Properties

Label 768.4.d.n.385.2
Level 768768
Weight 44
Character 768.385
Analytic conductor 45.31345.313
Analytic rank 11
Dimension 22
Inner twists 22

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [768,4,Mod(385,768)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(768, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 1, 0]))
 
N = Newforms(chi, 4, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("768.385");
 
S:= CuspForms(chi, 4);
 
N := Newforms(S);
 
Level: N N == 768=283 768 = 2^{8} \cdot 3
Weight: k k == 4 4
Character orbit: [χ][\chi] == 768.d (of order 22, degree 11, not minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: 45.313466884445.3134668844
Analytic rank: 11
Dimension: 22
Coefficient field: Q(i)\Q(i)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: x2+1 x^{2} + 1 Copy content Toggle raw display
Coefficient ring: Z[a1,,a13]\Z[a_1, \ldots, a_{13}]
Coefficient ring index: 1 1
Twist minimal: no (minimal twist has level 6)
Sato-Tate group: SU(2)[C2]\mathrm{SU}(2)[C_{2}]

Embedding invariants

Embedding label 385.2
Root 1.00000i1.00000i of defining polynomial
Character χ\chi == 768.385
Dual form 768.4.d.n.385.1

qq-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
f(q)f(q) == q+3.00000iq3+6.00000iq5+16.0000q79.00000q9+12.0000iq1138.0000iq1318.0000q15126.000q1720.0000iq19+48.0000iq21168.000q23+89.0000q2527.0000iq2730.0000iq2988.0000q3136.0000q33+96.0000iq35+254.000iq37+114.000q3942.0000q4152.0000iq4354.0000iq4596.0000q4787.0000q49378.000iq51+198.000iq5372.0000q55+60.0000q57660.000iq59+538.000iq61144.000q63+228.000q65884.000iq67504.000iq69792.000q71218.000q73+267.000iq75+192.000iq77520.000q79+81.0000q81+492.000iq83756.000iq85+90.0000q87810.000q89608.000iq91264.000iq93+120.000q95+1154.00q97108.000iq99+O(q100)q+3.00000i q^{3} +6.00000i q^{5} +16.0000 q^{7} -9.00000 q^{9} +12.0000i q^{11} -38.0000i q^{13} -18.0000 q^{15} -126.000 q^{17} -20.0000i q^{19} +48.0000i q^{21} -168.000 q^{23} +89.0000 q^{25} -27.0000i q^{27} -30.0000i q^{29} -88.0000 q^{31} -36.0000 q^{33} +96.0000i q^{35} +254.000i q^{37} +114.000 q^{39} -42.0000 q^{41} -52.0000i q^{43} -54.0000i q^{45} -96.0000 q^{47} -87.0000 q^{49} -378.000i q^{51} +198.000i q^{53} -72.0000 q^{55} +60.0000 q^{57} -660.000i q^{59} +538.000i q^{61} -144.000 q^{63} +228.000 q^{65} -884.000i q^{67} -504.000i q^{69} -792.000 q^{71} -218.000 q^{73} +267.000i q^{75} +192.000i q^{77} -520.000 q^{79} +81.0000 q^{81} +492.000i q^{83} -756.000i q^{85} +90.0000 q^{87} -810.000 q^{89} -608.000i q^{91} -264.000i q^{93} +120.000 q^{95} +1154.00 q^{97} -108.000i q^{99} +O(q^{100})
Tr(f)(q)\operatorname{Tr}(f)(q) == 2q+32q718q936q15252q17336q23+178q25176q3172q33+228q3984q41192q47174q49144q55+120q57288q63+456q65++2308q97+O(q100) 2 q + 32 q^{7} - 18 q^{9} - 36 q^{15} - 252 q^{17} - 336 q^{23} + 178 q^{25} - 176 q^{31} - 72 q^{33} + 228 q^{39} - 84 q^{41} - 192 q^{47} - 174 q^{49} - 144 q^{55} + 120 q^{57} - 288 q^{63} + 456 q^{65}+ \cdots + 2308 q^{97}+O(q^{100}) Copy content Toggle raw display

Character values

We give the values of χ\chi on generators for (Z/768Z)×\left(\mathbb{Z}/768\mathbb{Z}\right)^\times.

nn 257257 511511 517517
χ(n)\chi(n) 11 11 1-1

Coefficient data

For each nn we display the coefficients of the qq-expansion ana_n, the Satake parameters αp\alpha_p, and the Satake angles θp=Arg(αp)\theta_p = \textrm{Arg}(\alpha_p).



Display apa_p with pp up to: 50 250 1000 (See ana_n instead) (See ana_n instead) (See ana_n instead) Display ana_n with nn up to: 50 250 1000 (See only apa_p) (See only apa_p) (See only apa_p)
Significant digits:
nn ana_n an/n(k1)/2a_n / n^{(k-1)/2} αn \alpha_n θn \theta_n
pp apa_p ap/p(k1)/2a_p / p^{(k-1)/2} αp \alpha_p θp \theta_p
22 0 0
33 3.00000i 0.577350i
44 0 0
55 6.00000i 0.536656i 0.963328 + 0.268328i 0.0864711π0.0864711\pi
−0.963328 + 0.268328i 0.913529π0.913529\pi
66 0 0
77 16.0000 0.863919 0.431959 0.901893i 0.357822π-0.357822\pi
0.431959 + 0.901893i 0.357822π0.357822\pi
88 0 0
99 −9.00000 −0.333333
1010 0 0
1111 12.0000i 0.328921i 0.986384 + 0.164461i 0.0525884π0.0525884\pi
−0.986384 + 0.164461i 0.947412π0.947412\pi
1212 0 0
1313 − 38.0000i − 0.810716i −0.914158 0.405358i 0.867147π-0.867147\pi
0.914158 0.405358i 0.132853π-0.132853\pi
1414 0 0
1515 −18.0000 −0.309839
1616 0 0
1717 −126.000 −1.79762 −0.898808 0.438342i 0.855566π-0.855566\pi
−0.898808 + 0.438342i 0.855566π0.855566\pi
1818 0 0
1919 − 20.0000i − 0.241490i −0.992684 0.120745i 0.961472π-0.961472\pi
0.992684 0.120745i 0.0385284π-0.0385284\pi
2020 0 0
2121 48.0000i 0.498784i
2222 0 0
2323 −168.000 −1.52306 −0.761531 0.648129i 0.775552π-0.775552\pi
−0.761531 + 0.648129i 0.775552π0.775552\pi
2424 0 0
2525 89.0000 0.712000
2626 0 0
2727 − 27.0000i − 0.192450i
2828 0 0
2929 − 30.0000i − 0.192099i −0.995377 0.0960493i 0.969379π-0.969379\pi
0.995377 0.0960493i 0.0306207π-0.0306207\pi
3030 0 0
3131 −88.0000 −0.509847 −0.254924 0.966961i 0.582050π-0.582050\pi
−0.254924 + 0.966961i 0.582050π0.582050\pi
3232 0 0
3333 −36.0000 −0.189903
3434 0 0
3535 96.0000i 0.463627i
3636 0 0
3737 254.000i 1.12858i 0.825578 + 0.564288i 0.190849π0.190849\pi
−0.825578 + 0.564288i 0.809151π0.809151\pi
3838 0 0
3939 114.000 0.468067
4040 0 0
4141 −42.0000 −0.159983 −0.0799914 0.996796i 0.525489π-0.525489\pi
−0.0799914 + 0.996796i 0.525489π0.525489\pi
4242 0 0
4343 − 52.0000i − 0.184417i −0.995740 0.0922084i 0.970607π-0.970607\pi
0.995740 0.0922084i 0.0293926π-0.0293926\pi
4444 0 0
4545 − 54.0000i − 0.178885i
4646 0 0
4747 −96.0000 −0.297937 −0.148969 0.988842i 0.547595π-0.547595\pi
−0.148969 + 0.988842i 0.547595π0.547595\pi
4848 0 0
4949 −87.0000 −0.253644
5050 0 0
5151 − 378.000i − 1.03785i
5252 0 0
5353 198.000i 0.513158i 0.966523 + 0.256579i 0.0825954π0.0825954\pi
−0.966523 + 0.256579i 0.917405π0.917405\pi
5454 0 0
5555 −72.0000 −0.176518
5656 0 0
5757 60.0000 0.139424
5858 0 0
5959 − 660.000i − 1.45635i −0.685391 0.728175i 0.740369π-0.740369\pi
0.685391 0.728175i 0.259631π-0.259631\pi
6060 0 0
6161 538.000i 1.12924i 0.825350 + 0.564622i 0.190978π0.190978\pi
−0.825350 + 0.564622i 0.809022π0.809022\pi
6262 0 0
6363 −144.000 −0.287973
6464 0 0
6565 228.000 0.435076
6666 0 0
6767 − 884.000i − 1.61191i −0.591979 0.805954i 0.701653π-0.701653\pi
0.591979 0.805954i 0.298347π-0.298347\pi
6868 0 0
6969 − 504.000i − 0.879340i
7070 0 0
7171 −792.000 −1.32385 −0.661923 0.749572i 0.730260π-0.730260\pi
−0.661923 + 0.749572i 0.730260π0.730260\pi
7272 0 0
7373 −218.000 −0.349520 −0.174760 0.984611i 0.555915π-0.555915\pi
−0.174760 + 0.984611i 0.555915π0.555915\pi
7474 0 0
7575 267.000i 0.411073i
7676 0 0
7777 192.000i 0.284161i
7878 0 0
7979 −520.000 −0.740564 −0.370282 0.928919i 0.620739π-0.620739\pi
−0.370282 + 0.928919i 0.620739π0.620739\pi
8080 0 0
8181 81.0000 0.111111
8282 0 0
8383 492.000i 0.650651i 0.945602 + 0.325325i 0.105474π0.105474\pi
−0.945602 + 0.325325i 0.894526π0.894526\pi
8484 0 0
8585 − 756.000i − 0.964703i
8686 0 0
8787 90.0000 0.110908
8888 0 0
8989 −810.000 −0.964717 −0.482359 0.875974i 0.660220π-0.660220\pi
−0.482359 + 0.875974i 0.660220π0.660220\pi
9090 0 0
9191 − 608.000i − 0.700393i
9292 0 0
9393 − 264.000i − 0.294360i
9494 0 0
9595 120.000 0.129597
9696 0 0
9797 1154.00 1.20795 0.603974 0.797004i 0.293583π-0.293583\pi
0.603974 + 0.797004i 0.293583π0.293583\pi
9898 0 0
9999 − 108.000i − 0.109640i
100100 0 0
101101 − 618.000i − 0.608845i −0.952537 0.304422i 0.901537π-0.901537\pi
0.952537 0.304422i 0.0984634π-0.0984634\pi
102102 0 0
103103 −128.000 −0.122449 −0.0612243 0.998124i 0.519501π-0.519501\pi
−0.0612243 + 0.998124i 0.519501π0.519501\pi
104104 0 0
105105 −288.000 −0.267675
106106 0 0
107107 − 1476.00i − 1.33355i −0.745257 0.666777i 0.767673π-0.767673\pi
0.745257 0.666777i 0.232327π-0.232327\pi
108108 0 0
109109 − 1190.00i − 1.04570i −0.852425 0.522850i 0.824869π-0.824869\pi
0.852425 0.522850i 0.175131π-0.175131\pi
110110 0 0
111111 −762.000 −0.651584
112112 0 0
113113 −462.000 −0.384613 −0.192307 0.981335i 0.561597π-0.561597\pi
−0.192307 + 0.981335i 0.561597π0.561597\pi
114114 0 0
115115 − 1008.00i − 0.817361i
116116 0 0
117117 342.000i 0.270239i
118118 0 0
119119 −2016.00 −1.55300
120120 0 0
121121 1187.00 0.891811
122122 0 0
123123 − 126.000i − 0.0923662i
124124 0 0
125125 1284.00i 0.918756i
126126 0 0
127127 −2536.00 −1.77192 −0.885959 0.463763i 0.846499π-0.846499\pi
−0.885959 + 0.463763i 0.846499π0.846499\pi
128128 0 0
129129 156.000 0.106473
130130 0 0
131131 − 2292.00i − 1.52865i −0.644832 0.764324i 0.723073π-0.723073\pi
0.644832 0.764324i 0.276927π-0.276927\pi
132132 0 0
133133 − 320.000i − 0.208628i
134134 0 0
135135 162.000 0.103280
136136 0 0
137137 726.000 0.452747 0.226374 0.974041i 0.427313π-0.427313\pi
0.226374 + 0.974041i 0.427313π0.427313\pi
138138 0 0
139139 380.000i 0.231879i 0.993256 + 0.115939i 0.0369879π0.0369879\pi
−0.993256 + 0.115939i 0.963012π0.963012\pi
140140 0 0
141141 − 288.000i − 0.172014i
142142 0 0
143143 456.000 0.266662
144144 0 0
145145 180.000 0.103091
146146 0 0
147147 − 261.000i − 0.146442i
148148 0 0
149149 1590.00i 0.874214i 0.899410 + 0.437107i 0.143997π0.143997\pi
−0.899410 + 0.437107i 0.856003π0.856003\pi
150150 0 0
151151 −2432.00 −1.31068 −0.655342 0.755332i 0.727476π-0.727476\pi
−0.655342 + 0.755332i 0.727476π0.727476\pi
152152 0 0
153153 1134.00 0.599206
154154 0 0
155155 − 528.000i − 0.273613i
156156 0 0
157157 − 614.000i − 0.312118i −0.987748 0.156059i 0.950121π-0.950121\pi
0.987748 0.156059i 0.0498790π-0.0498790\pi
158158 0 0
159159 −594.000 −0.296272
160160 0 0
161161 −2688.00 −1.31580
162162 0 0
163163 1852.00i 0.889938i 0.895546 + 0.444969i 0.146785π0.146785\pi
−0.895546 + 0.444969i 0.853215π0.853215\pi
164164 0 0
165165 − 216.000i − 0.101913i
166166 0 0
167167 2136.00 0.989752 0.494876 0.868964i 0.335213π-0.335213\pi
0.494876 + 0.868964i 0.335213π0.335213\pi
168168 0 0
169169 753.000 0.342740
170170 0 0
171171 180.000i 0.0804967i
172172 0 0
173173 − 1758.00i − 0.772591i −0.922375 0.386296i 0.873754π-0.873754\pi
0.922375 0.386296i 0.126246π-0.126246\pi
174174 0 0
175175 1424.00 0.615110
176176 0 0
177177 1980.00 0.840824
178178 0 0
179179 540.000i 0.225483i 0.993624 + 0.112742i 0.0359632π0.0359632\pi
−0.993624 + 0.112742i 0.964037π0.964037\pi
180180 0 0
181181 1982.00i 0.813928i 0.913444 + 0.406964i 0.133412π0.133412\pi
−0.913444 + 0.406964i 0.866588π0.866588\pi
182182 0 0
183183 −1614.00 −0.651969
184184 0 0
185185 −1524.00 −0.605658
186186 0 0
187187 − 1512.00i − 0.591275i
188188 0 0
189189 − 432.000i − 0.166261i
190190 0 0
191191 −2688.00 −1.01831 −0.509154 0.860675i 0.670042π-0.670042\pi
−0.509154 + 0.860675i 0.670042π0.670042\pi
192192 0 0
193193 −2302.00 −0.858557 −0.429279 0.903172i 0.641232π-0.641232\pi
−0.429279 + 0.903172i 0.641232π0.641232\pi
194194 0 0
195195 684.000i 0.251191i
196196 0 0
197197 4374.00i 1.58190i 0.611880 + 0.790951i 0.290414π0.290414\pi
−0.611880 + 0.790951i 0.709586π0.709586\pi
198198 0 0
199199 1600.00 0.569955 0.284977 0.958534i 0.408014π-0.408014\pi
0.284977 + 0.958534i 0.408014π0.408014\pi
200200 0 0
201201 2652.00 0.930635
202202 0 0
203203 − 480.000i − 0.165958i
204204 0 0
205205 − 252.000i − 0.0858558i
206206 0 0
207207 1512.00 0.507687
208208 0 0
209209 240.000 0.0794313
210210 0 0
211211 − 3332.00i − 1.08713i −0.839367 0.543565i 0.817074π-0.817074\pi
0.839367 0.543565i 0.182926π-0.182926\pi
212212 0 0
213213 − 2376.00i − 0.764323i
214214 0 0
215215 312.000 0.0989685
216216 0 0
217217 −1408.00 −0.440467
218218 0 0
219219 − 654.000i − 0.201796i
220220 0 0
221221 4788.00i 1.45736i
222222 0 0
223223 2648.00 0.795171 0.397586 0.917565i 0.369848π-0.369848\pi
0.397586 + 0.917565i 0.369848π0.369848\pi
224224 0 0
225225 −801.000 −0.237333
226226 0 0
227227 − 2244.00i − 0.656121i −0.944657 0.328061i 0.893605π-0.893605\pi
0.944657 0.328061i 0.106395π-0.106395\pi
228228 0 0
229229 − 5650.00i − 1.63040i −0.579177 0.815202i 0.696626π-0.696626\pi
0.579177 0.815202i 0.303374π-0.303374\pi
230230 0 0
231231 −576.000 −0.164061
232232 0 0
233233 −4698.00 −1.32093 −0.660464 0.750858i 0.729640π-0.729640\pi
−0.660464 + 0.750858i 0.729640π0.729640\pi
234234 0 0
235235 − 576.000i − 0.159890i
236236 0 0
237237 − 1560.00i − 0.427565i
238238 0 0
239239 −1200.00 −0.324776 −0.162388 0.986727i 0.551920π-0.551920\pi
−0.162388 + 0.986727i 0.551920π0.551920\pi
240240 0 0
241241 −718.000 −0.191911 −0.0959553 0.995386i 0.530591π-0.530591\pi
−0.0959553 + 0.995386i 0.530591π0.530591\pi
242242 0 0
243243 243.000i 0.0641500i
244244 0 0
245245 − 522.000i − 0.136120i
246246 0 0
247247 −760.000 −0.195780
248248 0 0
249249 −1476.00 −0.375653
250250 0 0
251251 6012.00i 1.51185i 0.654659 + 0.755924i 0.272812π0.272812\pi
−0.654659 + 0.755924i 0.727188π0.727188\pi
252252 0 0
253253 − 2016.00i − 0.500968i
254254 0 0
255255 2268.00 0.556971
256256 0 0
257257 −2046.00 −0.496599 −0.248300 0.968683i 0.579872π-0.579872\pi
−0.248300 + 0.968683i 0.579872π0.579872\pi
258258 0 0
259259 4064.00i 0.974999i
260260 0 0
261261 270.000i 0.0640329i
262262 0 0
263263 6072.00 1.42363 0.711817 0.702365i 0.247873π-0.247873\pi
0.711817 + 0.702365i 0.247873π0.247873\pi
264264 0 0
265265 −1188.00 −0.275390
266266 0 0
267267 − 2430.00i − 0.556980i
268268 0 0
269269 6930.00i 1.57074i 0.619025 + 0.785371i 0.287528π0.287528\pi
−0.619025 + 0.785371i 0.712472π0.712472\pi
270270 0 0
271271 1352.00 0.303056 0.151528 0.988453i 0.451581π-0.451581\pi
0.151528 + 0.988453i 0.451581π0.451581\pi
272272 0 0
273273 1824.00 0.404372
274274 0 0
275275 1068.00i 0.234192i
276276 0 0
277277 − 1186.00i − 0.257256i −0.991693 0.128628i 0.958943π-0.958943\pi
0.991693 0.128628i 0.0410573π-0.0410573\pi
278278 0 0
279279 792.000 0.169949
280280 0 0
281281 −2442.00 −0.518425 −0.259213 0.965820i 0.583463π-0.583463\pi
−0.259213 + 0.965820i 0.583463π0.583463\pi
282282 0 0
283283 2828.00i 0.594018i 0.954875 + 0.297009i 0.0959892π0.0959892\pi
−0.954875 + 0.297009i 0.904011π0.904011\pi
284284 0 0
285285 360.000i 0.0748230i
286286 0 0
287287 −672.000 −0.138212
288288 0 0
289289 10963.0 2.23143
290290 0 0
291291 3462.00i 0.697409i
292292 0 0
293293 4758.00i 0.948687i 0.880340 + 0.474344i 0.157315π0.157315\pi
−0.880340 + 0.474344i 0.842685π0.842685\pi
294294 0 0
295295 3960.00 0.781560
296296 0 0
297297 324.000 0.0633010
298298 0 0
299299 6384.00i 1.23477i
300300 0 0
301301 − 832.000i − 0.159321i
302302 0 0
303303 1854.00 0.351517
304304 0 0
305305 −3228.00 −0.606016
306306 0 0
307307 8476.00i 1.57574i 0.615844 + 0.787868i 0.288815π0.288815\pi
−0.615844 + 0.787868i 0.711185π0.711185\pi
308308 0 0
309309 − 384.000i − 0.0706958i
310310 0 0
311311 −4632.00 −0.844555 −0.422278 0.906467i 0.638769π-0.638769\pi
−0.422278 + 0.906467i 0.638769π0.638769\pi
312312 0 0
313313 4822.00 0.870785 0.435392 0.900241i 0.356610π-0.356610\pi
0.435392 + 0.900241i 0.356610π0.356610\pi
314314 0 0
315315 − 864.000i − 0.154542i
316316 0 0
317317 3426.00i 0.607014i 0.952829 + 0.303507i 0.0981575π0.0981575\pi
−0.952829 + 0.303507i 0.901842π0.901842\pi
318318 0 0
319319 360.000 0.0631854
320320 0 0
321321 4428.00 0.769928
322322 0 0
323323 2520.00i 0.434107i
324324 0 0
325325 − 3382.00i − 0.577230i
326326 0 0
327327 3570.00 0.603735
328328 0 0
329329 −1536.00 −0.257393
330330 0 0
331331 − 2788.00i − 0.462968i −0.972839 0.231484i 0.925642π-0.925642\pi
0.972839 0.231484i 0.0743581π-0.0743581\pi
332332 0 0
333333 − 2286.00i − 0.376192i
334334 0 0
335335 5304.00 0.865040
336336 0 0
337337 434.000 0.0701528 0.0350764 0.999385i 0.488833π-0.488833\pi
0.0350764 + 0.999385i 0.488833π0.488833\pi
338338 0 0
339339 − 1386.00i − 0.222057i
340340 0 0
341341 − 1056.00i − 0.167700i
342342 0 0
343343 −6880.00 −1.08305
344344 0 0
345345 3024.00 0.471903
346346 0 0
347347 6684.00i 1.03405i 0.855970 + 0.517026i 0.172961π0.172961\pi
−0.855970 + 0.517026i 0.827039π0.827039\pi
348348 0 0
349349 − 2630.00i − 0.403383i −0.979449 0.201692i 0.935356π-0.935356\pi
0.979449 0.201692i 0.0646438π-0.0646438\pi
350350 0 0
351351 −1026.00 −0.156022
352352 0 0
353353 −7422.00 −1.11907 −0.559537 0.828805i 0.689021π-0.689021\pi
−0.559537 + 0.828805i 0.689021π0.689021\pi
354354 0 0
355355 − 4752.00i − 0.710451i
356356 0 0
357357 − 6048.00i − 0.896622i
358358 0 0
359359 10440.0 1.53482 0.767412 0.641154i 0.221544π-0.221544\pi
0.767412 + 0.641154i 0.221544π0.221544\pi
360360 0 0
361361 6459.00 0.941682
362362 0 0
363363 3561.00i 0.514887i
364364 0 0
365365 − 1308.00i − 0.187572i
366366 0 0
367367 10424.0 1.48264 0.741319 0.671153i 0.234200π-0.234200\pi
0.741319 + 0.671153i 0.234200π0.234200\pi
368368 0 0
369369 378.000 0.0533276
370370 0 0
371371 3168.00i 0.443327i
372372 0 0
373373 3278.00i 0.455036i 0.973774 + 0.227518i 0.0730610π0.0730610\pi
−0.973774 + 0.227518i 0.926939π0.926939\pi
374374 0 0
375375 −3852.00 −0.530444
376376 0 0
377377 −1140.00 −0.155737
378378 0 0
379379 6140.00i 0.832165i 0.909327 + 0.416083i 0.136597π0.136597\pi
−0.909327 + 0.416083i 0.863403π0.863403\pi
380380 0 0
381381 − 7608.00i − 1.02302i
382382 0 0
383383 −3072.00 −0.409848 −0.204924 0.978778i 0.565695π-0.565695\pi
−0.204924 + 0.978778i 0.565695π0.565695\pi
384384 0 0
385385 −1152.00 −0.152497
386386 0 0
387387 468.000i 0.0614723i
388388 0 0
389389 6150.00i 0.801587i 0.916168 + 0.400794i 0.131266π0.131266\pi
−0.916168 + 0.400794i 0.868734π0.868734\pi
390390 0 0
391391 21168.0 2.73788
392392 0 0
393393 6876.00 0.882566
394394 0 0
395395 − 3120.00i − 0.397428i
396396 0 0
397397 106.000i 0.0134005i 0.999978 + 0.00670024i 0.00213277π0.00213277\pi
−0.999978 + 0.00670024i 0.997867π0.997867\pi
398398 0 0
399399 960.000 0.120451
400400 0 0
401401 −1758.00 −0.218929 −0.109464 0.993991i 0.534914π-0.534914\pi
−0.109464 + 0.993991i 0.534914π0.534914\pi
402402 0 0
403403 3344.00i 0.413341i
404404 0 0
405405 486.000i 0.0596285i
406406 0 0
407407 −3048.00 −0.371213
408408 0 0
409409 3670.00 0.443691 0.221846 0.975082i 0.428792π-0.428792\pi
0.221846 + 0.975082i 0.428792π0.428792\pi
410410 0 0
411411 2178.00i 0.261394i
412412 0 0
413413 − 10560.0i − 1.25817i
414414 0 0
415415 −2952.00 −0.349176
416416 0 0
417417 −1140.00 −0.133875
418418 0 0
419419 9660.00i 1.12631i 0.826353 + 0.563153i 0.190412π0.190412\pi
−0.826353 + 0.563153i 0.809588π0.809588\pi
420420 0 0
421421 8462.00i 0.979602i 0.871834 + 0.489801i 0.162931π0.162931\pi
−0.871834 + 0.489801i 0.837069π0.837069\pi
422422 0 0
423423 864.000 0.0993123
424424 0 0
425425 −11214.0 −1.27990
426426 0 0
427427 8608.00i 0.975575i
428428 0 0
429429 1368.00i 0.153957i
430430 0 0
431431 9792.00 1.09435 0.547174 0.837019i 0.315704π-0.315704\pi
0.547174 + 0.837019i 0.315704π0.315704\pi
432432 0 0
433433 −7342.00 −0.814859 −0.407430 0.913237i 0.633575π-0.633575\pi
−0.407430 + 0.913237i 0.633575π0.633575\pi
434434 0 0
435435 540.000i 0.0595196i
436436 0 0
437437 3360.00i 0.367805i
438438 0 0
439439 −10640.0 −1.15676 −0.578382 0.815766i 0.696316π-0.696316\pi
−0.578382 + 0.815766i 0.696316π0.696316\pi
440440 0 0
441441 783.000 0.0845481
442442 0 0
443443 − 17412.0i − 1.86742i −0.358024 0.933712i 0.616549π-0.616549\pi
0.358024 0.933712i 0.383451π-0.383451\pi
444444 0 0
445445 − 4860.00i − 0.517722i
446446 0 0
447447 −4770.00 −0.504728
448448 0 0
449449 −1710.00 −0.179732 −0.0898662 0.995954i 0.528644π-0.528644\pi
−0.0898662 + 0.995954i 0.528644π0.528644\pi
450450 0 0
451451 − 504.000i − 0.0526218i
452452 0 0
453453 − 7296.00i − 0.756724i
454454 0 0
455455 3648.00 0.375870
456456 0 0
457457 646.000 0.0661239 0.0330619 0.999453i 0.489474π-0.489474\pi
0.0330619 + 0.999453i 0.489474π0.489474\pi
458458 0 0
459459 3402.00i 0.345952i
460460 0 0
461461 6018.00i 0.607996i 0.952673 + 0.303998i 0.0983216π0.0983216\pi
−0.952673 + 0.303998i 0.901678π0.901678\pi
462462 0 0
463463 −6712.00 −0.673722 −0.336861 0.941554i 0.609365π-0.609365\pi
−0.336861 + 0.941554i 0.609365π0.609365\pi
464464 0 0
465465 1584.00 0.157970
466466 0 0
467467 − 5364.00i − 0.531512i −0.964040 0.265756i 0.914378π-0.914378\pi
0.964040 0.265756i 0.0856216π-0.0856216\pi
468468 0 0
469469 − 14144.0i − 1.39256i
470470 0 0
471471 1842.00 0.180201
472472 0 0
473473 624.000 0.0606587
474474 0 0
475475 − 1780.00i − 0.171941i
476476 0 0
477477 − 1782.00i − 0.171053i
478478 0 0
479479 9840.00 0.938624 0.469312 0.883032i 0.344502π-0.344502\pi
0.469312 + 0.883032i 0.344502π0.344502\pi
480480 0 0
481481 9652.00 0.914955
482482 0 0
483483 − 8064.00i − 0.759678i
484484 0 0
485485 6924.00i 0.648253i
486486 0 0
487487 −1424.00 −0.132500 −0.0662501 0.997803i 0.521104π-0.521104\pi
−0.0662501 + 0.997803i 0.521104π0.521104\pi
488488 0 0
489489 −5556.00 −0.513806
490490 0 0
491491 − 4548.00i − 0.418021i −0.977913 0.209011i 0.932976π-0.932976\pi
0.977913 0.209011i 0.0670243π-0.0670243\pi
492492 0 0
493493 3780.00i 0.345320i
494494 0 0
495495 648.000 0.0588393
496496 0 0
497497 −12672.0 −1.14370
498498 0 0
499499 − 6500.00i − 0.583126i −0.956552 0.291563i 0.905825π-0.905825\pi
0.956552 0.291563i 0.0941753π-0.0941753\pi
500500 0 0
501501 6408.00i 0.571434i
502502 0 0
503503 −12168.0 −1.07862 −0.539308 0.842108i 0.681314π-0.681314\pi
−0.539308 + 0.842108i 0.681314π0.681314\pi
504504 0 0
505505 3708.00 0.326740
506506 0 0
507507 2259.00i 0.197881i
508508 0 0
509509 21090.0i 1.83654i 0.395957 + 0.918269i 0.370413π0.370413\pi
−0.395957 + 0.918269i 0.629587π0.629587\pi
510510 0 0
511511 −3488.00 −0.301957
512512 0 0
513513 −540.000 −0.0464748
514514 0 0
515515 − 768.000i − 0.0657129i
516516 0 0
517517 − 1152.00i − 0.0979979i
518518 0 0
519519 5274.00 0.446056
520520 0 0
521521 5238.00 0.440462 0.220231 0.975448i 0.429319π-0.429319\pi
0.220231 + 0.975448i 0.429319π0.429319\pi
522522 0 0
523523 8588.00i 0.718025i 0.933333 + 0.359012i 0.116886π0.116886\pi
−0.933333 + 0.359012i 0.883114π0.883114\pi
524524 0 0
525525 4272.00i 0.355134i
526526 0 0
527527 11088.0 0.916510
528528 0 0
529529 16057.0 1.31972
530530 0 0
531531 5940.00i 0.485450i
532532 0 0
533533 1596.00i 0.129701i
534534 0 0
535535 8856.00 0.715660
536536 0 0
537537 −1620.00 −0.130183
538538 0 0
539539 − 1044.00i − 0.0834291i
540540 0 0
541541 − 3062.00i − 0.243338i −0.992571 0.121669i 0.961175π-0.961175\pi
0.992571 0.121669i 0.0388246π-0.0388246\pi
542542 0 0
543543 −5946.00 −0.469921
544544 0 0
545545 7140.00 0.561182
546546 0 0
547547 8476.00i 0.662537i 0.943537 + 0.331268i 0.107477π0.107477\pi
−0.943537 + 0.331268i 0.892523π0.892523\pi
548548 0 0
549549 − 4842.00i − 0.376414i
550550 0 0
551551 −600.000 −0.0463899
552552 0 0
553553 −8320.00 −0.639787
554554 0 0
555555 − 4572.00i − 0.349677i
556556 0 0
557557 12546.0i 0.954383i 0.878799 + 0.477191i 0.158345π0.158345\pi
−0.878799 + 0.477191i 0.841655π0.841655\pi
558558 0 0
559559 −1976.00 −0.149510
560560 0 0
561561 4536.00 0.341373
562562 0 0
563563 12.0000i 0 0.000898294i 1.00000 0.000449147i 0.000142968π0.000142968\pi
−1.00000 0.000449147i 0.999857π0.999857\pi
564564 0 0
565565 − 2772.00i − 0.206405i
566566 0 0
567567 1296.00 0.0959910
568568 0 0
569569 −19290.0 −1.42123 −0.710614 0.703582i 0.751583π-0.751583\pi
−0.710614 + 0.703582i 0.751583π0.751583\pi
570570 0 0
571571 − 12148.0i − 0.890329i −0.895449 0.445165i 0.853145π-0.853145\pi
0.895449 0.445165i 0.146855π-0.146855\pi
572572 0 0
573573 − 8064.00i − 0.587920i
574574 0 0
575575 −14952.0 −1.08442
576576 0 0
577577 −10366.0 −0.747907 −0.373953 0.927447i 0.621998π-0.621998\pi
−0.373953 + 0.927447i 0.621998π0.621998\pi
578578 0 0
579579 − 6906.00i − 0.495688i
580580 0 0
581581 7872.00i 0.562109i
582582 0 0
583583 −2376.00 −0.168789
584584 0 0
585585 −2052.00 −0.145025
586586 0 0
587587 7644.00i 0.537482i 0.963213 + 0.268741i 0.0866075π0.0866075\pi
−0.963213 + 0.268741i 0.913393π0.913393\pi
588588 0 0
589589 1760.00i 0.123123i
590590 0 0
591591 −13122.0 −0.913311
592592 0 0
593593 8658.00 0.599564 0.299782 0.954008i 0.403086π-0.403086\pi
0.299782 + 0.954008i 0.403086π0.403086\pi
594594 0 0
595595 − 12096.0i − 0.833425i
596596 0 0
597597 4800.00i 0.329064i
598598 0 0
599599 −25800.0 −1.75987 −0.879933 0.475098i 0.842413π-0.842413\pi
−0.879933 + 0.475098i 0.842413π0.842413\pi
600600 0 0
601601 −16202.0 −1.09966 −0.549828 0.835278i 0.685307π-0.685307\pi
−0.549828 + 0.835278i 0.685307π0.685307\pi
602602 0 0
603603 7956.00i 0.537302i
604604 0 0
605605 7122.00i 0.478596i
606606 0 0
607607 −24136.0 −1.61392 −0.806960 0.590605i 0.798889π-0.798889\pi
−0.806960 + 0.590605i 0.798889π0.798889\pi
608608 0 0
609609 1440.00 0.0958157
610610 0 0
611611 3648.00i 0.241542i
612612 0 0
613613 − 4642.00i − 0.305854i −0.988237 0.152927i 0.951130π-0.951130\pi
0.988237 0.152927i 0.0488700π-0.0488700\pi
614614 0 0
615615 756.000 0.0495689
616616 0 0
617617 6726.00 0.438863 0.219432 0.975628i 0.429580π-0.429580\pi
0.219432 + 0.975628i 0.429580π0.429580\pi
618618 0 0
619619 − 21220.0i − 1.37787i −0.724821 0.688937i 0.758078π-0.758078\pi
0.724821 0.688937i 0.241922π-0.241922\pi
620620 0 0
621621 4536.00i 0.293113i
622622 0 0
623623 −12960.0 −0.833437
624624 0 0
625625 3421.00 0.218944
626626 0 0
627627 720.000i 0.0458597i
628628 0 0
629629 − 32004.0i − 2.02875i
630630 0 0
631631 −29792.0 −1.87956 −0.939779 0.341783i 0.888969π-0.888969\pi
−0.939779 + 0.341783i 0.888969π0.888969\pi
632632 0 0
633633 9996.00 0.627655
634634 0 0
635635 − 15216.0i − 0.950911i
636636 0 0
637637 3306.00i 0.205633i
638638 0 0
639639 7128.00 0.441282
640640 0 0
641641 −10158.0 −0.625923 −0.312962 0.949766i 0.601321π-0.601321\pi
−0.312962 + 0.949766i 0.601321π0.601321\pi
642642 0 0
643643 − 29828.0i − 1.82940i −0.404138 0.914698i 0.632429π-0.632429\pi
0.404138 0.914698i 0.367571π-0.367571\pi
644644 0 0
645645 936.000i 0.0571395i
646646 0 0
647647 −1944.00 −0.118124 −0.0590622 0.998254i 0.518811π-0.518811\pi
−0.0590622 + 0.998254i 0.518811π0.518811\pi
648648 0 0
649649 7920.00 0.479025
650650 0 0
651651 − 4224.00i − 0.254304i
652652 0 0
653653 − 26718.0i − 1.60116i −0.599227 0.800579i 0.704525π-0.704525\pi
0.599227 0.800579i 0.295475π-0.295475\pi
654654 0 0
655655 13752.0 0.820359
656656 0 0
657657 1962.00 0.116507
658658 0 0
659659 − 4260.00i − 0.251815i −0.992042 0.125907i 0.959816π-0.959816\pi
0.992042 0.125907i 0.0401842π-0.0401842\pi
660660 0 0
661661 22862.0i 1.34528i 0.739971 + 0.672639i 0.234839π0.234839\pi
−0.739971 + 0.672639i 0.765161π0.765161\pi
662662 0 0
663663 −14364.0 −0.841405
664664 0 0
665665 1920.00 0.111962
666666 0 0
667667 5040.00i 0.292578i
668668 0 0
669669 7944.00i 0.459092i
670670 0 0
671671 −6456.00 −0.371432
672672 0 0
673673 −32542.0 −1.86390 −0.931948 0.362592i 0.881892π-0.881892\pi
−0.931948 + 0.362592i 0.881892π0.881892\pi
674674 0 0
675675 − 2403.00i − 0.137024i
676676 0 0
677677 14214.0i 0.806925i 0.914996 + 0.403463i 0.132193π0.132193\pi
−0.914996 + 0.403463i 0.867807π0.867807\pi
678678 0 0
679679 18464.0 1.04357
680680 0 0
681681 6732.00 0.378812
682682 0 0
683683 − 7092.00i − 0.397317i −0.980069 0.198659i 0.936341π-0.936341\pi
0.980069 0.198659i 0.0636585π-0.0636585\pi
684684 0 0
685685 4356.00i 0.242970i
686686 0 0
687687 16950.0 0.941314
688688 0 0
689689 7524.00 0.416026
690690 0 0
691691 13228.0i 0.728244i 0.931351 + 0.364122i 0.118631π0.118631\pi
−0.931351 + 0.364122i 0.881369π0.881369\pi
692692 0 0
693693 − 1728.00i − 0.0947205i
694694 0 0
695695 −2280.00 −0.124439
696696 0 0
697697 5292.00 0.287588
698698 0 0
699699 − 14094.0i − 0.762638i
700700 0 0
701701 − 28062.0i − 1.51196i −0.654592 0.755982i 0.727160π-0.727160\pi
0.654592 0.755982i 0.272840π-0.272840\pi
702702 0 0
703703 5080.00 0.272540
704704 0 0
705705 1728.00 0.0923124
706706 0 0
707707 − 9888.00i − 0.525992i
708708 0 0
709709 − 27250.0i − 1.44343i −0.692188 0.721717i 0.743353π-0.743353\pi
0.692188 0.721717i 0.256647π-0.256647\pi
710710 0 0
711711 4680.00 0.246855
712712 0 0
713713 14784.0 0.776529
714714 0 0
715715 2736.00i 0.143106i
716716 0 0
717717 − 3600.00i − 0.187510i
718718 0 0
719719 −14400.0 −0.746912 −0.373456 0.927648i 0.621827π-0.621827\pi
−0.373456 + 0.927648i 0.621827π0.621827\pi
720720 0 0
721721 −2048.00 −0.105786
722722 0 0
723723 − 2154.00i − 0.110800i
724724 0 0
725725 − 2670.00i − 0.136774i
726726 0 0
727727 −17984.0 −0.917455 −0.458727 0.888577i 0.651695π-0.651695\pi
−0.458727 + 0.888577i 0.651695π0.651695\pi
728728 0 0
729729 −729.000 −0.0370370
730730 0 0
731731 6552.00i 0.331511i
732732 0 0
733733 − 16598.0i − 0.836373i −0.908361 0.418186i 0.862666π-0.862666\pi
0.908361 0.418186i 0.137334π-0.137334\pi
734734 0 0
735735 1566.00 0.0785888
736736 0 0
737737 10608.0 0.530191
738738 0 0
739739 − 1460.00i − 0.0726752i −0.999340 0.0363376i 0.988431π-0.988431\pi
0.999340 0.0363376i 0.0115692π-0.0115692\pi
740740 0 0
741741 − 2280.00i − 0.113034i
742742 0 0
743743 30072.0 1.48484 0.742419 0.669936i 0.233678π-0.233678\pi
0.742419 + 0.669936i 0.233678π0.233678\pi
744744 0 0
745745 −9540.00 −0.469152
746746 0 0
747747 − 4428.00i − 0.216884i
748748 0 0
749749 − 23616.0i − 1.15208i
750750 0 0
751751 −18088.0 −0.878882 −0.439441 0.898271i 0.644823π-0.644823\pi
−0.439441 + 0.898271i 0.644823π0.644823\pi
752752 0 0
753753 −18036.0 −0.872866
754754 0 0
755755 − 14592.0i − 0.703387i
756756 0 0
757757 24734.0i 1.18755i 0.804633 + 0.593773i 0.202362π0.202362\pi
−0.804633 + 0.593773i 0.797638π0.797638\pi
758758 0 0
759759 6048.00 0.289234
760760 0 0
761761 22278.0 1.06120 0.530602 0.847621i 0.321966π-0.321966\pi
0.530602 + 0.847621i 0.321966π0.321966\pi
762762 0 0
763763 − 19040.0i − 0.903400i
764764 0 0
765765 6804.00i 0.321568i
766766 0 0
767767 −25080.0 −1.18069
768768 0 0
769769 16130.0 0.756388 0.378194 0.925726i 0.376545π-0.376545\pi
0.378194 + 0.925726i 0.376545π0.376545\pi
770770 0 0
771771 − 6138.00i − 0.286712i
772772 0 0
773773 29718.0i 1.38277i 0.722486 + 0.691386i 0.242999π0.242999\pi
−0.722486 + 0.691386i 0.757001π0.757001\pi
774774 0 0
775775 −7832.00 −0.363011
776776 0 0
777777 −12192.0 −0.562916
778778 0 0
779779 840.000i 0.0386343i
780780 0 0
781781 − 9504.00i − 0.435442i
782782 0 0
783783 −810.000 −0.0369694
784784 0 0
785785 3684.00 0.167500
786786 0 0
787787 − 9524.00i − 0.431377i −0.976462 0.215689i 0.930800π-0.930800\pi
0.976462 0.215689i 0.0691996π-0.0691996\pi
788788 0 0
789789 18216.0i 0.821935i
790790 0 0
791791 −7392.00 −0.332275
792792 0 0
793793 20444.0 0.915495
794794 0 0
795795 − 3564.00i − 0.158996i
796796 0 0
797797 33906.0i 1.50692i 0.657496 + 0.753458i 0.271616π0.271616\pi
−0.657496 + 0.753458i 0.728384π0.728384\pi
798798 0 0
799799 12096.0 0.535577
800800 0 0
801801 7290.00 0.321572
802802 0 0
803803 − 2616.00i − 0.114965i
804804 0 0
805805 − 16128.0i − 0.706133i
806806 0 0
807807 −20790.0 −0.906868
808808 0 0
809809 630.000 0.0273790 0.0136895 0.999906i 0.495642π-0.495642\pi
0.0136895 + 0.999906i 0.495642π0.495642\pi
810810 0 0
811811 − 20788.0i − 0.900081i −0.893008 0.450040i 0.851410π-0.851410\pi
0.893008 0.450040i 0.148590π-0.148590\pi
812812 0 0
813813 4056.00i 0.174969i
814814 0 0
815815 −11112.0 −0.477591
816816 0 0
817817 −1040.00 −0.0445349
818818 0 0
819819 5472.00i 0.233464i
820820 0 0
821821 − 43098.0i − 1.83207i −0.401097 0.916036i 0.631371π-0.631371\pi
0.401097 0.916036i 0.368629π-0.368629\pi
822822 0 0
823823 14272.0 0.604484 0.302242 0.953231i 0.402265π-0.402265\pi
0.302242 + 0.953231i 0.402265π0.402265\pi
824824 0 0
825825 −3204.00 −0.135211
826826 0 0
827827 13644.0i 0.573698i 0.957976 + 0.286849i 0.0926078π0.0926078\pi
−0.957976 + 0.286849i 0.907392π0.907392\pi
828828 0 0
829829 2410.00i 0.100968i 0.998725 + 0.0504842i 0.0160764π0.0160764\pi
−0.998725 + 0.0504842i 0.983924π0.983924\pi
830830 0 0
831831 3558.00 0.148527
832832 0 0
833833 10962.0 0.455955
834834 0 0
835835 12816.0i 0.531157i
836836 0 0
837837 2376.00i 0.0981202i
838838 0 0
839839 −23160.0 −0.953006 −0.476503 0.879173i 0.658096π-0.658096\pi
−0.476503 + 0.879173i 0.658096π0.658096\pi
840840 0 0
841841 23489.0 0.963098
842842 0 0
843843 − 7326.00i − 0.299313i
844844 0 0
845845 4518.00i 0.183934i
846846 0 0
847847 18992.0 0.770452
848848 0 0
849849 −8484.00 −0.342957
850850 0 0
851851 − 42672.0i − 1.71889i
852852 0 0
853853 32078.0i 1.28761i 0.765190 + 0.643804i 0.222645π0.222645\pi
−0.765190 + 0.643804i 0.777355π0.777355\pi
854854 0 0
855855 −1080.00 −0.0431991
856856 0 0
857857 14406.0 0.574212 0.287106 0.957899i 0.407307π-0.407307\pi
0.287106 + 0.957899i 0.407307π0.407307\pi
858858 0 0
859859 30620.0i 1.21623i 0.793849 + 0.608115i 0.208074π0.208074\pi
−0.793849 + 0.608115i 0.791926π0.791926\pi
860860 0 0
861861 − 2016.00i − 0.0797969i
862862 0 0
863863 17568.0 0.692957 0.346478 0.938058i 0.387377π-0.387377\pi
0.346478 + 0.938058i 0.387377π0.387377\pi
864864 0 0
865865 10548.0 0.414616
866866 0 0
867867 32889.0i 1.28831i
868868 0 0
869869 − 6240.00i − 0.243587i
870870 0 0
871871 −33592.0 −1.30680
872872 0 0
873873 −10386.0 −0.402649
874874 0 0
875875 20544.0i 0.793730i
876876 0 0
877877 21706.0i 0.835758i 0.908503 + 0.417879i 0.137226π0.137226\pi
−0.908503 + 0.417879i 0.862774π0.862774\pi
878878 0 0
879879 −14274.0 −0.547725
880880 0 0
881881 −14958.0 −0.572018 −0.286009 0.958227i 0.592329π-0.592329\pi
−0.286009 + 0.958227i 0.592329π0.592329\pi
882882 0 0
883883 32812.0i 1.25052i 0.780415 + 0.625261i 0.215008π0.215008\pi
−0.780415 + 0.625261i 0.784992π0.784992\pi
884884 0 0
885885 11880.0i 0.451234i
886886 0 0
887887 38856.0 1.47086 0.735432 0.677598i 0.236979π-0.236979\pi
0.735432 + 0.677598i 0.236979π0.236979\pi
888888 0 0
889889 −40576.0 −1.53079
890890 0 0
891891 972.000i 0.0365468i
892892 0 0
893893 1920.00i 0.0719489i
894894 0 0
895895 −3240.00 −0.121007
896896 0 0
897897 −19152.0 −0.712895
898898 0 0
899899 2640.00i 0.0979410i
900900 0 0
901901 − 24948.0i − 0.922462i
902902 0 0
903903 2496.00 0.0919841
904904 0 0
905905 −11892.0 −0.436799
906906 0 0
907907 − 28276.0i − 1.03516i −0.855635 0.517579i 0.826833π-0.826833\pi
0.855635 0.517579i 0.173167π-0.173167\pi
908908 0 0
909909 5562.00i 0.202948i
910910 0 0
911911 8112.00 0.295019 0.147510 0.989061i 0.452874π-0.452874\pi
0.147510 + 0.989061i 0.452874π0.452874\pi
912912 0 0
913913 −5904.00 −0.214013
914914 0 0
915915 − 9684.00i − 0.349883i
916916 0 0
917917 − 36672.0i − 1.32063i
918918 0 0
919919 26080.0 0.936126 0.468063 0.883695i 0.344952π-0.344952\pi
0.468063 + 0.883695i 0.344952π0.344952\pi
920920 0 0
921921 −25428.0 −0.909751
922922 0 0
923923 30096.0i 1.07326i
924924 0 0
925925 22606.0i 0.803547i
926926 0 0
927927 1152.00 0.0408162
928928 0 0
929929 49170.0 1.73651 0.868254 0.496120i 0.165243π-0.165243\pi
0.868254 + 0.496120i 0.165243π0.165243\pi
930930 0 0
931931 1740.00i 0.0612526i
932932 0 0
933933 − 13896.0i − 0.487604i
934934 0 0
935935 9072.00 0.317311
936936 0 0
937937 −48314.0 −1.68447 −0.842236 0.539110i 0.818761π-0.818761\pi
−0.842236 + 0.539110i 0.818761π0.818761\pi
938938 0 0
939939 14466.0i 0.502748i
940940 0 0
941941 − 34782.0i − 1.20495i −0.798137 0.602477i 0.794181π-0.794181\pi
0.798137 0.602477i 0.205819π-0.205819\pi
942942 0 0
943943 7056.00 0.243664
944944 0 0
945945 2592.00 0.0892251
946946 0 0
947947 25116.0i 0.861838i 0.902391 + 0.430919i 0.141810π0.141810\pi
−0.902391 + 0.430919i 0.858190π0.858190\pi
948948 0 0
949949 8284.00i 0.283361i
950950 0 0
951951 −10278.0 −0.350460
952952 0 0
953953 15462.0 0.525565 0.262782 0.964855i 0.415360π-0.415360\pi
0.262782 + 0.964855i 0.415360π0.415360\pi
954954 0 0
955955 − 16128.0i − 0.546481i
956956 0 0
957957 1080.00i 0.0364801i
958958 0 0
959959 11616.0 0.391137
960960 0 0
961961 −22047.0 −0.740056
962962 0 0
963963 13284.0i 0.444518i
964964 0 0
965965 − 13812.0i − 0.460750i
966966 0 0
967967 736.000 0.0244759 0.0122379 0.999925i 0.496104π-0.496104\pi
0.0122379 + 0.999925i 0.496104π0.496104\pi
968968 0 0
969969 −7560.00 −0.250632
970970 0 0
971971 − 29268.0i − 0.967307i −0.875260 0.483653i 0.839310π-0.839310\pi
0.875260 0.483653i 0.160690π-0.160690\pi
972972 0 0
973973 6080.00i 0.200325i
974974 0 0
975975 10146.0 0.333264
976976 0 0
977977 16674.0 0.546007 0.273003 0.962013i 0.411983π-0.411983\pi
0.273003 + 0.962013i 0.411983π0.411983\pi
978978 0 0
979979 − 9720.00i − 0.317316i
980980 0 0
981981 10710.0i 0.348567i
982982 0 0
983983 31272.0 1.01467 0.507336 0.861749i 0.330630π-0.330630\pi
0.507336 + 0.861749i 0.330630π0.330630\pi
984984 0 0
985985 −26244.0 −0.848937
986986 0 0
987987 − 4608.00i − 0.148606i
988988 0 0
989989 8736.00i 0.280878i
990990 0 0
991991 −15928.0 −0.510565 −0.255282 0.966867i 0.582168π-0.582168\pi
−0.255282 + 0.966867i 0.582168π0.582168\pi
992992 0 0
993993 8364.00 0.267295
994994 0 0
995995 9600.00i 0.305870i
996996 0 0
997997 42014.0i 1.33460i 0.744789 + 0.667300i 0.232550π0.232550\pi
−0.744789 + 0.667300i 0.767450π0.767450\pi
998998 0 0
999999 6858.00 0.217195
Display apa_p with pp up to: 50 250 1000 (See ana_n instead) (See ana_n instead) (See ana_n instead) Display ana_n with nn up to: 50 250 1000 (See only apa_p) (See only apa_p) (See only apa_p)

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 768.4.d.n.385.2 2
4.3 odd 2 768.4.d.c.385.1 2
8.3 odd 2 768.4.d.c.385.2 2
8.5 even 2 inner 768.4.d.n.385.1 2
16.3 odd 4 48.4.a.c.1.1 1
16.5 even 4 192.4.a.i.1.1 1
16.11 odd 4 192.4.a.c.1.1 1
16.13 even 4 6.4.a.a.1.1 1
48.5 odd 4 576.4.a.q.1.1 1
48.11 even 4 576.4.a.r.1.1 1
48.29 odd 4 18.4.a.a.1.1 1
48.35 even 4 144.4.a.c.1.1 1
80.3 even 4 1200.4.f.j.49.2 2
80.13 odd 4 150.4.c.d.49.2 2
80.19 odd 4 1200.4.a.b.1.1 1
80.29 even 4 150.4.a.i.1.1 1
80.67 even 4 1200.4.f.j.49.1 2
80.77 odd 4 150.4.c.d.49.1 2
112.13 odd 4 294.4.a.e.1.1 1
112.45 odd 12 294.4.e.g.79.1 2
112.61 odd 12 294.4.e.g.67.1 2
112.83 even 4 2352.4.a.e.1.1 1
112.93 even 12 294.4.e.h.67.1 2
112.109 even 12 294.4.e.h.79.1 2
144.13 even 12 162.4.c.f.55.1 2
144.29 odd 12 162.4.c.c.109.1 2
144.61 even 12 162.4.c.f.109.1 2
144.77 odd 12 162.4.c.c.55.1 2
176.109 odd 4 726.4.a.f.1.1 1
208.77 even 4 1014.4.a.g.1.1 1
208.109 odd 4 1014.4.b.d.337.2 2
208.125 odd 4 1014.4.b.d.337.1 2
240.29 odd 4 450.4.a.h.1.1 1
240.77 even 4 450.4.c.e.199.2 2
240.173 even 4 450.4.c.e.199.1 2
272.237 even 4 1734.4.a.d.1.1 1
304.189 odd 4 2166.4.a.i.1.1 1
336.125 even 4 882.4.a.n.1.1 1
336.173 even 12 882.4.g.f.361.1 2
336.221 odd 12 882.4.g.i.667.1 2
336.269 even 12 882.4.g.f.667.1 2
336.317 odd 12 882.4.g.i.361.1 2
528.461 even 4 2178.4.a.e.1.1 1
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
6.4.a.a.1.1 1 16.13 even 4
18.4.a.a.1.1 1 48.29 odd 4
48.4.a.c.1.1 1 16.3 odd 4
144.4.a.c.1.1 1 48.35 even 4
150.4.a.i.1.1 1 80.29 even 4
150.4.c.d.49.1 2 80.77 odd 4
150.4.c.d.49.2 2 80.13 odd 4
162.4.c.c.55.1 2 144.77 odd 12
162.4.c.c.109.1 2 144.29 odd 12
162.4.c.f.55.1 2 144.13 even 12
162.4.c.f.109.1 2 144.61 even 12
192.4.a.c.1.1 1 16.11 odd 4
192.4.a.i.1.1 1 16.5 even 4
294.4.a.e.1.1 1 112.13 odd 4
294.4.e.g.67.1 2 112.61 odd 12
294.4.e.g.79.1 2 112.45 odd 12
294.4.e.h.67.1 2 112.93 even 12
294.4.e.h.79.1 2 112.109 even 12
450.4.a.h.1.1 1 240.29 odd 4
450.4.c.e.199.1 2 240.173 even 4
450.4.c.e.199.2 2 240.77 even 4
576.4.a.q.1.1 1 48.5 odd 4
576.4.a.r.1.1 1 48.11 even 4
726.4.a.f.1.1 1 176.109 odd 4
768.4.d.c.385.1 2 4.3 odd 2
768.4.d.c.385.2 2 8.3 odd 2
768.4.d.n.385.1 2 8.5 even 2 inner
768.4.d.n.385.2 2 1.1 even 1 trivial
882.4.a.n.1.1 1 336.125 even 4
882.4.g.f.361.1 2 336.173 even 12
882.4.g.f.667.1 2 336.269 even 12
882.4.g.i.361.1 2 336.317 odd 12
882.4.g.i.667.1 2 336.221 odd 12
1014.4.a.g.1.1 1 208.77 even 4
1014.4.b.d.337.1 2 208.125 odd 4
1014.4.b.d.337.2 2 208.109 odd 4
1200.4.a.b.1.1 1 80.19 odd 4
1200.4.f.j.49.1 2 80.67 even 4
1200.4.f.j.49.2 2 80.3 even 4
1734.4.a.d.1.1 1 272.237 even 4
2166.4.a.i.1.1 1 304.189 odd 4
2178.4.a.e.1.1 1 528.461 even 4
2352.4.a.e.1.1 1 112.83 even 4