Properties

Label 726.4.a.f.1.1
Level $726$
Weight $4$
Character 726.1
Self dual yes
Analytic conductor $42.835$
Analytic rank $0$
Dimension $1$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [726,4,Mod(1,726)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(726, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0]))
 
N = Newforms(chi, 4, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("726.1");
 
S:= CuspForms(chi, 4);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 726 = 2 \cdot 3 \cdot 11^{2} \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 726.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(42.8353866642\)
Analytic rank: \(0\)
Dimension: \(1\)
Coefficient field: \(\mathbb{Q}\)
Coefficient ring: \(\mathbb{Z}\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 6)
Fricke sign: \(+1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.1
Character \(\chi\) \(=\) 726.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+2.00000 q^{2} -3.00000 q^{3} +4.00000 q^{4} +6.00000 q^{5} -6.00000 q^{6} +16.0000 q^{7} +8.00000 q^{8} +9.00000 q^{9} +12.0000 q^{10} -12.0000 q^{12} -38.0000 q^{13} +32.0000 q^{14} -18.0000 q^{15} +16.0000 q^{16} +126.000 q^{17} +18.0000 q^{18} -20.0000 q^{19} +24.0000 q^{20} -48.0000 q^{21} +168.000 q^{23} -24.0000 q^{24} -89.0000 q^{25} -76.0000 q^{26} -27.0000 q^{27} +64.0000 q^{28} -30.0000 q^{29} -36.0000 q^{30} -88.0000 q^{31} +32.0000 q^{32} +252.000 q^{34} +96.0000 q^{35} +36.0000 q^{36} +254.000 q^{37} -40.0000 q^{38} +114.000 q^{39} +48.0000 q^{40} -42.0000 q^{41} -96.0000 q^{42} +52.0000 q^{43} +54.0000 q^{45} +336.000 q^{46} -96.0000 q^{47} -48.0000 q^{48} -87.0000 q^{49} -178.000 q^{50} -378.000 q^{51} -152.000 q^{52} +198.000 q^{53} -54.0000 q^{54} +128.000 q^{56} +60.0000 q^{57} -60.0000 q^{58} -660.000 q^{59} -72.0000 q^{60} +538.000 q^{61} -176.000 q^{62} +144.000 q^{63} +64.0000 q^{64} -228.000 q^{65} +884.000 q^{67} +504.000 q^{68} -504.000 q^{69} +192.000 q^{70} +792.000 q^{71} +72.0000 q^{72} -218.000 q^{73} +508.000 q^{74} +267.000 q^{75} -80.0000 q^{76} +228.000 q^{78} +520.000 q^{79} +96.0000 q^{80} +81.0000 q^{81} -84.0000 q^{82} +492.000 q^{83} -192.000 q^{84} +756.000 q^{85} +104.000 q^{86} +90.0000 q^{87} +810.000 q^{89} +108.000 q^{90} -608.000 q^{91} +672.000 q^{92} +264.000 q^{93} -192.000 q^{94} -120.000 q^{95} -96.0000 q^{96} +1154.00 q^{97} -174.000 q^{98} +O(q^{100})\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 2.00000 0.707107
\(3\) −3.00000 −0.577350
\(4\) 4.00000 0.500000
\(5\) 6.00000 0.536656 0.268328 0.963328i \(-0.413529\pi\)
0.268328 + 0.963328i \(0.413529\pi\)
\(6\) −6.00000 −0.408248
\(7\) 16.0000 0.863919 0.431959 0.901893i \(-0.357822\pi\)
0.431959 + 0.901893i \(0.357822\pi\)
\(8\) 8.00000 0.353553
\(9\) 9.00000 0.333333
\(10\) 12.0000 0.379473
\(11\) 0 0
\(12\) −12.0000 −0.288675
\(13\) −38.0000 −0.810716 −0.405358 0.914158i \(-0.632853\pi\)
−0.405358 + 0.914158i \(0.632853\pi\)
\(14\) 32.0000 0.610883
\(15\) −18.0000 −0.309839
\(16\) 16.0000 0.250000
\(17\) 126.000 1.79762 0.898808 0.438342i \(-0.144434\pi\)
0.898808 + 0.438342i \(0.144434\pi\)
\(18\) 18.0000 0.235702
\(19\) −20.0000 −0.241490 −0.120745 0.992684i \(-0.538528\pi\)
−0.120745 + 0.992684i \(0.538528\pi\)
\(20\) 24.0000 0.268328
\(21\) −48.0000 −0.498784
\(22\) 0 0
\(23\) 168.000 1.52306 0.761531 0.648129i \(-0.224448\pi\)
0.761531 + 0.648129i \(0.224448\pi\)
\(24\) −24.0000 −0.204124
\(25\) −89.0000 −0.712000
\(26\) −76.0000 −0.573263
\(27\) −27.0000 −0.192450
\(28\) 64.0000 0.431959
\(29\) −30.0000 −0.192099 −0.0960493 0.995377i \(-0.530621\pi\)
−0.0960493 + 0.995377i \(0.530621\pi\)
\(30\) −36.0000 −0.219089
\(31\) −88.0000 −0.509847 −0.254924 0.966961i \(-0.582050\pi\)
−0.254924 + 0.966961i \(0.582050\pi\)
\(32\) 32.0000 0.176777
\(33\) 0 0
\(34\) 252.000 1.27111
\(35\) 96.0000 0.463627
\(36\) 36.0000 0.166667
\(37\) 254.000 1.12858 0.564288 0.825578i \(-0.309151\pi\)
0.564288 + 0.825578i \(0.309151\pi\)
\(38\) −40.0000 −0.170759
\(39\) 114.000 0.468067
\(40\) 48.0000 0.189737
\(41\) −42.0000 −0.159983 −0.0799914 0.996796i \(-0.525489\pi\)
−0.0799914 + 0.996796i \(0.525489\pi\)
\(42\) −96.0000 −0.352693
\(43\) 52.0000 0.184417 0.0922084 0.995740i \(-0.470607\pi\)
0.0922084 + 0.995740i \(0.470607\pi\)
\(44\) 0 0
\(45\) 54.0000 0.178885
\(46\) 336.000 1.07697
\(47\) −96.0000 −0.297937 −0.148969 0.988842i \(-0.547595\pi\)
−0.148969 + 0.988842i \(0.547595\pi\)
\(48\) −48.0000 −0.144338
\(49\) −87.0000 −0.253644
\(50\) −178.000 −0.503460
\(51\) −378.000 −1.03785
\(52\) −152.000 −0.405358
\(53\) 198.000 0.513158 0.256579 0.966523i \(-0.417405\pi\)
0.256579 + 0.966523i \(0.417405\pi\)
\(54\) −54.0000 −0.136083
\(55\) 0 0
\(56\) 128.000 0.305441
\(57\) 60.0000 0.139424
\(58\) −60.0000 −0.135834
\(59\) −660.000 −1.45635 −0.728175 0.685391i \(-0.759631\pi\)
−0.728175 + 0.685391i \(0.759631\pi\)
\(60\) −72.0000 −0.154919
\(61\) 538.000 1.12924 0.564622 0.825350i \(-0.309022\pi\)
0.564622 + 0.825350i \(0.309022\pi\)
\(62\) −176.000 −0.360516
\(63\) 144.000 0.287973
\(64\) 64.0000 0.125000
\(65\) −228.000 −0.435076
\(66\) 0 0
\(67\) 884.000 1.61191 0.805954 0.591979i \(-0.201653\pi\)
0.805954 + 0.591979i \(0.201653\pi\)
\(68\) 504.000 0.898808
\(69\) −504.000 −0.879340
\(70\) 192.000 0.327834
\(71\) 792.000 1.32385 0.661923 0.749572i \(-0.269740\pi\)
0.661923 + 0.749572i \(0.269740\pi\)
\(72\) 72.0000 0.117851
\(73\) −218.000 −0.349520 −0.174760 0.984611i \(-0.555915\pi\)
−0.174760 + 0.984611i \(0.555915\pi\)
\(74\) 508.000 0.798024
\(75\) 267.000 0.411073
\(76\) −80.0000 −0.120745
\(77\) 0 0
\(78\) 228.000 0.330973
\(79\) 520.000 0.740564 0.370282 0.928919i \(-0.379261\pi\)
0.370282 + 0.928919i \(0.379261\pi\)
\(80\) 96.0000 0.134164
\(81\) 81.0000 0.111111
\(82\) −84.0000 −0.113125
\(83\) 492.000 0.650651 0.325325 0.945602i \(-0.394526\pi\)
0.325325 + 0.945602i \(0.394526\pi\)
\(84\) −192.000 −0.249392
\(85\) 756.000 0.964703
\(86\) 104.000 0.130402
\(87\) 90.0000 0.110908
\(88\) 0 0
\(89\) 810.000 0.964717 0.482359 0.875974i \(-0.339780\pi\)
0.482359 + 0.875974i \(0.339780\pi\)
\(90\) 108.000 0.126491
\(91\) −608.000 −0.700393
\(92\) 672.000 0.761531
\(93\) 264.000 0.294360
\(94\) −192.000 −0.210673
\(95\) −120.000 −0.129597
\(96\) −96.0000 −0.102062
\(97\) 1154.00 1.20795 0.603974 0.797004i \(-0.293583\pi\)
0.603974 + 0.797004i \(0.293583\pi\)
\(98\) −174.000 −0.179354
\(99\) 0 0
\(100\) −356.000 −0.356000
\(101\) 618.000 0.608845 0.304422 0.952537i \(-0.401537\pi\)
0.304422 + 0.952537i \(0.401537\pi\)
\(102\) −756.000 −0.733874
\(103\) 128.000 0.122449 0.0612243 0.998124i \(-0.480499\pi\)
0.0612243 + 0.998124i \(0.480499\pi\)
\(104\) −304.000 −0.286631
\(105\) −288.000 −0.267675
\(106\) 396.000 0.362858
\(107\) 1476.00 1.33355 0.666777 0.745257i \(-0.267673\pi\)
0.666777 + 0.745257i \(0.267673\pi\)
\(108\) −108.000 −0.0962250
\(109\) −1190.00 −1.04570 −0.522850 0.852425i \(-0.675131\pi\)
−0.522850 + 0.852425i \(0.675131\pi\)
\(110\) 0 0
\(111\) −762.000 −0.651584
\(112\) 256.000 0.215980
\(113\) −462.000 −0.384613 −0.192307 0.981335i \(-0.561597\pi\)
−0.192307 + 0.981335i \(0.561597\pi\)
\(114\) 120.000 0.0985880
\(115\) 1008.00 0.817361
\(116\) −120.000 −0.0960493
\(117\) −342.000 −0.270239
\(118\) −1320.00 −1.02980
\(119\) 2016.00 1.55300
\(120\) −144.000 −0.109545
\(121\) 0 0
\(122\) 1076.00 0.798496
\(123\) 126.000 0.0923662
\(124\) −352.000 −0.254924
\(125\) −1284.00 −0.918756
\(126\) 288.000 0.203628
\(127\) 2536.00 1.77192 0.885959 0.463763i \(-0.153501\pi\)
0.885959 + 0.463763i \(0.153501\pi\)
\(128\) 128.000 0.0883883
\(129\) −156.000 −0.106473
\(130\) −456.000 −0.307645
\(131\) −2292.00 −1.52865 −0.764324 0.644832i \(-0.776927\pi\)
−0.764324 + 0.644832i \(0.776927\pi\)
\(132\) 0 0
\(133\) −320.000 −0.208628
\(134\) 1768.00 1.13979
\(135\) −162.000 −0.103280
\(136\) 1008.00 0.635554
\(137\) −726.000 −0.452747 −0.226374 0.974041i \(-0.572687\pi\)
−0.226374 + 0.974041i \(0.572687\pi\)
\(138\) −1008.00 −0.621787
\(139\) −380.000 −0.231879 −0.115939 0.993256i \(-0.536988\pi\)
−0.115939 + 0.993256i \(0.536988\pi\)
\(140\) 384.000 0.231814
\(141\) 288.000 0.172014
\(142\) 1584.00 0.936101
\(143\) 0 0
\(144\) 144.000 0.0833333
\(145\) −180.000 −0.103091
\(146\) −436.000 −0.247148
\(147\) 261.000 0.146442
\(148\) 1016.00 0.564288
\(149\) −1590.00 −0.874214 −0.437107 0.899410i \(-0.643997\pi\)
−0.437107 + 0.899410i \(0.643997\pi\)
\(150\) 534.000 0.290673
\(151\) −2432.00 −1.31068 −0.655342 0.755332i \(-0.727476\pi\)
−0.655342 + 0.755332i \(0.727476\pi\)
\(152\) −160.000 −0.0853797
\(153\) 1134.00 0.599206
\(154\) 0 0
\(155\) −528.000 −0.273613
\(156\) 456.000 0.234033
\(157\) 614.000 0.312118 0.156059 0.987748i \(-0.450121\pi\)
0.156059 + 0.987748i \(0.450121\pi\)
\(158\) 1040.00 0.523658
\(159\) −594.000 −0.296272
\(160\) 192.000 0.0948683
\(161\) 2688.00 1.31580
\(162\) 162.000 0.0785674
\(163\) −1852.00 −0.889938 −0.444969 0.895546i \(-0.646785\pi\)
−0.444969 + 0.895546i \(0.646785\pi\)
\(164\) −168.000 −0.0799914
\(165\) 0 0
\(166\) 984.000 0.460080
\(167\) 2136.00 0.989752 0.494876 0.868964i \(-0.335213\pi\)
0.494876 + 0.868964i \(0.335213\pi\)
\(168\) −384.000 −0.176347
\(169\) −753.000 −0.342740
\(170\) 1512.00 0.682148
\(171\) −180.000 −0.0804967
\(172\) 208.000 0.0922084
\(173\) −1758.00 −0.772591 −0.386296 0.922375i \(-0.626246\pi\)
−0.386296 + 0.922375i \(0.626246\pi\)
\(174\) 180.000 0.0784239
\(175\) −1424.00 −0.615110
\(176\) 0 0
\(177\) 1980.00 0.840824
\(178\) 1620.00 0.682158
\(179\) −540.000 −0.225483 −0.112742 0.993624i \(-0.535963\pi\)
−0.112742 + 0.993624i \(0.535963\pi\)
\(180\) 216.000 0.0894427
\(181\) 1982.00 0.813928 0.406964 0.913444i \(-0.366588\pi\)
0.406964 + 0.913444i \(0.366588\pi\)
\(182\) −1216.00 −0.495252
\(183\) −1614.00 −0.651969
\(184\) 1344.00 0.538484
\(185\) 1524.00 0.605658
\(186\) 528.000 0.208144
\(187\) 0 0
\(188\) −384.000 −0.148969
\(189\) −432.000 −0.166261
\(190\) −240.000 −0.0916391
\(191\) −2688.00 −1.01831 −0.509154 0.860675i \(-0.670042\pi\)
−0.509154 + 0.860675i \(0.670042\pi\)
\(192\) −192.000 −0.0721688
\(193\) 2302.00 0.858557 0.429279 0.903172i \(-0.358768\pi\)
0.429279 + 0.903172i \(0.358768\pi\)
\(194\) 2308.00 0.854148
\(195\) 684.000 0.251191
\(196\) −348.000 −0.126822
\(197\) −4374.00 −1.58190 −0.790951 0.611880i \(-0.790414\pi\)
−0.790951 + 0.611880i \(0.790414\pi\)
\(198\) 0 0
\(199\) −1600.00 −0.569955 −0.284977 0.958534i \(-0.591986\pi\)
−0.284977 + 0.958534i \(0.591986\pi\)
\(200\) −712.000 −0.251730
\(201\) −2652.00 −0.930635
\(202\) 1236.00 0.430518
\(203\) −480.000 −0.165958
\(204\) −1512.00 −0.518927
\(205\) −252.000 −0.0858558
\(206\) 256.000 0.0865843
\(207\) 1512.00 0.507687
\(208\) −608.000 −0.202679
\(209\) 0 0
\(210\) −576.000 −0.189275
\(211\) −3332.00 −1.08713 −0.543565 0.839367i \(-0.682926\pi\)
−0.543565 + 0.839367i \(0.682926\pi\)
\(212\) 792.000 0.256579
\(213\) −2376.00 −0.764323
\(214\) 2952.00 0.942965
\(215\) 312.000 0.0989685
\(216\) −216.000 −0.0680414
\(217\) −1408.00 −0.440467
\(218\) −2380.00 −0.739422
\(219\) 654.000 0.201796
\(220\) 0 0
\(221\) −4788.00 −1.45736
\(222\) −1524.00 −0.460740
\(223\) 2648.00 0.795171 0.397586 0.917565i \(-0.369848\pi\)
0.397586 + 0.917565i \(0.369848\pi\)
\(224\) 512.000 0.152721
\(225\) −801.000 −0.237333
\(226\) −924.000 −0.271963
\(227\) −2244.00 −0.656121 −0.328061 0.944657i \(-0.606395\pi\)
−0.328061 + 0.944657i \(0.606395\pi\)
\(228\) 240.000 0.0697122
\(229\) −5650.00 −1.63040 −0.815202 0.579177i \(-0.803374\pi\)
−0.815202 + 0.579177i \(0.803374\pi\)
\(230\) 2016.00 0.577961
\(231\) 0 0
\(232\) −240.000 −0.0679171
\(233\) −4698.00 −1.32093 −0.660464 0.750858i \(-0.729640\pi\)
−0.660464 + 0.750858i \(0.729640\pi\)
\(234\) −684.000 −0.191088
\(235\) −576.000 −0.159890
\(236\) −2640.00 −0.728175
\(237\) −1560.00 −0.427565
\(238\) 4032.00 1.09813
\(239\) 1200.00 0.324776 0.162388 0.986727i \(-0.448080\pi\)
0.162388 + 0.986727i \(0.448080\pi\)
\(240\) −288.000 −0.0774597
\(241\) 718.000 0.191911 0.0959553 0.995386i \(-0.469409\pi\)
0.0959553 + 0.995386i \(0.469409\pi\)
\(242\) 0 0
\(243\) −243.000 −0.0641500
\(244\) 2152.00 0.564622
\(245\) −522.000 −0.136120
\(246\) 252.000 0.0653127
\(247\) 760.000 0.195780
\(248\) −704.000 −0.180258
\(249\) −1476.00 −0.375653
\(250\) −2568.00 −0.649658
\(251\) 6012.00 1.51185 0.755924 0.654659i \(-0.227188\pi\)
0.755924 + 0.654659i \(0.227188\pi\)
\(252\) 576.000 0.143986
\(253\) 0 0
\(254\) 5072.00 1.25294
\(255\) −2268.00 −0.556971
\(256\) 256.000 0.0625000
\(257\) −2046.00 −0.496599 −0.248300 0.968683i \(-0.579872\pi\)
−0.248300 + 0.968683i \(0.579872\pi\)
\(258\) −312.000 −0.0752879
\(259\) 4064.00 0.974999
\(260\) −912.000 −0.217538
\(261\) −270.000 −0.0640329
\(262\) −4584.00 −1.08092
\(263\) 6072.00 1.42363 0.711817 0.702365i \(-0.247873\pi\)
0.711817 + 0.702365i \(0.247873\pi\)
\(264\) 0 0
\(265\) 1188.00 0.275390
\(266\) −640.000 −0.147522
\(267\) −2430.00 −0.556980
\(268\) 3536.00 0.805954
\(269\) −6930.00 −1.57074 −0.785371 0.619025i \(-0.787528\pi\)
−0.785371 + 0.619025i \(0.787528\pi\)
\(270\) −324.000 −0.0730297
\(271\) −1352.00 −0.303056 −0.151528 0.988453i \(-0.548419\pi\)
−0.151528 + 0.988453i \(0.548419\pi\)
\(272\) 2016.00 0.449404
\(273\) 1824.00 0.404372
\(274\) −1452.00 −0.320141
\(275\) 0 0
\(276\) −2016.00 −0.439670
\(277\) 1186.00 0.257256 0.128628 0.991693i \(-0.458943\pi\)
0.128628 + 0.991693i \(0.458943\pi\)
\(278\) −760.000 −0.163963
\(279\) −792.000 −0.169949
\(280\) 768.000 0.163917
\(281\) −2442.00 −0.518425 −0.259213 0.965820i \(-0.583463\pi\)
−0.259213 + 0.965820i \(0.583463\pi\)
\(282\) 576.000 0.121632
\(283\) −2828.00 −0.594018 −0.297009 0.954875i \(-0.595989\pi\)
−0.297009 + 0.954875i \(0.595989\pi\)
\(284\) 3168.00 0.661923
\(285\) 360.000 0.0748230
\(286\) 0 0
\(287\) −672.000 −0.138212
\(288\) 288.000 0.0589256
\(289\) 10963.0 2.23143
\(290\) −360.000 −0.0728963
\(291\) −3462.00 −0.697409
\(292\) −872.000 −0.174760
\(293\) −4758.00 −0.948687 −0.474344 0.880340i \(-0.657315\pi\)
−0.474344 + 0.880340i \(0.657315\pi\)
\(294\) 522.000 0.103550
\(295\) −3960.00 −0.781560
\(296\) 2032.00 0.399012
\(297\) 0 0
\(298\) −3180.00 −0.618163
\(299\) −6384.00 −1.23477
\(300\) 1068.00 0.205537
\(301\) 832.000 0.159321
\(302\) −4864.00 −0.926794
\(303\) −1854.00 −0.351517
\(304\) −320.000 −0.0603726
\(305\) 3228.00 0.606016
\(306\) 2268.00 0.423702
\(307\) 8476.00 1.57574 0.787868 0.615844i \(-0.211185\pi\)
0.787868 + 0.615844i \(0.211185\pi\)
\(308\) 0 0
\(309\) −384.000 −0.0706958
\(310\) −1056.00 −0.193473
\(311\) 4632.00 0.844555 0.422278 0.906467i \(-0.361231\pi\)
0.422278 + 0.906467i \(0.361231\pi\)
\(312\) 912.000 0.165487
\(313\) −4822.00 −0.870785 −0.435392 0.900241i \(-0.643390\pi\)
−0.435392 + 0.900241i \(0.643390\pi\)
\(314\) 1228.00 0.220701
\(315\) 864.000 0.154542
\(316\) 2080.00 0.370282
\(317\) −3426.00 −0.607014 −0.303507 0.952829i \(-0.598158\pi\)
−0.303507 + 0.952829i \(0.598158\pi\)
\(318\) −1188.00 −0.209496
\(319\) 0 0
\(320\) 384.000 0.0670820
\(321\) −4428.00 −0.769928
\(322\) 5376.00 0.930412
\(323\) −2520.00 −0.434107
\(324\) 324.000 0.0555556
\(325\) 3382.00 0.577230
\(326\) −3704.00 −0.629281
\(327\) 3570.00 0.603735
\(328\) −336.000 −0.0565625
\(329\) −1536.00 −0.257393
\(330\) 0 0
\(331\) −2788.00 −0.462968 −0.231484 0.972839i \(-0.574358\pi\)
−0.231484 + 0.972839i \(0.574358\pi\)
\(332\) 1968.00 0.325325
\(333\) 2286.00 0.376192
\(334\) 4272.00 0.699861
\(335\) 5304.00 0.865040
\(336\) −768.000 −0.124696
\(337\) −434.000 −0.0701528 −0.0350764 0.999385i \(-0.511167\pi\)
−0.0350764 + 0.999385i \(0.511167\pi\)
\(338\) −1506.00 −0.242354
\(339\) 1386.00 0.222057
\(340\) 3024.00 0.482351
\(341\) 0 0
\(342\) −360.000 −0.0569198
\(343\) −6880.00 −1.08305
\(344\) 416.000 0.0652012
\(345\) −3024.00 −0.471903
\(346\) −3516.00 −0.546304
\(347\) −6684.00 −1.03405 −0.517026 0.855970i \(-0.672961\pi\)
−0.517026 + 0.855970i \(0.672961\pi\)
\(348\) 360.000 0.0554541
\(349\) −2630.00 −0.403383 −0.201692 0.979449i \(-0.564644\pi\)
−0.201692 + 0.979449i \(0.564644\pi\)
\(350\) −2848.00 −0.434949
\(351\) 1026.00 0.156022
\(352\) 0 0
\(353\) −7422.00 −1.11907 −0.559537 0.828805i \(-0.689021\pi\)
−0.559537 + 0.828805i \(0.689021\pi\)
\(354\) 3960.00 0.594553
\(355\) 4752.00 0.710451
\(356\) 3240.00 0.482359
\(357\) −6048.00 −0.896622
\(358\) −1080.00 −0.159441
\(359\) 10440.0 1.53482 0.767412 0.641154i \(-0.221544\pi\)
0.767412 + 0.641154i \(0.221544\pi\)
\(360\) 432.000 0.0632456
\(361\) −6459.00 −0.941682
\(362\) 3964.00 0.575534
\(363\) 0 0
\(364\) −2432.00 −0.350196
\(365\) −1308.00 −0.187572
\(366\) −3228.00 −0.461012
\(367\) 10424.0 1.48264 0.741319 0.671153i \(-0.234200\pi\)
0.741319 + 0.671153i \(0.234200\pi\)
\(368\) 2688.00 0.380765
\(369\) −378.000 −0.0533276
\(370\) 3048.00 0.428265
\(371\) 3168.00 0.443327
\(372\) 1056.00 0.147180
\(373\) −3278.00 −0.455036 −0.227518 0.973774i \(-0.573061\pi\)
−0.227518 + 0.973774i \(0.573061\pi\)
\(374\) 0 0
\(375\) 3852.00 0.530444
\(376\) −768.000 −0.105337
\(377\) 1140.00 0.155737
\(378\) −864.000 −0.117564
\(379\) 6140.00 0.832165 0.416083 0.909327i \(-0.363403\pi\)
0.416083 + 0.909327i \(0.363403\pi\)
\(380\) −480.000 −0.0647986
\(381\) −7608.00 −1.02302
\(382\) −5376.00 −0.720053
\(383\) −3072.00 −0.409848 −0.204924 0.978778i \(-0.565695\pi\)
−0.204924 + 0.978778i \(0.565695\pi\)
\(384\) −384.000 −0.0510310
\(385\) 0 0
\(386\) 4604.00 0.607092
\(387\) 468.000 0.0614723
\(388\) 4616.00 0.603974
\(389\) 6150.00 0.801587 0.400794 0.916168i \(-0.368734\pi\)
0.400794 + 0.916168i \(0.368734\pi\)
\(390\) 1368.00 0.177619
\(391\) 21168.0 2.73788
\(392\) −696.000 −0.0896768
\(393\) 6876.00 0.882566
\(394\) −8748.00 −1.11857
\(395\) 3120.00 0.397428
\(396\) 0 0
\(397\) −106.000 −0.0134005 −0.00670024 0.999978i \(-0.502133\pi\)
−0.00670024 + 0.999978i \(0.502133\pi\)
\(398\) −3200.00 −0.403019
\(399\) 960.000 0.120451
\(400\) −1424.00 −0.178000
\(401\) −1758.00 −0.218929 −0.109464 0.993991i \(-0.534914\pi\)
−0.109464 + 0.993991i \(0.534914\pi\)
\(402\) −5304.00 −0.658058
\(403\) 3344.00 0.413341
\(404\) 2472.00 0.304422
\(405\) 486.000 0.0596285
\(406\) −960.000 −0.117350
\(407\) 0 0
\(408\) −3024.00 −0.366937
\(409\) 3670.00 0.443691 0.221846 0.975082i \(-0.428792\pi\)
0.221846 + 0.975082i \(0.428792\pi\)
\(410\) −504.000 −0.0607092
\(411\) 2178.00 0.261394
\(412\) 512.000 0.0612243
\(413\) −10560.0 −1.25817
\(414\) 3024.00 0.358989
\(415\) 2952.00 0.349176
\(416\) −1216.00 −0.143316
\(417\) 1140.00 0.133875
\(418\) 0 0
\(419\) −9660.00 −1.12631 −0.563153 0.826353i \(-0.690412\pi\)
−0.563153 + 0.826353i \(0.690412\pi\)
\(420\) −1152.00 −0.133838
\(421\) 8462.00 0.979602 0.489801 0.871834i \(-0.337069\pi\)
0.489801 + 0.871834i \(0.337069\pi\)
\(422\) −6664.00 −0.768717
\(423\) −864.000 −0.0993123
\(424\) 1584.00 0.181429
\(425\) −11214.0 −1.27990
\(426\) −4752.00 −0.540458
\(427\) 8608.00 0.975575
\(428\) 5904.00 0.666777
\(429\) 0 0
\(430\) 624.000 0.0699813
\(431\) −9792.00 −1.09435 −0.547174 0.837019i \(-0.684296\pi\)
−0.547174 + 0.837019i \(0.684296\pi\)
\(432\) −432.000 −0.0481125
\(433\) −7342.00 −0.814859 −0.407430 0.913237i \(-0.633575\pi\)
−0.407430 + 0.913237i \(0.633575\pi\)
\(434\) −2816.00 −0.311457
\(435\) 540.000 0.0595196
\(436\) −4760.00 −0.522850
\(437\) −3360.00 −0.367805
\(438\) 1308.00 0.142691
\(439\) −10640.0 −1.15676 −0.578382 0.815766i \(-0.696316\pi\)
−0.578382 + 0.815766i \(0.696316\pi\)
\(440\) 0 0
\(441\) −783.000 −0.0845481
\(442\) −9576.00 −1.03051
\(443\) −17412.0 −1.86742 −0.933712 0.358024i \(-0.883451\pi\)
−0.933712 + 0.358024i \(0.883451\pi\)
\(444\) −3048.00 −0.325792
\(445\) 4860.00 0.517722
\(446\) 5296.00 0.562271
\(447\) 4770.00 0.504728
\(448\) 1024.00 0.107990
\(449\) −1710.00 −0.179732 −0.0898662 0.995954i \(-0.528644\pi\)
−0.0898662 + 0.995954i \(0.528644\pi\)
\(450\) −1602.00 −0.167820
\(451\) 0 0
\(452\) −1848.00 −0.192307
\(453\) 7296.00 0.756724
\(454\) −4488.00 −0.463948
\(455\) −3648.00 −0.375870
\(456\) 480.000 0.0492940
\(457\) 646.000 0.0661239 0.0330619 0.999453i \(-0.489474\pi\)
0.0330619 + 0.999453i \(0.489474\pi\)
\(458\) −11300.0 −1.15287
\(459\) −3402.00 −0.345952
\(460\) 4032.00 0.408680
\(461\) 6018.00 0.607996 0.303998 0.952673i \(-0.401678\pi\)
0.303998 + 0.952673i \(0.401678\pi\)
\(462\) 0 0
\(463\) −6712.00 −0.673722 −0.336861 0.941554i \(-0.609365\pi\)
−0.336861 + 0.941554i \(0.609365\pi\)
\(464\) −480.000 −0.0480247
\(465\) 1584.00 0.157970
\(466\) −9396.00 −0.934037
\(467\) 5364.00 0.531512 0.265756 0.964040i \(-0.414378\pi\)
0.265756 + 0.964040i \(0.414378\pi\)
\(468\) −1368.00 −0.135119
\(469\) 14144.0 1.39256
\(470\) −1152.00 −0.113059
\(471\) −1842.00 −0.180201
\(472\) −5280.00 −0.514898
\(473\) 0 0
\(474\) −3120.00 −0.302334
\(475\) 1780.00 0.171941
\(476\) 8064.00 0.776498
\(477\) 1782.00 0.171053
\(478\) 2400.00 0.229652
\(479\) −9840.00 −0.938624 −0.469312 0.883032i \(-0.655498\pi\)
−0.469312 + 0.883032i \(0.655498\pi\)
\(480\) −576.000 −0.0547723
\(481\) −9652.00 −0.914955
\(482\) 1436.00 0.135701
\(483\) −8064.00 −0.759678
\(484\) 0 0
\(485\) 6924.00 0.648253
\(486\) −486.000 −0.0453609
\(487\) 1424.00 0.132500 0.0662501 0.997803i \(-0.478896\pi\)
0.0662501 + 0.997803i \(0.478896\pi\)
\(488\) 4304.00 0.399248
\(489\) 5556.00 0.513806
\(490\) −1044.00 −0.0962513
\(491\) 4548.00 0.418021 0.209011 0.977913i \(-0.432976\pi\)
0.209011 + 0.977913i \(0.432976\pi\)
\(492\) 504.000 0.0461831
\(493\) −3780.00 −0.345320
\(494\) 1520.00 0.138437
\(495\) 0 0
\(496\) −1408.00 −0.127462
\(497\) 12672.0 1.14370
\(498\) −2952.00 −0.265627
\(499\) 6500.00 0.583126 0.291563 0.956552i \(-0.405825\pi\)
0.291563 + 0.956552i \(0.405825\pi\)
\(500\) −5136.00 −0.459378
\(501\) −6408.00 −0.571434
\(502\) 12024.0 1.06904
\(503\) −12168.0 −1.07862 −0.539308 0.842108i \(-0.681314\pi\)
−0.539308 + 0.842108i \(0.681314\pi\)
\(504\) 1152.00 0.101814
\(505\) 3708.00 0.326740
\(506\) 0 0
\(507\) 2259.00 0.197881
\(508\) 10144.0 0.885959
\(509\) −21090.0 −1.83654 −0.918269 0.395957i \(-0.870413\pi\)
−0.918269 + 0.395957i \(0.870413\pi\)
\(510\) −4536.00 −0.393838
\(511\) −3488.00 −0.301957
\(512\) 512.000 0.0441942
\(513\) 540.000 0.0464748
\(514\) −4092.00 −0.351149
\(515\) 768.000 0.0657129
\(516\) −624.000 −0.0532366
\(517\) 0 0
\(518\) 8128.00 0.689428
\(519\) 5274.00 0.446056
\(520\) −1824.00 −0.153822
\(521\) −5238.00 −0.440462 −0.220231 0.975448i \(-0.570681\pi\)
−0.220231 + 0.975448i \(0.570681\pi\)
\(522\) −540.000 −0.0452781
\(523\) −8588.00 −0.718025 −0.359012 0.933333i \(-0.616886\pi\)
−0.359012 + 0.933333i \(0.616886\pi\)
\(524\) −9168.00 −0.764324
\(525\) 4272.00 0.355134
\(526\) 12144.0 1.00666
\(527\) −11088.0 −0.916510
\(528\) 0 0
\(529\) 16057.0 1.31972
\(530\) 2376.00 0.194730
\(531\) −5940.00 −0.485450
\(532\) −1280.00 −0.104314
\(533\) 1596.00 0.129701
\(534\) −4860.00 −0.393844
\(535\) 8856.00 0.715660
\(536\) 7072.00 0.569895
\(537\) 1620.00 0.130183
\(538\) −13860.0 −1.11068
\(539\) 0 0
\(540\) −648.000 −0.0516398
\(541\) −3062.00 −0.243338 −0.121669 0.992571i \(-0.538825\pi\)
−0.121669 + 0.992571i \(0.538825\pi\)
\(542\) −2704.00 −0.214293
\(543\) −5946.00 −0.469921
\(544\) 4032.00 0.317777
\(545\) −7140.00 −0.561182
\(546\) 3648.00 0.285934
\(547\) 8476.00 0.662537 0.331268 0.943537i \(-0.392523\pi\)
0.331268 + 0.943537i \(0.392523\pi\)
\(548\) −2904.00 −0.226374
\(549\) 4842.00 0.376414
\(550\) 0 0
\(551\) 600.000 0.0463899
\(552\) −4032.00 −0.310894
\(553\) 8320.00 0.639787
\(554\) 2372.00 0.181907
\(555\) −4572.00 −0.349677
\(556\) −1520.00 −0.115939
\(557\) 12546.0 0.954383 0.477191 0.878799i \(-0.341655\pi\)
0.477191 + 0.878799i \(0.341655\pi\)
\(558\) −1584.00 −0.120172
\(559\) −1976.00 −0.149510
\(560\) 1536.00 0.115907
\(561\) 0 0
\(562\) −4884.00 −0.366582
\(563\) 12.0000 0.000898294 0 0.000449147 1.00000i \(-0.499857\pi\)
0.000449147 1.00000i \(0.499857\pi\)
\(564\) 1152.00 0.0860070
\(565\) −2772.00 −0.206405
\(566\) −5656.00 −0.420034
\(567\) 1296.00 0.0959910
\(568\) 6336.00 0.468050
\(569\) −19290.0 −1.42123 −0.710614 0.703582i \(-0.751583\pi\)
−0.710614 + 0.703582i \(0.751583\pi\)
\(570\) 720.000 0.0529079
\(571\) 12148.0 0.890329 0.445165 0.895449i \(-0.353145\pi\)
0.445165 + 0.895449i \(0.353145\pi\)
\(572\) 0 0
\(573\) 8064.00 0.587920
\(574\) −1344.00 −0.0977308
\(575\) −14952.0 −1.08442
\(576\) 576.000 0.0416667
\(577\) −10366.0 −0.747907 −0.373953 0.927447i \(-0.621998\pi\)
−0.373953 + 0.927447i \(0.621998\pi\)
\(578\) 21926.0 1.57786
\(579\) −6906.00 −0.495688
\(580\) −720.000 −0.0515455
\(581\) 7872.00 0.562109
\(582\) −6924.00 −0.493143
\(583\) 0 0
\(584\) −1744.00 −0.123574
\(585\) −2052.00 −0.145025
\(586\) −9516.00 −0.670823
\(587\) 7644.00 0.537482 0.268741 0.963213i \(-0.413393\pi\)
0.268741 + 0.963213i \(0.413393\pi\)
\(588\) 1044.00 0.0732208
\(589\) 1760.00 0.123123
\(590\) −7920.00 −0.552646
\(591\) 13122.0 0.913311
\(592\) 4064.00 0.282144
\(593\) −8658.00 −0.599564 −0.299782 0.954008i \(-0.596914\pi\)
−0.299782 + 0.954008i \(0.596914\pi\)
\(594\) 0 0
\(595\) 12096.0 0.833425
\(596\) −6360.00 −0.437107
\(597\) 4800.00 0.329064
\(598\) −12768.0 −0.873114
\(599\) 25800.0 1.75987 0.879933 0.475098i \(-0.157587\pi\)
0.879933 + 0.475098i \(0.157587\pi\)
\(600\) 2136.00 0.145336
\(601\) −16202.0 −1.09966 −0.549828 0.835278i \(-0.685307\pi\)
−0.549828 + 0.835278i \(0.685307\pi\)
\(602\) 1664.00 0.112657
\(603\) 7956.00 0.537302
\(604\) −9728.00 −0.655342
\(605\) 0 0
\(606\) −3708.00 −0.248560
\(607\) 24136.0 1.61392 0.806960 0.590605i \(-0.201111\pi\)
0.806960 + 0.590605i \(0.201111\pi\)
\(608\) −640.000 −0.0426898
\(609\) 1440.00 0.0958157
\(610\) 6456.00 0.428518
\(611\) 3648.00 0.241542
\(612\) 4536.00 0.299603
\(613\) 4642.00 0.305854 0.152927 0.988237i \(-0.451130\pi\)
0.152927 + 0.988237i \(0.451130\pi\)
\(614\) 16952.0 1.11421
\(615\) 756.000 0.0495689
\(616\) 0 0
\(617\) −6726.00 −0.438863 −0.219432 0.975628i \(-0.570420\pi\)
−0.219432 + 0.975628i \(0.570420\pi\)
\(618\) −768.000 −0.0499895
\(619\) −21220.0 −1.37787 −0.688937 0.724821i \(-0.741922\pi\)
−0.688937 + 0.724821i \(0.741922\pi\)
\(620\) −2112.00 −0.136806
\(621\) −4536.00 −0.293113
\(622\) 9264.00 0.597191
\(623\) 12960.0 0.833437
\(624\) 1824.00 0.117017
\(625\) 3421.00 0.218944
\(626\) −9644.00 −0.615738
\(627\) 0 0
\(628\) 2456.00 0.156059
\(629\) 32004.0 2.02875
\(630\) 1728.00 0.109278
\(631\) 29792.0 1.87956 0.939779 0.341783i \(-0.111031\pi\)
0.939779 + 0.341783i \(0.111031\pi\)
\(632\) 4160.00 0.261829
\(633\) 9996.00 0.627655
\(634\) −6852.00 −0.429223
\(635\) 15216.0 0.950911
\(636\) −2376.00 −0.148136
\(637\) 3306.00 0.205633
\(638\) 0 0
\(639\) 7128.00 0.441282
\(640\) 768.000 0.0474342
\(641\) −10158.0 −0.625923 −0.312962 0.949766i \(-0.601321\pi\)
−0.312962 + 0.949766i \(0.601321\pi\)
\(642\) −8856.00 −0.544421
\(643\) 29828.0 1.82940 0.914698 0.404138i \(-0.132429\pi\)
0.914698 + 0.404138i \(0.132429\pi\)
\(644\) 10752.0 0.657901
\(645\) −936.000 −0.0571395
\(646\) −5040.00 −0.306960
\(647\) 1944.00 0.118124 0.0590622 0.998254i \(-0.481189\pi\)
0.0590622 + 0.998254i \(0.481189\pi\)
\(648\) 648.000 0.0392837
\(649\) 0 0
\(650\) 6764.00 0.408163
\(651\) 4224.00 0.254304
\(652\) −7408.00 −0.444969
\(653\) 26718.0 1.60116 0.800579 0.599227i \(-0.204525\pi\)
0.800579 + 0.599227i \(0.204525\pi\)
\(654\) 7140.00 0.426905
\(655\) −13752.0 −0.820359
\(656\) −672.000 −0.0399957
\(657\) −1962.00 −0.116507
\(658\) −3072.00 −0.182005
\(659\) −4260.00 −0.251815 −0.125907 0.992042i \(-0.540184\pi\)
−0.125907 + 0.992042i \(0.540184\pi\)
\(660\) 0 0
\(661\) 22862.0 1.34528 0.672639 0.739971i \(-0.265161\pi\)
0.672639 + 0.739971i \(0.265161\pi\)
\(662\) −5576.00 −0.327368
\(663\) 14364.0 0.841405
\(664\) 3936.00 0.230040
\(665\) −1920.00 −0.111962
\(666\) 4572.00 0.266008
\(667\) −5040.00 −0.292578
\(668\) 8544.00 0.494876
\(669\) −7944.00 −0.459092
\(670\) 10608.0 0.611676
\(671\) 0 0
\(672\) −1536.00 −0.0881733
\(673\) 32542.0 1.86390 0.931948 0.362592i \(-0.118108\pi\)
0.931948 + 0.362592i \(0.118108\pi\)
\(674\) −868.000 −0.0496055
\(675\) 2403.00 0.137024
\(676\) −3012.00 −0.171370
\(677\) −14214.0 −0.806925 −0.403463 0.914996i \(-0.632193\pi\)
−0.403463 + 0.914996i \(0.632193\pi\)
\(678\) 2772.00 0.157018
\(679\) 18464.0 1.04357
\(680\) 6048.00 0.341074
\(681\) 6732.00 0.378812
\(682\) 0 0
\(683\) −7092.00 −0.397317 −0.198659 0.980069i \(-0.563659\pi\)
−0.198659 + 0.980069i \(0.563659\pi\)
\(684\) −720.000 −0.0402484
\(685\) −4356.00 −0.242970
\(686\) −13760.0 −0.765830
\(687\) 16950.0 0.941314
\(688\) 832.000 0.0461042
\(689\) −7524.00 −0.416026
\(690\) −6048.00 −0.333686
\(691\) −13228.0 −0.728244 −0.364122 0.931351i \(-0.618631\pi\)
−0.364122 + 0.931351i \(0.618631\pi\)
\(692\) −7032.00 −0.386296
\(693\) 0 0
\(694\) −13368.0 −0.731185
\(695\) −2280.00 −0.124439
\(696\) 720.000 0.0392120
\(697\) −5292.00 −0.287588
\(698\) −5260.00 −0.285235
\(699\) 14094.0 0.762638
\(700\) −5696.00 −0.307555
\(701\) −28062.0 −1.51196 −0.755982 0.654592i \(-0.772840\pi\)
−0.755982 + 0.654592i \(0.772840\pi\)
\(702\) 2052.00 0.110324
\(703\) −5080.00 −0.272540
\(704\) 0 0
\(705\) 1728.00 0.0923124
\(706\) −14844.0 −0.791305
\(707\) 9888.00 0.525992
\(708\) 7920.00 0.420412
\(709\) −27250.0 −1.44343 −0.721717 0.692188i \(-0.756647\pi\)
−0.721717 + 0.692188i \(0.756647\pi\)
\(710\) 9504.00 0.502364
\(711\) 4680.00 0.246855
\(712\) 6480.00 0.341079
\(713\) −14784.0 −0.776529
\(714\) −12096.0 −0.634008
\(715\) 0 0
\(716\) −2160.00 −0.112742
\(717\) −3600.00 −0.187510
\(718\) 20880.0 1.08529
\(719\) −14400.0 −0.746912 −0.373456 0.927648i \(-0.621827\pi\)
−0.373456 + 0.927648i \(0.621827\pi\)
\(720\) 864.000 0.0447214
\(721\) 2048.00 0.105786
\(722\) −12918.0 −0.665870
\(723\) −2154.00 −0.110800
\(724\) 7928.00 0.406964
\(725\) 2670.00 0.136774
\(726\) 0 0
\(727\) 17984.0 0.917455 0.458727 0.888577i \(-0.348305\pi\)
0.458727 + 0.888577i \(0.348305\pi\)
\(728\) −4864.00 −0.247626
\(729\) 729.000 0.0370370
\(730\) −2616.00 −0.132634
\(731\) 6552.00 0.331511
\(732\) −6456.00 −0.325984
\(733\) −16598.0 −0.836373 −0.418186 0.908361i \(-0.637334\pi\)
−0.418186 + 0.908361i \(0.637334\pi\)
\(734\) 20848.0 1.04838
\(735\) 1566.00 0.0785888
\(736\) 5376.00 0.269242
\(737\) 0 0
\(738\) −756.000 −0.0377083
\(739\) −1460.00 −0.0726752 −0.0363376 0.999340i \(-0.511569\pi\)
−0.0363376 + 0.999340i \(0.511569\pi\)
\(740\) 6096.00 0.302829
\(741\) −2280.00 −0.113034
\(742\) 6336.00 0.313480
\(743\) 30072.0 1.48484 0.742419 0.669936i \(-0.233678\pi\)
0.742419 + 0.669936i \(0.233678\pi\)
\(744\) 2112.00 0.104072
\(745\) −9540.00 −0.469152
\(746\) −6556.00 −0.321759
\(747\) 4428.00 0.216884
\(748\) 0 0
\(749\) 23616.0 1.15208
\(750\) 7704.00 0.375080
\(751\) −18088.0 −0.878882 −0.439441 0.898271i \(-0.644823\pi\)
−0.439441 + 0.898271i \(0.644823\pi\)
\(752\) −1536.00 −0.0744843
\(753\) −18036.0 −0.872866
\(754\) 2280.00 0.110123
\(755\) −14592.0 −0.703387
\(756\) −1728.00 −0.0831306
\(757\) 24734.0 1.18755 0.593773 0.804633i \(-0.297638\pi\)
0.593773 + 0.804633i \(0.297638\pi\)
\(758\) 12280.0 0.588430
\(759\) 0 0
\(760\) −960.000 −0.0458196
\(761\) 22278.0 1.06120 0.530602 0.847621i \(-0.321966\pi\)
0.530602 + 0.847621i \(0.321966\pi\)
\(762\) −15216.0 −0.723383
\(763\) −19040.0 −0.903400
\(764\) −10752.0 −0.509154
\(765\) 6804.00 0.321568
\(766\) −6144.00 −0.289806
\(767\) 25080.0 1.18069
\(768\) −768.000 −0.0360844
\(769\) −16130.0 −0.756388 −0.378194 0.925726i \(-0.623455\pi\)
−0.378194 + 0.925726i \(0.623455\pi\)
\(770\) 0 0
\(771\) 6138.00 0.286712
\(772\) 9208.00 0.429279
\(773\) 29718.0 1.38277 0.691386 0.722486i \(-0.257001\pi\)
0.691386 + 0.722486i \(0.257001\pi\)
\(774\) 936.000 0.0434675
\(775\) 7832.00 0.363011
\(776\) 9232.00 0.427074
\(777\) −12192.0 −0.562916
\(778\) 12300.0 0.566808
\(779\) 840.000 0.0386343
\(780\) 2736.00 0.125596
\(781\) 0 0
\(782\) 42336.0 1.93597
\(783\) 810.000 0.0369694
\(784\) −1392.00 −0.0634111
\(785\) 3684.00 0.167500
\(786\) 13752.0 0.624068
\(787\) −9524.00 −0.431377 −0.215689 0.976462i \(-0.569200\pi\)
−0.215689 + 0.976462i \(0.569200\pi\)
\(788\) −17496.0 −0.790951
\(789\) −18216.0 −0.821935
\(790\) 6240.00 0.281024
\(791\) −7392.00 −0.332275
\(792\) 0 0
\(793\) −20444.0 −0.915495
\(794\) −212.000 −0.00947556
\(795\) −3564.00 −0.158996
\(796\) −6400.00 −0.284977
\(797\) −33906.0 −1.50692 −0.753458 0.657496i \(-0.771616\pi\)
−0.753458 + 0.657496i \(0.771616\pi\)
\(798\) 1920.00 0.0851720
\(799\) −12096.0 −0.535577
\(800\) −2848.00 −0.125865
\(801\) 7290.00 0.321572
\(802\) −3516.00 −0.154806
\(803\) 0 0
\(804\) −10608.0 −0.465318
\(805\) 16128.0 0.706133
\(806\) 6688.00 0.292276
\(807\) 20790.0 0.906868
\(808\) 4944.00 0.215259
\(809\) 630.000 0.0273790 0.0136895 0.999906i \(-0.495642\pi\)
0.0136895 + 0.999906i \(0.495642\pi\)
\(810\) 972.000 0.0421637
\(811\) 20788.0 0.900081 0.450040 0.893008i \(-0.351410\pi\)
0.450040 + 0.893008i \(0.351410\pi\)
\(812\) −1920.00 −0.0829788
\(813\) 4056.00 0.174969
\(814\) 0 0
\(815\) −11112.0 −0.477591
\(816\) −6048.00 −0.259464
\(817\) −1040.00 −0.0445349
\(818\) 7340.00 0.313737
\(819\) −5472.00 −0.233464
\(820\) −1008.00 −0.0429279
\(821\) 43098.0 1.83207 0.916036 0.401097i \(-0.131371\pi\)
0.916036 + 0.401097i \(0.131371\pi\)
\(822\) 4356.00 0.184833
\(823\) −14272.0 −0.604484 −0.302242 0.953231i \(-0.597735\pi\)
−0.302242 + 0.953231i \(0.597735\pi\)
\(824\) 1024.00 0.0432921
\(825\) 0 0
\(826\) −21120.0 −0.889660
\(827\) −13644.0 −0.573698 −0.286849 0.957976i \(-0.592608\pi\)
−0.286849 + 0.957976i \(0.592608\pi\)
\(828\) 6048.00 0.253844
\(829\) −2410.00 −0.100968 −0.0504842 0.998725i \(-0.516076\pi\)
−0.0504842 + 0.998725i \(0.516076\pi\)
\(830\) 5904.00 0.246905
\(831\) −3558.00 −0.148527
\(832\) −2432.00 −0.101339
\(833\) −10962.0 −0.455955
\(834\) 2280.00 0.0946642
\(835\) 12816.0 0.531157
\(836\) 0 0
\(837\) 2376.00 0.0981202
\(838\) −19320.0 −0.796418
\(839\) 23160.0 0.953006 0.476503 0.879173i \(-0.341904\pi\)
0.476503 + 0.879173i \(0.341904\pi\)
\(840\) −2304.00 −0.0946376
\(841\) −23489.0 −0.963098
\(842\) 16924.0 0.692684
\(843\) 7326.00 0.299313
\(844\) −13328.0 −0.543565
\(845\) −4518.00 −0.183934
\(846\) −1728.00 −0.0702244
\(847\) 0 0
\(848\) 3168.00 0.128290
\(849\) 8484.00 0.342957
\(850\) −22428.0 −0.905028
\(851\) 42672.0 1.71889
\(852\) −9504.00 −0.382162
\(853\) −32078.0 −1.28761 −0.643804 0.765190i \(-0.722645\pi\)
−0.643804 + 0.765190i \(0.722645\pi\)
\(854\) 17216.0 0.689835
\(855\) −1080.00 −0.0431991
\(856\) 11808.0 0.471483
\(857\) 14406.0 0.574212 0.287106 0.957899i \(-0.407307\pi\)
0.287106 + 0.957899i \(0.407307\pi\)
\(858\) 0 0
\(859\) 30620.0 1.21623 0.608115 0.793849i \(-0.291926\pi\)
0.608115 + 0.793849i \(0.291926\pi\)
\(860\) 1248.00 0.0494842
\(861\) 2016.00 0.0797969
\(862\) −19584.0 −0.773821
\(863\) 17568.0 0.692957 0.346478 0.938058i \(-0.387377\pi\)
0.346478 + 0.938058i \(0.387377\pi\)
\(864\) −864.000 −0.0340207
\(865\) −10548.0 −0.414616
\(866\) −14684.0 −0.576192
\(867\) −32889.0 −1.28831
\(868\) −5632.00 −0.220233
\(869\) 0 0
\(870\) 1080.00 0.0420867
\(871\) −33592.0 −1.30680
\(872\) −9520.00 −0.369711
\(873\) 10386.0 0.402649
\(874\) −6720.00 −0.260077
\(875\) −20544.0 −0.793730
\(876\) 2616.00 0.100898
\(877\) 21706.0 0.835758 0.417879 0.908503i \(-0.362774\pi\)
0.417879 + 0.908503i \(0.362774\pi\)
\(878\) −21280.0 −0.817956
\(879\) 14274.0 0.547725
\(880\) 0 0
\(881\) −14958.0 −0.572018 −0.286009 0.958227i \(-0.592329\pi\)
−0.286009 + 0.958227i \(0.592329\pi\)
\(882\) −1566.00 −0.0597845
\(883\) −32812.0 −1.25052 −0.625261 0.780415i \(-0.715008\pi\)
−0.625261 + 0.780415i \(0.715008\pi\)
\(884\) −19152.0 −0.728678
\(885\) 11880.0 0.451234
\(886\) −34824.0 −1.32047
\(887\) 38856.0 1.47086 0.735432 0.677598i \(-0.236979\pi\)
0.735432 + 0.677598i \(0.236979\pi\)
\(888\) −6096.00 −0.230370
\(889\) 40576.0 1.53079
\(890\) 9720.00 0.366084
\(891\) 0 0
\(892\) 10592.0 0.397586
\(893\) 1920.00 0.0719489
\(894\) 9540.00 0.356896
\(895\) −3240.00 −0.121007
\(896\) 2048.00 0.0763604
\(897\) 19152.0 0.712895
\(898\) −3420.00 −0.127090
\(899\) 2640.00 0.0979410
\(900\) −3204.00 −0.118667
\(901\) 24948.0 0.922462
\(902\) 0 0
\(903\) −2496.00 −0.0919841
\(904\) −3696.00 −0.135981
\(905\) 11892.0 0.436799
\(906\) 14592.0 0.535085
\(907\) −28276.0 −1.03516 −0.517579 0.855635i \(-0.673167\pi\)
−0.517579 + 0.855635i \(0.673167\pi\)
\(908\) −8976.00 −0.328061
\(909\) 5562.00 0.202948
\(910\) −7296.00 −0.265780
\(911\) 8112.00 0.295019 0.147510 0.989061i \(-0.452874\pi\)
0.147510 + 0.989061i \(0.452874\pi\)
\(912\) 960.000 0.0348561
\(913\) 0 0
\(914\) 1292.00 0.0467566
\(915\) −9684.00 −0.349883
\(916\) −22600.0 −0.815202
\(917\) −36672.0 −1.32063
\(918\) −6804.00 −0.244625
\(919\) 26080.0 0.936126 0.468063 0.883695i \(-0.344952\pi\)
0.468063 + 0.883695i \(0.344952\pi\)
\(920\) 8064.00 0.288981
\(921\) −25428.0 −0.909751
\(922\) 12036.0 0.429918
\(923\) −30096.0 −1.07326
\(924\) 0 0
\(925\) −22606.0 −0.803547
\(926\) −13424.0 −0.476393
\(927\) 1152.00 0.0408162
\(928\) −960.000 −0.0339586
\(929\) 49170.0 1.73651 0.868254 0.496120i \(-0.165243\pi\)
0.868254 + 0.496120i \(0.165243\pi\)
\(930\) 3168.00 0.111702
\(931\) 1740.00 0.0612526
\(932\) −18792.0 −0.660464
\(933\) −13896.0 −0.487604
\(934\) 10728.0 0.375836
\(935\) 0 0
\(936\) −2736.00 −0.0955438
\(937\) −48314.0 −1.68447 −0.842236 0.539110i \(-0.818761\pi\)
−0.842236 + 0.539110i \(0.818761\pi\)
\(938\) 28288.0 0.984687
\(939\) 14466.0 0.502748
\(940\) −2304.00 −0.0799449
\(941\) −34782.0 −1.20495 −0.602477 0.798137i \(-0.705819\pi\)
−0.602477 + 0.798137i \(0.705819\pi\)
\(942\) −3684.00 −0.127422
\(943\) −7056.00 −0.243664
\(944\) −10560.0 −0.364088
\(945\) −2592.00 −0.0892251
\(946\) 0 0
\(947\) −25116.0 −0.861838 −0.430919 0.902391i \(-0.641810\pi\)
−0.430919 + 0.902391i \(0.641810\pi\)
\(948\) −6240.00 −0.213782
\(949\) 8284.00 0.283361
\(950\) 3560.00 0.121581
\(951\) 10278.0 0.350460
\(952\) 16128.0 0.549067
\(953\) 15462.0 0.525565 0.262782 0.964855i \(-0.415360\pi\)
0.262782 + 0.964855i \(0.415360\pi\)
\(954\) 3564.00 0.120953
\(955\) −16128.0 −0.546481
\(956\) 4800.00 0.162388
\(957\) 0 0
\(958\) −19680.0 −0.663708
\(959\) −11616.0 −0.391137
\(960\) −1152.00 −0.0387298
\(961\) −22047.0 −0.740056
\(962\) −19304.0 −0.646971
\(963\) 13284.0 0.444518
\(964\) 2872.00 0.0959553
\(965\) 13812.0 0.460750
\(966\) −16128.0 −0.537174
\(967\) 736.000 0.0244759 0.0122379 0.999925i \(-0.496104\pi\)
0.0122379 + 0.999925i \(0.496104\pi\)
\(968\) 0 0
\(969\) 7560.00 0.250632
\(970\) 13848.0 0.458384
\(971\) −29268.0 −0.967307 −0.483653 0.875260i \(-0.660690\pi\)
−0.483653 + 0.875260i \(0.660690\pi\)
\(972\) −972.000 −0.0320750
\(973\) −6080.00 −0.200325
\(974\) 2848.00 0.0936918
\(975\) −10146.0 −0.333264
\(976\) 8608.00 0.282311
\(977\) 16674.0 0.546007 0.273003 0.962013i \(-0.411983\pi\)
0.273003 + 0.962013i \(0.411983\pi\)
\(978\) 11112.0 0.363316
\(979\) 0 0
\(980\) −2088.00 −0.0680599
\(981\) −10710.0 −0.348567
\(982\) 9096.00 0.295586
\(983\) −31272.0 −1.01467 −0.507336 0.861749i \(-0.669370\pi\)
−0.507336 + 0.861749i \(0.669370\pi\)
\(984\) 1008.00 0.0326564
\(985\) −26244.0 −0.848937
\(986\) −7560.00 −0.244178
\(987\) 4608.00 0.148606
\(988\) 3040.00 0.0978900
\(989\) 8736.00 0.280878
\(990\) 0 0
\(991\) −15928.0 −0.510565 −0.255282 0.966867i \(-0.582168\pi\)
−0.255282 + 0.966867i \(0.582168\pi\)
\(992\) −2816.00 −0.0901291
\(993\) 8364.00 0.267295
\(994\) 25344.0 0.808715
\(995\) −9600.00 −0.305870
\(996\) −5904.00 −0.187827
\(997\) −42014.0 −1.33460 −0.667300 0.744789i \(-0.732550\pi\)
−0.667300 + 0.744789i \(0.732550\pi\)
\(998\) 13000.0 0.412332
\(999\) −6858.00 −0.217195
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 726.4.a.f.1.1 1
3.2 odd 2 2178.4.a.e.1.1 1
11.10 odd 2 6.4.a.a.1.1 1
33.32 even 2 18.4.a.a.1.1 1
44.43 even 2 48.4.a.c.1.1 1
55.32 even 4 150.4.c.d.49.1 2
55.43 even 4 150.4.c.d.49.2 2
55.54 odd 2 150.4.a.i.1.1 1
77.10 even 6 294.4.e.g.79.1 2
77.32 odd 6 294.4.e.h.79.1 2
77.54 even 6 294.4.e.g.67.1 2
77.65 odd 6 294.4.e.h.67.1 2
77.76 even 2 294.4.a.e.1.1 1
88.21 odd 2 192.4.a.i.1.1 1
88.43 even 2 192.4.a.c.1.1 1
99.32 even 6 162.4.c.c.55.1 2
99.43 odd 6 162.4.c.f.109.1 2
99.65 even 6 162.4.c.c.109.1 2
99.76 odd 6 162.4.c.f.55.1 2
132.131 odd 2 144.4.a.c.1.1 1
143.21 even 4 1014.4.b.d.337.1 2
143.109 even 4 1014.4.b.d.337.2 2
143.142 odd 2 1014.4.a.g.1.1 1
165.32 odd 4 450.4.c.e.199.2 2
165.98 odd 4 450.4.c.e.199.1 2
165.164 even 2 450.4.a.h.1.1 1
176.21 odd 4 768.4.d.n.385.2 2
176.43 even 4 768.4.d.c.385.1 2
176.109 odd 4 768.4.d.n.385.1 2
176.131 even 4 768.4.d.c.385.2 2
187.186 odd 2 1734.4.a.d.1.1 1
209.208 even 2 2166.4.a.i.1.1 1
220.43 odd 4 1200.4.f.j.49.2 2
220.87 odd 4 1200.4.f.j.49.1 2
220.219 even 2 1200.4.a.b.1.1 1
231.32 even 6 882.4.g.i.667.1 2
231.65 even 6 882.4.g.i.361.1 2
231.131 odd 6 882.4.g.f.361.1 2
231.164 odd 6 882.4.g.f.667.1 2
231.230 odd 2 882.4.a.n.1.1 1
264.131 odd 2 576.4.a.r.1.1 1
264.197 even 2 576.4.a.q.1.1 1
308.307 odd 2 2352.4.a.e.1.1 1
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
6.4.a.a.1.1 1 11.10 odd 2
18.4.a.a.1.1 1 33.32 even 2
48.4.a.c.1.1 1 44.43 even 2
144.4.a.c.1.1 1 132.131 odd 2
150.4.a.i.1.1 1 55.54 odd 2
150.4.c.d.49.1 2 55.32 even 4
150.4.c.d.49.2 2 55.43 even 4
162.4.c.c.55.1 2 99.32 even 6
162.4.c.c.109.1 2 99.65 even 6
162.4.c.f.55.1 2 99.76 odd 6
162.4.c.f.109.1 2 99.43 odd 6
192.4.a.c.1.1 1 88.43 even 2
192.4.a.i.1.1 1 88.21 odd 2
294.4.a.e.1.1 1 77.76 even 2
294.4.e.g.67.1 2 77.54 even 6
294.4.e.g.79.1 2 77.10 even 6
294.4.e.h.67.1 2 77.65 odd 6
294.4.e.h.79.1 2 77.32 odd 6
450.4.a.h.1.1 1 165.164 even 2
450.4.c.e.199.1 2 165.98 odd 4
450.4.c.e.199.2 2 165.32 odd 4
576.4.a.q.1.1 1 264.197 even 2
576.4.a.r.1.1 1 264.131 odd 2
726.4.a.f.1.1 1 1.1 even 1 trivial
768.4.d.c.385.1 2 176.43 even 4
768.4.d.c.385.2 2 176.131 even 4
768.4.d.n.385.1 2 176.109 odd 4
768.4.d.n.385.2 2 176.21 odd 4
882.4.a.n.1.1 1 231.230 odd 2
882.4.g.f.361.1 2 231.131 odd 6
882.4.g.f.667.1 2 231.164 odd 6
882.4.g.i.361.1 2 231.65 even 6
882.4.g.i.667.1 2 231.32 even 6
1014.4.a.g.1.1 1 143.142 odd 2
1014.4.b.d.337.1 2 143.21 even 4
1014.4.b.d.337.2 2 143.109 even 4
1200.4.a.b.1.1 1 220.219 even 2
1200.4.f.j.49.1 2 220.87 odd 4
1200.4.f.j.49.2 2 220.43 odd 4
1734.4.a.d.1.1 1 187.186 odd 2
2166.4.a.i.1.1 1 209.208 even 2
2178.4.a.e.1.1 1 3.2 odd 2
2352.4.a.e.1.1 1 308.307 odd 2