.810732i
\(330\) 0 0
\(331\) 8.62531 8.62531i 0.474090 0.474090i −0.429146 0.903235i \(-0.641185\pi\)
0.903235 + 0.429146i \(0.141185\pi\)
\(332\) −14.5515 14.5515i −0.798616 0.798616i
\(333\) 1.31138i 0.0718634i
\(334\) 2.13686 + 2.13686i 0.116924 + 0.116924i
\(335\) 0 0
\(336\) 11.0540 + 11.0540i 0.603047 + 0.603047i
\(337\) 26.7563i 1.45751i 0.684776 + 0.728754i \(0.259900\pi\)
−0.684776 + 0.728754i \(0.740100\pi\)
\(338\) 0.381974i 0.0207766i
\(339\) 35.8059i 1.94471i
\(340\) 0 0
\(341\) 11.7973i 0.638858i
\(342\) 0.219066 0.219066i 0.0118457 0.0118457i
\(343\) −14.2485 14.2485i −0.769348 0.769348i
\(344\) 7.55873i 0.407539i
\(345\) 0 0
\(346\) 2.48437 2.48437i 0.133561 0.133561i
\(347\) 18.4521 + 18.4521i 0.990563 + 0.990563i 0.999956 0.00939290i \(-0.00298990\pi\)
−0.00939290 + 0.999956i \(0.502990\pi\)
\(348\) −18.7230 + 6.60224i −1.00366 + 0.353917i
\(349\) 24.2654i 1.29890i −0.760406 0.649448i \(-0.775000\pi\)
0.760406 0.649448i \(-0.225000\pi\)
\(350\) 0 0
\(351\) 12.7087 + 12.7087i 0.678342 + 0.678342i
\(352\) 2.60198 + 2.60198i 0.138686 + 0.138686i
\(353\) −21.7308 + 21.7308i −1.15661 + 1.15661i −0.171415 + 0.985199i \(0.554834\pi\)
−0.985199 + 0.171415i \(0.945166\pi\)
\(354\) 0.881610 0.0468571
\(355\) 0 0
\(356\) −7.52632 + 7.52632i −0.398894 + 0.398894i
\(357\) −6.31484 6.31484i −0.334217 0.334217i
\(358\) 4.06872 0.215039
\(359\) −22.6346 + 22.6346i −1.19461 + 1.19461i −0.218850 + 0.975759i \(0.570230\pi\)
−0.975759 + 0.218850i \(0.929770\pi\)
\(360\) 0 0
\(361\) 9.72906i 0.512056i
\(362\) −2.45899 −0.129242
\(363\) −15.6664 −0.822275
\(364\) 16.7357i 0.877187i
\(365\) 0 0
\(366\) 1.20412 1.20412i 0.0629404 0.0629404i
\(367\) −9.52855 −0.497386 −0.248693 0.968582i \(-0.580001\pi\)
−0.248693 + 0.968582i \(0.580001\pi\)
\(368\) 6.97124 + 6.97124i 0.363401 + 0.363401i
\(369\) 0.258856 0.258856i 0.0134755 0.0134755i
\(370\) 0 0
\(371\) 4.04926 0.210227
\(372\) −18.8601 + 18.8601i −0.977851 + 0.977851i
\(373\) 14.0936 + 14.0936i 0.729739 + 0.729739i 0.970568 0.240828i \(-0.0774191\pi\)
−0.240828 + 0.970568i \(0.577419\pi\)
\(374\) −0.479857 0.479857i −0.0248128 0.0248128i
\(375\) 0 0
\(376\) 7.21341i 0.372003i
\(377\) −18.8011 8.99830i −0.968306 0.463436i
\(378\) 1.39463 + 1.39463i 0.0717319 + 0.0717319i
\(379\) 10.9031 10.9031i 0.560055 0.560055i −0.369268 0.929323i \(-0.620392\pi\)
0.929323 + 0.369268i \(0.120392\pi\)
\(380\) 0 0
\(381\) 11.5249i 0.590441i
\(382\) −0.888167 0.888167i −0.0454426 0.0454426i
\(383\) −0.989916 + 0.989916i −0.0505823 + 0.0505823i −0.731946 0.681363i \(-0.761387\pi\)
0.681363 + 0.731946i \(0.261387\pi\)
\(384\) 11.0561i 0.564204i
\(385\) 0 0
\(386\) 1.16415i 0.0592538i
\(387\) 5.22036i 0.265366i
\(388\) 22.0593i 1.11989i
\(389\) −3.15870 3.15870i −0.160153 0.160153i 0.622482 0.782634i \(-0.286124\pi\)
−0.782634 + 0.622482i \(0.786124\pi\)
\(390\) 0 0
\(391\) −3.98247 3.98247i −0.201402 0.201402i
\(392\) 1.64074i 0.0828697i
\(393\) 29.4719 + 29.4719i 1.48666 + 1.48666i
\(394\) 1.37039 1.37039i 0.0690391 0.0690391i
\(395\) 0 0
\(396\) 1.19429 + 1.19429i 0.0600151 + 0.0600151i
\(397\) 1.80109 1.80109i 0.0903941 0.0903941i −0.660464 0.750858i \(-0.729640\pi\)
0.750858 + 0.660464i \(0.229640\pi\)
\(398\) 4.02717i 0.201864i
\(399\) −12.5979 −0.630685
\(400\) 0 0
\(401\) 10.4344 0.521070 0.260535 0.965464i \(-0.416101\pi\)
0.260535 + 0.965464i \(0.416101\pi\)
\(402\) −1.69490 + 1.69490i −0.0845341 + 0.0845341i
\(403\) −28.0029 −1.39492
\(404\) 7.10329 + 7.10329i 0.353402 + 0.353402i
\(405\) 0 0
\(406\) −2.06319 0.987452i −0.102394 0.0490064i
\(407\) −2.86531 + 2.86531i −0.142028 + 0.142028i
\(408\) 3.09762i 0.153355i
\(409\) 10.1466 10.1466i 0.501718 0.501718i −0.410253 0.911972i \(-0.634560\pi\)
0.911972 + 0.410253i \(0.134560\pi\)
\(410\) 0 0
\(411\) 23.4027i 1.15437i
\(412\) 7.67253 + 7.67253i 0.377999 + 0.377999i
\(413\) −3.79201 3.79201i −0.186593 0.186593i
\(414\) −0.187733 0.187733i −0.00922656 0.00922656i
\(415\) 0 0
\(416\) −6.17626 + 6.17626i −0.302816 + 0.302816i
\(417\) −3.47713 −0.170276
\(418\) −0.957299 −0.0468230
\(419\) 29.5026 1.44130 0.720648 0.693301i \(-0.243844\pi\)
0.720648 + 0.693301i \(0.243844\pi\)
\(420\) 0 0
\(421\) −12.2513 + 12.2513i −0.597093 + 0.597093i −0.939538 0.342445i \(-0.888745\pi\)
0.342445 + 0.939538i \(0.388745\pi\)
\(422\) 0.220122 0.220122i 0.0107154 0.0107154i
\(423\) 4.98187i 0.242227i
\(424\) 0.993141 + 0.993141i 0.0482312 + 0.0482312i
\(425\) 0 0
\(426\) 0.290953 0.0140967
\(427\) −10.3584 −0.501279
\(428\) 22.1103 22.1103i 1.06874 1.06874i
\(429\) 11.8541i 0.572319i
\(430\) 0 0
\(431\) 19.8262 0.954994 0.477497 0.878633i \(-0.341544\pi\)
0.477497 + 0.878633i \(0.341544\pi\)
\(432\) 17.5447i 0.844118i
\(433\) 1.79930 0.0864687 0.0432344 0.999065i \(-0.486234\pi\)
0.0432344 + 0.999065i \(0.486234\pi\)
\(434\) −3.07297 −0.147507
\(435\) 0 0
\(436\) 12.8007 0.613040
\(437\) −7.94490 −0.380056
\(438\) 4.15732i 0.198644i
\(439\) −24.7983 −1.18356 −0.591779 0.806100i \(-0.701574\pi\)
−0.591779 + 0.806100i \(0.701574\pi\)
\(440\) 0 0
\(441\) 1.13316i 0.0539599i
\(442\) 1.13903 1.13903i 0.0541779 0.0541779i
\(443\) 15.9290 0.756807 0.378404 0.925641i \(-0.376473\pi\)
0.378404 + 0.925641i \(0.376473\pi\)
\(444\) −9.16147 −0.434784
\(445\) 0 0
\(446\) 3.56303 + 3.56303i 0.168715 + 0.168715i
\(447\) 30.9218i 1.46255i
\(448\) 11.0930 11.0930i 0.524095 0.524095i
\(449\) −7.98176 + 7.98176i −0.376683 + 0.376683i −0.869904 0.493221i \(-0.835819\pi\)
0.493221 + 0.869904i \(0.335819\pi\)
\(450\) 0 0
\(451\) −1.13118 −0.0532650
\(452\) 37.4187 1.76003
\(453\) −5.21830 −0.245177
\(454\) 3.58195 3.58195i 0.168109 0.168109i
\(455\) 0 0
\(456\) −3.08983 3.08983i −0.144694 0.144694i
\(457\) 21.3938 + 21.3938i 1.00076 + 1.00076i 1.00000 0.000758030i \(0.000241289\pi\)
0.000758030 1.00000i \(0.499759\pi\)
\(458\) −3.31897 3.31897i −0.155085 0.155085i
\(459\) 10.0228i 0.467822i
\(460\) 0 0
\(461\) 15.1101 15.1101i 0.703750 0.703750i −0.261464 0.965213i \(-0.584205\pi\)
0.965213 + 0.261464i \(0.0842051\pi\)
\(462\) 1.30084i 0.0605204i
\(463\) 3.82517 3.82517i 0.177771 0.177771i −0.612613 0.790383i \(-0.709881\pi\)
0.790383 + 0.612613i \(0.209881\pi\)
\(464\) 6.76648 + 19.1888i 0.314126 + 0.890818i
\(465\) 0 0
\(466\) 3.90741 + 3.90741i 0.181007 + 0.181007i
\(467\) −5.88766 −0.272449 −0.136224 0.990678i \(-0.543497\pi\)
−0.136224 + 0.990678i \(0.543497\pi\)
\(468\) −2.83485 + 2.83485i −0.131041 + 0.131041i
\(469\) 14.5804 0.673258
\(470\) 0 0
\(471\) −1.75077 −0.0806711
\(472\) 1.86009i 0.0856178i
\(473\) −11.4062 + 11.4062i −0.524459 + 0.524459i
\(474\) 0.759636 + 0.759636i 0.0348912 + 0.0348912i
\(475\) 0 0
\(476\) −6.59930 + 6.59930i −0.302478 + 0.302478i
\(477\) 0.685903 + 0.685903i 0.0314053 + 0.0314053i
\(478\) 4.34411i 0.198695i
\(479\) −6.77715 6.77715i −0.309656 0.309656i 0.535120 0.844776i \(-0.320266\pi\)
−0.844776 + 0.535120i \(0.820266\pi\)
\(480\) 0 0
\(481\) −6.80133 6.80133i −0.310114 0.310114i
\(482\) 4.14910i 0.188986i
\(483\) 10.7960i 0.491235i
\(484\) 16.3721i 0.744188i
\(485\) 0 0
\(486\) 1.04579i 0.0474380i
\(487\) −7.92933 + 7.92933i −0.359312 + 0.359312i −0.863559 0.504247i \(-0.831770\pi\)
0.504247 + 0.863559i \(0.331770\pi\)
\(488\) −2.54055 2.54055i −0.115005 0.115005i
\(489\) 23.8451i 1.07831i
\(490\) 0 0
\(491\) 0.661102 0.661102i 0.0298351 0.0298351i −0.692032 0.721867i \(-0.743284\pi\)
0.721867 + 0.692032i \(0.243284\pi\)
\(492\) −1.80839 1.80839i −0.0815286 0.0815286i
\(493\) −3.86549 10.9620i −0.174093 0.493704i
\(494\) 2.27232i 0.102236i
\(495\) 0 0
\(496\) 19.3293 + 19.3293i 0.867910 + 0.867910i
\(497\) −1.25146 1.25146i −0.0561356 0.0561356i
\(498\) 2.68478 2.68478i 0.120308 0.120308i
\(499\) −25.7405 −1.15230 −0.576151 0.817343i \(-0.695446\pi\)
−0.576151 + 0.817343i \(0.695446\pi\)
\(500\) 0 0
\(501\) 20.8155 20.8155i 0.929968 0.929968i
\(502\) 3.15759 + 3.15759i 0.140930 + 0.140930i
\(503\) 6.69875 0.298682 0.149341 0.988786i \(-0.452285\pi\)
0.149341 + 0.988786i \(0.452285\pi\)
\(504\) −0.628071 + 0.628071i −0.0279765 + 0.0279765i
\(505\) 0 0
\(506\) 0.820375i 0.0364701i
\(507\) −3.72086 −0.165249
\(508\) −12.0441 −0.534370
\(509\) 29.5491i 1.30974i 0.755741 + 0.654871i \(0.227277\pi\)
−0.755741 + 0.654871i \(0.772723\pi\)
\(510\) 0 0
\(511\) 17.8816 17.8816i 0.791036 0.791036i
\(512\) 14.3004 0.631992
\(513\) 9.99754 + 9.99754i 0.441402 + 0.441402i
\(514\) −0.514243 + 0.514243i −0.0226823 + 0.0226823i
\(515\) 0 0
\(516\) −36.4700 −1.60550
\(517\) 10.8851 10.8851i 0.478728 0.478728i
\(518\) −0.746362 0.746362i −0.0327933 0.0327933i
\(519\) −24.2007 24.2007i −1.06229 1.06229i
\(520\) 0 0
\(521\) 9.69781i 0.424869i −0.977175 0.212434i \(-0.931861\pi\)
0.977175 0.212434i \(-0.0681392\pi\)
\(522\) −0.182219 0.516747i −0.00797549 0.0226174i
\(523\) 10.4806 + 10.4806i 0.458283 + 0.458283i 0.898092 0.439808i \(-0.144954\pi\)
−0.439808 + 0.898092i \(0.644954\pi\)
\(524\) 30.7995 30.7995i 1.34548 1.34548i
\(525\) 0 0
\(526\) 4.11675i 0.179499i
\(527\) −11.0422 11.0422i −0.481008 0.481008i
\(528\) 8.18238 8.18238i 0.356092 0.356092i
\(529\) 16.1915i 0.703977i
\(530\) 0 0
\(531\) 1.28466i 0.0557493i
\(532\) 13.1654i 0.570792i
\(533\) 2.68505i 0.116302i
\(534\) −1.38862 1.38862i −0.0600916 0.0600916i
\(535\) 0 0
\(536\) 3.57605 + 3.57605i 0.154462 + 0.154462i
\(537\) 39.6340i 1.71033i
\(538\) −1.44441 1.44441i −0.0622728 0.0622728i
\(539\) −2.47590 + 2.47590i −0.106644 + 0.106644i
\(540\) 0 0
\(541\) −20.2464 20.2464i −0.870463 0.870463i 0.122060 0.992523i \(-0.461050\pi\)
−0.992523 + 0.122060i \(0.961050\pi\)
\(542\) 1.57042 1.57042i 0.0674552 0.0674552i
\(543\) 23.9534i 1.02794i
\(544\) −4.87091 −0.208839
\(545\) 0 0
\(546\) −3.08777 −0.132144
\(547\) 20.1591 20.1591i 0.861939 0.861939i −0.129624 0.991563i \(-0.541377\pi\)
0.991563 + 0.129624i \(0.0413771\pi\)
\(548\) 24.4569 1.04475
\(549\) −1.75461 1.75461i −0.0748848 0.0748848i
\(550\) 0 0
\(551\) −14.7902 7.07866i −0.630083 0.301561i
\(552\) −2.64788 + 2.64788i −0.112701 + 0.112701i
\(553\) 6.53474i 0.277885i
\(554\) 0.441976 0.441976i 0.0187778 0.0187778i
\(555\) 0 0
\(556\) 3.63376i 0.154106i
\(557\) 10.2070 + 10.2070i 0.432485 + 0.432485i 0.889473 0.456988i \(-0.151072\pi\)
−0.456988 + 0.889473i \(0.651072\pi\)
\(558\) −0.520530 0.520530i −0.0220358 0.0220358i
\(559\) −27.0747 27.0747i −1.14514 1.14514i
\(560\) 0 0
\(561\) −4.67435 + 4.67435i −0.197351 + 0.197351i
\(562\) −3.09278 −0.130461
\(563\) 9.06228 0.381930 0.190965 0.981597i \(-0.438838\pi\)
0.190965 + 0.981597i \(0.438838\pi\)
\(564\) 34.8038 1.46551
\(565\) 0 0
\(566\) 1.95028 1.95028i 0.0819762 0.0819762i
\(567\) 16.0512 16.0512i 0.674089 0.674089i
\(568\) 0.613878i 0.0257577i
\(569\) −26.3160 26.3160i −1.10323 1.10323i −0.994019 0.109207i \(-0.965169\pi\)
−0.109207 0.994019i \(-0.534831\pi\)
\(570\) 0 0
\(571\) −7.28850 −0.305014 −0.152507 0.988302i \(-0.548735\pi\)
−0.152507 + 0.988302i \(0.548735\pi\)
\(572\) 12.3880 0.517969
\(573\) −8.65177 + 8.65177i −0.361433 + 0.361433i
\(574\) 0.294651i 0.0122985i
\(575\) 0 0
\(576\) 3.75808 0.156587
\(577\) 14.8536i 0.618365i −0.951003 0.309183i \(-0.899945\pi\)
0.951003 0.309183i \(-0.100055\pi\)
\(578\) −2.37953 −0.0989753
\(579\) 11.3402 0.471282
\(580\) 0 0
\(581\) −23.0957 −0.958172
\(582\) 4.06999 0.168707
\(583\) 2.99733i 0.124137i
\(584\) 8.77146 0.362966
\(585\) 0 0
\(586\) 4.20482i 0.173700i
\(587\) −20.8980 + 20.8980i −0.862552 + 0.862552i −0.991634 0.129082i \(-0.958797\pi\)
0.129082 + 0.991634i \(0.458797\pi\)
\(588\) −7.91635 −0.326465
\(589\) −22.0289 −0.907686
\(590\) 0 0
\(591\) −13.3491 13.3491i −0.549110 0.549110i
\(592\) 9.38937i 0.385901i
\(593\) −9.91716 + 9.91716i −0.407249 + 0.407249i −0.880778 0.473529i \(-0.842980\pi\)
0.473529 + 0.880778i \(0.342980\pi\)
\(594\) 1.03233 1.03233i 0.0423569 0.0423569i
\(595\) 0 0
\(596\) −32.3146 −1.32366
\(597\) −39.2292 −1.60554
\(598\) −1.94730 −0.0796312
\(599\) 16.5929 16.5929i 0.677968 0.677968i −0.281572 0.959540i \(-0.590856\pi\)
0.959540 + 0.281572i \(0.0908559\pi\)
\(600\) 0 0
\(601\) −11.6957 11.6957i −0.477079 0.477079i 0.427118 0.904196i \(-0.359529\pi\)
−0.904196 + 0.427118i \(0.859529\pi\)
\(602\) −2.97112 2.97112i −0.121094 0.121094i
\(603\) 2.46976 + 2.46976i 0.100576 + 0.100576i
\(604\) 5.45335i 0.221894i
\(605\) 0 0
\(606\) −1.31057 + 1.31057i −0.0532383 + 0.0532383i
\(607\) 11.6762i 0.473921i 0.971519 + 0.236961i \(0.0761513\pi\)
−0.971519 + 0.236961i \(0.923849\pi\)
\(608\) −4.85866 + 4.85866i −0.197045 + 0.197045i
\(609\) −9.61891 + 20.0978i −0.389778 + 0.814404i
\(610\) 0 0
\(611\) 25.8378 + 25.8378i 1.04529 + 1.04529i
\(612\) −2.23571 −0.0903730
\(613\) 18.8812 18.8812i 0.762605 0.762605i −0.214188 0.976793i \(-0.568710\pi\)
0.976793 + 0.214188i \(0.0687104\pi\)
\(614\) 1.27119 0.0513011
\(615\) 0 0
\(616\) 2.74461 0.110584
\(617\) 11.3496i 0.456916i −0.973554 0.228458i \(-0.926632\pi\)
0.973554 0.228458i \(-0.0733684\pi\)
\(618\) −1.41560 + 1.41560i −0.0569437 + 0.0569437i
\(619\) 6.62460 + 6.62460i 0.266265 + 0.266265i 0.827593 0.561328i \(-0.189709\pi\)
−0.561328 + 0.827593i \(0.689709\pi\)
\(620\) 0 0
\(621\) 8.56757 8.56757i 0.343805 0.343805i
\(622\) 4.39238 + 4.39238i 0.176119 + 0.176119i
\(623\) 11.9456i 0.478590i
\(624\) 19.4223 + 19.4223i 0.777516 + 0.777516i
\(625\) 0 0
\(626\) −3.93564 3.93564i −0.157300 0.157300i
\(627\) 9.32519i 0.372412i
\(628\) 1.82963i 0.0730102i
\(629\) 5.36387i 0.213872i
\(630\) 0 0
\(631\) 16.5965i 0.660696i −0.943859 0.330348i \(-0.892834\pi\)
0.943859 0.330348i \(-0.107166\pi\)
\(632\) 1.60274 1.60274i 0.0637537 0.0637537i
\(633\) −2.14424 2.14424i −0.0852260 0.0852260i
\(634\) 4.68432i 0.186038i
\(635\) 0 0
\(636\) 4.79178 4.79178i 0.190007 0.190007i
\(637\) −5.87698 5.87698i −0.232854 0.232854i
\(638\) −0.730929 + 1.52721i −0.0289377 + 0.0604627i
\(639\) 0.423968i 0.0167719i
\(640\) 0 0
\(641\) −23.3026 23.3026i −0.920396 0.920396i 0.0766614 0.997057i \(-0.475574\pi\)
−0.997057 + 0.0766614i \(0.975574\pi\)
\(642\) 4.07941 + 4.07941i 0.161001 + 0.161001i
\(643\) 15.9279 15.9279i 0.628133 0.628133i −0.319465 0.947598i \(-0.603503\pi\)
0.947598 + 0.319465i \(0.103503\pi\)
\(644\) 11.2823 0.444585
\(645\) 0 0
\(646\) 0.896033 0.896033i 0.0352539 0.0352539i
\(647\) 22.0404 + 22.0404i 0.866497 + 0.866497i 0.992083 0.125586i \(-0.0400810\pi\)
−0.125586 + 0.992083i \(0.540081\pi\)
\(648\) 7.87361 0.309305
\(649\) −2.80691 + 2.80691i −0.110181 + 0.110181i
\(650\) 0 0
\(651\) 29.9343i 1.17322i
\(652\) −24.9192 −0.975912
\(653\) 27.2009 1.06445 0.532227 0.846602i \(-0.321355\pi\)
0.532227 + 0.846602i \(0.321355\pi\)
\(654\) 2.36175i 0.0923516i
\(655\) 0 0
\(656\) −1.85338 + 1.85338i −0.0723623 + 0.0723623i
\(657\) 6.05792 0.236342
\(658\) 2.83538 + 2.83538i 0.110535 + 0.110535i
\(659\) 4.67457 4.67457i 0.182095 0.182095i −0.610173 0.792268i \(-0.708900\pi\)
0.792268 + 0.610173i \(0.208900\pi\)
\(660\) 0 0
\(661\) 0.289878 0.0112749 0.00563747 0.999984i \(-0.498206\pi\)
0.00563747 + 0.999984i \(0.498206\pi\)
\(662\) 1.66307 1.66307i 0.0646371 0.0646371i
\(663\) −11.0954 11.0954i −0.430910 0.430910i
\(664\) −5.66457 5.66457i −0.219828 0.219828i
\(665\) 0 0
\(666\) 0.252852i 0.00979782i
\(667\) −6.06619 + 12.6747i −0.234884 + 0.490767i
\(668\) −21.7531 21.7531i −0.841654 0.841654i
\(669\) 34.7080 34.7080i 1.34189 1.34189i
\(670\) 0 0
\(671\) 7.66747i 0.295999i
\(672\) 6.60224 + 6.60224i 0.254687 + 0.254687i
\(673\) −12.7489 + 12.7489i −0.491434 + 0.491434i −0.908758 0.417324i \(-0.862968\pi\)
0.417324 + 0.908758i \(0.362968\pi\)
\(674\) 5.15896i 0.198716i
\(675\) 0 0
\(676\) 3.88847i 0.149557i
\(677\) 4.24368i 0.163098i −0.996669 0.0815489i \(-0.974013\pi\)
0.996669 0.0815489i \(-0.0259867\pi\)
\(678\) 6.90384i 0.265140i
\(679\) −17.5060 17.5060i −0.671819 0.671819i
\(680\) 0 0
\(681\) −34.8923 34.8923i −1.33708 1.33708i
\(682\) 2.27467i 0.0871014i
\(683\) −31.3545 31.3545i −1.19975 1.19975i −0.974242 0.225504i \(-0.927597\pi\)
−0.225504 0.974242i \(-0.572403\pi\)
\(684\) −2.23008 + 2.23008i −0.0852693 + 0.0852693i
\(685\) 0 0
\(686\) −2.74730 2.74730i −0.104892 0.104892i
\(687\) −32.3306 + 32.3306i −1.23349 + 1.23349i
\(688\) 37.3772i 1.42499i
\(689\) 7.11469 0.271048
\(690\) 0 0
\(691\) −29.5226 −1.12309 −0.561546 0.827445i \(-0.689793\pi\)
−0.561546 + 0.827445i \(0.689793\pi\)
\(692\) −25.2908 + 25.2908i −0.961411 + 0.961411i
\(693\) 1.89554 0.0720056
\(694\) 3.55781 + 3.55781i 0.135053 + 0.135053i
\(695\) 0 0
\(696\) −7.28847 + 2.57011i −0.276269 + 0.0974196i
\(697\) 1.05878 1.05878i 0.0401042 0.0401042i
\(698\) 4.67868i 0.177091i
\(699\) 38.0626 38.0626i 1.43966 1.43966i
\(700\) 0 0
\(701\) 19.9925i 0.755105i 0.925988 + 0.377552i \(0.123234\pi\)
−0.925988 + 0.377552i \(0.876766\pi\)
\(702\) 2.45041 + 2.45041i 0.0924848 + 0.0924848i
\(703\) −5.35038 5.35038i −0.201793 0.201793i
\(704\) −8.21122 8.21122i −0.309472 0.309472i
\(705\) 0 0
\(706\) −4.18998 + 4.18998i −0.157692 + 0.157692i
\(707\) 11.2742 0.424008
\(708\) −8.97473 −0.337291
\(709\) 52.1626 1.95901 0.979503 0.201429i \(-0.0645584\pi\)
0.979503 + 0.201429i \(0.0645584\pi\)
\(710\) 0 0
\(711\) 1.10692 1.10692i 0.0415127 0.0415127i
\(712\) −2.92983 + 2.92983i −0.109800 + 0.109800i
\(713\) 18.8781i 0.706990i
\(714\) −1.21758 1.21758i −0.0455669 0.0455669i
\(715\) 0 0
\(716\) −41.4193 −1.54791
\(717\) 42.3166 1.58034
\(718\) −4.36424 + 4.36424i −0.162872 + 0.162872i
\(719\) 40.9120i 1.52576i 0.646541 + 0.762879i \(0.276215\pi\)
−0.646541 + 0.762879i \(0.723785\pi\)
\(720\) 0 0
\(721\) 12.1776 0.453519
\(722\) 1.87589i 0.0698134i
\(723\) −40.4169 −1.50312
\(724\) 25.0323 0.930319
\(725\) 0 0
\(726\) −3.02069 −0.112108
\(727\) −53.5853 −1.98737 −0.993685 0.112209i \(-0.964207\pi\)
−0.993685 + 0.112209i \(0.964207\pi\)
\(728\) 6.51483i 0.241456i
\(729\) −20.7267 −0.767657
\(730\) 0 0
\(731\) 21.3525i 0.789751i
\(732\) −12.2579 + 12.2579i −0.453064 + 0.453064i
\(733\) −25.8493 −0.954765 −0.477383 0.878695i \(-0.658414\pi\)
−0.477383 + 0.878695i \(0.658414\pi\)
\(734\) −1.83723 −0.0678134
\(735\) 0 0
\(736\) 4.16371 + 4.16371i 0.153476 + 0.153476i
\(737\) 10.7926i 0.397551i
\(738\) 0.0499108 0.0499108i 0.00183724 0.00183724i
\(739\) −16.3056 + 16.3056i −0.599810 + 0.599810i −0.940262 0.340452i \(-0.889420\pi\)
0.340452 + 0.940262i \(0.389420\pi\)
\(740\) 0 0
\(741\) −22.1350 −0.813149
\(742\) 0.780750 0.0286622
\(743\) 4.30076 0.157780 0.0788898 0.996883i \(-0.474862\pi\)
0.0788898 + 0.996883i \(0.474862\pi\)
\(744\) −7.34182 + 7.34182i −0.269164 + 0.269164i
\(745\) 0 0
\(746\) 2.71743 + 2.71743i 0.0994922 + 0.0994922i
\(747\) −3.91218 3.91218i −0.143139 0.143139i
\(748\) 4.88491 + 4.88491i 0.178610 + 0.178610i
\(749\) 35.0930i 1.28227i
\(750\) 0 0
\(751\) 20.6415 20.6415i 0.753217 0.753217i −0.221861 0.975078i \(-0.571213\pi\)
0.975078 + 0.221861i \(0.0712131\pi\)
\(752\) 35.6696i 1.30074i
\(753\) 30.7586 30.7586i 1.12090 1.12090i
\(754\) −3.62510 1.73499i −0.132018 0.0631846i
\(755\) 0 0
\(756\) −14.1972 14.1972i −0.516348 0.516348i
\(757\) 42.3352 1.53870 0.769349 0.638829i \(-0.220581\pi\)
0.769349 + 0.638829i \(0.220581\pi\)
\(758\) 2.10226 2.10226i 0.0763575 0.0763575i
\(759\) 7.99139 0.290069
\(760\) 0 0
\(761\) −21.6547 −0.784984 −0.392492 0.919756i \(-0.628387\pi\)
−0.392492 + 0.919756i \(0.628387\pi\)
\(762\) 2.22216i 0.0805003i
\(763\) 10.1584 10.1584i 0.367760 0.367760i
\(764\) 9.04148 + 9.04148i 0.327109 + 0.327109i
\(765\) 0 0
\(766\) −0.190869 + 0.190869i −0.00689636 + 0.00689636i
\(767\) −6.66270 6.66270i −0.240576 0.240576i
\(768\) 24.6198i 0.888391i
\(769\) 26.0688 + 26.0688i 0.940065 + 0.940065i 0.998303 0.0582378i \(-0.0185482\pi\)
−0.0582378 + 0.998303i \(0.518548\pi\)
\(770\) 0 0
\(771\) 5.00932 + 5.00932i 0.180406 + 0.180406i
\(772\) 11.8510i 0.426527i
\(773\) 21.7119i 0.780922i −0.920619 0.390461i \(-0.872316\pi\)
0.920619 0.390461i \(-0.127684\pi\)
\(774\) 1.00655i 0.0361798i
\(775\) 0 0
\(776\) 8.58721i 0.308263i
\(777\) −7.27042 + 7.27042i −0.260825 + 0.260825i
\(778\) −0.609039 0.609039i −0.0218351 0.0218351i
\(779\) 2.11223i 0.0756787i
\(780\) 0 0
\(781\) −0.926350 + 0.926350i −0.0331474 + 0.0331474i
\(782\) −0.767871 0.767871i −0.0274590 0.0274590i
\(783\) 23.5828 8.31591i 0.842781 0.297187i
\(784\) 8.11328i 0.289760i
\(785\) 0 0
\(786\) 5.68257 + 5.68257i 0.202691 + 0.202691i
\(787\) 2.90929 + 2.90929i 0.103705 + 0.103705i 0.757056 0.653351i \(-0.226637\pi\)
−0.653351 + 0.757056i \(0.726637\pi\)
\(788\) −13.9504 + 13.9504i −0.496964 + 0.496964i
\(789\) −40.1019 −1.42766
\(790\) 0 0
\(791\) 29.6950 29.6950i 1.05583 1.05583i
\(792\) 0.464909 + 0.464909i 0.0165198 + 0.0165198i
\(793\) −18.2001 −0.646304
\(794\) 0.347273 0.347273i 0.0123243 0.0123243i
\(795\) 0 0
\(796\) 40.9963i 1.45307i
\(797\) 6.97586 0.247098 0.123549 0.992339i \(-0.460572\pi\)
0.123549 + 0.992339i \(0.460572\pi\)
\(798\) −2.42904 −0.0859871
\(799\) 20.3770i 0.720887i
\(800\) 0 0
\(801\) −2.02346 + 2.02346i −0.0714954 + 0.0714954i
\(802\) 2.01189 0.0710423
\(803\) −13.2363 13.2363i −0.467098 0.467098i
\(804\) 17.2540 17.2540i 0.608502 0.608502i
\(805\) 0 0
\(806\) −5.39932 −0.190183
\(807\) −14.0702 + 14.0702i −0.495294 + 0.495294i
\(808\) 2.76515 + 2.76515i 0.0972778 + 0.0972778i
\(809\) −26.8378 26.8378i −0.943568 0.943568i 0.0549228 0.998491i \(-0.482509\pi\)
−0.998491 + 0.0549228i \(0.982509\pi\)
\(810\) 0 0
\(811\) 15.8850i 0.557798i 0.960320 + 0.278899i \(0.0899694\pi\)
−0.960320 + 0.278899i \(0.910031\pi\)
\(812\) 21.0031 + 10.0522i 0.737065 + 0.352763i
\(813\) −15.2977 15.2977i −0.536513 0.536513i
\(814\) −0.552470 + 0.552470i −0.0193640 + 0.0193640i
\(815\) 0 0
\(816\) 15.3174i 0.536217i
\(817\) −21.2988 21.2988i −0.745150 0.745150i
\(818\) 1.95640 1.95640i 0.0684039 0.0684039i
\(819\) 4.49940i 0.157222i
\(820\) 0 0
\(821\) 31.4307i 1.09694i −0.836171 0.548469i \(-0.815211\pi\)
0.836171 0.548469i \(-0.184789\pi\)
\(822\) 4.51234i 0.157386i
\(823\) 16.4642i 0.573905i 0.957945 + 0.286953i \(0.0926422\pi\)
−0.957945 + 0.286953i \(0.907358\pi\)
\(824\) 2.98675 + 2.98675i 0.104048 + 0.104048i
\(825\) 0 0
\(826\) −0.731149 0.731149i −0.0254399 0.0254399i
\(827\) 40.2890i 1.40099i 0.713659 + 0.700493i \(0.247037\pi\)
−0.713659 + 0.700493i \(0.752963\pi\)
\(828\) 1.91111 + 1.91111i 0.0664156 + 0.0664156i
\(829\) 32.5842 32.5842i 1.13170 1.13170i 0.141801 0.989895i \(-0.454711\pi\)
0.989895 0.141801i \(-0.0452892\pi\)
\(830\) 0 0
\(831\) −4.30535 4.30535i −0.149351 0.149351i
\(832\) 19.4908 19.4908i 0.675721 0.675721i
\(833\) 4.63488i 0.160589i
\(834\) −0.670436 −0.0232153
\(835\) 0 0
\(836\) 9.74524 0.337046
\(837\) 23.7554 23.7554i 0.821108 0.821108i
\(838\) 5.68849 0.196505
\(839\) −21.8745 21.8745i −0.755193 0.755193i 0.220250 0.975443i \(-0.429313\pi\)
−0.975443 + 0.220250i \(0.929313\pi\)
\(840\) 0 0
\(841\) −22.5856 + 18.1904i −0.778813 + 0.627256i
\(842\) −2.36221 + 2.36221i −0.0814072 + 0.0814072i
\(843\) 30.1272i 1.03764i
\(844\) −2.24083 + 2.24083i −0.0771326 + 0.0771326i
\(845\) 0 0
\(846\) 0.960569i 0.0330250i
\(847\) 12.9927 + 12.9927i 0.446435 + 0.446435i
\(848\) −4.91099 4.91099i −0.168644 0.168644i
\(849\) −18.9979 18.9979i −0.652007 0.652007i
\(850\) 0 0
\(851\) −4.58510 + 4.58510i −0.157175 + 0.157175i
\(852\) −2.96189 −0.101473
\(853\) 42.3889 1.45137 0.725684 0.688028i \(-0.241524\pi\)
0.725684 + 0.688028i \(0.241524\pi\)
\(854\) −1.99724 −0.0683440
\(855\) 0 0
\(856\) 8.60707 8.60707i 0.294184 0.294184i
\(857\) 0.623109 0.623109i 0.0212850 0.0212850i −0.696384 0.717669i \(-0.745209\pi\)
0.717669 + 0.696384i \(0.245209\pi\)
\(858\) 2.28562i 0.0780296i
\(859\) −1.31996 1.31996i −0.0450364 0.0450364i 0.684230 0.729266i \(-0.260138\pi\)
−0.729266 + 0.684230i \(0.760138\pi\)
\(860\) 0 0
\(861\) −2.87023 −0.0978173
\(862\) 3.82275 0.130203
\(863\) −2.30417 + 2.30417i −0.0784348 + 0.0784348i −0.745236 0.666801i \(-0.767663\pi\)
0.666801 + 0.745236i \(0.267663\pi\)
\(864\) 10.4789i 0.356499i
\(865\) 0 0
\(866\) 0.346928 0.0117891
\(867\) 23.1793i 0.787211i
\(868\) 31.2826 1.06180
\(869\) −4.83713 −0.164088
\(870\) 0 0
\(871\) 25.6182 0.868040
\(872\) 4.98301 0.168746
\(873\) 5.93067i 0.200723i
\(874\) −1.53188 −0.0518166
\(875\) 0 0
\(876\) 42.3212i 1.42990i
\(877\) 4.53313 4.53313i 0.153073 0.153073i −0.626416 0.779489i \(-0.715479\pi\)
0.779489 + 0.626416i \(0.215479\pi\)
\(878\) −4.78144 −0.161366
\(879\) −40.9598 −1.38154
\(880\) 0 0
\(881\) 11.8964 + 11.8964i 0.400799 + 0.400799i 0.878515 0.477715i \(-0.158535\pi\)
−0.477715 + 0.878515i \(0.658535\pi\)
\(882\) 0.218488i 0.00735686i
\(883\) 8.01660 8.01660i 0.269780 0.269780i −0.559231 0.829012i \(-0.688904\pi\)
0.829012 + 0.559231i \(0.188904\pi\)
\(884\) −11.5952 + 11.5952i −0.389989 + 0.389989i
\(885\) 0 0
\(886\) 3.07131 0.103183
\(887\) 25.8619 0.868358 0.434179 0.900827i \(-0.357039\pi\)
0.434179 + 0.900827i \(0.357039\pi\)
\(888\) −3.56636 −0.119679
\(889\) −9.55802 + 9.55802i −0.320566 + 0.320566i
\(890\) 0 0
\(891\) −11.8814 11.8814i −0.398042 0.398042i
\(892\) −36.2715 36.2715i −1.21446 1.21446i
\(893\) 20.3257 + 20.3257i 0.680175 + 0.680175i
\(894\) 5.96212i 0.199403i
\(895\) 0 0
\(896\) 9.16919 9.16919i 0.306321 0.306321i
\(897\) 18.9690i 0.633356i
\(898\) −1.53899 + 1.53899i −0.0513567 + 0.0513567i
\(899\) −16.8198 + 35.1434i −0.560972 + 1.17210i
\(900\) 0 0
\(901\) 2.80550 + 2.80550i 0.0934649 + 0.0934649i
\(902\) −0.218105 −0.00726211
\(903\) −28.9421 + 28.9421i −0.963132 + 0.963132i
\(904\) 14.5663 0.484468
\(905\) 0 0
\(906\) −1.00616 −0.0334273
\(907\) 2.91928i 0.0969330i −0.998825 0.0484665i \(-0.984567\pi\)
0.998825 0.0484665i \(-0.0154334\pi\)
\(908\) −36.4640 + 36.4640i −1.21010 + 1.21010i
\(909\) 1.90973 + 1.90973i 0.0633416 + 0.0633416i
\(910\) 0 0
\(911\) 9.89240 9.89240i 0.327750 0.327750i −0.523980 0.851730i \(-0.675553\pi\)
0.851730 + 0.523980i \(0.175553\pi\)
\(912\) 15.2789 + 15.2789i 0.505935 + 0.505935i
\(913\) 17.0958i 0.565790i
\(914\) 4.12499 + 4.12499i 0.136443 + 0.136443i
\(915\) 0 0
\(916\) 33.7869 + 33.7869i 1.11635 + 1.11635i
\(917\) 48.8841i 1.61430i
\(918\) 1.93252i 0.0637826i
\(919\) 41.5614i 1.37098i 0.728080 + 0.685492i \(0.240413\pi\)
−0.728080 + 0.685492i \(0.759587\pi\)
\(920\) 0 0
\(921\) 12.3829i 0.408029i
\(922\) 2.91343 2.91343i 0.0959488 0.0959488i
\(923\) −2.19886 2.19886i −0.0723763 0.0723763i
\(924\) 13.2424i 0.435644i
\(925\) 0 0
\(926\) 0.737542 0.737542i 0.0242371 0.0242371i
\(927\) 2.06277 + 2.06277i 0.0677502 + 0.0677502i
\(928\) 4.04141 + 11.4609i 0.132666 + 0.376222i
\(929\) 38.2809i 1.25596i −0.778231 0.627978i \(-0.783883\pi\)
0.778231 0.627978i \(-0.216117\pi\)
\(930\) 0 0
\(931\) −4.62322 4.62322i −0.151520 0.151520i
\(932\) −39.7772 39.7772i −1.30294 1.30294i
\(933\) 42.7868 42.7868i 1.40078 1.40078i
\(934\) −1.13522 −0.0371455
\(935\) 0 0
\(936\) −1.10354 + 1.10354i −0.0360705 + 0.0360705i
\(937\) −21.8574 21.8574i −0.714051 0.714051i 0.253329 0.967380i \(-0.418474\pi\)
−0.967380 + 0.253329i \(0.918474\pi\)
\(938\) 2.81128 0.0917916
\(939\) −38.3376 + 38.3376i −1.25110 + 1.25110i
\(940\) 0 0
\(941\) 18.5149i 0.603570i 0.953376 + 0.301785i \(0.0975825\pi\)
−0.953376 + 0.301785i \(0.902418\pi\)
\(942\) −0.337571 −0.0109986
\(943\) −1.81012 −0.0589455
\(944\) 9.19799i 0.299369i
\(945\) 0 0
\(946\) −2.19927 + 2.19927i −0.0715044 + 0.0715044i
\(947\) −19.9673 −0.648851 −0.324426 0.945911i \(-0.605171\pi\)
−0.324426 + 0.945911i \(0.605171\pi\)
\(948\) −7.73304 7.73304i −0.251157 0.251157i
\(949\) 31.4186 31.4186i 1.01989 1.01989i
\(950\) 0 0
\(951\) 45.6307 1.47968
\(952\) −2.56896 + 2.56896i −0.0832605 + 0.0832605i
\(953\) 29.4327 + 29.4327i 0.953419 + 0.953419i 0.998962 0.0455438i \(-0.0145021\pi\)
−0.0455438 + 0.998962i \(0.514502\pi\)
\(954\) 0.132251 + 0.132251i 0.00428178 + 0.00428178i
\(955\) 0 0
\(956\) 44.2227i 1.43027i
\(957\) 14.8767 + 7.12008i 0.480897 + 0.230160i
\(958\) −1.30672 1.30672i −0.0422183 0.0422183i
\(959\) 19.4086 19.4086i 0.626738 0.626738i
\(960\) 0 0
\(961\) 21.3436i 0.688502i
\(962\) −1.31138 1.31138i −0.0422807 0.0422807i
\(963\) 5.94439 5.94439i 0.191555 0.191555i
\(964\) 42.2375i 1.36038i
\(965\) 0 0
\(966\) 2.08161i 0.0669747i
\(967\) 3.89596i 0.125286i 0.998036 + 0.0626428i \(0.0199529\pi\)
−0.998036 + 0.0626428i \(0.980047\pi\)
\(968\) 6.37331i 0.204846i
\(969\) −8.72838 8.72838i −0.280396 0.280396i
\(970\) 0 0
\(971\) 19.4738 + 19.4738i 0.624944 + 0.624944i 0.946792 0.321847i \(-0.104304\pi\)
−0.321847 + 0.946792i \(0.604304\pi\)
\(972\) 10.6461i 0.341473i
\(973\) 2.88370 + 2.88370i 0.0924473 + 0.0924473i
\(974\) −1.52888 + 1.52888i −0.0489884 + 0.0489884i
\(975\) 0 0
\(976\) 12.5628 + 12.5628i 0.402125 + 0.402125i
\(977\) 5.83126 5.83126i 0.186558 0.186558i −0.607648 0.794206i \(-0.707887\pi\)
0.794206 + 0.607648i \(0.207887\pi\)
\(978\) 4.59765i 0.147017i
\(979\) 8.84232 0.282602
\(980\) 0 0
\(981\) 3.44147 0.109878
\(982\) 0.127469 0.127469i 0.00406770 0.00406770i
\(983\) 0.962476 0.0306982 0.0153491 0.999882i \(-0.495114\pi\)
0.0153491 + 0.999882i \(0.495114\pi\)
\(984\) −0.703967 0.703967i −0.0224417 0.0224417i
\(985\) 0 0
\(986\) −0.745317 2.11362i −0.0237357 0.0673113i
\(987\) 27.6199 27.6199i 0.879150 0.879150i
\(988\) 23.1321i 0.735929i
\(989\) −18.2524 + 18.2524i −0.580392 + 0.580392i
\(990\) 0 0
\(991\) 49.5984i 1.57554i 0.615967 + 0.787772i \(0.288765\pi\)
−0.615967 + 0.787772i \(0.711235\pi\)
\(992\) 11.5448 + 11.5448i 0.366547 + 0.366547i
\(993\) −16.2002 16.2002i −0.514098 0.514098i
\(994\) −0.241297 0.241297i −0.00765349 0.00765349i
\(995\) 0 0
\(996\) −27.3309 + 27.3309i −0.866012 + 0.866012i
\(997\) 21.7128 0.687651 0.343826 0.939033i \(-0.388277\pi\)
0.343826 + 0.939033i \(0.388277\pi\)
\(998\) −4.96310 −0.157104
\(999\) 11.5394 0.365091
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 725.2.j.b.418.5 yes 16
5.2 odd 4 725.2.e.b.157.5 yes 16
5.3 odd 4 725.2.e.b.157.4 16
5.4 even 2 inner 725.2.j.b.418.4 yes 16
29.17 odd 4 725.2.e.b.568.4 yes 16
145.17 even 4 inner 725.2.j.b.307.5 yes 16
145.104 odd 4 725.2.e.b.568.5 yes 16
145.133 even 4 inner 725.2.j.b.307.4 yes 16
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
725.2.e.b.157.4 16 5.3 odd 4
725.2.e.b.157.5 yes 16 5.2 odd 4
725.2.e.b.568.4 yes 16 29.17 odd 4
725.2.e.b.568.5 yes 16 145.104 odd 4
725.2.j.b.307.4 yes 16 145.133 even 4 inner
725.2.j.b.307.5 yes 16 145.17 even 4 inner
725.2.j.b.418.4 yes 16 5.4 even 2 inner
725.2.j.b.418.5 yes 16 1.1 even 1 trivial